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SUMMARY

A practical method for solving plastic deformation
problems in the elastic plastic range is presented.
The method is one of successive approximations
and is illustrated by four examples which include
a flat plate with temperature distribution across the
width, a thin shell with axial temperature distribu-
tion, a solid cylinder with radial temperature dis-
tribution, and a rotating disk with radial temper-
ature distribution.

INTRODUCTION

The calculation of stresses in structural com-
ponents in which plastic flow is considered is
currently of great interest in order to take full
advantage of the load-carrying capacity of avail-
able materials. Little attention, however, has
been directed at providing simple, general methods
which can be applied by the engineer toward the
solution of practical problems. This report pre-
sents such a method and its applications to several
problems of current interest. Although use is
made of a technique arising in the theory of
integral equations, no knowledge of integral
equations is required, and the mathematics in-
volved is well within the scope of the practicing
engineer.

The method, which is one of successive in-
tegrations, is illustrated for four different thermal
stress problems which include the flat plate with
temperature variation along the width, the thin
cylindrical shell with axial temperature distribu-
tion, the solid cylinder with radial temperature
distribution, and the rotating disk with radial
temperature distribution. The techniques illus-
trated are not, however, limited to thermal

stress problems. The first three problems con-
sidered involve small plastic strains, that is, on
the same order of magnitude as the elastic strains.
The fourth problem involves strains on the order
of 1 percent. The deformation theory of plasticity
with the Von Mises yield condition is used.
Other yield conditions, however, could be used.

METHOD

The determination of stresses and strains in a
body consists of combining the equations of equi-
librium and compatibility with the "stress-strain"
relation and integrating the resulting equations.
For both elastic and plastic problems the same
equations result for equilibrium and compatibility;
the difference in the two cases consists of the stress-
strain relation. In the elastic case a linear relation
applies between stress and strain, thus resulting
in linear differential equations which can be solved
by standard methods. The occurrence of plastic
flow greatly complicates the problem by intro-
ducing a nonlinear stress-strain relation resulting
in a nonlinear differential equation for which direct
solutions may be difficult or impossible to obtain.
The present report demonstrates a relatively
simple method for obtaining approximate solutions
to the resulting nonlinear differential equations
whereby the equations are first converted to non-
linear integral equations and then solved by the
established mathematical technique of successive
integrations

The principle underlying the successive integra-
tion method of the solution of plastic flow prob-
lems can best be illustrated by an example which
is treated in greater detail in the section Ex-

AMPLES. For a flat plate subject to a tempera-
1 Supersedes NACA Technical Note 4088 by A. Mendelson and S. S. Manson, 1957.
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ture variation along the chord T=600(y2-1/3)+
To the total strain E due to stress is given by

i
E= -0.00570(y2—%)+

J 
Eep dy	 (1)

0

where the plastic strain Eep is a function of the
total strain E (fig. 1). (All symbols are defined
in appendix A.)`
' A convenient method for solving equation (1)
is to approach the solution in successive steps by
organizing the computations so that the bother-
some nonlinear terms are treated not as unknowns
but as known quantities determinable from a
previous iteration. For example, as a zeroth
approximation, let it be assumed that Eep =O for
all values of y. Then equation (1) permits direct
computation of E for all values of y. Once the
total strain E is determined, the plastic component
of the strain Eep may be obtained by inspection of
the stress-strain curve (fig. 1) or by simple com-
putation. It is thus possible in the next compu-
tation to include the Eep terms as determined from
the first computation, and thus somewhat more
accurate values of E can be obtained. These in
turn lead to more accurate values of Eep , and the
process is repeated, each time with the plastic
strain terms determined in the previous iteration
being treated as known quantities. When succes-
sive iterations lead to no change in E or Eep , it
manifestly makes no difference whether the Eep

terms apply to the current or previous iteration.
Equation (1) is now satisfied to the desired degree
of accuracy, and the correct solution is therefore
obtained.

The simple example of the flat plate just illus-
trated involves uniaxial stress, hence it is possible

Strain ,

FIGURE 1.—Typical stress-strain curve for 18-8 stainless
steel

to determine directly plastic strain once the total
strains are known. In most cases of practical
interest the stresses are biaxial or triaxial, and
the formal procedure for carrying through the
computations can be illustrated by referring to
the case of the long solid cylinder with radial
temperature distribution, which is also treated in
greater detail In the section LONG SOLID CYLINDER.
By manipulating the equilibrium and compati-
bility equations and the stress-strain relations,
expressions for the total strains in three principal
directions are derived in integral equation forms
of the type

Er =f (r) + 
fr 

g (r, Er7 66p6z) Erp, EOp) dr	 (2)

with similar expressions for co and Ee. If an
attempt is made to write a direct relation between
the elastic and plastic strains derived from plas-
ticity laws and this relation is substituted in
equation (2), complicated nonlinear integral equa-
tions result which do not readily admit solution.
These complications can again be avoided by the
process of successive integrations. The zeroth
approximation for the total strains Er, Ee, and Ez is
determined by neglecting the integral term,
thereby Er is made equal to f(r) with similar
assumptions for Eo and Ez. For these values of
total strains the plastic strains are determined as
will be discussed presently. These values of
plastic strains are now treated as known values
wid substituted into equation (2) to determine
first approximations to -total strains Er, Ee, and. Ez

from which new approximations to the plastic
strains can be determined. The process is re-
peated as many times as necessary until succes-
sive approximations show sufficiently little change
in total or plastic strains to permit being con-
sidered as converged to the correct solution.

It may be noted that the method of successive
integrations is not completely new in application
to plastic flow, problems. Ilyushin's treatment of
the thin shell (ref. 1) is essentially a successive
integration process similar to that discussed in this
report. Although he regarded the successive itera-
tions as a series of artificial elastic problems, the
mechanics of the computations are identical to
those resulting when the problem is treated strictly
in its mathematical sense of successive integrations
of a nonlinear integral equation. In the present
paper the thin shell problem is treated without the
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restrictions imposed by Ilyushin of linear strain-
hardening and of complete incompressibility in
the elastic-plastic range.

In order to determine new values for the plastic
strains Erp and cop from the values of the total
strains E„ E8, and e. as calculated by equations
such as equation (2), a stress-strain relation for
biaxial or triaxial stresses in the elastic-plastic
range is needed. It will be seen that the validity
of the method does not depend on the precise
form of the stress-strain relations, but for illustra-
tive purposes it was necessary to select specific
relations. The relations of the deformation theory
of plasticity were therefore used. Appendix B
shows that by introducing the concept of equiva-
lent total strain, the plastic strains can be com-
puted from the total strains in a simple fashion.
Thus, the equivalent total strain Eel may be defined
as follows:

Eet 2 Y ( Er —EB) 2 T( Er —Ez) I+(EB—Ez) 2	 (3)
3

Then the plastic strains are given by:

erp 
3Eel (2Er—f59-6z)

(4)
eop_ 1 

EeP (2EB—E, —EZ)
3 Eet

where Eep is the equivalent plastic strain as shown
on the uniaxial tensile curve of figure 1. Further-
more, it is shown in appendix B that the equivalent
total strain Ee l can be written as follows:

2(1
+v) 

a,	
(5)Eet = 3	 R+ 68P

where the equivalent stress ae is the ordinate of the
uniaxial stress-strain curve as shown in figure 1.
Since, for a given value of Eep, a, can be directly
determined from this stress-strain curve, equation
(5) permits the direct construction of a curve of
Eel against EeP as shown in figure 2. The computa-
tion of the plastic strains thus becomes very simple.
For a given set of values of total strain, Eel is
computed from equation (3). For this value of
ee Lj Eep is read from figure 2, and E,p and cop are then
computed from equations (4) . These values of
E,p and cop are substituted into equations such as
equation (2) to obtain new values for the total
strains E„ eo, and E,.

Equivalent plastic strain, e,p

FIGURE 2.—Variation of total equivalent strain with
equivalent plastic strain based on stress-strain curve
of figure 1.

In some cases it is possible to expedite the
calculation of plastic strains for known values of
total strains by preparing charts in advance of
the calculation. Use of such charts will be illus-
trated in the examples for the thin circular shell.

The question arises as to whether the process
is always convergent to the correct solution, or
whether it is possible at some point for successive
solutions to become worse than earlier ones, thus
they could lead ultimately to meaningless results.
In all the cases treated in this report it can be
shown that the functions appearing in the integral
equations satisfy the conditions necessary for the
convergence of the process (ref. 2); hence, the
-correct solution must result if a sufficiently large
number of iterations are performed. However,
for some problems the rate of convergence may
be very slow, and a large number of iterations
may be required to obtain a solution of the desired
accuracy. Two devices may be employed to
expedite the convergence. It appears reasonable
to assume that the closer the initially assumed
solution is to the correct solution, the fewer the
number of iterations that will be required before
convergence will result. Hence, any knowledge
or insight possessed by the investigator should be
used to estimate the zeroth approximation, rather
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than obtaining it by assuming all plastic strains
to be zero. Solution to related problems, solu-
tions by other approximate or simpler methods,
approximate measurements, physical intuition, or
other expedients accessible to the investigator may
all be used to good advantage. For example,
some problems may be formulated in which the
stresses will evidently change little because of
plastic flow; and the strains will have to assume
whatever values are necessary to permit these
stresses to be generated. (This is a contrasting
case to that of thermally induced stress in which
the strains govern and take on approximately their
elastically computed values, and the stresses adjust
accordingly.) In such cases it may be better to
start with an assumed initial stress distribution,,
compute the corresponding elastic strains from the
stress-strain relation, and proceed with successive

integrations based on this initial strain distribution.
Even when no insight into the correct solution

is available, convergence may still be expedited
by noting essentially the rate at which successive
iterations change the strain distribution. A for-
mal technique using this concept is illustrated in
this report in connection with the rotating disk.
It also should be noted that, if high-speed com-
puting machinery is used, the number of successive
approximations required for convergence becomes
of lesser importance. The method will now be
illustrated for four different problems.

EXAMPLES

THIN FLAT PLATE

As a first example, consider the simple uniaxial
case of a thin infinite plate of width 2c with a tem-
perature distribution T(y) across the width. Under
these conditions, the only nonzero stress is a,—
a,(y). As in the usual theory of bending, it is
assumed that plane sections remain plane. This
requires that

Ex=a+by	 (6)

where a and b are constants to be determined.
The stress-strain relation is

1
Ex
_

 p Q2+aT+Exp	
(7)

The boundary conditions require that

e

vx dy=0
c	 (8)

fe a
x y dy=0

c

Combining equations (6), (7), and (8) gives

re	 1

J E(a+by—aT—Exp)dy=0C
and	

r	
(9)

J ce E(a+by —aT—E.,)y dy=0 I

If E is constant, equations (9) give

r c 	 c	 1

a= 2c J -e «T dy { 2C_ e ExP dy
(10)

_3	 3
b 2c3 _e «Ty dy+3 _ e Expy dy

Also, in this case

Exp=Eep ^	
(11)

O'e=(Tx

Equation (6) can now be written as follows:

1e
Ex—aT=E=2c aT dye- 3203Y J aTy dy—aT

—c	 c

	

+2C f ce c, dy+20 f ce EePy dy	 (12)

As a specific example, let

T= 600(y2 -1/3) + To
E= 28 X 106
C=1
a=9.5 X 10-6

The stress-strain curve for the material is given by
figure 1. Because of symmetry only half the plate
between 0 and 1 need be considered. Equation
(12) becomes

Ex— aT= E =-0.00570(y2-1/3)+ f Eepdy (13)
0
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Equation (13) is now solved by successive ap-
proximations by using the stress-strain curve (fig.
1). For the zeroth approximation to the total
strains it is assumed that the total strains do not
change much from those computed "elastically"
and, therefore, that E,, is everywhere zero. The
integral in equation (13) thus vanishes, and the
strains are computed. This is the elastically com-
puted strain distribution. With this strain dis-
tribution, a first approximation to the plastic
strains e, is obtained directly from the stress-strain
curve (fig. 1). The integral in equation (13) is now
evaluated, and a first approximation to the total
strains is obtained. With this first approximation
to the total strains, a second approximation to the
plastic strains is obtained from the stress-strain
curve. The process is repeated until the desired
convergence is obtained. The integral in equa-
tion (13) was evaluated simply by the trapezoidal
rule. More accurate evaluation, for example, by
Simpson's rule, can be made if desired.

The computations for this problem are shown
in table I(a), and the results are plotted in figure 3.
The stresses, which are not shown in table 1, can
be read directly from the stress-strain curve once
the strains are computed. These calculations
show that the first approximation is sufficiently
accurate and that the total strains are not much
different from those computed elastically. This
last result explains the fast convergence of this
method for this problem.

If the modulus of elasticity E is not constant, no
additional difficulty is added. Solution of equa-
tion (9) gives, for a and b:

1
a=AI f c EaT 

dy+Al fC 
EE, dy

—A2 f c EaTy dy—A2 f c &,y dy
J ^	 J e

r	 (14)
b=—A, c EaT dy—A,F Ee,^,y dy

+A3 
f' EaTy dy+Aa f c Eez^y dy

Elastic
---- Fi rst approximation
— — Second and third

approximations

.2	 .4	 .6	 .8	 1.0
Distance from plate centerline, y

(a) Strain.

(b) Stress.

FIGURE 3.—Variation of stress and strain along flat plate
for successive approximations. Temperature given by
T= 600 (yz — %) -I- Toe
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TABLE I.-PLASTIC FLOW CALCULATIONS
(a) Flat plate

Station Y fop E

(Eq. (13))
Eep

(Fig. 1)
E

(Eq. (13))
Eep

(Fig. 1)
E

(Eq. (13))
Eep

(Fig. 1)
E

(Eq. (13))
Eep

(Fig. 1)
!	

E

(Eq. (13))
Eep

(Fig. 1)

1 0 0 1.9X10-3 0.7X10-3 1.7X10-3 0.5X16-3 1.6X19-3 0.4X10-3 1.6X10-3 0.4X10-3 1.6X10-3 0.4X10-3
2 .1 0 1.8 .6 1.6 .4 1.5 .4 1.5 .4 1.5 .4
3 .2 0 1.7 .5 1.5 .4 1.4 .3 1.4 .3 1.4 .3
4 .3 0 1.4 .3 1.2 .2 1.1 .1 1.1 .1 1.1 .1
5 .4 0 1.0 0 .8 0 .7 0 .7 0 .7 0
6 .5 0 .5 0 .3 0 .2 0 .2 0 .2 0
7 .6 0 -.2 0 -.4 0 -.4 0 -.5 0 -.5 0
8 .7 0 -.9 0 -1.1 -.1 -1.2 -.2 -1.2 -.2 -1.2 -.2
9 .8 0 -1.7 -.5 -1.9 -.7 -2.0 -.8 -2.0 -.8 -2.0 -.8

10 .9 0 -2.7 -1.5 -2.9 -1.6 -3.0 -1.7 -3.0 -1.7 -3.0 -1.7
11 1.0 0 -3.8 -2.5 -4.0 -2.7 -4.0 -2.7 -4.1 -2.8 -4.1 -2.8

(b) Thin shell

Station x z aT
'I

(Previous
approximation)

fop
(Previous

approximation)
Il

(Previous
approximation)

12
(Previous

approximation)
w

(Eq. (23))
(e)

20 11.97 -1.0 -3.008X10-3 0.550X10-3 -0.800X10-3 -24.14X10 -6 -581.1X10-6 -0.01372
-.6667 . 480 -770
-.3333 .420 -..740

0

1
.365 -.725

3333 .310 -710
.6667 .260 -..700

1.0 .215 -.695
21 12.60 -1.0 -3.333 -3.20 -2,500 -1113 -1932 0

-.6667 -1.57 -2.270
-.3333 -.175 -2.075
0 .940 -2.030
.3333

1
2.170 -2.300

.6667 3.800 -2.750
1.0 5.500 -2.850

a In calculating w, cs and c4 are calculated from eq. (21) by using eqs. (25) and (26).

Station Ey aT
(Eq. (16))

to-aT
(Eq. (16))

Eyp

(Fig. 4)
EBp

(Fig. 4)
q

(Eq. (22))
P

(Eq. (22))
11

(Eq. (24))
12

(Eq. (24))
w

20 1.314X10-3 -1.865X10-3 0.600X10-3 -0.780X10-3 -0.03295 -0.003013 -22.56X10-6 -545.6X10-6 -0.614141.110 . 505 -.745
.9100 .420 -.705
.7089 .340 -.670
.5100 .270 -.650
.3100 .200 -.640
.1000 .135 -.650

21 -4.414 -3.333 -3.350 -2.500 -0.1130 0.06130 -1043 -2195 0-2.490 -1.625 -2.280
-.5700 -.175 -2.075
1.349 985 -2.030
3.270 2..285 -2.325
5.190 4.000 -2.750
7.110 5.800 -2.850

(c) Long solid cylinder

Station T a 
Erp

(Previous
Eoy

(Previous h EB Ea EeE Eep Epp EBpapproxi- approxi- (Eq. (28)) (Eq. (28)) (Eq. (28)) (Eq. (3)) (Fig. 2) (Eq. (4)) (Eq. (4))
mation) mation)

1 0 9.50X10-3 0 0 9.457X10-3 9.457X10-3 8.912X10-3 0.363X10-3 0X10-3 0X10-3 0X10-32 .75 9.50 0 0 9.462 9.452 0 .363 0 0 03 .80 9.29 0 0 9.085 9.439 0 .310 0 0 0
4 .85 8.81 0 0 8.240 9.393 0 .668 0 0 05 .90 7.68 0 0 6.236 9.299 0 1.926 0.91 -.907 0.545
7 1.000 6.83 0 0 5.045 8.919 0 2.578 1.48 -1.477 .738
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TABLE I.-Concluded. PLASTIC FLOW CALCULATIONS
(d) Rotating disk

Sta-
tion

r nT
ErP

(Previous
approxi-
mation)

Egp

(Previous
approxi-
mation)

Er

(Eq. (30))

-

EB
(Eq. (30))

Et

(Eq. (30))
E

(Eq. (3))
Enp

(Fig. 2)
Erp

(Eq. (4))
EBp

(Eq. (4))

1 0 0.95X10-3 1.567X10- 3 1.567X10-3 3.757X10-3 3.757X10-3 -3.247X10-3 4.669X10-3 3.441X10 -3 1.720X10- 3 1.720X10-32 .5 1.045 1.515 1.517 3.780 3.784 -3.033 4.543 3.317 1.657 1.6603 1.0 1.33 1.459 1.351 3.983 3.845 -2.490 4.270 3.048 1.573 1.4744 1.5 1.71 1.376 1.144 4.250 3.942 -1.776 3.919 2.721 1.466 1.252
5 2.0 2.47 1.256 .7269 4.862 4.104 - .3885 3.277 2.124 1.298 .8067
6 2.5 3.80 1.089 .1111 6.022 4.381 1.913 2.389 1.304 1.047 .1508
7 ^ 3.0 5.415 1.070 -.4288 7.614 4.797 4.371 2.035 .9972 .9899 -.3908

3.5 7.315 1.410 -1.175 9.773 5.362 6.964 2.578 1.469 1.371 -1.142
9 4.0 9.5 1.904 -2.298 12.28 6.076 10.00 3.623 2.446 1.908 -2.279

10 4.5 11.88 2.290 -3.637 14.83 6.911 13.51 4.896 3.664 2.303 -3.62011 5.0 14.25 2.498 -4.996 17.18 7.824 17.18 6.235 4.982 2.491 -4.982

where A,, A2 , and A 3 are numbers which are deter-
mined once and for all for a particular problem
from the known variation of E with temperature:

Eyz dy

A,

 f-C ,

_̂o
E 

dy'e dy-( r Ey dy)z

J c 
Ey dy

2= r,cE dy ' Ey2 dy-( C Ey dy)2

f-cc
 E dy

A -r
3-

J c
cE dy f E cEy2 dy-(f c

'Ey dy)

By using these values for a and b the solution is
obtained by successive approximations as before.
Of course, a different stress-strain curve must be
used at every station and is dependent on the
temperature of that station.

THIN CIRCULAR SHELL

The second example considered is that of a thin
circular shell with axial temperature gradient.
The equations for the total strains, presented in
appendix C, are

2

Ex-v R lzdawz
+(1 +V)IXT

1 

H

fff/2
 (Exy+veo,)dz

H/2

W
E B = - D

Ez=-
V 

( Ex+ EB)+
I+Va T-1-2v(Exl

+EBT)1-v	 1-v	 1-v

(16)
509523 60	 2

where w is the solution of

42

dx4 +4w= -4R«T-d2P-Q	 (17)

and is given by

w=c l cos x cosh x+c2 cos x sinh x+C3 sin x cosh x

+c4 sin x sinh x-4R fox a TQ) G (x-^) d^

jxp(^)  
d119dx2 

S) d^ JQ (^)G(x-^)d^

(18)

and

G(x-^)=4 [sin (x-^) cosh (x-^)

-cos (x-^) sinh (x-^)]

2 H/2	 )121 ('	 19
P=-- J	 (ExD-I-VEBv)z dz

H/2

4R H/2

Q=_9 	 EBD dz
FH/2

The term G(x-^) is the Green's function for this
problem. Substitution verifies that equation (18)
is a solution of equation (17).

The solution to the problem is now obtained by
successive approximations starting with the as-
sumption that Ex, and eo, are zero. A zeroth ap-
proximation to the total strains can thus be ob-
tained from equations (16) and (18) . With these
values of total strain, first approximations to the
plastic strains E, and eo, can be readily obtained
as will be shown. These first approximations to
the plastic strains are substituted in equations
(16), (18), and (19), and first approximations to
the total strains Ex, eo, and Ez are obtained. The

(15)
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process is repeated as many times as necessary to
give the desired convergence. For every suc-
cessive approximation the constants Cl to C4 ap-
pearing in equation (18) must be evaluated in
order to satisfy the boundary conditions.

To obtain the plastic strains ExP and co, once the
total strains Ex, co, and EZ have been determined for
any iteration, the stress-strain curve and equations
(3) and (4) are used. In order to facilitate the
computation of ExP and co, a cross plot is made of
the stress-strain curve as is shown in figure 2 by
means of equation (5) as previously explained.
The process for obtaining the plastic strains ExP

and co, from the total strains now becomes rela-
tively simple. For a given set of strains Ex, co, and
EZ , the equivalent total strain E,, is computed by
equation (3). For this value of Eey, e, is obtained
from figure 2, and ExP and Eo, are computed by
equations (4). It should be noted that the curve
in figure 2 is very close to a straight line. The
equation of the "best fit" straight line was there-
fore used in some of the computations. Represen-
tation of the curve by a functional relation is
particularly useful if a given problem is set up for
automatic machine computation.

As an alternate procedure, the plastic strains
ExP and Eop can be obtained directly from the total
strains Ex and co by means of a parametric family of
curves as shown in figure 4. For a given pair of
values of Ex —aT and Eo —aT, the plastic strains are
read directly from these curves. Figure 4 was
obtained from the stress-strain curve (fig. 1) as
explained in appendix D. This procedure avoids
the necessity of computing Ey from the last part of
equations (16), c, from equation (3), and ETP and
Eo, from equations (4). However, obtaining a set
of curves such as those in figure 5 involves a con-
siderable amount of labor, and it is usually not
worthwhile to make such a chart unless several
similar computations are to be made using the
same stress-strain curve.

It is to be noted that the stresses can be com-
puted at any step of the calculation by the stress-
strain relations:

Qx=1 
E2 

[Ex— aT— Ex,+v(EO—aT—EBP)j

(20)E 2 1Eo—aT—EBPTV(Ex—aT-6,P)1QB=1 

The solution will now be illustrated for a specific
problem. Consider a thin circular shell with the
following geometric and physical properties:

L=48 in.
R=12 in.
H=2 in.
v=0.3

l= 4 R2H2
3(1 —v2)—

_
3.81 in.

E=28X101 lb/sq in.
a=9.5X10_' °F-i
T=2.21x2 (corresponds to 350° F rise from

one end of shell to other)
0:5 x _< 12.6

with the stress-strain curve of figure 1 and the
following boundary conditions

w(0)=w'(0)=w(12.6)=w'(12.6)=0 (21)

The functions P and Q become

P=21.8	 (c,,+0.3Eo,) z dz
(22)

Q=24 
—1 

Eop dz
J

From the first two boundary conditions,

Ci=0

C2 = _C3

Also, the first integral on the right side of equation
(18) becomes

4R
 f

xaT(^)G(x— ^) d^= 0.000252x2
0

-1-0.000252 sin x sinh x

Equation (18) now becomes

w(x)=c2 (cos x sink x—sin x cosh x)

-{-C4 sin x sinh x-0.000252x2 -1j (x)-12 (x) (23)
where

I^=
 f

xQ( )G(x—^)d^
0

(24)
I2=
 fxP() 

d2G(x—,) d^
 dx2
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FIGURE 4.—Plastic strain chart based on stress-strain curve of figure 1.

For the zeroth approximation, it is assumed that
exP and eeP and, therefore, h and 1, are zero. The
function w(x) is calculated from equation (23)
with the constants c2 and c4 determined from the
last two boundary conditions (eq. (21)). The
strains ex, ee, and e z are then computed from equa-
tions (16). First approximations to exP and eeP

are now obtained either directly from figure 4 or
by computing E,, from equation (3), reading eeP

from figure 2, and calculating exP and co, from
equations (4). For this particular example figure
4 was used. For the two examples to be discussed
subsequently, equations (3) and (4), in conjunc-
tion with figure 2, were used. With these values
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of Exp and Eep, P and Q are computed from equa-
tions (22), w from equations (23) and (24), and
new values of E ,z, Ee, and EZ from equations (16).
The process is repeated until convergence is
obtained.

Wherever derivatives of w are needed such as
in the first part of equations (16) and in equation
(21), the following relations are useful:

dI,= (^^Q(0 dG(x—^) d^dx o	 dx

dI2— (' 2	 d3G(x-0
P() d

dx o	 dx3

(25)
1—

d2G(x
_I nx

Q^^)	 dx2 ^)	 ^d
dx

d 2J

dx22 —4 fOP(^)G(x—^)d^+P(x)
J— J

and

dG(x )_2dx 	
sin (x—^) sinh (x—^)

d2Gdx 2
 — ) =2 [sin (x—^) cosh (x—^) 	

(26)
+cos (x—t) sinh (x—^)

d3 da,' 
=cos (x—^) cosh (x—^)

a,3

The integrals in equations (24) and (25) were
evaluated using the trapezoidal rule. Thus, in
order to evaluate the integrals at a station x=x;,

fT i JQ)F(x,—^) d^_—Ox(%.foFj +.fjFj —I

+.f2F,-2+ ... +f,— ,F,+Y2 fjPo) (27)

The results for this problem are shown in
figure 5. An abbreviated calculation setup for
one of the successive approximations is shown in
table I(b). As many as seven successive approxi-

mations were carried out as shown in the figures,
and the differences between the seventh and the
fourth approximations are very small. From an
engineering viewpoint the first approximation is
actually sufficient. Again, the total strains did not
change very much, which explains the relatively
rapid convergence.

LONG SOLID CYLINDER

The plane strain problem of a long solid cylinder
with a radial temperature distribution is consid-
ered next. Appendix E shows that if the modulus
of elasticity E is assumed constant, the total
strains are given by

r	 _	 r
Ee=1-̂ y 2 aTrdr 2

( 1w) r ^o (E,v+Eev)rdr

+ 1-2v fr Erp—Egp dr+c,

	

2(1—v) 	 r

	

f,=—Eg-}-
l+v	 1-2vaT+	 Erp

	

1—v	 1—v

+1 2v r Erp—EBV dr +2C,
1—v u	 r	 + i

2	 r
EZ=^2If aTr dr—

	
(Erp-{-Eep)r dr]

1-3V 1 R	 1 -2V	 R Erp-60p
C, 1—

v W2_f aTr dr-2
(1— v) ,a	 r dr

R+2(11 
V) 1120 

(Erp+Egp)r dr

(28)

Equations (28) are now solved by successive
approximations as for the previous examples. The
zeroth approximation to the total strains is
obtained from equations (28) by assuming that
Erp and co, are zero. The total equivalent strain is
then computed by equation (3), the equivalent
plastic strain is read from figure 2, and first
approximations to Erp and co, are obtained from
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FIGURE 5.—Variation of stresses and strains in shell with axial distance measured in terms of characteristic length.
Temperature distribution, T=2.21x2.
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equations (4). These values of e" and EBP are
substituted into equations (28), and new approxi-
mations are obtained for E,, Eg, and Ez. The process
is then repeated as many times as necessary to
obtain the desired degree of convergence. The
stresses can be computed at any time from the
general stress-strain relations:

The above calculations have been carried out
for a 1-inch-radius cylinder with a temperature.
gradient as shown in figure 6 and by using the

U
u_
0

a^

3
0
va
E
F-

V	 L	 !+	 b	 b	 I.V
Radius, in.

FIGURE 6.—Radial temperature distribution in long solid
Minder.

stress-strain curve of figure 1. The computations
are shown in table I (c) for one iteration, and the
results are plotted in figure 7. Little difference
occurred between the fourth and fifth approxi-
mations.

ROTATING DISK WITH TEMPERATURE GRADIENT

As a final example the plane stress problem of
a parallel-sided rotating dish with a radial tem-
perature gradient and a constant value of E will be
considered. In this problem the strains are
considerably larger than those in the previous

- 0	 .2	 .4	 .6	 .8	 1.0
Radius, in.

100x 103

8C

N
a

6C
b^

a
6

b
b 4C

NN
N

2C

C

-200	 .2	 .4	 .6	 .8	 1.0
Radius, in.

(a) Strain.

(b) Stress.

FIGURE 7.—Strain and stress distributions in long solid
cylinder with radial temperature gradient.

EB ! c,-3aT)+2G(ET—aT—E,,,)

QB =X ( E'+Eo+EZ-3aT) +2G(EB— aT—E6p)	 w

C

6 z X(Er+EB+Ey- 3aT)+2G(EZ— aT+E,,+EBD)J

U)

(29)

Approximation
Zeroth

----	 First
--	 Fourth and

fifth

v

o^r

ff(b)
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examples. The total strains for this case, as shown in appendix F, are given by

EO=-1 
Eve p

CO 
2

 
8 r'2+ l v

E aTr dr+ 2 
V ^0 

E rV 

r

ENV 

dr+ 2r Ir (c,p +EoV )r 
dr+ 

j3

Er=—E8-1 
EV2p 2

r2-+- (l ^- V)aT l ErV+ VEBV 1 (1—V) J rErp—E9, dr+C3
o	 r

Ez=- 1 V 
V 

( E r +EB) +1 	 a T-11 YV (ErV
+Eop)

1

(30)

UR 3+v 2 2 1 

I

R	

^R

	

R JE
C3=^ (1— v)

	+ 8E 
pw IZ } ^

i2
aTrdr — y o	 dry ^K2 0 (ErV+Eep)rdr

The solution to this problem is obtained by
successive approximation exactly as in the previous
example for the solid cylinder. By starting with
assumed values of ErP and cop equal to zero, Er, Eg,

and EZ are computed from equations (30), e,, from
equation (3), EQV from figure 2, and Erp and Eo,

from equations (4). New values of Er, Eo, and
Ey are now obtained from equations (30), and the
process is repeated.

A solution was obtained in this manner for a
10-inch-diameter disk with a temperature gradient
as shown in figure 8. The value of pw2 was taken

u_
0

0

E
CD

0	 1	 2	 3	 4	 F
Radius, in

FIGURE 8.—Temperature distribution in rotating disk

as 1500, and the stress-strain curve of figure 1
was used. The computations for one iteration
are shown in table I (d), and the results are
plotted in figure 9. In this problem, the strains
are relatively large, with the maximum equivalent
strain close to 1 percent. A straightforward ap-
plication of this method therefore requires approxi-
mately 40 iterations in order to obtain accurate
results. However, the convergence can be greatly
increased by performing three or four iterations,

taking the differences between successive itera-
tions for the various strains, and extrapolating to
a zero difference as shown in figure 10. A root-
mean-square line is drawn, and the intercept at
zero DE is obtained. This furnishes a new starting
estimate. Three or four more successive approxi-
mations are carried out, and another similar extra-
polation is made,. This technique reduced the
number of successive approximations for this
problem from about 40 to about 12.

This same problem was solved by the trial-and-
error method of reference 3. The results obtained
were almost identical to those obtained herein as
can be seen in figure 9.

DISCUSSION

The speed of convergence of this method de-
pends primarily on two factors: the amount of
plastic flow occurring, and the number of stations
taken in the plastic region. For small plastic
strains convergence will be relatively fast. Simi-
larly, for a small number of stations in the plastic
region relatively few iterations are needed. If
the number of stations is increased, more itera-
tions are needed for convergence to occur. Thus,
for the case of the thin shell of the second example,
doubling the number of stations approximately
doubles the number of iterations required for
convergence. This is due to the fact that a change
in the approximation at one station changes the
values at all the other stations, and the more sta-
tions there are the longer it takes for all the stations
to converge.

Increasing the number of stations therefore in-
creases the labor required for two reasons: the
time per iteration goes up, and the number of
iterations required increases. Of course, the
greater the number of stations used, the greater is
the final accuracy attainable. However, good
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(a) Strain.	 (b) Stress.

FIGURE 9.—Strain and stress distributions in rotating disk with temperature gradient. pw2=1500.

accuracy can be obtained without increasing the
labor greatly by following one or both of the follow-
ing techniques. A calculation is made with a
small number of stations to obtain an approximate
plastic strain distribution. This strain distribu-
tion is then used as a first approximation in a new
calculation using more stations. Also, an extra-
polation technique such as shown in the rotating
disk example can be used to speed up convergence
greatly. It should be noted that doubling the

number of stations for the thin-shell problem in-
creased the labor greatly, but the maximum stress
was changed by only about 2000 pounds per square
inch.

An interesting possible application of the results
of the method presented herein may be worth
further investigation. It has been found that,
for thermal stress problems without additional
loads, the total strains do not change very much
because of the plastic deformation compared to
the elastically computed strains and that the first

W

approximation to the stresses is thus usually
fairly good. This leads to the possibility of deter-
mining semiempirically the plastic thermal stresses
in complicated structures for which even the
elastic stress distribution cannot be calculated and
for which strain measurements cannot readily be
made in the plastic region and at high tempera-
tures. A model of the structure can be con-
structed, and temperatures and temperature
gradients can be simulated on a proportionally
reduced scale so that no part of the model flows
plastically. The total elastic strains under these
conditions can usually be readily measured by
means of strain gages. The elastic strains can
then be extrapolated by simple proportion to those
that would exist at the higher temperatures and
gradients actually existing in the structure. By
assuming that the total strains are then equal to
the strains that would exist if the material re-
mained elastic, the plastic strains are computed
from equations (3) and (4) and the stress-strain
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FIGURE 10.—Variation of strain with change of strain for
four successive approximations for rotating disk with
temperature gradient.

curve, and an estimate of the stresses is obtained
from the stress-strain relations such as equations
(29). From the examples presented herein, it
would seem that the stresses computed in this
manner should be accurate enough for many
engineering applications.

In many practical problems it is necessary to
take into account previous plastic flow that may
have taken place. Thus, for example, in a
thermal shock experiment, plastic flow may start
at some time during the quenching process, and
the material may continue to flow plastically as
the process continues. A solution must therefore
be obtained at various time increments from the
start of the quench, and for each time interval
the plastic flow that has already occurred up to
that time must be taken into account. Treat-
ment of this case is described in detail in ap-
pendix G.

In connection with the preceding, it is to be
noted that although this method was developed
here using the equations of the deformation
theory of plasticity, the method can readily be
extended to the incremental theories. Thus, for
example, equations (4) can be replaced by the
Prandtl-Reuss incremental equations and equa-
tion (3) by the corresponding definition of equiva-
lent strain increment. A successive approximation
solution can then be obtained for each loading
increment, noting the previously accumulated
plastic strains. The loading increments can be
made small and thus the incremental theories can
be approached as closely as desired. Creep
problems can be handled in exactly the same way
using any desired creep law. Reference 5 de-
scribes the application of this method to creep
problems and to the incremental theories of
plasticity in general.

Although the method has been presented for
four specific thermal stress problems, it is apparent
that it is general in nature and can be applied to
a large variety of problems for which the solutions
of the elasticity equations are available. No
implication is intended, however, that this method
is necessarily more accurate or faster than other
methods that might be used for specific problems.
Thus, the example of the rotating disk with temper-
ature gradient can be treated more rapidly by
the method of reference 3. The method of this
report does, however, provide a uniform simple
approach that can be used for many different
types of problems. It is not necessary, therefore,
to develop special methods and techniques to
handle different types of problems.

Finally, it should be pointed out that, although
for uniformity and simplicity the method has
been set up by using the equations for total
strains (e.g., eq. (2)), it may be desirable in some
cases to deal with the equations for stress which
can be put in a similar form. Upon determining
vT , vo, and vZ for ET p = Eoy =O (i.e., the elastic
stresses), the elastic total strains can be computed
by Hooke's Law. For these total strains the
plastic components are evaluated as described
earlier, and a first iteration for stress is obtained.
Subsequent iterations may follow the same pro-
cedure by using as the plastic strains the values
determined from the previous iteration. In those
cases where it is suspected that the elastic stress
distribution is likely to be less affected by the

xlU-
O	 Er

o	 ee
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plastic flow than the strain distribution, the plastic
strains are determined directly from the stresses
and tb e stress-strain relations as given in appendix B.

SUMMARY OF RESULTS

A method has been presented for solving plastic
deformation problems in the elastic-plastic range.
The method, one of successive approximations,
is illustrated by four examples which included

a flat plate, a thin shell, a solid cylinder, and a
rotating disk. It was found that for thermal
stress problems accurate answers could be ob-
tained with relatively few successive approxi-
mations. A technique for speeding up conver-
gence is also shown.

LEWIs RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CLEVELAND, OHIO, June 20, 1957



APPENDIX A

SYMBOLS

AI ,A2 ,A3 constants
a,b constants
C,,C2 ,C3 i C4 integration constants
C half width of thin plate
C 1i C2 Ai C4 integration constants
E modulus of elasticity

E
G Lame's constant, 2(1+p)

G(x) function
H thickness of thin shell
h thickness of rotating disk
-1j, integrals
K,,K constants (eqs. (B6))
L length, of thin shell
l characteristic length of thin shell,

4 R2H2

3(1—v2)

P(x) function
Q(x) function
R mean radius of shell, or radius of

solid cylinder
r radial distance to arbitrary point

in solid cylinder or rotating disk
T temperature above arbitrary zero
To arbitrary constant temperature
U axial displacement of point on

middle surface of shell

W

X

y

Z

E

Cep

Cet

ex, EB, E2, CT

Cxp l Eep f Ee p f ETD

B

V

P

Ce

Qx, QB, QT, (7z

W

radial displacement of point on
middle surface of shell, positive
inward

ratio of axial coordinate of shell
to characteristic length, or axial
coordinate of thin plate

distance along width of thin plate
radial coordinate of thin shell

measured from middle surface,
positive inward, or axial coordi-
nate of long solid cylinder

linear coefficient of thermal expan-
sion

conventional strain in tensile test
equivalent plastic strain
equivalent total strain
strains in x-, B-, z-, and r-

directions, respectively
plastic parts of ex, co, CZ , and CT,

respectively
tangential coordinate

Lame's constant	 vE(1+v)(1-2v)
Poisson's ratio
integration variable
density
equivalent stress
normal stresses in x-, e-, r-, and

z-directions, respectively
rotational speed of disk

17



APPENDIX B

CALCULATION OF PLASTIC STRAINS

The deformation theory of plasticity is used
with the three usual assumptions that the direc-
tions of the principal strains coincide with the
directions of the principal stresses, that the ratios
of the principal shear strains are equal to the ratios
of the principal shear stresses, and that the vol-
ume remains constant in the plastic range. These
assumptions imply

1Er — EB _ Er — Ez — EB— Ez =K
Qr — QB 0"-0" ' co—o"

E rP+ EBp I EzP =0

By substituting the stress-strain relations

Er = y^ [6r—v(68T6z)1 +rz 'P .T

E 8 = Lr LQB —Y ,ar+ o-z)1 +EBp+aT 	 (B2)

Ez=^ 0-z—v(ar+'6)]+ EZP+aT

into the first part of equations (B1), it can also
be shown that

Erp—E9P=ErP—EzP=E6P—EzP -=K2 	 (B3)
Qr —QB	 O-r—uz	 QB'—az

where

K^=K2+1 
Ev	

(B4)

is

Define

Q e =32 V l^r —Qe) 2^(^r —Q a) 2 I (Qe—^z)1

E e p =	V (E7p--E0P)2+(Erp—EyP)2+(Cep—EzP)2

(B5)
_ 2 - /2 I	 12

E eP	 /3 V ErP+ErPEBP+EBP

fa =_ 32 ( Er —E B) 2+(E r —E z) 2 I (EB—Ez%^

Then, by squaring and adding the equations in
(B1) and (B3) it readily follows that

Ee l 1K,=2 
ve

(B6)
3 E eP__K2 2

e

Hence, by the relation between Kl and K2 in
equation (B4)

Eet=
2(1

+v)
 ve	

(5)3 L+^EeP

The plastic strains can be determined in terms of
the total strains by dividing equation (B3) by
equations (Bi) and applying equations (B6) :

E'p EB P — ErP —EZP= EB P —E'p=K2 — Ee P (B7)
Er — EB	 Er— Ez	 EB— Ez	 Kl Eet

Solving equation (B7) using the incompressibility
relation in equations (Bi) results in equations (4).



APPENDIX C

EQUATIONS FOR THIN CIRCULAR SHELL

	The equilibrium equations for a thin circular 	 From the first equation of equations (Cl) and

	

cylindrical shell are given in reference 4: 	 (C2),

Ny=O
du w f

H/2

R d2M

d	

(Cl)	
l dx—

vW+(l+v)aT-f-H
,l H/2

(e.,+vEBV)dz (C6)

T2 x2y+NB-0
where 

Ny=J 
H12

H/2 
O'y dz	 NB=—EH 

(E+!7f-H/2
EBP dz +aT>

LH/2	 EH3 dew	 E H/2	
INB= f B'B dz	 (C2)	 My=—	 2 2 2	 2^	 (ExV+VEEP) z dzH/ 2	 12(1—v) l dx 1—v H/2

H/2	 (C7)
My=	 Qxz dz

-H/2	 j
	The stress-strain relations, including the plastic	 Substituting equation (C6) into the first of equa-

strains, are	 tions (C4) gives

	

Qy= 1 E 2 f Ey—IXT—EzP+v(EB—aT—EBy)] 	
w	 1 

f-H/2
H12	 d 2

r^	

(C3)	 Ex
—v 

R+(1+v)aT+H(Eyv-f-vEep) dz- 12 dx2 z

	

UB=l E 2 leg — IXT— EB P -^-V (ex —IXl—EyD)^	 (Cg)

The strain displacement relations are

_ du _ d 2
Ex— 1 dx l2 dx2 z

(C4)
w

EB	
R	 J

Substituting equations (C4) into (C3) gives

__ E du _ d 2
07x 1—v2 [l dx l2 dx2 z—aT

w

	

—Cxp+v	
T)]

E
(C5)

vB=	 w 
aT— EB

1 — v2 R	 P

+v
 (

du _ d2w

l dxdx l 2 dx2 z
— «T—EyPI

Also, from the second of equations (C1),

j
ji+4w=-4RIXT

1212 d
w_H/2

H/2	 4R H/2

H3 d 	
(ExD+vEBP) 2 dz—H,^ Hl2 % 

dz (C9)

To obtain Ez, the third stress-strain relation is used:

E z =H L0'z—V0Tx+07B)+C P +aT]	 (C10)

Substituting az =0 and equations (C3) into equa-
tion (C10) gives the third part of equations (16).
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APPENDIX D

PLASTIC STRAIN CHARTS

In order to obtain the chart shown in figure 4,
the stress-strain relations with U z =O are written
as follows:

Ex—aT=B (Ux—VUO)+ExP

(D1)

Eg —aT= p (Oq—VUx)+Co'

Also,

With the above equations and the stress-strain
curve for the material, a two-parameter family
of curves can be plotted giving the total strains
for any pair of plastic strains ExP and fop. Thus,

(1) An arbitrary convenient value is chosen
for Cop.

(2) A series of values are chosen for Exp . For
each of these values,

2 UQ	
1

Ux	 — (2ExP+EBP)
3 EeP	

ll

2	
r

UU-2 a, (2eop+Ee P)
EeP	 J

(a) Compute EQP from equations (B5).
(b) Read U Q from the stress-strain curve.

(D2) (c) Compute Ex —aT and co—aT from equa-
tions (D3). Thus, one curve of the family is
obtained.

Substituting equations (D2) into (DI) gives

E —
aT=r1+2 (2—v) 

u, E

+ 2 (1-2v) UQ Eo 1

x	 L 3 E EePJ xP 3 E EgP 
P (

ll

(I 2 (2 —v) a,
1
	2 (1-2v) o-,r

EB—aT++3 E 
Ee J EBP ^3 E EeP ExPP	 f

(D3)
20

(3) To obtain the other curves, new values are
chosen for co p , and the process is repeated in each
case.

The limiting curve of zero plastic strain is an
ellipse about the origin as shown in figure 4.
Any point inside this ellipse corresponds to zero
plastic strain.



APPENDIX E

LONG SOLID CYLINDER

Consider an infinitely long circular cylinder
which has a radial temperature distribution T(r).
The equilibrium equation is

dr +^ , 
Qo=0	 (E1)

The compatibility relation is

6 r -6 0 =r deo
dr 	 (E2)

Substituting equations (29) into (El), assuming
E constant, and eliminating E, by use of equation
(E2) give

d 1 d 2	 l+v dT
dr [r dr lr Ee)]- 1 — v a dr

1-2v 1 d rE	
1-2v Co' E3+

_ 1—v dr ( TD)— 1—v r ( )

Integrating equation (E3) results in

T	 T

Eo =Y 2 o aTr dr+ 1 
vv o 

E, Dr dr

+11,

2 v

 P f T r f T 

ETD r EBD dr dr+Ci+ r2 (E4)
0	 0

For a solid cylinder C2 must equal zero. Also,
equation (E2) can be rewritten as

E r —EO+r jr- (r2E 0) 	 (E5)

By using equation (E3), equation (E5) can be
written as:

1—Y

1+v	 1-2v
ET--EO+ 

1 — l^ a +
	 ETD

+1i vv
0

T E^'D 
r 

Eo
P dr+2C1 (E6)

To determine E, j use is made of the fact that EZ is
a constant and that

0f R 
vZ r dr=0	 (E7)

Substituting the last of equations (29) into (E7)
and using equations (E4) and (E6) enable e, to
be determined. To obtain Cl , the surface bound-
ary condition C r (R)=0 is used. Substituting the
first of equations (29) into this relation enable CI
to be calculated. The final results are given in
equations (28) .
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APPENDIX F

ROTATING DISK

The derivation of the equations for the rotating
disk with a radial temperature distribution is very
similar to the derivations of the equations for the
long solid cylinder (appendix E). For the disk
problem, the axial stress vZ is assumed to be zero,
and the axial strain Ez is no longer a constant.
The equilibrium equation for this case is

and, after integrating,

(1—V2) PW2r2 1 +V f T aTr dr 1—vEe	 E	 8 
+ r 

'J	 -} 2
0

ETD 

r 
EBP dr+ 

2 V^rr(ErP+Eop)dr+ 23+C4
E 

(F4)

where for a solid disk C4 must vanish. To obtain

dr (hra,)—hao+PW2hr2=0	 (F1)	 E„ equation (F4) is substituted into equation (E2)
resulting in

The compatibility equation is the same as equa-
tion (E2), and the stress-strain relations with a,
equal to zero become

1—V
E 

2 LEr+VE0—(ErP+VEEP)—(1 +V)aT1

(F2)

9 0= 1 E 2 [EO+VE,—(E0p+VErp)—(1 +V)aT]

For a parallel-sided disk with E assumed con-
stant, the solution is readily obtained. Substi-
tuting equations (F2) into (F1) and using equa-
tion (E2) result in

d Cr jr (r2E O)^=-1 E 2 PW2r+( 1 +V) d aT )
dr

+ d (ErP+VE0P)+(1—V) ErP 

r 
EoP (F3)

E1 E 2 
P 

2r2
	, - -E O —	 +(1+V)a +ErP+VEEP

+(1 —P) f."( 1 —V)f." ErP r "P dr+G (F5)

The term Ey can now be computed from equations
(B2) with vz taken as zero. Thus,

Ez=-1 V 
V (

Er+ E O) 1
 1-2 v

 (ErP+EOp) +1—
 
aT (F6)

The constant C3 is evaluated from the known rim
loading. If the rim stress due to the rim loading

	

is Ur (R), the first of equations (F2)

1	

becomes

?7

6r(R)= 
E 

2 [Er+ VEO+(E rP+ VEEP) — ( 1 +V)aTJr=R

(F7)

Substituting equations (F4) and (F5) into equa-
tion (F7) enables C3 to be calculated. The final
equations are given in equations (30).
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APPENDIX G

EFFECT OF PREVIOUS PLASTIC STRAIN

If the body under consideration has undergone
previous plastic strain such as that during a
thermal shock in which the stresses and the plastic
deformations vary with time, a complete series of
solutions must be carried out for successive time
intervals. The equations for the strains remain
the same except that each plastic strain term such
as e,P is replaced by Ee,P -{- Ae,p, where Me,P is the
total accumulated plastic strain up to the previous
time and De, D is the additional plastic strain during
the time interval under consideration. These
strains Ee,p and Seep are known from the previous
calculations, and the total strain equations are
solved by successive approximation to obtain the
change in plastic strains De,P and Deep as well as
the total strains after the new time interval.

In carrying out this type of calculation for suc-
cessive time intervals, a time may eventually
be reached when some point in the body begins
to unload, that is, a, starts decreasing. When this
time is reached, no additional plastic flow will take
place at this point, and unloading will proceed
along an elastic line such as CC' in figure 1. At
this station then, the plastic strains are assumed
to be zero from this time on. The successive
approximations are continued in the usual manner
until all points in the cylinder begin to unload or
equilibrium conditions are reached.

This type of procedure of adding the plastic
flow occurring after each time increment to the
previously accumulated plastic flow is equivalent
to the assumption that, as the load and tempera-
ture change, the stress position on the new stress-
strain curve would be the same as if a test speci-
men were loaded above the yield point, the load
removed, the temperature changed, and a new
load applied. This assumption is illustrated in
figure 11 in which point A represents a loading
at the first temperature conditions; the dotted
line AB represents the unloading path; the curve
BCD shows the stress-strain curve at the new

b^

0
Strain, e

FIGURE 11.—Uniaxial stress-strain curves showing com-
ponents of strain when plastic flow occurs a second
time.

temperature; and point C gives the new stress
position. The total strain at this point C is
given by the sum of three strains: the residual
strain caused by the first loading, the elastic part
of the strain caused by the second loading, and the
plastic strain caused by the second loading.

When the foregoing procedure is applied, the
curve BCD must, of course, represent the true
stress-strain curve at the new temperature of
a material that has already been subjected to the

23
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plastic cycle OAB. In general, this new stress-
strain curve is different from the stress-strain
curve at the given temperature of a material that
has not been subjected to plastic flow. However,
unless data are available, it may be necessary

to assume that the curve BCD is the stress-strain
curve at the given temperature of a specimen of
virgin material. Results obtained in this way,
however, should be treated cautiously since this
effect may be appreciable.
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