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1. Introduction 

 

1.1. The cannabinoid system 

 

The cannabinoid system is involved in various functions of the central nervous system 

as well as in the periphery. Therefore, molecules interfering with the endocannabinoid 

signaling may have application in the investigation or in the treatment of diverse pathological 

conditions including neuropathic pain, chronic inflammatory diseases, movement disorders 

(Parkinson‟s, Huntington‟s disease), multiple sclerosis, obesity, mood and anxiety disorders, 

drug addiction, psychosis, myocardial infarction.
1-4

 

The endocannabinoid system (ECS) consists of two well characterized receptors (CB1 

and CB2), their primary endogenous lipid agonists 2-arachidonoyl glycerol (2-AG), 

anandamide (AEA) and peptide endocannabinoid allosteric modulators (hemopressins, 

pepcans), and the enzymes responsible for the synthesis and degradation of endocannabinoids. 

Furthermore, the cannabinoid system also interacts with exogenous phyto- and synthetic 

cannabinoid compounds.
4-6

 

 

1.1.1. Cannabinoid receptors 

 

The biological effects of the endocannabinoids, the phyto- and synthetic cannabinoids 

and cannabimimetics are mediated by two types of cannabinoid receptors, the CB1 and CB2 

receptors that belong to the family of Gi/o protein coupled receptors (GPCRs).
7-9

 The CB1 

receptor is located at central and peripheral synapses and it is one of the most widespread 

presynaptic regulators of neurotransmitter release in the brain.
10,11 

The CB1 receptors are 

responsible for elevating mood or precipitating emotions (e.g. anxiety and panic), they 

mediate the acute psychoactive effects of cannabinoids, but the activation of the CB1 

receptors can also induce antinociception, hypothermia, and hypomobility.
12

 In contrast, the 

CB2 receptors are expressed predominantly in immune and hematopoietic cells,
13,2

 but they 

can also be found in the brain, especially in microglia
14

, in myocardium and in endothelial 

cells.
15

 The main function of the CB2 receptor is the control of cytokine release and immune 

cell migration. Additionally, CB2 activation reduces inflammation-induced pain, induces 

peripheral antinociception, and inhibition of tumor growth.
16 
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1.1.2. Lipid type endocannabinoids 

 

Lipid endocannabinoids are the most extensively characterized endogenous ligands of 

the cannabinoid receptors and their physiological effects are primarily mediated through the 

CB1 receptors.
17,18

 The endogenous ligands of the CB receptors are hydrophobic lipid-derived 

compounds, among them the N-arachidonoylethanolamine (anandamide, AEA) and 2-

arachidonoyl glycerol (2-AG) are the most studied. Anandamide is synthesized from 

membrane phospholipids by N-acyltransferase and phospholipase D, and rapidly metabolized 

by the fatty acid amide hydrolase (FAAH). 2-AG is produced from phosphatidylinositol 

mainly through two enzymatic steps by phospholipase C (PLC) and diacylglycerol lipase 

(DAGL), and hydrolyzed by the monoacylglycerol lipase (MAGL) enzyme.
1,19-23

 

Endocannabinoids are produced in activity-dependent manner and released from postsynaptic 

neurons “on demand”. They act as retrograde signalling messengers.
20,24,25 

Anandamide is a 

partial agonist for both CB receptors and it is found only in low concentrations (pmol/g) in the 

brain, while 2-AG acts as a full agonist at CB1 and CB2 receptors and it is present in higher 

concentration (nmol/g) in the brain.
25

 Anandamide produces analgesia, controls motor 

activity, reduces emesis, stimulates appetite and induces hypothermia. 2-AG induces 

apoptosis and acts as a messenger molecule in the endocrine and immune systems.
23,26

 

 

1.1.3. Hemopressins (Pepcans), the putative peptide endocannabinoids 

 

Over the past decades, lipid-derived endocannabinoids were believed to be the only 

endogenous agonists of the cannabinoid receptors. However, as a result of the pioneering 

works of Heimann
27

 and Rioli
28

, hemopressin (PVNFKFLSH, Hp(1–9)) was identified as a 

putative inverse agonist peptide ligand of the CB1 receptor in rats. This peptide is a metabolic 

product of the hemoglobin α-chain and it was demonstrated to exert non-opioid 

antinociceptive effects, similar to those of the endo- , phyto- and synthetic cannabinoids.
27,29

 

Hemopressins have been demonstrated to possess in vitro and in vivo pharmacological 

potencies similar to those of the prototypic endogenous and synthetic cannabinoid ligands, but 

with less side-effects.
27,30-32

 The Hp(1–9) peptide and its extended or truncated derivatives 

were demonstrated to be orally active and to exert antinociceptive effects that were apparently 

mediated by the CB1 receptors.
32

 The physiological activity upon oral administration suggests 

that these peptides are at least partially resistant to proteolysis, and also that they may be able 

to cross the blood–brain barrier. 
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Soon after the discovery and pharmacological characterization of Hp(1–9), the N-

terminally extended RVD-Hp(1-9) and VD-Hp(1-9)
31

, and the C-terminally truncated Hp(1–

6) and Hp(1–7) peptides were identified as further potent cannabinoid ligands.
30

 RVD-Hp(1-

9) and VD-Hp(1-9) were suggested being agonists of the CB1 receptor. In vivo data for the C-

terminally truncated hemopressins demonstrated that Hp(1–9) was not essential for 

antinociceptive activity, because Hp(1–6) and Hp(1–7) exerted antihyperalgesic effects 

similar to the N-terminally extended peptides. Further C-terminal truncation, however, led to 

the loss of biological activity.
32

 VD- and RVD-Hps exhibited hypotensive, hypothermic and 

hypoactive effects at antinociceptive doses, and inhibited bombesin-induced central activation 

of the adrenomedullary outflow in rats.
33,34

 In addition, central administration of VD-Hpα 

resulted in tolerance to antinociception and stimulated food consumption in a CB1-dependent 

manner.
34,35

 The signaling characteristics and regulation of receptor endocytosis by the N-

terminally extended peptide fragments were found to be distinct, in part, from those of the 

classical cannabinoid agonists.
31

 

Recently, it was described that the nonapeptide hemopressin might rather be a hot 

acidic extraction artifact and it is not present endogenously.
31,41

 Instead, RVD-hemopressin 

(RVD-Hp(1-9), RVD-Hpα, Pepcan-12, RVDPVNFKLLSH), the most abundant peptide 

among the α1 hemoglobin derived hemopressin peptides can be a real endocannabinoid 

(Figure 1). Using a very sensitive immunoaffinity and specific LC-MS/MS method RVD-

Hp(1-9) was identified both in rodent CNS (e.g. striatum, prefrontal cortex (noradrenergic 

neurons)) and in periphery (e.g. adrenals, liver).
5,40,41

 It was found that this peptide could 

interact with the CB1 allosteric binding site(s). Also, RVD-Hpα has been recently described 

as the first endogenous negative allosteric modulator of CB1 receptors that acts at the same 

time as a potent CB2 receptor positive allosteric modulator.
40,41

 These allosteric binding sites 

which topographically distinct from the orthosteric site have recently been characterized.
36,37

 

According to in vivo assays RVD-Hpα showed anxiolytic and antidepressant effects in 

different behavioral tests, and it induced anorexigenic effects.
38,39

 Stimulation of CB1 

receptors by hemopressins leads to the activation of a signaling pathway (allosteric binding 

site) distinct from that activated by lipid type endocannabinoids (orthosteric binding site). The 

undesirable psychoactive side effects that are characteristic of CB1 receptor orthosteric 

ligands can possibly reduced by targeting the allosteric site with hemopressins.
5,40,41 
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Figure 1. The structure of RVD-Hpα, an allosteric peptide endocannabinoid 

 

1.1.4. Phyto- and synthetic cannabinoids 

 

Marijuana with the primary psychoactive substituent Δ
9
-tetrahydrocannabinol (Δ

9
-

THC) is one of the oldest and most widely used drugs in the world.
42

 Δ
9
-THC and other plant-

derived cannabinoid agonists related research studies were soon expanded by experiments 

with chemically more stable synthetic cannabinoids.
43

 Furthermore, the discovery and 

identification of endocannabinoids led to the development of important synthetic orthosteric 

cannabinoid agonists and allosteric modulators allowing to study the clinical potential of 

cannabinoids more effectively.
44,42 

CP 55,940 [(–)-cis-3-[2-hydroxy-4-(1,1-

dimethylheptyl)phenyl]-trans-4-(3- hydroxypropyl)cyclohexanol] is one of the well known 

„non-classical‟ bicyclic synthetic cannabinoid agonist ligands.
45,43

 It has high affinity for both 

CB1 and CB2 receptors (10-100 times more potent in vivo than Δ
9
-THC) and shows high 

enantioselectivity. These properties made [
3
H]CP-55,940 a useful radioligand for binding 

studies to characterize the cannabinoid receptors.
46,47

 Aminoalkylindoles (AAIs) form another 

important class of synthetic cannabinoid ligands. WIN 55,212-2 [(R)-(+)-[2,3-dihydro-5-

methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-

naphthalenylmethanone mesylate represents the prototypic cannabinoid agonist AAI, which 

led to further synthetic indole cannabinoids.
48

 WIN 55,212-2 has higher affinity for 

cannabinoid receptors (Ki(CB2)= 0.28 nM, Ki(CB1)= 1.89 nM) than Δ
9
-THC and in in vitro 

functional [
35

S]GTPγS binding assays WIN 55,212-2 acts as a full agonist while Δ
9
-THC acts 

as a partial agonist.
49,50

  

JWH-018 (naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone was identified as the 

most potent synthetic cannabinoid receptor agonist of the initial series of indole-derived 

cannabinoids. This alkylindole structurally relates to WIN 55,212-2 but lacking a methyl 

group at C-2 position and possessing an N-pentyl side chain that is similar to the C-3 pentyl 
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side chain of Δ
9
-THC. JWH-018 exhibits typical in vivo cannabinoid pharmacology just like 

Δ
9
-THC, i.e. good potency in the cannabimimetic effect predictor test (tetrad tests: 

hypothermia, analgesia, hypolocomotion, catalepsy) and has high affinity for both 

cannabinoid receptors (Ki(CB1)= 9 nM, Ki(CB2)= 2.94 nM).
51,52

 Recently, it was detected 

among the most prevalent active agents in drugs of abuse such as Spice or K2 and other 

herbal blends (Figure 2.). 

 

Figure 2. The structure of cannabinoid receptor agonists. 

 

1.2. The opioid system  

 

The endogenous opioid system is mostly known for its role in pain regulation,
53

 

however, it also modulates several other physiological functions such as mood, feeding 

behavior, learning and memory, locomotor activity. The endogenous opioid system is also 

involved in the regulation of the respiration, cardiovascular functions, gastrointestinal 

motility, immune functions, thermoregulation, hormone secretion, the development of 

tolerance and dependence, which form the basis of the unwanted side-effects of opioid 

administration.
54-57

 

This system consists of three major “classical” classes of receptors, complemented by 

the non-classical nociceptin (NOR) receptor, endogenous opioid peptides which are derived 

from distinct preproproteins and plant opium alkaloids with their synthetic derivatives. 

 

 



6 
 

1.2.1. Opioid receptors 

 

The opioid receptor family also belongs to the GPCR superfamily and they interact 

mostly with Gi/Go type G proteins.
58

 Three types of opioid receptors have been identified, 

MOR (µ, morphine), DOR (δ, vas deferens) and KOR (κ, ketocyclazocine) which are encoded 

by unique genes.
59,60 

MOR, DOR, KOR are located in both spinal and supraspinal areas as 

well as at the periphery and are involved in the antinociceptive action of opioids. MOR is 

located in the central nervous system and it is also widely distributed in the peripheral nervous 

system (e.g. myenteric neurons in the gut). The abundance of MOR is the highest in the 

caudate putamen, that is followed by neocortex, thalamus, nucleus accumbens, hippocarnpus 

and amygdala in decreasing order. Moderate concentrations are found in the periaqueductal 

gray and raphe nuclei, dorsal horn of the spinal cord and low density is present in the 

hypothalamus, globus pallidus.
57,61,62

 Tolerance and physical dependence, the major opioid 

side effects are associated mainly with the MOR under long term MOR agonist (morphine) 

administration during the treatment of severe acute and chronic pain.
63,64

 These undesirable 

effects limit the use of MOR agonists and numerous strategies were developed for decreasing 

the MOR related side effects such as the co-administration of MOR agonist and other GPCR 

ligands.
65,66

 The DORs are mostly expressed in the olfactory bulb, neocortex, caudate 

putarnen and nucleus accumbens. Thalamus, hypothalamus and brainstem have moderate 

receptor density.
62 

The highest KOR densities were observed in the nucleus accumbens, 

claustrum, dorsal endopiriform, nucleus accumbens. KOR also found in the cerebral cortex, 

the substantia nigra and only low level found in cerebral cortex.
53,57 

The DOR and KOR 

mediated analgesia is mainly spinal and supraspinal.
67

 

 

1.2.2. Endogenous opioids  

 

The peptidic endogenous opioids act as neurotransmitters, neuromodulators or 

neurohormones. The three main families of endogenous opioid peptides are endorphins
159

, 

those interact with all three opioid receptors, Met- and Leu-enkephalins (Tyr-Gly-Gly-Phe-

Met/Leu) for DOR
160

, and dynorphins for KOR
163

. Additionally, endomorphin-1 (H-Tyr-Pro-

Trp-Phe-NH2) and endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH2) have been isolated from bovine 

and human brain
166

 and found to interact with high affinity and selectivity with MOR.
57,165

 

The opioid peptides are synthesized from distinct precursor proproteins in post-translational 

steps. Endorphins are enzymatically cleaved from prepro-opiomelanocortin (POMC)
159

, 
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enkephalins from preproenkephalin
160,161

, while dynorphin A, dynorphin B and neoendorphin 

from preprodynorphin.
162,164

 After their synthesis these endogenous opioid peptides are stored 

in vesicles.
68-73

 These endogenous opioid peptides share the common N-terminal sequence of 

Tyr-Gly-Gly-Phe, that is termed the opioid motif, followed by diverse C-terminal sequences 

(5-31 residues). In contrast endomorphins contain the Tyr-Pro-Phe/Trp sequence as the 

message domain.
74

 Endorphins are mostly produced in the central nervous system by 

hypothalamus and pituitary gland and released during severe pain to produce analgesia. β-

endorphins have the highest affinity for the MOR. The DOR selective pentapeptide 

neurotransmitters, enkephalins found also in the brain and are involved in regulating 

nociception in the body. Dynorphins are produced in many brain region, such hypothalamus, 

hippocampus, midbrain, medulla, pons and the spinal cord and mediated KOR they act as 

modulators of pain response, control appetite and circadian rhythm. Endomorphins produced 

widely and abundantly in the brain, brainstem cortex, the amygdala, thalamus, hypothalamus, 

striatum and spinal cord (endomorphin-2). They play important role in pain management, 

stress responses, reward and cognitive functions and homeostasis.
67,75-77

 

 

1.2.3. Phyto- and synthetic opioids 

  

The MOR agonist alkaloid morphine is the major active ingredient of poppy seed 

opium (Papaver somniferum) and its derivates (semisynthetic agonists oxymorphone, 

oxycodone) are still widely used nowadays for the treatment of acute and chronic pain.
78

 

Furthermore, the synthetic agonist fentanyl with a ring system distinct from morphine is a 

more potent morphinomimetic compound (Figure 3).
79

 For experimental purposes the 

biologically stable synthetic enkephalin analog DAMGO ([D-Ala
2
, N-MePhe

4
, Gly-ol]-

enkephalin) with high MOR specificity is the most frequently used peptide agonist.
80

 MOR 

agonists such as morphine are powerful analgesics but their major limitation is that in long 

lasting treatments they cause adverse side effects (e.g. respiratory depression, sedation, 

constipation, nausea, development of tolerance, physical dependence and addiction).
81,82
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Figure 3. The structure of opioid receptor agonists. 

 

1.3. G-protein-coupled receptors and measurement assays 

 

Heterotrimeric G-protein-coupled receptors (GPCRs) mediate many important 

physiological processes (sensory transduction, cell–cell communication, neuronal 

transmission, hormonal signaling) and are considered as the largest therapeutic and druggable 

(>50% of receptors) targets of various diseases. GPCRs are seven transmembrane receptors 

containing an extracellular N-terminal region and an intracellular C-terminal region.
83

 They 

are divided into six main classes according to the A-F system. Class A contains the 

rhodopsin-like receptors, that is the largest group of GPCRs involving also the opioid and 

cannabinoid receptors. Crystal structure has been determined for both classes of receptors.
84-87

 

The heterotrimeric G-proteins consist of Gα subunit that interacts with the dimer of the Gβ and 

Gγ subunits (βγ complex). According to the effector target of the Gα subunit there are four 

main families: Gαs (activates adenylyl cyclase), Gαi/o (inhibits adenylyl cyclase), Gαq/11 

(activates phospholipase C), Gα12/13 (regulates small GTP binding proteins).
88,89

 The opioid 

and cannabinoid receptors belong to the Gαi/o family. 

Upon ligand (agonist) binding, the activated receptors catalyze the exchange of 

guanosine-5`- diphosphate (GDP) for guanosine-5`- triphosphate (GTP) on the α-subunit of 

heterotrimeric G-proteins and these conformational changes result in the dissociation of Gα 

from the dimeric Gβγ subunits.
90

 GPCRs coupled to Gαi/o proteins inhibit the activity of 

adenylate cyclase enzyme that is responsible for adenosine triphosphate (ATP) to 3‟,5‟-cyclic 

adenosine monophosphate (cAMP) conversion. Cyclic AMP serves as a second messenger 
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that activates protein kinase A and other downstream effectors.
91

 The Gα subunit due to its 

intrinsic GTPase activity hydrolyses GTP to GDP which leads to the re-association of the 

heterotrimeric G protein complex, and then the trimer is ready to start a new cycle.
91,88

 In 

order to avoid the continuous agonist stimulation, the GPCR kinases (GRKs) phosphorylate 

the C-terminus of GPCRs leading to the recruitment of β-arrestins, that results in receptor 

desensitization, inactivation and internalization.
92 

 

Over the years many GPCR assays and GPCR ligand screening methods were 

developed and tested. The radioligand binding assay on receptor-containing membranes can 

be used to characterize the interaction between a GPCR and its ligands (affinity of 

orthosteric/allosteric ligands, receptor density, association/dissociation rates). G-protein 

dependent functional assays characterize the biological properties of the test compounds. 

[
35

S]GTPγS binding assays directly measure the guanine nucleotide exchange of G proteins, 

an early event after GPCR activation
93

 and can distinguish between full or partial agonists, 

neutral antagonists, inverse agonists, and allosteric regulators. cAMP measurement assay 

shows the decrease/increase of cellular cAMP levels upon modulation of adenylate cyclase 

activity by GPCR agonist/antagonist ligands. The most general G-protein independent 

functional assays are the agonist induced receptor internalization assay on cultured cells and 

β-arrestin recruitment assays.
91

 

 

1.4. Synergistic interaction and multitargeting of the opioid and cannabinoid receptors 

 

Both the MOR and the CB receptors are class A GPCRs and they can form functional 

homo- or heteromeric associates that is a general feature of GPCRs.
94-97

 Many studies have 

described the formation of the MOR-DOR, MOR-NK1 and MOR-CB1 receptor heteromers 

that have been confirmed experimentally.
98,99

 The opioid and cannabinoid receptors are 

known to closely interact with each other in several levels. This is due to their similar 

structure, their common signaling pathways (adenylyl cyclase inhibition, mitogen-activated 

protein (MAP) kinase stimulation, inhibition of voltage gated calcium channels, activation of 

potassium channels), and their overlapping anatomical distribution and co-localization both in 

areas of the central nervous system known to participate in antinociception (periaqueductal 

gray (PAG), raphe nuclei, central-medial thalamic nuclei, dorsal horn of the spinal cord) and 

in the periphery.
100,101

 The interaction of these two receptors has been studied extensively to 

achieve more effective antinociception.
102-105 

The synergy of opioid and cannabinoid receptors 

in analgesia has been exploited by the co-administration of morphine and non-selective 



10 
 

cannabinoid agonists with promising results.
103,106-109

 Beyond the combinatoin therapy, the 

multitarget drug approach can also address or influence the homo- and heteromeric membrane 

receptor interactions and the possible physiological effects of these protein-protein 

interactions.
110,111

 Bivalent compounds containing two pharmacophores in a single molecule 

have been developed to target the MOR and CB receptors or their associates in a simultaneous 

or parallel way. Dimeric compounds of the MOR agonist α-oxymorphamine and the CB1 

antagonist/inverse agonist rimonabant were found to exhibit antinociception in tail flick test 

without producing tolerance in 24 h.
112

 In another study the MOR agonist fentanyl was 

coupled to rimonabant, but the resulting compounds became antagonists and did not produce 

analgesic effect in hot plate test.
113

 Previously, a dimeric compound was prepared by coupling 

an enkephalin-related peptide to rimonabant, but the resulting derivative did not produce 

analgesic effect in hot plate and tail flick tests.
114

 This special case of the multitarget ligand 

approach can lead to the development of more potent and active compounds because the 

pharmacokinetics and the pharmacodynamics of the covalently coupled drugs are identical in 

this form and their stoichiometric presence in tissues can produce synergistic interactions.
115-

119
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2. Aims of the study 

 

Mu opioid receptor (MOR) agonists are the most common therapeutics clinically used to 

alleviate pain. However, their dose-limiting adverse effects including respiratory depression, 

sedation, constipation, tolerance and dependence associate with MOR agonists, that inspires 

the development of analgesics with distinct mechanism of action.
119

 Combination therapy has 

also been demonstrated to be effective for improving analgesic effects without the additive 

elevation of the side-effects.
103,120

 The co-administration of MOR and cannabinoid (CB) 

receptor agonists has been shown to result in enhanced antinociceptive effect with decreased 

opiate-related side-effects, and the synergism of opioid and cannabinoid ligands has been 

extensively studied to improve antinociception.
66,100,104-108,121-125

 

Based on the reported synergism of MOR and CB agonists, our aim was to develop novel 

opioid-cannabinoid bivalent agonists with increased analgesic- and decreased side-effects. 

 

The aims of the study presented here were the following: 

 To design, synthesize two series of opioid-cannabinoid bivalent ligands and hemopressins. 

 To radiolabel the cannabinoid pharmacophore (JWH-018) of the bivalent ligands and the 

truncated hemopressin heptapeptide (Hp1-7) for direct in vitro characterization of their 

receptor binding on rat and mouse brain membrane homogenates. 

 To compare the binding sites of classical cannabinoid ligands and hemopressins in 

displacement assay using [
3
H]JWH-018 and [

3
H]Hp(1-7). 

 To examine the synthetized bivalent ligands and hemopressins in receptor-binding studies in 

order to study the effects of the modifications on the affinity and selectivity. 

 To study the agonist/antagonist properties and the MOR, CB1/CB2 mediated G-protein 

activation of bivalent ligands and hemopressins using ligand-stimulated [
35

S]GTPγS 

functional assay. 

 To investigate the permeability of selected bivalent derivatives through the blood brain 

barrier. 

 To test the in vivo antinociceptive effects of the in vitro most effective bivalent ligands. 
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3. Materials and Methods 

 

3.1. Chemicals 

 

The purity of all reagents and solvents were analytical or the highest commercially available 

grade. Starting materials, buffer components, GDP, GTPγS were purchased from Sigma-

Aldrich Kft. (Budapest, Hungary), fatty acid free bovine serum albumin (BSA) was from 

Serva (Heidelberg, Germany), DAMGO was obtained from Bachem AG (Bubendorf, 

Switzerland), Ile
5,6

-deltorphin-2, JWH-018, hemopressins were prepared in the Laboratory of 

Chemical Biology (BRC, Hungary), naloxone, oxycodone were kindly provided by Endo 

Laboratories (Wilmington, DE, USA), WIN-55,212-2 was purchased from Tocris Inc. 

(Bristol, UK), [
35

S]GTPγS (s.a. >37 TBq/mmol) was purchased from Hartmann Analytic 

(Braunschweig, Germany). The radioligands [
3
H]JWH-018 (s.a. 1.48 TBq/mmol), [

3
H]WIN-

55,212-2 (s.a. 485 GBq/mmol), [
3
H]DAMGO (s.a. 1.43 TBq/mmol), [

3
H]Ile

5,6
-deltorphin-2 

(s.a. 725 GBq/mmol), [
3
H]HS-665 (s.a. 1.13 TBq/mmol) and [

3
H]Hp(1–7) (s.a. 1.04 

TBq/mmol) were prepared in the Laboratory of Chemical Biology (BRC, Hungary). Tritium 

labeling was carried out in a self-designed vacuum manifold and radioactivity was measured 

with a Packard Tri-Carb 2100 TR liquid scintillation analyser using Insta Gel scintillation 

cocktail of PerkinElmer. 

 

3.2. Analytical Methods 

 

Analytical thin layer chromatography (TLC) was performed on 5×10 cm glass plates 

precoated with silica gel 60 F254 (Merck, Darmstadt, Germany), spots were visualized with 

UV light. Flash chromatography was carried out on silica gel 60 (Sigma Ltd., St. Louis, MO, 

USA) using the indicated solvents. Analytical HPLC separations were performed with a 

Merck-Hitachi LaChrom system on a Vydac 218TP54 (250×4.6 mm, 5 µm) column using the 

indicated gradients of ACN (0.08% (v/v) TFA) (eluent B) in H2O (0.1%(v/v) TFA) (eluent A) 

at a flow rate of 1 mL/min, and UV detection at λ= 216 nm was applied. Radio-HPLC was 

performed on a Jasco HPLC system equipped with a Packard Radiomatic 505 TR Flow 

Scintillation Analyser. 
1
H and 

13
C NMR spectra were recorded on a Bruker Avance 500 MHz 

or on a Varian Mercury 300 MHz spectrometer and chemical shifts (δ) are reported in ppm 

after calibration to the solvent signals. The assignments are based on 
1
H, 

13
C(DEPT), HSQC, 

HMBC, GQ-COSY and 2D-TOCSY experiments, and on the reported assignment of JWH-



13 
 

018. Molecular weight of the compounds was determined by ESI-MS analysis on a Finnigan 

Mat LCQ spectrometer. 

 

3.3. Details of the preparation and analytical characterization of compounds 1-25  

 

Details of the preparation and analytical characterization of compounds 1-25 are described in 

the appendix 

 

3.4. General procedure for the synthesis of the peptidic compounds in solution 

 

To an ice-cooled mixture containing the N-protected amino acid or peptide (0.28 mmol) in 

DCM (5 mL), EDC.HCl (1.1 equiv., 0.28 mmol), HOBt (1.1 equiv., 0.28 mmol), NMM (3.3 

equiv., 0.85 mmol) and the required protected amino acid (1 equiv., 0.25 mmol) dissolved in 

DMF (2.5 mL) were added. The reaction mixture was allowed to warm at r.t. and stirred for 

16 h and evaporated under reduced pressure. The residue was then dissolved in EtOAc and 

washed three times with 5% citric acid, NaHCO3 and finally with brine. The organic phase 

was dried over Na2SO4, and the solvent evaporated under reduced pressure to give the desired 

product. All final Boc-protected peptide intermediates have been purified by flash 

chromatography on silica gel 60 and then treated with a mixture of TFA/DCM (1:1) for 30 

min at r.t. The final products as TFA salts were lyophilised and then characterized as 

described in the Appendix.  

 

3.5. Preparation of hemopressins on solid support 

 

The solid phase peptide synthesis was carried out manually in a silanized glass reaction 

vessel. N
α
-Boc-Leu- or N

α
-Boc-His(Tos)-PAM resin (0.15 mmol) was swollen for 30 min in 

DMF. After Boc-deprotection with neat TFA and subsequent washings (three times with 

DMF and i-PrOH), TBTU activated N
α
-Boc-protected amino acids (0.45 mmol) were added 

for chain elongation in DMF and the unreacted resin bound peptides were end-capped with an 

excess of Ac2O in the presence of DIEA in DMF. Couplings were monitored with the Kaiser-

test.
126

 After removal of the N-terminal protecting group, peptides were cleaved from the resin 

with HF in the presence of anisole. The crude peptide-resin mixtures were washed with 

diethylether, then the peptides were dissolved in aqueous TFA and lyophilized. The resulting 

crude peptides were dissolved in aqueous TFA, and introduced onto an analytical Vydac 
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218TP54 column and eluted using a linear gradient of 1.5 %/min of acetonitrile in water 

containing 0.1% TFA, starting from 15% acetonitrile at a flow rate of 1 mL/min, with UV 

detection at λ= 215 nm. The same elution conditions were used for the purification of the 

peptides on a Vydac 218TP1010 semipreparative column at a flow rate of 4 mL/min; isolated 

yields 56% (Hp(1–7)), 74% (ΔPro
1
-Hp(1–7)), 38% (Hp(1–9)) and 42% (RVD-Hp(1–9)). 

Molecular weights of the peptides were confirmed by MALDI-TOF mass spectrometry 

(Hp(1–7) [M+H]
+
 m/z 864.42; ΔPro

1
-Hp(1–7) [M+H]

+
 m/z 862.63; Hp(1–9) [M+H]

+
 m/z 

1089.26; RVD-Hp(1–9) [M+H]
+
 m/z 1424.80). 

 

3.6. Radiolabeling of JWH-018 

 

Tritium labeling was performed with 3.6 mg of naphthalen-1-yl(5-bromo-1-pentyl-1H-indol-

3-yl)methanone (25) (8.5 μmol) dissolved in 0.6 mL of EtOAc in the presence of 3 mg of 

Pd/C (10% Pd) catalyst and triethylamine (1.5 μL, 10.7 μmol). The reaction mixture was 

degassed prior to tritium reduction by two freeze-thaw cycles, and then it was stirred under 

0.25 bar tritium gas for 4 h at r.t. The unreacted tritium gas was then adsorbed onto 

pyrophoric uranium and the catalyst was filtered off with a syringe filter. The filtrate was 

evaporated in vacuo and the labile tritium was removed by repeated evaporations from EtOH 

solution. Finally 7.03 GBq of [
3
H]JWH-018 was isolated as a white solid that was purified by 

HPLC on a Phenomenex Luna C18(2) column (k‟= 8.08 (tR= 19.1 min), linear gradient of 

50→95% B in A over 25 min). The specific activity was determined by using an HPLC peak 

area calibration cuve recorded with 24, and it was found to be 1.48 TBq/mmol. The tritium 

labeled JWH-018 was dissolved in EtOH (37 MBq/mL) and stored under liquid nitrogen. 

 

3.7. Radiolabeling of hemopressin(1–7) 

 

The precursor peptide ΔPro
1
-Hp(1–7) (2 mg, 2.32 μmol) was dissolved in DMF and 3 mg 

Pd/BaSO4 catalyst was added to the solution. The reaction mixture was degassed prior to 

tritium reduction by two freeze–thaw cycles. Then it was stirred under 0.4 bar tritium gas for 

1 h at r.t., followed by the filtration of the catalyst through a Whatman GF/C glass fiber filter. 

The filtrate was evaporated and labile tritium was removed by repeated evaporations from 

aqueous EtOH solution. Finally 2.85 GBq of crude [
3
H]Hp(1–7) was obtained that was 

purified by HPLC. Quantitative analyses of the concentration and radioactivity of [
3
H]Hp(1–

7) were performed by RP-HPLC via UV and radioactivity detection using a calibration curve 
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made by Hp(1–7), and the specific activity of [
3
H]Hp(1–7) was found to be 1.04 TBq/mmol 

(28 Ci/mmol). The radioligand was aliquoted as ethanolic solutions and stored in liquid 

nitrogen until application. 

 

3.8. Preparation of brain membrane homogenates 

 

Male Wistar rats and guinea pigs were locally bred and handled according to the European 

Communities Council Directives (86/609/ECC) and to the Hungarian Act for the Protection of 

Animals in Research (XXVIII.tv. Section 32). Crude membrane fractions were prepared from 

the brain without cerebellum. Brains were quickly removed from the euthanized animals and 

directly put in ice-cold 50 mM Tris-HCl (pH 7.4) buffer. The collected tissue was then 

homogenized in 30 volumes (v/w) of ice-cold buffer with a Braun Teflon-glass homogenizer 

at the highest rpm. The homogenate was centrifuged at 20 000 × g for 25 min and the 

resulting pellet was suspended in the same volume of cold buffer followed by incubation at 

37°C for 30 min to remove endogenous ligands. After centrifugation the pellets were taken up 

in five volumes of 50 mM Tris-HCl (pH 7.4) buffer containing 0.32 M sucrose and stored in 

aliquots at –80°C. Prior to the experiment, aliquots were thawed and centrifuged at 20 000 × g 

for 25 min and the pellets were resuspended in 50 mM Tris-HCl (pH 7.4), homogenized with 

a Dounce followed by the determination of the protein content by the method of Bradford. 

The membrane suspensions were immediately used either in radioligand binding experiments 

or in [
35

S]GTPγS functional assays. 

 

3.9. Radioligand binding assays 

 

Binding experiments of [
3
H]JWH-018 were performed at 30°C for 60 min in 50 mM Tris-HCl 

binding buffer (pH 7.4) containing 2.5 mM EGTA, 5 mM MgCl2 and 0.5 mg/mL fatty acid 

free BSA in plastic tubes in a total assay volume of 1 mL that contained 0.3–0.5 mg/mL 

membrane protein. Binding experiments of [
3
H]Hp(1-7) were carried out at 37°C in plastic 

tubes in a final volume of 1 mL 50 mM Tris-HCl (pH 7.4) containing 3 mM MgCl2, 0.2–0.5 

mg/mL membrane protein and 1% (w/v) BSA. 

Association time course of [
3
H]JWH-018 binding was obtained by incubating 0.6 nM 

[
3
H]JWH-018 with rat brain membrane (0.45 mg/mL protein) at 30°C for various period time 

(0–90 min) in the absence or presence of 10 µM JWH-018 to assess specific binding. 

Dissociation time course of [
3
H]JWH-018 was obtained by incubating 0.6 nM [

3
H]JWH-018 
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with rat brain membrane (0.45 mg/mL protein) at 30°C for 60 min, then dissociation was 

initiated by the addition of 10 µM JWH-018 after different periods of incubation time. The 

kinetic equilibrium dissociation constant (Kd) for [
3
H]JWH-018 in rat brain membrane 

homogenate was calculated as Kd= kd/ka, where kd is the dissociation rate constant, ka is the 

association rate constant calculated as ka= (kobs-kd)/[[
3
H]JWH-018], kobs is the observed 

pseudo-first order rate constant. Saturation binding experiments were performed by measuring 

the specific binding of [
3
H]JWH-018 (0.5−35 nM) to rat brain membranes to determine the 

equilibrium dissociation constant (Kd) and the maximal number of binding sites (Bmax). The 

non-specific binding was determined in the presence of 10 µM JWH-018. Competition 

binding experiments were carried out by incubating brain membranes with opioid and 

cannabinoid receptor specific tritiated radioligands in the presence of increasing 

concentrations (10
–11

–10
–5

 M) of various competing unlabeled ligands. MOR competition 

experiments were performed at 25°C for 60 min with 2 nM [
3
H]DAMGO (Kd= 0.5 nM), DOR 

competition experiments were performed at 35°C for 45 min with 3 nM [
3
H]Ile

5,6
-deltorphin-

2 (Kd= 2.0 nM) and KOR competition experiments were performed at 25°C for 30 min with 1 

nM [
3
H]HS-665 (Kd= 0.64 nM) in 50 mM Tris-HCl binding buffer (pH 7.4) using rat brain 

(MOR, DOR) or gunine pig brain membrane homogenate (KOR). Non-specific binding was 

determined in the presence of 10 µM naloxone (MOR, DOR) or HS-665 (KOR). CB receptor 

binding experiments were performed at 30°C for 60 min on rat brain membrane homogenates 

with 0.6 nM [
3
H]JWH-018 (Kd= 6.5 nM) or with 1.5 nM [

3
H]WIN-55,212-2 (Kd= 10.1 nM). 

Non-specific binding was determined in the presence of 10 µM JWH-018 or WIN-55,212-2. 

The competition experiments were terminated by diluting the suspensions with ice-cold wash 

buffer (50 mM Tris-HCl, 2.5 mM EGTA, 5 mM MgCl2, 0.5% fatty acid free BSA (pH 7.4) 

for cannabinoid binding, or 50 mM Tris-HCl (pH 7.4) for opioid binding) followed by rapid 

filtration through Whatman GF/B or GF/C (MOR, KOR) glass fiber filters (Whatman Ltd, 

Maidstone, England) presoaked with 0.1% polyethyleneimine (only for CB receptor binding). 

Filtration was performed with a 24-well Brandel cell harvester (Gaithersburg, MD, USA). 

Filters were air-dried and immersed into Ultima Gold MV scintillation cocktail and then 

radioactivity was measured with a TRI-CARB 2100TR liquid scintillation analyser (Packard). 

 

3.10. Ligand stimulated [
35

S]GTPγS binding assay 

 

Rat brain membranes (30 µg protein/tube) were incubated with 0.05 nM [
35

S]GTPγS 

(PerkinElmer) and with 10
–10

–10
–5

 M unlabeled ligands in the presence of 30 µM GDP, 100 
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mM NaCl, 3 mM MgCl2 and 1 mM EGTA in 50 mM Tris-HCl buffer (pH 7.4) for 60 min at 

30
o
C. Basal [

35
S]GTPγS binding was measured in the absence of ligands and set as 100%. 

Nonspecific binding was determined by the addition of 10 µM unlabeled GTPγS and 

subtracted from total binding. Incubation, filtration and radioactivity measurement of the 

samples were carried out as described above. 

 

3.11. Cell culture and permeability assay
 

 

Primary rat brain endothelial cells, pericytes and astroglia cells were isolated and 

cultured according to the method described in our previous studies.
127,128

 To induce BBB 

characteristics the isolated cells were co-cultured with the help of 12-well tissue culture 

inserts (Transwell, polycarbonate membrane, 3 µm pore size, Corning Costar, USA). After 

two days of co-culture brain endothelial cells became confluent and 550 nM hydrocortisone 

(Sigma) was added to the culture medium and one day before the experiment cells were 

treated with CPT-cAMP (250 mM, Sigma) and RO 201724 (17.5 mM; Sigma) for 24 h to 

tighten junctions and elevate transendothelial resistance.
129

 Permeability tests on the co-

cultured BBB model were performed when transendothelial electrical resistance values 

expressed to the surface area of the inserts reached 123.8 ± 12.9 Ω cm
2
, n= 16. The resistance 

of cell-free inserts was subtracted from the measured data. During the permeability assay the 

culture medium was changed with the same as used in the growth period, but it also contained 

10 % serum. Compounds [
3
H]11 and [

3
H]19 were applied in the upper compartment in a final 

concentration of 0.25 and 0.75 µM. Compound permeability was measured from the AB 

(from blood to brain) direction. After 15, 30 and 60 min samples were collected both from the 

upper and lower compartments and the transport of [
3
H]11 and [

3
H]19 was determined by 

measuring the radioactivity using a TRI-CARB 2100TR liquid scintillation analyser 

(Packard). Flux of the compounds across coated, cell-free inserts was also measured. 

Endothelial permeability coefficients (Pe) were calculated from clearance values of [
3
H]11 

and [
3
H]19 as described previously.

129
 

 

3.12. Data analysis 

 

In competition binding studies, the inhibitory constants (Ki) were calculated from the 

inflexion points of the displacement curves using nonlinear least-square curve fitting option 

and the Cheng-Prusoff equation as Ki= EC50/(1 + [ligand]/Kd). In [
35

S]GTPγS binding studies, 
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data were expressed as the percentage stimulation of the specific [
35

S]GTPγS binding over the 

basal activity. Each experiment was performed in triplicate and analyzed with the sigmoid 

dose-response curve fitting option to obtain potency (ED50) and efficacy (Emax).  

Statistical comparison of the [
35

S]GTPγS binding results were performed by analysis 

of variance (one-way ANOVA) followed by the Bonferroni‟s multiple comparison test (***, 

P< 0.001; **, P< 0.01) . To indicate significant difference in the Emax of compound 11 and 19 

in the presence of 10 µM naloxone compared to the basal activity unpaired Student‟s t-test 

was used. P< 0.05 was considered significant. All data and curves were analyzed by the 

GraphPad Prism 5.0 Software, San Diego, CA, USA. 
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4. Results 

 

4.1. Synthesis of monomeric and bivalent compounds 

 

In order to develop novel bivalent ligands targeting both the MOR and CB receptors or their 

heteroreceptor complexes with the capability to produce antinociception, two types of 

heterodimeric compounds containing an opioid and a cannabinoid pharmacophore were 

designed. One of the two sets was composed of oxycodone, while the other contained the 

tetrapeptide Tyr-D-Ala-Gly-Phe as the opioid pharmacophore. The MOR agonist 

oxycodone
130-132

 is widely used in the treatment of severe pain either in monodrug therapy or 

in combination with other drugs such as cannabinoids.
106,119,133,134

 The enkephalin-related 

tetrapeptide Tyr-D-Ala-Gly-Phe
135-138

 was also applied to diversify the ligand set and to 

investigate the peptidic modification of a CB receptor agonist. Because CB receptor agonists 

can modulate hyperalgesia of various origin and show effective therapeutic value against 

inflammatory and neuropathic pain
139

 both opioid pharmacophores were combined with the 

full agonist naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone (JWH-018 or AM 678). This 

indole-type cannabimimetic that structurally relates to WIN-55,212-2 binds to both the CB1 

and CB2 receptors with low nanomolar affinity, and exhibits in vivo cannabinoid 

pharmacological effects.
42,49,140

 

The bivalent compounds were prepared in a convergent way, and the conjugation of the 

opioid and cannabinoid pharmacophore units was performed directly or via spacers of 

different length ( 1, 2, 3, 6,13 atoms) and polarity. 

 

4.1.1. Oxycodone – JWH-018 bivalent compounds 

 

Oxycodone and JWH-018 were modified at the 6-oxo and at the N-pentyl groups, 

respectively, to obtain the key intermediates. Condensation of oxycodone with 2-

(aminooxy)acetic acid in EtOH resulted in the linker conjugated O-carboxymethyl ketoxime 1 

(Scheme 1) and this way the introduction of a new asymmetric centre was excluded. 

Furthermore, the ketoximes are stable under physiological conditions, therefore the bivalent 

ligands are probably stable against hydrolysis. In comparison, when reductive amination was 

applied to introduce the amino linker group into oxymorphone
112,141,142

 carbon 6 became 

chiral resulting in epimeric products. In the next step the carboxymethyl group of 1 was 

activated as an O-benztriazolyl ester, that was used for the N-acylation of the mono-protected 
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spacers N-Boc-ethylenediamine, N-Boc-1,6-diaminohexane and N-Boc-4,7,10-trioxa-1,13-

tridecanediamine. The final acidolytic removal of the Boc protecting group resulted in the 

amines 5–7. 

JWH-018 was functionalized by introducing a terminal carboxyl group to the N-pentyl 

substituent of the indole ring. This modification does not affect the aromatic groups of JWH-

018 that are responsible for aromatic interactions with the CB receptors.
52

 Furthermore, the 

introduction of heteroatoms to the alkyl group may be tolerated by CB1 receptors as in the 

case of the morpholino group of WIN-55,212-2.
143,144

 The carboxyl derivative of JWH-018 

(9) was prepared in a way analogous to that reported by Huffman et al.
52

 The N-alkylation of 

indole was achieved with 6-bromohexanoic acid, then 8 was selectively acylated at position 3 

with 1-naphthoyl chloride in the presence of Et2AlCl. Finally, 9 was activated as an O-

benztriazolyl ester and it was used for the N-acylation of the amines 5–7 resulting in the 

heterodimerized compounds 10–12. 

 

Scheme 1. Preparation of oxycodone – JWH-018 bivalent compounds  
Reagents and conditions: a) EtOH, pyridine, 80°C, 75 min, 93%; b) HOBt, DIC, DIEA, DMF, 

50°C, 16h, 81% (2), 77% (3), 66% (4); c) TFA/DCM (1:1), 30 min, 95% (5), 96% (6), 95% 

(7); d) 6-bromohexanoic acid, TEA, ACN, 80°C, 16 h, 77% (8); e) 1-naphthoyl chloride, 

Et2AlCl, DCM, 0°C, 16 h, 42% (9); f) HOBt, DIC, DIEA, DMF, 50°C, 16 h, 79% (10), 71% 

(11), 61% (12). 
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4.1.2. Peptide– JWH-018 bivalent compounds 

 

In the case of the peptidic compounds the C-terminal carboxyl function of the peptide acids 

was used for the conjugation. The peptidic compounds 18–21 were prepared in a similar 

convergent way (Scheme 2) and glycine, 3-aminopropanoic acid or 4-aminobutanoic acid 

were used as spacers between the opioid and cannabinoid pharmacophores. Indole was 

regioselectively acylated with 1-naphthoyl chloride and the resulting 3-(α-naphthoyl)-indole 

13 was N-alkylated with N-Boc-5-bromopentane-1-amine (14). Acidolytic removal of the Boc 

protecting group of the carbamate 15 resulted in the JWH-018 derivative 16 with a terminal 

amine in the N-pentyl group. The N-acetylation of 16 with Ac2O in the presence of 

triethylamine in DCM at r.t. resulted in the control compound 17. The elongation of 16 with 

the opioid peptide or with a spacer amino acid followed by the opioid peptide were achieved 

in stepwise Boc/tBu solution phase peptide synthesis using EDC and HOBt as coupling 

agents. All peptide intermediates were purified by flash chromatography on silica gel and the 

peptidic compounds 18–21 were obtained in 12-25% overall yield. 

 

Scheme 2. Preparation of peptide – JWH-018 bivalent compounds 
Reagents and conditions: a) 1-Naphthoyl chloride, Et2AlCl, DCM, 0°C, 16 h, 70% (13); b) 

MsCl, TEA, DCM, –10°C, 5 h; c) LiBr, THF, reflux, 16 h, 72% (14); d) NaH, DMF, 80°C, 18 

h, 85% (15); e) TFA/DCM (1:1), r.t., 30 min, 97% (16); f) Ac2O, TEA, DCM, r.t., 16 h, 91% 

(17), or Boc stepwise peptide synthesis: EDC, HOBt.H2O, NMM, DMF, DCM, and 

deprotection with TFA/DCM (1:1), r.t., 30 min; overall yields 21% (18), 14% (19), 25% (20), 

12% (21). 
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4.2. Radiolabeling of JWH-018 

 

The in vitro characterization of the bivalent compounds in radioligand displacement studies 

required appropriate opioid and cannabinoid radioligands. The most commonly used CB 

radioligands in heterologous competition binding experiments are [
3
H]CP-55,940, [

3
H]HU-

243, [
3
H]WIN-55,212-2, [

3
H]SR-141716A (rimonabant), [

3
H]SR-144528 and 

[
3
H]Sch225336.

145 
However, the structural diversity of the CB receptor ligands

6 
and the 

presence of allosteric site on the CB receptors
146

 prompted us to prepare a novel radioligand 

relevant for the investigation of the CB receptor binding affinities of the JWH-018 containing 

bivalent compounds. JWH-018 was identified as a potent synthetic CB receptor agonist 

among indole-type cannabinoids that structurally relates to WIN-55,212-2 and was found to 

be more potent than Δ
9
-THC.

42,52,151
 JWH-018 exhibits typical cannabinoid pharmacology in 

vivo and has high affinity for both CB receptors (Ki(CB1)= 9.00 nM, Ki(CB2)= 2.94 

nM).
51,140

 JWH-018 was labeled with tritium as outlined in Scheme 3 and the resulting 

radioligand was validated in vitro. 

 
 

Scheme 3. Tritium labeling and preparation of JWH-018 

Reagent and conditions: a) (22) 1-iodopentane, TEA, ACN, 80°C, 16 h, 75%, (23) 1-

iodopentane, NaOH, DMF, r.t., 4 h 66%; b) Et2AlCl, 1-naphthoyl chloride, DCM, 0°C, 16 h, 

72% (24), 82% (25); c) 
3
H2(g), Pd/C, EtOAc, TEA, r.t., 4 h. 

 

N-Alkylation of 5-bromoindole with 1-iodopenthane was achieved in the presence of 

triethylamine followed by acylation with 1-naphthoyl chloride that resulted in the brominated 

precursor 25. Then 25 was dehalogenated with tritium gas under heterogeneous catalytic 

conditions and [
3
H]JWH-018 (26) was obtained with a specific activity of 1.48 TBq/mmol. In 

a similar way, unlabeled JWH-018 (24) was also prepared for the radioligand binding 

experiments (Scheme 3).  
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4.3. Characterization of the novel CB receptor radioligand [
3
H]JWH-018  

 

Before its application in radioligand competition assays, [
3
H]JWH-018 was characterized in 

various in vitro receptor binding experiments. Association and dissociation binding 

experiments were performed to characterize the interaction of [
3
H]JWH-018 with membrane 

receptors using rat brain membrane homogenates. Association binding experiments were 

carried out in the presence of 0.6 nM [
3
H]JWH-018 at 30°C and they revealed specific 

binding of [
3
H]JWH-018 to rat brain membranes (Figure 4A). At this temperature the specific 

binding determined in the presence of 10 µM JWH-018 reached steady-state after 40 min, and 

it remained stable up to 90 min, the longest incubation time investigated (not shown). The 

specific binding was found to be 65% of the total binding at 0.6 nM radioligand concentration 

under equilibrium conditions. Analyzing the association curve provided an observed pseudo-

first order rate constant (kobs) of 0.124 ± 0.01 min
–1

. In the dissociation experiments, rat brain 

membranes were incubated with 0.6 nM of [
3
H]JWH-018 at 30°C for 60 min and dissociation 

of the ligand–receptor complex was initiated by the addition of 10 μM JWH-018 at different 

incubation periods (Figure 4B). It was found that 60% of the radioligand dissociated from the 

membranes. Dissociation proceeded with a monophasic kinetics and it resulted in a 

dissociation rate constant (kd) of 0.105 ± 0.01 min
-1

. The equilibrium dissociation constant 

(Kd) calculated from the kinetic data was 3.4 nM under our experimental conditions. 

Saturation binding experiments were then performed to determine the Kd and Bmax values. The 

radioligand was incubated with rat brain membranes at increasing concentrations (0–35 nM) 

in the absence or presence of JWH-018. The specific binding of [
3
H]JWH-018 was found to 

be saturable and of high affinity in the nanomolar range (Figure 4C).  

Accordingly, a single-site binding was calculated from the non-linear fitting of the specific 

binding data and resulted in an apparent Kd value of 6.5 ± 1.22 nM and a high receptor 

density (Bmax) of 1120 ± 89 fmol/mg protein. 
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Figure 4. Binding of [
3
H]JWH-018 to rat whole brain membrane homogenates (0.45 mg/mL 

protein). (A) Association and (B) dissociation time courses of [
3
H]JWH-018 at 30°C; (C) 

saturation isotherm of specific CB receptor binding of [
3
H]JWH-018 at 30°C for 60 min 

incubation. Data are means ± SEM (n≥ 3). 

 

Because [
3
H]JWH-018 labeled membrane receptors of the rat brain membrane 

homogenate with high densities and it displayed specific binding to a receptor protein, the 

binding site of [
3
H]JWH-018 was further investigated in competition experiments using 

selective and non-selective cannabinoid ligands. The displacement curves are summarized in 

Figure 5 and the calculated inhibitory constants (Ki) are summarized in the table of Figure 5. 

In homologous displacement experiments the full agonist JWH-018 exhibited a Ki value of 

3.4 ± 0.80 nM. WIN-55,212-2, another full agonist cannabinoid ligand displayed high affinity 

to the JWH-018 binding sites, while the partial agonist Δ
9
-tetrahydrocannabinol (Δ

9
-THC) 

competed for the JWH-018 binding sites with 11-times lower affinity. The CB2 receptor 

selective, inverse agonist AM 630 was found to be effective in displacing [
3
H]JWH-018 from 

CB2 receptors. Further experiments revealed that the CB1 receptor selective 

antagonist/inverse agonist rimonabant and the structurally very similar CB1 selective 

antagonist/inverse agonist AM 251 were less effective in displacing [
3
H]JWH-018 from CB1 

receptors on rat brain membrane homogenate. AM 251 displaced 80% of the radioligand from 

JWH-018 binding sites, while the CB2 selective inverse agonist AM 630 displaced 

approximately 70% of [
3
H]JWH-018 from CB2 receptors on rat brain membrane homogenate. 

Compound 25 was also investigated in heterologous displacement studies, because beside to 

be a precursor for tritium labeling it is a potentially bioactive JWH-018 derivative substituted 

at position 5 with bromine. It exhibited good CB receptor affinity in displacing [
3
H]JWH-018 

with a Ki value of 59 ± 3.3 nM. Interestingly, the 5-bromo-substituted intermediate 25 

exhibited receptor affinity similar to that of rimonabant, AM 630 and AM 251. Furthermore, 

the results confirm that JWH-018 is a non-selective full agonist in the low nanomolar range 

with a CB1/CB2 receptor selectivity ratio of 3 (Ki(AM 251)= 69 ± 9.1 nM) / Ki(AM 630)= 23 

± 19 nM) that is similar to other reported data.
51

 In our experimental model, the investigated 

cannabinoid ligands competed for [
3
H]JWH-018 binding sites with the following order of 
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potency: JWH-018 > WIN-55,212-2 > AM 630 > rimonabant > 25 > AM 251 > Δ
9
-THC > 

hemopressin(1-9) (Figure 5A, B). 

Then competition binding experiments were performed to compare the ability of the 

endogenous peptide cannabinoid RVD-hemopressin and its derivatives hemopressins(1–7) 

and (1-9) to inhibit the binding of [
3
H]JWH-018 in rat brain membrane homogenate. It was 

found that neither the N- and C-terminally truncated hemopressin(1–7),
147

 nor the CB1 

negative and CB2 receptor positive allosteric modulator RVD-hemopressin
40,41 

could displace 

the bound radioligand. Only the nonapeptid CB1 inverse agonist/antagonist hemopressin(1-

9)
27

 was able to compete with [
3
H]JWH-018 with an apparently high inhibitory constant of 

2793 ± 4.1 nM, however, hemopressin(1-9) could only partially (c.a. 40%) displace [
3
H]JWH-

018 (Figure 5B). These results indicated that the allosteric binding site of the peptidic ligands 

is different from that of the non-peptidic cannabinoid agonists/inverse agonists, and that 

JWH-018 presumably bound to the orthosteric binding site of the CB receptor. 

It was also important to investigate whether [
3
H]JWH-018 interacts with the opioid 

receptors because this radioligand was prepared to characterize the CB receptor binding of the 

opioid-cannabinoid bivalent ligands. The effects of the opioid ligands morphine, naloxone and 

endomorphins-1 and -2 on the specific binding of [
3
H]JWH-018 were measured in the 

presence of increasing concentration of the opioids. It was found that none of them decreased 

the specific binding of [
3
H]JWH-018 even at a concentration of 10 µM, meaning that 

[
3
H]JWH-018 did not bind to the opioid receptors (Figure 5C). Finally, competition binding 

experiments were carried out to evaluate the ability of JWH-018 to inhibit the specific binding 

of the μ-, δ- and κ-opioid receptor selective radioligands [
3
H]DAMGO, [

3
H]Ile

5,6
-deltorphin-2 

and [
3
H]HS-665,

148
 respectively (Figure 5D). For KOR binding the guinea pig brain was used 

because it contains KORs in higher density as compared to the rat brain. It was found that 

JWH-018 did not exhibit any binding affinity to the MOR, DOR and KORs when compared 

to the homologue displacements with DAMGO, Ile
5,6

-deltorphin-2 or HS-665, respectively. 
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Cannabinoid ligand Ki (nM) Cannabinoid ligand Ki (nM) 

JWH-018 3.4  0.8 AM 251 69  9.1 

WIN-55,212-2 7.2  2.8 AM 630 27  2.2 

Δ
9
-THC 82  4.5 Hemopressin (1-7) >10000 

25 59  3.3 Hemopressin (1-9) 2793  41 

Rimonabant 43  5.5 RVD-Hemopressin >10000 

Figure 5. Characterization of JWH-018 binding sites in competition binding experiments in 

rat or guinea pig ([
3
H]HS665) whole brain membrane homogenates. (A-C) The specific 

binding of [
3
H]JWH-018 in the presence of unlabeled cannabinoid or opioid ligands. (D) The 

specific binding of the MOR, DOR and KOR specific radioligands [
3
H]DAMGO, [

3
H]Ile

5,6
-

deltorphin-2 and [
3
H]HS-665, respectively, in the presence of JWH-018 (filled symbols) or in 

the presence of the corresponding unlabeled opioid ligand (open symbols). Data are mean 

percentage of specific binding ± SEM (n≥ 3). Table shows the calculated inhibitory constants 

against [
3
H]JWH-018. Ki values were calculated as Ki= EC50/(1 + [ligand]/Kd), where Kd= 6.5 

nM was obtained from the saturation experiment; data are means ± SEM, n≥3. 

 

4.4. Radioligand binding studies 

 

In order to assess the effects of the structural changes of the monomeric ligands on the 

biological activity and to evaluate the heterodimeric compounds for affinity and selectivity, 

the novel synthetic compounds were subjected to radioligand displacement assays. 

Displacements of the MOR selective radioligand [
3
H]DAMGO, the DOR selective 

[
3
H]Ile

5,6
-deltorphin-2, the KOR selective [

3
H]HS-665 and the cannabinoid radioligands 
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[
3
H]JWH-018 and [

3
H]WIN-55,212-2 by the linker conjugated oxycodone derivatives (5–7) 

and by the related bivalent compounds (10–12) were investigated in rat or guinea pig brain 

membrane homogenates (Figure 6, Table 1). It was found that the modification of oxycodone 

at position 6 with the O-carboxymethyl oxime function (1) resulted only in a 2.7-fold loss of 

MOR affinity, a 4-fold increased affinity for the DOR and loss of KOR affinity. The MOR 

selectivity of oxycodone over DOR was reduced 90% by the introduction of the linker group 

in 1. The introduction of a terminal carboxyl function to the pentyl chain of JWH-018 (9) 

decreased the CB receptor affinity down to the 200 nM range. These findings encouraged us 

to further investigate the bivalent ligands and their synthetic intermediates. The introduction 

of the spacer molecules to 1 resulted in only minor loss of MOR affinity (Ki= 17-74 nM), that 

was beneficial to prepare the bivalent compounds with spacers of different physico-chemical 

properties. The introduction of the ethylenediamine (5) and the 1,6-diaminohexane spacers (6) 

resulted in 2-fold and 5-fold loss of MOR affinity, respectively, while the incorporation of the 

O-,O‟-bis(3-aminopropyl)-diethyleneglycol spacer (7) resulted in an 8-fold loss of MOR 

affinity as compared to the parent compound oxycodone. The dimeric compounds 10–12 

exhibited good affinity to the MOR that was only 2-4-fold lower than the MOR affinity of the 

parent oxycodone. The selectivity of the dimeric compounds 10–12 for the MOR over DOR 

was 15-19, while their MOR selectivity over KOR was found to be 9-10. Next, compounds 

10–12 were further characterized to reveal their CB receptor affinities. In competition binding 

experiments the capabilities of the bivalent compounds to displace [
3
H]JWH-018 and 

[
3
H]WIN-55,212-2 were investigated, and it was found that they displaced 40–70% of the 

specific bound radioligands [
3
H]JWH-018 or [

3
H]WIN-55,212-2. The dimeric compound 10 

exhibited the highest CB receptor affinity against [
3
H]WIN-55,212-2, however 11 displaced 

[
3
H]JWH-018 most efficiently. 
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Figure 6. Concentration-dependent effects of the indicated compounds on equilibrium 

binding of [
3
H]DAMGO (A-B, MOR), [

3
H]Ile

5,6
-deltorphin-2 (C-D, DOR), [

3
H]HS-665 (E-F, 

KOR), [
3
H]JWH-018 and [

3
H]WIN55,212-2 (G-H, CB receptors) in rat and guinea pig brain 

membrane homogenates. Figures represent the relative specific binding of the radioligands in 

the presence of increasing concentrations (10
–11

–10
–5

 M) of the synthetic compounds. Data 

are mean values ± SEM (n≥ 3). Ki values were calculated according to the Cheng–Prusoff 

equation (Ki = EC50/(1 + [ligand]/Kd)) and are listed in Table 1. 
 

In the next step the peptidic compounds were evaluated for affinity and selectivity by 

radioligand displacement assays. First, the effect of the structural modification of the 

monomeric compounds was investigated in displacement studies on rat or guinea pig brain 

membrane homogenates (Figure 7, Table 2). The opioid pharmacophore Tyr-D-Ala-Gly-Phe-

NH2 exhibited high affinity to the MOR (Ki= 0.8 nM), a 130-times weaker affinity to the 
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DOR and 210-times weaker affinity to the KOR, and it had no affinity to the CB receptors. 

The introduction of an amino group into the terminal methyl group of the pentyl chain of 

JWH-018 resulted in 16 and this modification led to decreased affinity to the [
3
H]JWH-018 or 

[
3
H]WIN-55,212-2 labeled binding sites. The control compound 17 was also prepared and 

investigated to reveal the effect of the terminal peptide acylamido modification of the JWH-

018 pentyl group on the CB receptor binding. The N-acetylation of 16 diminished the 

positively charged functional group and the CB receptor affinity of 17 was found to be higher 

(Ki= 145 nM) than that of 16. When 16 was N-acylated with the peptide acid Tyr-D-Ala-Gly-

Phe-OH or with its C-terminally extended derivatives, the resulting bivalent compounds 18–

21 exhibited minor loss in MOR, DOR and KOR affinity. The binding affinity of 19 and 21 

for KOR was 2-3 times higher than that of the Tyr-D-Ala-Gly-Phe-NH2. In [
3
H]JWH-018 and 

[
3
H]WIN-55,212-2 displacement experiments 19 exhibited the highest affinity to the CB 

receptors among the peptidic bivalent compounds (Ki= 251 and 317 nM, respectively), and 19 

was able to decrease the [
3
H]JWH-018 and [

3
H]WIN-55,212-2 specific binding by about 45-

50%. In contrast, the CB receptor affinity of 18, 20 and 21 decreased significantly. 
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Figure 7. Concentration-dependent effects of the indicated compounds on equilibrium 

binding of [
3
H]DAMGO (A, MOR), [

3
H]Ile

5,6
-deltorphin-2 (B, DOR), [

3
H]HS-665 (C, KOR), 

[
3
H]JWH-018 and [

3
H]WIN55,212-2 (D-E, CB receptors) in rat and guinea pig brain 

membrane homogenates. Figures represent the relative specific binding of the radioligands in 

the presence of increasing concentrations (10
–11

–10
–5

 M) of the synthetic compounds. Data 

are mean values ± SEM (n≥ 3). Ki values were calculated according to the Cheng–Prusoff 

equation (Ki = EC50/(1 + [ligand]/Kd)) and are listed in Table 2. 

 

4.5. [
35

S]GTPγS functional binding assays 

 

To determine whether the linker modified ligands 1 and 9, the spacer conjugates 5–7 and the 

bivalent compounds 10–12 retain their ability to stimulate the receptor-associated G-proteins, 

the synthetic compounds were subjected to ligand-stimulated [
35

S]GTPγS binding assays in 

rat brain membrane homogenate. It is important to mention that this preparation abundantly 

contains both MOR and CB receptors, therefore it is an appropriate model to investigate the 

capability of the MOR agonist oxycodone and its derivatives, and also the cannabinoid 

agonist JWH-018 and its derivatives. In these experiments the oxycodone derivatives 

exhibited lower potencies than the parent oxycodone, and significant reduction of the 

stimulatory effects was also observed (Figure 8, Table 1). Coupling of the spacers to 1 

decreased the efficacy and the partial opioid agonist oxycodone became weaker partial 
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agonists/neutral antagonists. The full agonist JWH-018 efficiently stimulated the G-proteins, 

demonstrated high potency (EC50= 69 ± 10 nM) and high stimulatory activity (Emax= 163 ± 

3.1%), while the introduction of the carboxyl function in 9 changed the full agonist to a weak 

inverse agonist. Accordingly, the bivalent compounds were expected to show altered 

pharmacology, as compared to oxycodone. The bivalent compounds 10 and 12 did not induce 

significant changes in basal [
35

S]GTPS binding values, however as described earlier these 

compounds displayed noticeable opioid and cannabinoid receptor affinity. In contrast, 11 

exhibited high G-protein stimulatory effect (Emax= 147  3.8%, EC50= 215 nM) demonstrating 

the agonist character of 11. To explore the activation of MOR and/or CB1/CB2 receptor-

mediated signaling induced by 11, the G-protein activation was investigated with 11 in the 

absence or presence of 10 µM naloxone, 10 µM rimonabant or 10 µM AM 630. The 

stimulatory effect of 11 (Emax= 147 ± 4.0%, EC50= 224 ± 5.0 nM) was reduced by the opioid 

antagonist naloxone
147

 (10 M) (Emax= 112 ± 2.1%, EC50= 397 ± 34 nM). Because naloxone 

did not reduce the G-protein stimulatory effect to the basal level, the residual activity 

suggested that 11 could activate the CB receptors as well. The CB1 antagonist/inverse agonist 

rimonabant (10 M) slightly antagonized the G-protein stimulatory effect of 11 (Emax= 139 ± 

2.4%, EC50= 452 ± 24 nM), while the CB2 antagonist/inverse agonist AM 630 (10 M) had 

greater antagonistic effect (Emax= 122 ± 2.7%, EC50= 340 ± 7.5 nM) (Figure 9). In order to 

decrease the stimulatory effect of 11 to the basal level, the co-presence of naloxone, 

rimonabant and AM 630 was required. Taken together, these interactions indicated a bivalent 

opioid and CB (mostly CB2) receptor dependent agonist effect of 11. 

 

Figure 8. The effect of the synthetic compounds on G-protein activation in [
35

S]GTPS 

binding assays in rat brain membrane homogenates. Figures represent relative specific 

binding of [
35

S]GTPS in the presence of increasing concentrations (10
-10

–10
-5 

M) of the 

indicated compounds. Data are mean percentage of specific binding ± SEM (n≥ 3) over the 

basal activity of 100%. The maximal G-protein stimulation efficacy (Emax) and ligand potency 

(EC50) values are listed in Table 1. 
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Emax (%) EC50 (nM)  

11 147 ± 4.0 224 ± 5.0  

11 + 10 M naloxone 112 ± 2.1
***/#

 397 ± 34
***

  

11 + 10 M rimonabant 139 ± 2.4
***

 452 ± 24
***

  

11 + 10 M AM 630 122 ± 2.7
***

 340 ± 7.5
**

  

11 + 10-10 M (naloxone, rimonabant, AM 630) 100 ± 1.1
***

 n.r.  

Figure 9. Opioid and cannabinoid receptor-mediated effects of 11 on G-protein activation in 

[
35

S]GTPS binding assays in rat brain membrane homogenates. Figure represents relative 

specific binding of [
35

S]GTPS with the increasing concentrations (10
-10

–10
-5

 M) of 11 in the 

absence or presence of 10 µM naloxone, 10 µM rimonabant or 10 µM AM 630. Data are 

mean percentage of specific binding ± SEM (n= 3–5) over the basal activity. The calculated 

maximal G-protein stimulation efficacy (Emax) and ligand potency (EC50) values are listed 

below the graph. Statistical comparison of Emax and EC50 were performed by one-way 

ANOVA followed by the Bonferroni‟s multiple comparison test (***, P< 0.001; **, P< 0.01). 
#
 indicates significant difference (unpaired Student‟s t-test, P< 0.05) in the Emax of 11 in the 

presence of 10 µM naloxone compared to the basal activity. n.r. not relevant. 

 

Next, the signaling properties of the peptidic bivalent compounds were evaluated in 

[
35

S]GTPS binding experiments (Figure 10, Table 2). According to the G-protein activation 

and receptor binding affinity, 16 may act as a neutral antagonist on CB receptors, since it did 

not stimulate G-proteins but displayed a considerable CB receptor affinity in [
3
H]JWH-018 

displacement assays. The N-acetylated compound 17 significantly reduced [
35

S]GTPS 

specific binding by nearly 20% as compared to the basal activity level, indicating an inverse 

agonistic effect. The weak inverse agonistic effect of 17 might be mediated through CB 

receptors, since it showed a relatively good affinity to the [
3
H]JWH-018 binding site. The 

opioid pharmacophore H-Tyr-D-Ala-Gly-Phe-NH2 increased the G-protein basal activity with 

a maximum efficacy of 157% and with a potency in the 200 nM range. The bivalent 

compounds 18, 20 and 21 exhibited significantly decreased capability of G-protein activation, 

but 19 exhibited signaling with a maximum efficacy of 160 ± 1.9% that was similar to that of 



33 
 

the monofunctional opioid and cannabinoid pharmacophores.
 
The binding affinity of 19 to the 

opioid receptors remained nearly the same as the parent tetrapeptide amide or 24. The 

stimulatory effect of 19 (Emax= 160 ± 1.9%, EC50= 112 ± 7.5 nM) was reduced by the opioid 

antagonist naloxone
147

 (Emax= 121 ± 2.5%, EC50= 1473 ± 118 nM). The antagonistic effect of 

naloxone was found to be incomplete, and the residual activity of 19 indicated CB receptor 

activation (Figure 11). In contrast to 11, the CB2 antagonist/inverse agonist AM 630 exerted 

weak antagonistic effect to 19 (Emax= 148 ± 3.0%, EC50= 671 ± 12 nM), however, the CB1 

antagonist/inverse agonist rimonabant could antagonize more efficiently the G-protein 

activation effect of 19 (Emax= 125 ± 1.9%, EC50= 378 ± 20 nM). The stimulatory effect of 

compound 19 decreased to the basal level in the co-presence of naloxone, rimonabant and AM 

630. These interactions suggested a bivalent opioid and CB (mostly CB1) receptor dependent 

agonist effect of 19. 

 

Figure 10 The effect of the synthetic compounds on G-protein activation in [
35

S]GTPS 

binding assays in rat brain membrane homogenates. Figures represent relative specific 

binding of [
35

S]GTPS in the presence of increasing concentrations (10
-10

–10
-5 

M) of the 

indicated compounds. Data are mean percentage of specific binding ± SEM (n≥ 3) over the 

basal activity of 100%. The maximal G-protein stimulation efficacy (Emax) and ligand potency 

(EC50) values are listed in Table 2. 
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Emax (%) EC50 (nM)  

19 160 ± 1.9 112 ± 7.5  

19 + 10 M naloxone 121 ± 2.5
***/#

 1473 ± 118
***

  

19 + 10 M rimonabant 125 ± 1.9
***

 378 ± 20
***

  

19 + 10 M AM 630 148 ± 3.0
***

 671 ± 12
***

  

19 + 10 M (naloxone, rimonabant, AM 630) 100 ± 1.2
*** n.r.  

Figure 11. Opioid and cannabinoid receptor-mediated effects of 19 on G-protein activation in 

[
35

S]GTPS binding assays in rat brain membrane homogenates. Figure represents relative 

specific binding of [
35

S]GTPS with the increasing concentrations (10
-10

–10
-5

 M) of 19 in the 

absence or presence of 10 µM naloxone, 10 µM rimonabant or 10 µM AM 630. Data are 

mean percentage of specific binding ± SEM (n= 3–5) over the basal activity. The calculated 

maximal G-protein stimulation efficacy (Emax) and ligand potency (EC50) values are listed 

below the graph. Statistical comparison of Emax and EC50 were performed by one-way 

ANOVA followed by the Bonferroni‟s multiple comparison test (***, P< 0.001). 
#
 indicates 

significant difference (unpaired Student‟s t-test (P< 0.05) in the Emax of 19 in the presence of 

10 µM naloxone compared to the basal activity. n.r. not relevant. 

 

Because the bivalent compounds 10 and 12 with noticeable MOR and CB receptor 

affinity did not induce significant changes in basal [
35

S]GTPS binding, their antagonist effect 

was investigated in details. In control experiments the G-protein stimulatory agonist effect of 

oxycodone was antagonized by the opioid antagonist naloxone, and that of JWH-018 was 

antagonized by the co-addition of the CB1 selective rimonabant and the CB2 selective AM 

630. It was found that the maximum agonist effects of oxycodone, Tyr-D-Ala-Gly-Phe-NH2, 

JWH-018, 11 and 19 were reduced to the basal level by compounds 10 and 12 as well (Figure 

12). These data demonstrated that compounds 10 and 12 acted as antagonists of the MOR and 

CB receptors. 
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Figure 12. The antagonist effect of 10 and 12 in agonist induced [

35
S]GTPS binding assays 

in rat brain membrane homogenates. Figures represent relative specific binding of [
35

S]GTPS 

with the increasing concentrations (10
-10

–10
-5 

M) of oxycodone, Tyr-D-Ala-Gly-Phe-NH2, 

JWH-018, 11 and 19 in the absence (filled symbols) or in the presence (open symbols) of 10 

µM of naloxone, rimonabant, AM630, 10 or 12. Data are mean percentage of specific binding 

± SEM (n≥ 3) over the basal activity of 100%. The calculated parameters are listed in the 

Appendix Table A1. 
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Table 1. Inhibitory constant values and signaling properties of oxycodone and JWH-018 derivatives 

compound Ki (nM) Emax (%) EC50 (nM) 

 [
3
H]DAMGO [

3
H]Ile

5,6
-

deltorphin-2 

[
3
H]HS-665 Kiδ/Kiμ Kiκ/Kiμ [

3
H]JWH-018 [

3
H]WIN-

55,212-2 

  

oxycodone 8.9± 0.4 487± 36 325 ± 32 55 37 >10000 >10000 135 ± 4.6 51 ± 2.5 

JWH-018 >10000 >10000 >10000 - - 3.4  0.8 2.9 ± 0.4 163 ± 3.1 69 ± 10 

1 24 ± 0.2 110 ± 14 >10000 5 - n.d. n.d. 109 ± 3.2 225 ± 27 

5 17 ± 0.9 533 ± 33 471 ± 44 31 28 n.d. n.d. 113 ± 2.1 450 ± 11 

6 41 ± 3.6 659 ± 14 380 ± 43 16 10 n.d. n.d. 111 ± 2.5 305 ± 14 

7 74 ± 3.0 757 ± 55 503 ± 50 10 7 n.d. n.d. 112 ± 7.1 200 ± 55 

9 n.d. n.d. n.d. - - 247 ± 48 205 ± 28 81 ± 4.7 4225 ± 148 

10 33 ± 4.0 623 ± 43 337 ± 40 19 10 255 ± 47 9.3 ± 1.8 100 ± 1.7 n.r. 

11 18 ± 5.0 263 ± 15 172 ± 19 15 10 34 ± 8 12 ± 3.5 147 ± 3.8 215 ± 4.5 

12 20 ± 1.0 386 ± 23 186 ± 37 19 9 183 ± 32 78 ± 23 99 ± 1.2 n.r. 

Ki values were obtained from the displacement curves shown in Figure 6, n.d. not determined. The Emax and EC50 values were calculated from 

the dose-response curves of Figure 8, n.r.: not relevant. Data are means  SEM, n≥3.  
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Table 2. Inhibitory constant values and signaling properties of peptidic compounds 

            compound Ki (nM) Emax (%) EC50 (nM) 

 [
3
H]DAMGO [

3
H]Ile

5,6
-

deltorphin-2 

[
3
H]HS-665 Kiδ/Kiμ Kiκ/Kiμ [

3
H]JWH-018 [

3
H]WIN-

55,212-2 
  

Tyr-D-Ala-Gly-Phe-NH2 0.8  0.1 107  19 173  15 134 216 >10000 >10000 157  3.9 191 7 

JWH-018 >10000 >10000 >10000 - - 3.4  0.8 2.9 ± 0.4 163 ± 3.1 69 ± 10 

16 n.d. n.d. n.d. - - 190  17 269  21 102  3.5 n.r. 

17 n.d. n.d. n.d. - - 145  13 149  18 83  5.6 2154  100 

18 50  2.7 214  2.0 231  35 4 5 1013  45 823  62 110  3.8 1801  102 

19 2.1 0.3 134  12 63  13 64 30 251  18 317  47 160  1.9 114  10 

20 48  5.1 190  33 151  25 4 3 919  48 1216  102 114  1.6 18  6 

21 20  3.5 92  25 50  15 5 3 928  45 1042  28 125  1.5 60  10 

Ki values were obtained from the displacement curves shown in Figure 7, n.d. not determined. The Emax and EC50 values were calculated from 

the dose-response curves of Figure 10, n.r.: not relevant. Data are means  SEM, n≥3. 
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4.6. Permeability of compounds 11 and 19 through the brain endothelium
 
 

 

In order to evaluate whether the agonist bivalent compounds 11 and 19 can effectively target 

central or periferial opioid and CB receptors, the permeability of [
3
H]11 and [

3
H]19 through 

brain endothelial cells was measured using a well characterized triple co-culture blood-brain 

barrier (BBB) model.
127,128

 The required tritium labeled bifunctional compounds were 

prepared from iodinated precursor compounds. Compound 9 was iodinated with iodine 

monochloride in MeOH then it was reduced with tritium gas. The amine 6 was then N-

acylated with [
3
H]9 under the conditions outlined in Scheme 1 that yielded [

3
H]11. In the case 

of 19, bis(pyridine)iodonium(I) tetrafluoroborate
149

 was used to prepare the iodo-derivative of 

19 that was reduced with tritium gas to obtain [
3
H]19. In the in vitro BBB permeability 

measurement [
3
H]11 and [

3
H]19 were applied in 0.25 and 0.75 M concentrations and their 

fluxes in the blood to brain direction was measured. Similar endothelial permeability 

coefficients were calculated (2-3 × 10
–6

 cm/s) for both molecules at both donor concentrations 

(Figure 13). This value is not significantly different from the permeability coefficient of 

fluorescein, a hydrophilic reference molecule with a limited permeability to the brain.
127,150

 

The penetration of 11 and 19 was fifteen times higher across empty inserts indicating that the 

membrane of the inserts was permeable for the molecules. These experiments revealed that 

the bivalent compounds 11 and 19 exhibited limited penetration, thus intrathecal 

administration was necessary during in vivo experiments. 

 

Figure 13. Evaluation of the flux of compounds 11 and 19 across an in vitro BBB model 

consisting of primary rat brain endothelial cells, pericytes and astrocytes. Permeability of 

sodium fluorescein (SF) is also given as reference. Pe: permeability coefficient, data are mean 

± SD, n= 4. 
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4.7. Preparation and receptor binding properties of [
3
H]hemopressin(1-7) 

 

Due to these favorable characteristics of hemopressins explained in the introduction 

and to the fact that the truncated Hp(1–7) peptide was found to be as potent as Hp(1–9) in in 

vitro and in vivo studies
27

 Hp(1–7) was chosen for radiolabeling without any structural 

modification.
147

 The radioligand [
3
H]Hp(1-7) was obtained by the catalytic reduction of 

ΔPro
1
-Hp(1-7) with tritium gas, and the specific activity of 1.04 TBq/mmol was sufficient for 

performing the in vitro pharmacological experiments.  

Various binding assays were performed to characterize the interaction of [
3
H]Hp(1-7) 

with membrane receptors using rat brain membrane homogenate that is known to contain CB1 

receptors abundantly. The comparison of radioligand binding experiments carried out in the 

presence and in the absence of protease inhibitors revealed that [
3
H]Hp(1-7) was sufficiently 

stable up to an incubation time of 30 min. Association binding experiments carried out in the 

presence of 2 nM [
3
H]Hp(1-7) and a protein concentration of 0.45 mg/mL revealed specific 

binding of [
3
H]Hp(1-7) to rat brain membranes at 37°C. At this temperature, specific binding 

reached steady-state in 5 min (Figure 14A) that remained stable up to 60 min. The specific 

binding was 50-70% of the total binding at 2 nM radioligand concentration under equilibrium 

conditions. Table 3 summarizes the calculated equilibrium binding parameters. In the 

dissociation experiments, rat brain membranes were incubated with 2 nM [
3
H]Hp(1-7) at 37 

o
C for 10 min and dissociation of the ligand–receptor complex was initiated by the addition of 

10 μM Hp(1-7) after different incubation periods. Dissociation proceeded with a monophasic 

kinetics (Figure 14B) providing a dissociation rate constant (kd) of 0.842 ± 0.150 min
-1

. It was 

found that 55 % of the radioligand dissociated from the membranes. The kinetically derived 

equilibrium dissociation constant (Kd) calculated from the association and dissociation 

experiments was assessed to be 7.2 ± 1.2 nM under our experimental conditions. 

In the next step saturation radioligand binding experiments were carried out on brain 

homogenates of rat and CB1 knockout mouse in the presence of increasing radioligand 

concentrations for 30 min. The specific binding of [
3
H]Hp(1-7) was found to be saturable and 

of high affinity in both tissue homogenates (Figures 15A, B). 
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Figure 14. (A) Association time course of [
3
H]Hp(1-7) binding at 37°C. 2 nM [

3
H]Hp(1-7) 

was incubated with rat brain membrane for various time in the absence or presence of 10 µM 

Hp(1-7) to assess specific binding. (B) Dissociation time course of [
3
H]Hp(1-7) binding at 

37°C. 2 nM [
3
H]Hp(1-7) was incubated with rat brain membrane for 10 min, then dissociation 

was initiated by the addition of 10 M Hp(1-7) after different time periods. Data are means ± 

S.E.M, n= 3. 

 

Table 3. Kinetic parameters for [
3
H]Hp(1-7) at rat brain membrane binding sites. 

Kinetic parameters 

kobs 1.08 ± 0.12 min
-1

 

ka 0.119 ± 0.001 nM
-1

min
-1

 

kd 0.842 ± 0.150 min
-1

 

Kd 7.2 ± 1.4 nM 

kobs is the observed pseudo-first order rate constant, kd is the dissociation rate constant, ka is 

the association rate constant calculated as ka= (kobs-kd)/[[
3
H]Hp(1-7)]. The equilibrium 

dissociation constant Kd was calculated as Kd= kd/ka. Data were calculated from the average ± 

S.E.M values of at least 3 independent experiments. 

 

Single-site bindings were calculated for both saturation curves by non-linear fitting of the 

specific binding data points that resulted in a dissociation equilibrium constants (Kd) of 14.5 ± 

3.2 nM and 10.8 ± 1.8 nM in rat and in CB1 knockout mouse brain membrane, respectively. 

Furthermore, high receptor densities (Bmax= 830 ± 120 and 990 ± 145 fmol/mg protein in rat 

and in CB1 knockout mouse brain membrane, respectively) were observed (Table 4). These 

Kd and Bmax values suggested that the target receptor for the Hp(1-7) peptide was present in 

both tissue homogenates and indicated the specific interaction of [
3
H]Hp(1-7) with a highly 

abundant receptor protein. 
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Figure 15. Saturation isotherms of [
3
H]Hp(1-7). Increasing concentrations of the radioligand 

were incubated with membrane homogenates of rat brain (A) or CB1 knockout mouse brain 

(B) in the absence or presence of 10 μM Hp(1-7). Only specific binding data are presented as 

means ± S.E.M of at least 3 independent experiments. 

 

Table 4. Equilibrium binding data of [
3
H]Hp(1-7) 

Tissue Kd (nM) Bmax (fmol/mg protein) 

Rat brain membrane 14.5 ± 3.2 830 ± 120 

CB1 knockout mouse brain membrane 10.8 ± 1.8 990 ± 145 

Dissociation equilibrium constants (Kd) and receptor densities (Bmax) were calculated by 

fitting of the saturation curves measured in brain membrane homogenates of wild-type rat or 

CB1 knockout mouse in the absence or presence of 10 μM Hp(1-7). Data are means ± S.E.M 

of at least 3 independent experiments. 

 

The saturation binding experiments indicated that the binding site of [
3
H]Hp(1-7) might be 

different from the CB1 receptor, therefore we further characterized the labelled Hp(1-7) in 

competition receptor binding assays in rat brain membrane homogenates. First, different non-

peptidic cannabinoid agonists and inverse agonists were used as competitor ligands. It was 

found that neither the non-selective cannabinoid full agonist JWH-018, the CB1 receptor 

inverse agonist AM251 nor the CB1 receptor inverse agonist rimonabant could displace the 

bound radioligand in rat brain membranes. Only the unlabelled Hp(1-7) was able to compete 

with its tritium labelled analogue, but with a high apparent inhibitory constant in the 100 

nanomolar range (Figure 16A). In contrast, a Kd value of 14.5 ± 3.2 nM was obtained by the 

analysis of the kinetic curves. Since [
3
H]HP(1-7) was found to be stable against proteolysis 

under the binding conditions, these findings suggested that the interaction of [
3
H]Hp(1-7) with 

the CB1 receptors in rat brain membrane homogenate was different from that of other non-

peptidic cannabinoids. 
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Figure 16. Competitive binding curves of [
3
H]Hp(1-7) by various orthosteric synthetic 

cannabinoid ligands and hemopressins. Brain membranes of rat (A, B) or CB1 knockout 

mouse (C) were incubated with 2 nM [
3
H]Hp(1-7) in the presence of increasing 

concentrations (10
–11

–10
–5

 M) of the indicated compounds. Non-specific binding was 

measured in the presence of 10 µM Hp(1-7), data are means ± S.E.M., n= 3. 

 

Table 5. Inhibitory constants (Ki) of hemopressins against [
3
H]Hp(1-7) in brain membrane 

homogenates. 

 Ki (nM) 

Ligand rat brain membrane CB1 knockout mouse brain 

Hp(1-7) 111 ± 14 94 ± 25 

Hp(1-9) 184 ± 28 401 ± 78 

RVD-Hp(1-9) 1940 ± 121 3208 ± 396 

Hemopressins were co-incubated with [
3
H]Hp(1-7) in brain homogenate of rat or CB1 

knockout mouse. Data are means ± S.E.M of at least 3 independent experiments. 

 

Next, competition experiments were performed to investigate the ability of the hemopressins 

Hp(1-7), Hp(1-9) and RVD-Hp(1-9) to inhibit the binding of [
3
H]Hp(1-7) to rat brain 

membrane homogenate (Figure 16B). These hemopressins could displace [
3
H]Hp(1-7) from 

the binding site with different inhibitory constants (Table 5), and the parent Hp(1-7) displayed 

the highest affinity (Ki= 111 ± 14 nM) to the binding site. The Hp(1-9) peptide provided a 

slightly higher inhibitory constant (Ki= 184 ± 28 nM), but still within the same range. These 

data indicated that Hp(1-7) and Hp(1-9) might bind to the same site or conformation of a 
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receptor protein, however both Hp(1-9) and Hp(1-7) might prefer a receptor conformation or 

binding site different from those of the non-peptidic cannabinoid agonists. In contrast, the 

Arg-Val-Asp-extended hemopressin (RVD-Hp(1-9)) displayed the lowest binding affinity 

(Ki= 1940 ± 121 nM) to the [
3
H]Hp(1-7) labelled sites. The findings of the saturation and 

competition binding studies indicated the existence of a non-cannabinoid binding site or a 

receptor protein. In order to provide further evidences for this presumption, the ability of 

cannabinoid ligands and hemopressins to compete with [
3
H]Hp(1-7) in CB1 knockout mouse 

brain membrane homogenate was investigated (Figure 16C). It was found that Hp(1-7) 

displayed the lowest inhibitory constant (Ki= 94 ± 25 nM), and this affinity was close to that 

detected in rat brain membrane homogenate (Table 5). The similar affinity values obtained for 

Hp(1-7) in the homologue displacement studies both in rat and CB1 knockout mouse brain 

membrane homogenates strongly suggest that the receptor of the Hp(1-7) peptide has to be 

present in both tissue samples. Furthermore, the higher difference in inhibitory constants (Ki= 

184 ± 28 nM vs. 401 ± 78 nM) for the Hp(1-9) peptide in rat and CB1 knockout mouse brain 

homogenates may refer to binding to different regions of the same receptor in the two species 

or binding to the same region of the receptors with sequence heterogeneity in the two 

mammalian species. Similarly to the findings in whole rat brain membrane homogenate, the 

RVD-Hp(1-9) peptide showed marginal binding affinity (Ki= 3208 ± 396 nM) to the 

[
3
H]Hp(1-7) labelled sites. 

 

4.8. Ligand stimulated [
35

S]GTPγS binding studies of hemopressins 

 

Since hemopressins were reported to be the agonist ligands of the CB1 receptor, we were 

curious how Hp(1-7) and Hp(1-9) activate G-proteins. The CB1 receptor full agonist JWH-

018 and the inverse agonist rimonabant were applied as positive controls to validate the 

conditions of the ligand stimulated [
35

S]GTPS binding assay in rat brain membranes. JWH-

018 stimulated GTP binding with the highest efficacy (Emax= 165 ± 25%) and lowest potency 

(EC50= 9.5 ± 1.2 nM) in good agreement with literature data
151

 (Figure 17). Rimonabant also 

behaved as described in the literature.
152

 HP(1-7) displayed low potency (EC50 = 21 ± 1.5 nM) 

and marginal stimulatory activity (Emax= 112 ± 8%) as compared to the well-known non-

peptidic cannabinoids (Figure 17 and Table 6). Hp(1-9) also showed low potency (EC50= 29 ± 

3.5 nM), but did not activate [
35

S]GTPS binding (Emax= 104 ± 7%). Next, Hp(1-7) and Hp(1-

9) were tested in [
35

S]GTPS binding assays using membranes prepared from the brain of 
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CB1 knockout mice. We used the opioid full agonist DAMGO as a positive control to 

compare [
35

S]GTPS activation and to test the proper operation of our experimental setup 

(Figure 18 and Table 7). The agonist control compound DAMGO exhibited low potency 

(EC50 = 177 ± 21 nM) and significant stimulation (Emax= 167 ± 20%) of [
35

S]GTPS binding 

as compared to Hp(1-7) and Hp(1-9). 

Figure 17. [
35

S]GTPγS binding stimulated by Hp(1-7), Hp(1-9) and cannabinoid ligands in 

rat brain membrane homogenate. JWH-018 and rimonabant were used as positive controls. 

Rat brain membranes were incubated with 0.05 nM [
35

S]GTPS in the presence of increasing 

concentrations (10
-10

-10
-5

 M ) of the indicated compounds. Non-specific binding was 

measured with 10 µM GTPS. Data are expressed as means ± S.E.M., n= 3. Statistical 

comparison of Emax and EC50 were performed by one-way ANOVA followed by the 

Bonferroni‟s multiple comparison test (***, P< 0.001). 

 

Table 6. Summary of the results of [
35

S]GTPS functional binding assays in rat brain 

membrane preparation. 

Ligands EC50 (nM) Emax (%) 

Hp(1-7) 21 ± 1.5 112 ± 8 

Hp(1-9) 29 ± 3.5 104 ±7 

JWH-018 9.5 ± 1.2 165 ± 25 

rimonabant 539 ± 65 46 ± 7 

Nonspecific binding was determined by the addition of 10 M unlabeled GTPS. Each data 

represents the mean ± SEM from 4 independent experiments performed in triplicate. 

 

The Hp(1-7) peptide demonstrated a higher potency (EC50= 655 ± 98 nM), in comparison 

with the potency obtained in rat brain membrane homogenate. However, Hp(1-7) displayed 

very similar stimulatory effects in both wild type rat and CB1 knockout mouse brain 

homogenates (Emax= 112 ± 12 and 117 ± 18%). Similarly to the competitive displacement 

studies this finding suggests that the ligand activates a G-protein or binds to a protein through 

the same binding site or receptor protein(s) that is/are present in both types of tissues. 

Consequently, its main target protein cannot be the CB1 receptor because it is not supposed to 

be present in the brain membrane preparation of CB1 knockout mice. The Hp(1-9) peptide 

showed higher potency (EC50= 65 ± 12 nM), but a stimulatory effect (Emax= 111 ± 17%) 
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roughly equivalent with that of the Hp(1-7) peptide. This difference in the potency value may 

reflect different binding mode or interaction of the Hp(1-9) peptide with its binding protein. 

 

Figure 18. [
35

S]GTPγS binding stimulated by DAMGO, Hp(1-7) and Hp(1-9) in CB1 

knockout mouse brain membrane homogenate. Mouse brain membranes were incubated with 

0.05 nM [
35

S]GTPS in the presence of increasing concentrations (10
-10

-10
-5

 M ) of the 

indicated compounds. Non-specific binding was measured in the presence of 10 µM GTPS. 

Data are means ± S.E.M., n= 3. Statistical comparison of Emax and EC50 were performed by 

one-way ANOVA followed by the Bonferroni‟s multiple comparison test (***, P< 0.001). 

 

Table 7. Summary of the results of [
35

S]GTPS functional binding assay in CB1 knockout 

mouse brain membrane preparation. 

Ligands EC50 (nM) Emax (%) 

Hp(1-7) 655 ± 98 117 ± 18 

Hp(1-9) 65 ± 12 111 ± 17 

DAMGO  177 ± 21 167 ± 20 

Nonspecific binding was determined by the addition of 10 M unlabeled GTPS. Each data 

represents the mean ± SEM from 4 independent experiments performed in triplicate. 

.  
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5. Discussion 

 

The involvement of the MOR and CB receptors in pain management is well 

documented and numerous studies report the synergistic interaction of the opioid and 

cannabinoid agonists.
153

 The association of the opioid and cannabinoid GPCRs to form homo- 

or heterodimers and multimers
154

 initiated the preparation of multitargeting compounds by 

covalent linking of pharmacophores with the aim of accomplishing simultaneous or parallel 

receptor-ligand interactions. Such multitargeting ligands are frequently called bivalent ligands 

suggesting the simultaneous interaction of a small molecule bivalent ligand with two 

protomers of a GPCR receptor complex. However, the distance of the ligand binding sites on 

the protomers may require long spacers of 20-50 Ǻ length that can modify the physico-

chemical properties of the original monomeric compounds to an extent that can lead to 

significant decrease in receptor affinity, to increased non-specific interactions or to decreased 

solubility in body fluids. The development of multitargeting compounds with parallel or 

independent protomer interactions is a more realistic goal when short spacers can be 

applied.
155

 Unfortunately, in the case of very short spacers the pharmacology of the original 

compounds can interfere significantly that can result in the loss of the original effects.
113,114

  

In our design, 2 to 13 atoms spacers were applied with the aim of achieving the co-

presence of MOR and cannabinoid pharmacophores in the extracellular space. This way the 

differences in pharmacokinetics and pharmacodynamics of the single compounds can be 

eliminated, and either a single protomer of a receptor multimer or more protomers in a 

parallel way can be activated by the bivalent compound. In our work JWH-018, a full agonist 

of CB receptors was conjugated with the opioid agonists oxycodone or with the enkephalin-

related tetrapeptide Tyr-D-Ala-Gly-Phe via spacers of different length and hydrophobicity. 

The structural diversity of the CB receptor ligands
156

 and the presence of allosteric sites on the 

CB receptors prompted us to prepare and validate [
3
H]JWH-018 as an appropriate radioligand 

competitor of the bivalent compounds in in vitro experiments. In our compound set 11 and 19 

bound to both the MOR and CB receptors, and they exhibited agonist-induced GPCR 

activation with high efficacy, suggesting a possible synergistic interaction of the covalently 

linked agonists. Compound 11 preferred MOR and CB2, whereas compound 19 preferred 

MOR and CB1 receptor mediated interactions as revealed by using specific antagonists in 

[
35

S]GTPγS studies. At spinal level a synergistic interaction of the opioid and cannabinoid 

agonists was observed in the case of the bivalent compounds 11 and 19. Because MOR and 



47 
 

CB receptor agonists can be effectively applied in the treatment of chronic pain including 

neuropatic pain, these findings can help to develop multitargeting antinociceptive drugs. 

In the future, JWH-018 was planned to substitute with a novel class of peptidic 

compounds that are probably free of cannabinoid side-effects. The recently discovered -

hemoglobin derived hemopressins have been postulated to be negative allosteric modulators 

and endogenous agonist ligands of the CB1 receptors. These peptides have been demonstrated 

to possess in vitro and in vivo pharmacological potencies similar to those of the prototypic 

endogenous and synthetic cannabinoid ligands, but with less side-effects.
27,30-32

 Accordingly, 

hemopressins appear to be excellent lead compounds for the development of peptidic research 

tools for the investigation of the endocannabinoid system. Their reported pharmacological 

characteristics prompted us to prepare a radiolabelled peptide ligand that acts on the CB1 

receptor and thus, enables the direct investigation of the endocannabinoid system and the 

binding properties of new synthetic CB1 receptor ligands. 

The Hp(1-9) peptide and its extended or truncated derivatives were demonstrated to be 

orally active and to exert antinociceptive effects apparently mediated by the CB1 receptors.
32

 

The physiological activity upon oral administration suggests that these peptides are at least 

partially resistant to proteolysis, and also that they may be able to cross the blood-brain 

barrier. Due to these favorable characteristics and to the fact that the truncated Hp(1-7) 

peptide was also found to be as potent as Hp(1-9) in in vitro and in vivo studies,
27

 Hp(1-7) 

was chosen for radiolabelling. 

The tritium labelled Hp(1-7) was investigated in various radioligand binding assays to 

characterize the interaction of Hp(1-7) and CB receptors. Data analysis of the receptor 

binding kinetics of [
3
H]Hp(1-7) showed that the radioligand reaches equilibrium and steady-

state rapidly under the experimental conditions. Saturation binding experiments revealed 

single site binding and very high receptor densities in both wild type rat brain membrane and 

CB1 knockout mouse brain membrane homogenates. In displacement studies, [
3
H]Hp(1-7) 

was not able to compete with the most commonly used CB1 receptor agonist/inverse agonist 

cannabinoid ligands. However, we found competition with Hp(1-9) in both types of brain 

homogenates which suggests that both Hp(1-7) and Hp(1-9) may be able to bind to the same 

receptor or allosteric site. This result is contradictory because the CB1 knockout mouse brain 

homogenate is not supposed to contain CB1 receptors.  

On the other hand, the presence of allosteric binding site of CB1 receptors for 

hemopressins has been demonstrated.
36,41

 Based on our direct in vitro receptor binding results 

and the large number of literature data, we hypothesize that hemopressins interact with the 
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CB1 receptor allosteric binding site(s). They more likely up-regulate the endocannabinoid 

production and the subsequent endocannabinoid release may be responsible for the observed 

analgesic effects. This assumption seems to be further supported by the study of Toniolo and 

co-workers
157

. Their results suggested that Hp(1-9) could inhibit monoacylglycerol-lipase 

activity in dorsal root ganglions which may lead to an increase of 2-arachydonyl-glycerol 

inducing analgesia. Furthermore, they hypothesized that Hp(1-9) can interact with the 

peripheral voltage-gated potassium channels and reduce calcium influx in a synergistic 

manner with the peripheral cannabinoid receptors. The authors also concluded that Hp(1-9) 

can induce an increase of endocannabinoid level which would, in turn, lead to the activation 

of descending inhibitory pain pathways inducing analgesia. However, we cannot fully exclude 

the existance of allosteric binding site for hemopressins, especially based on the findings of 

Straiker and co-workers.
36

 They studied positive and negative allosteric modulators of the 

endocannabinoid-mediated synaptic transmission in cultured hippocampal neurons. In their 

study, RVD-Hp(1-9) that did not apparently exhibit binding to the CB1 receptor in our system 

attenuated depolarization-induced suppression of excitation. Interestingly, Hp(1-9) was 

ineffective in this model of endocannabinoid signaling. 

This peptide family can be applied in bivalent molecules as a CB receptor targeting 

moiety without cannabinoid side effects. 
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6. Summary 

 

 Two series of bivalent compounds containing an opioid (oxycodone or Tyr-D-Ala-Gly-Phe) 

and a cannabinoid (JWH-018) pharmacophore were designed, synthesized and characterized 

in in vitro radioligand binding assays, functional [
35

S]GTPγS binding assays and in vivo 

antinociceptive tests. 

 Two novel cannabinoid receptor radioligands, [
3
H]JWH-018 and [

3
H]Hp(1-7) were prepared 

and validated. 

 The [
3
H]JWH-018 bound to the CB receptor binding site with high affinity (Kd= 6.5 nM) and 

fast kinetics and labeled high receptor density (Bmax= 1120 ± 89 fmol/mg protein). In 

displacement studies [
3
H]JWH-018 competed with the classical orthosteric CB receptor 

ligands but not with hemopressins and opioid ligands. 

 The [
3
H]Hp(1-7) displayed saturable binding in rat brain membrane- and also in a CB1 

knockout mouse brain homogenate. The receptor bound [
3
H]Hp(1-7) couldn‟t be displaced by 

JWH-018, rimonabant and AM251. 

 The C-6 substitution of oxycodone did not significantly affected the MOR binding and MOR 

selectivity, but led to loss of KOR affinity. The introduction of spacers with increasing length 

and polarity slightly reduced the MOR affinity and selectivity. 

 The introduction of a terminal carboxyl, amino and acylamido function to the pentyl chain of 

JWH-018 resulted in 73-fold, 55-fold and 43-fold loss of CB receptor affinity, respectively. 

 The functional binding assays revealed that the C-6 substitution of oxycodone and the 

conjugation of linkers to this position reduced the G-protein activation efficacy and led to 

weak partial agonists with lower potency. 

 The modification of the full agonist JWH-018 with a carboxyl, an amino or acylamido group 

resulted in inverse agonist or antagonist ligands. 

 In competition binding assays the affinity and selectivity of the bivalent compounds 10 and 12 

to the MOR decreased slightly and their CB receptor affinity was even lower. 

 The MOR affinity and selectivity of the bivalent compounds 18, 20, 21 reduced, the CB 

receptor affinity of 18, 20 and 21 decreased significantly. 

 In the functional binding assays the bivalent compounds 10 and 12 were found to be 

antagonists, whereas 18, 20, 21 acted as partial agonists. 

 In competition binding assays the bivalent compounds 11 (Ki (MOR)= 18 nM; Ki (CB)= 34 

nM) and 19 (Ki (MOR)= 2.1 nM; Ki (CB) = 251 nM) showed the highest affinity to both 

MOR and CB receptors. 
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 In functional binding assays it was found that the agonist bivalent compound 11 exerted its G-

protein activation through the MOR and CB2 receptors, while the agonist bivalent compound 

19 exerted its G-protein activation through the MOR and CB1 receptors. 

 Dimerization of MOR and CB agonists resulted in the agonist bivalent compounds 11 and 19 

with antiallodynic activity in vivo. 

 At spinal level bivalent compound 11 and 19 were equieffective with the parent drugs at 20 

µg dose in a chronic osteoarthritis pain model in rats. 
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Appendix 

 

Oxycodone O-carboxymethyloxime (1). Oxycodone (1 g, 3.17 mmol) was dissolved in 

250 mL of EtOH then 365 mg of 2-(aminooxy)acetic acid hemihydrochloride (3.32 mmol) 

and 400 μL of pyridine were added. The solution was stirred at 80°C for 75 min then the 

precipitate was filtered and dried under vacuum. The crude product was purified by HPLC on 

a Vydac 218TP1010 column (250  10 mm, 10 μm) using a linear gradient of 10→50% B in 

A over 25 min at a flow rate of 4 mL/min (λ= 216 nm) to give 1.14 g (93%) of pure 1 as a 

white solid. Rf 0.26 (CHCl3–MeOH–NH3(aq) 9:1:0.1); HPLC k‟= 2.46 (tR= 10.2 min, Alltech 

Altima HP C18 column (250  4.6 mm, 5 m), linear gradient of 10→60% B in A over 30 

min (eluent A: 0.1% (v/v) TFA in H2O, eluent B: 0.08% (v/v) TFA in ACN), flow rate: 1 

mL/min, λ= 216 nm); 
1
H NMR (500 MHz, MeOD) δ 6.88 (d, 1H, J= 8.2 Hz, 2-H), 6.79 (d, 

1H, J= 8.2 Hz, 1-H), 5.03 (s, 1H, 5-H), 4.54 and 4.53 (2×s, 2×1H, CH2-COOH), 3.85 (s, 3H, 

OCH3), 3.59 (d, 1H, J= 6.4 Hz, 9-H), 3.47 (d, 1H, J= 19.9 Hz, 10-H), 3.19 (dd, 1H, J= 13.0, 

4.6 Hz, 16-H), 3.11 (dd, 1H, J= 19.9, 6.4 Hz, 10-H‟), 2.93 (s, 3H, NCH3), 2.87 (dd, 1H, J= 

13.0, 3.9 Hz, 16-H‟), 2.72 (ddd, 1H, J= 17.3, 7.0, 2.2 Hz, 15-H), 2.62 (m, 2H, 7-H, 15-H‟), 

1.75 (m, 1H, 7-H‟), 1.71 (dd, 1H, J= 7.0, 2.6 Hz, 8-H), 1.46 (ddd, 1H, J= 14.1, 11.5, 7.0 Hz, 

8-H‟); 
13

C NMR (126 MHz, MeOD) δ 175.6 (COOH), 156.7 (C-6), 146.7 (C-4), 144.8 (C-3), 

130.1 (C-12), 124.2 (C-11), 121.1 (C-1), 117.7 (C-2), 87.5 (C-5), 72.9 (O-CH2-COOH), 71.2 

(C-14), 68.3 (C-9), 57.7 (OCH3), 48.3 (C-16), 47.2 (C-13), 41.7 (NCH3), 30.0 (C-7), 28.9 (C-

8), 24.7 (C-10), 18.6 (C-15); ESI-MS calcd for C20H24N2O6 388.16, found 388.59 [M+H]
+
. 

Oxycodone O-(N-(2-(N-Boc-amino)ethyl)carboxamidomethyl)oxime (2). Oxime 1 (20 

mg, 51.5 μmol) and HOBt
.
H2O (7.9 mg, 51.5 μmol) were dissolved in 1.5 mL of DMF and 

DIC (8 µL, 51.5 μmol) was added. It was stirred for 5 min, then tert-butyl 2-

aminoethylcarbamate hydrochloride (20 mg, 102 μmol) and DIEA (18 µL, 102 μmol) were 

added to the solution. The mixture was stirred at 50°C for 16 h then it was evaporated in 

vacuo. The crude product was purified by column chromatography on silica gel 60 with 

CHCl3–MeOH (8:2) to give 22.2 mg (81%) of 2 as yellowish oil. Rf 0.45 (CHCl3–MeOH 

9:1); HPLC k’= 4.23 (tR= 14.7 min, linear gradient of 10→70% B in A over 30 min); 
1
H 

NMR (500 MHz, CDCl3) δ 6.75 (d, 1H, J= 8.0 Hz, 2-H), 6.65 (d, 1H, J= 8.0 Hz, 1-H), 6.58 

(brs, CONH), 5.88 (brs, CONH), 4.98 (s, 1H, 5-H), 4.58 and 4.55 (2×d, 2×1H, J= 15.0 Hz, O-

CH2-CO), 3.87 (s, 3H, OCH3), 3.84 and 3.81 (2×t, 2×2H, J= 6.7, 1”-H, 2”-H), 3.72 (m, 1H, 9-

H), 3.30 (m, 1H, 16-H), 3.19 (d, 1H, J= 19.9 Hz, 10-H), 3.08 (d, 1H, J= 18.5 Hz, 10-H’), 2.94 

(brs, 1H, 15-H), 2.90 (s, 3H, NCH3), 2.76 (m, 2H, 7-H, 16-H’), 2.00 (m, 1H, 15-H’), 1.85 (m, 
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1H, 8-H), 1.76 (m, 1H, 7-H’), 1.47 (m, 1H, 8-H’), 1.41 (s, 9H, C(CH3)3); ESI-MS calcd for 

C27H38N4O7 530.27, found 531.30 [M+H]
+
. 

Oxycodone O-(N-(6-(N-Boc-amino)hexyl)carboxamidomethyl)oxime (3). Prepared as 

described for 2 but tert-butyl 6-aminohexylcarbamate (22 mg, 102 μmol) was used. The crude 

product was purified by column chromatography on silica gel 60 with CHCl3–MeOH (8:2) to 

give 23.1 mg (77%) of 3 as pale yellow oil. Rf 0.44 (CHCl3–MeOH 9:1); HPLC k’= 5.13 (tR= 

17.2 min, linear gradient of 10→70% B in A over 30 min); 
1
H NMR (500 MHz, CDCl3) δ 

6.73 (d, 1H, J= 8.1 Hz, 2-H), 6.64 (d, 1H, J= 8.1 Hz, 1-H), 6.19 (t, 1H, J= 4.7 Hz, CONH), 

5.76 (brs, CONH), 4.94 (s, 1H, 5-H), 4.58 and 4.54 (2×d, 2×1H, J= 15.9 Hz, O-CH2-CO), 

3.86 (s, 3H, OCH3), 3.80 (m, 1H, 9-H), 3.32 (m, 2H, 1”-H), 3.28 (d, 1H, J= 19.7 Hz, 10-H), 

3.20 (brs, 1H, 16-H), 3.09 (t, 2H, J= 6.2 Hz, 6”-H), 3.08 (d, 1H. J= 19.3 Hz, 10-H’), 2.91 (s, 

3H, NCH3), 2.81 (m, 3H, 7-H, 15-H, 16-H’), 2.71 (brs, 1H, 15-H’), 1.85 (brs, 1H, 8-H), 1.77 

(d, 1H, J= 9.7 Hz, 7-H’), (1.47 and 1.31) (m, 8H, 2”-H, 3”-H, 4”-H, 5”-H), 1.43 (s, 10H, 8-

H’, C(CH3)3); ESI-MS calcd for C31H46N4O7 586.34, found 587.40 [M+H]
+
. 

Oxycodone O-(N-(13-(N-Boc-amino)-4,7,10-trioxatridecyl)carboxamidomethyl)oxime 

(4). Prepared as described for 2 but N-Boc-4,7,10-trioxa-1,13-tridecanediamine (33 mg, 102 

μmol) was used. The crude product was purified by column chromatography on silica gel 60 

with CHCl3–MeOH (8:2) to give 23.6 mg (66%) of 4 as yellowish oil. Rf 0.52 (CHCl3–MeOH 

9:1); HPLC k’= 5.01 (tR= 16.8 min, linear gradient of 10→70% B in A over 30 min); 
1
H 

NMR (500 MHz, CDCl3) δ 6.82 (d, 1H, J= 8.2 Hz, 2-H), 6.73 (d, 1H, J= 8.2 Hz, 1-H), 6.43 (t, 

1H, J= 4.8 Hz, CONH), 5.00 (brs, 1H, CONH), 4.94 (s, 1H, 5-H), 4.58 and 4.53 (2×d, 2×1H, 

J= 15.8 Hz, O-CH2-CO), 3.86 (s, 3H, OCH3), 3.83 (t, 2H, J= 6.7 Hz, 13”-H), 3.80 (m, 1H, 9-

H), (3.61, 3.57, 3.52) (3×m, 12H, 3”-H, 5”-H, 6”-H, 8”-H, 9”-H, 11”-H), 3.43 (q, 1H, J= 5.9 

Hz, 1”-H), 3.37 (m, 2H, 1”-H’, 10-H), 3.21 (m, 1H, 16-H), 3.19 (d, 1H, J= 18.7 Hz, 10-H’), 

2.95 (s, 3H, NCH3), 2.80 (d, 1H, J= 5.7 Hz, 16-H’), 2.68 (m, 1H, 15-H), 2.56 (m, 2H, 7-H, 

15-H’), 1.80 (m, 1H, 8-H), 1.76 (m, 4H, 2”-H, 12”-H), 1.62 (m, 1H, 7-H’), 1.43 (s, 9H, 

C(CH3)3), 1.38 (m, 1H, 8-H’); ESI-MS calcd for C35H54N4O10 690.38, found 691.15 [M+H]
+
. 

Oxycodone O-(N-(2-aminoethyl)carboxamidomethyl)oxime (5). The N-protected oxime 

2 (22 mg, 41.5 μmol) was dissolved in 2 mL of DCM containing 50% (v/v) TFA and it was 

stirred for 30 min at rt. The solution was evaporated in vacuo that yielded the TFA salt of 5. 

21 mg (95%); Rf 0.27 (CHCl3–MeOH 9:1); HPLC k’= 1.65 (tR= 7.4 min, linear gradient of 

10→70% B in A over 25 min); ESI-MS calcd for C22H30N4O5 430.22, found 431.30 [M+H]
+
. 

Oxycodone O-(N-(6-aminohexyl)carboxamidomethyl)oxime (6). Prepared as described 

for 5. Yield 22 mg (96%); Rf 0.26 (CHCl3–MeOH 9:1); HPLC k’= 2.28 (tR= 9.2 min, linear 
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gradient of 10→70% B in A over 25 min); ESI-MS calcd for C26H38N4O5 486.28, found 

487.11 [M+H]
+
. 

Oxycodone O-(N-(13-amino-4,7,10-trioxatridecyl)carboxamidomethyl)oxime (7). 

Prepared as described for 5. Yield 22.5 mg (95%); Rf 0.33 (CHCl3–MeOH 9:1); HPLC k‟= 

2.54 (tR= 9.9 min, linear gradient of 10→60% B in A over 25 min); ESI-MS calcd for 

C30H46N4O8 590.33, found 591.09 [M+H]
+
. 

6-(1H-indol-1-yl)hexanoic acid (8). To a stirred solution of indole (1.17 g, 10 mmol) in 

ACN (10 mL) were added triethylamine (1.39 mL, 10 mmol) and 6-bromohexanoic acid (1.94 

g, 10 mmol), then the solution was stirred at 80°C overnight. The solvent was evaporated in 

vacuo and the residue was extracted with water and CHCl3 (3×20 mL). The combined organic 

phase was washed with brine, and dried over Na2SO4. After evaporation the crude product 

was purified by column chromatography on silica gel 60 with EtOAc−n-hexane 2:1 to give 

1.76 g (77%) of pure 8 as yellow oil. Rf 0.38 (EtOAc–n-hexane 2:1); HPLC k’= 4.36 (tR= 

15.0 min, linear gradient of 5→60% B in A over 25 min); 
1
H NMR (500 MHz, CDCl3) δ 7.63 

(d, 1H, J= 7.9 Hz, 4-H), 7.33 (d, 1H, J= 8.2 Hz, 7-H), 7.20 (t, 1H, J= 7.6 Hz, 5-H), 7.10 (t, 

1H, J= 7.6 Hz, 6-H), 7.09 (d, 1H, J= 3.2 Hz, 2-H), 6.48 (d, 1H, J= 3.1 Hz, 3-H), 4.13 (t, 2H, 

J= 7.1 Hz, 1’-H), 2.33 (t, 2H, J= 7.4 Hz, 5’-H), 1.87 (quin, 2H, J= 7.3 Hz, 2’-H), 1.67 (quin, 

2H, J= 7.5 Hz, 4’-H), 1.38 (quin, 2H, J= 7.7 Hz, 3’-H); 
13

C NMR (126 MHz, CDCl3) δ 178.2 

(COOH), 136.0 (C-7a), 128.7 (C-3a), 127.9 (C-2), 121.5 (C-6), 121.1 (C-4), 119.4 (C-5), 

109.4 (C-7), 101.1 (C-3), 46.3 (C-1’), 33.8 (C-5’), 30.1 (C-2’), 26.6 (C-3’), 24.4 (C-4’); ESI-

MS calcd for C14H17NO2 231.13, found 231.93 [M+H]
+
. 

6-(3-(1-Naphthoyl)-1H-indol-1-yl)hexanoic acid (9). To a stirred solution of 8 (1.5 g, 6.49 

mmol) in 5 mL of dry DCM 6.5 mL of 1M Et2AlCl in hexane (6.49 mmol) was added 

dropwise. It was stirred at 0
o
C for 1 h then 1.2 g of 1-naphthoyl chloride (6.49 mmol) 

dissolved in 3 mL of DCM was added dropwise. The reaction mixture was stirred at 0
o
C 

overnight then it was carefully poured into a mixture of ice and 0.1 M HCl and it was 

extracted with DCM. The combined organic phase was washed with brine and dried over 

Na2SO4. The organic phase was evaporated and the crude product was purified by column 

chromatography on silica gel 60 with (EtOAc−n-hexane 1:1) to give 1.05 g (42%) of pure 9 as 

yellow oil that became crystalline in a day. Rf 0.26 (EtOAc–n-hexane 2:1); HPLC k‟= 5.07 

(tR= 17.0 min, linear gradient of 20→100% B in A over 25 min); 
1
H NMR (500 MHz, CDCl3) 

δ 8.50 (m, 1H, 4-H), 8.19 (d, 1H, J= 8.3 Hz, 15’-H), 7.98 (d, 1H, J= 8.2 Hz, 11’-H), 7.92 (d, 

1H, J= 8.1 Hz, 12’-H), 7.67 (d, 1H, J= 7.0 Hz, 9’-H), [7.54 (t, 1H, J= 8.2 Hz) and 7.52 (t, 1H, 

J= 8.2 Hz)] (10’-H and 13’-H), 7.47 (t, 1H, J= 7.1 Hz, 14’-H), 7.41-7.34 (overlapping m, 4H, 
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2-H, 5-H, 6-H, 7-H), 4.08 (t, 2H, J= 7.3 Hz, 1’-H), 2.26 (t, 2H, J= 7.4 Hz, 5’-H), 1.83 (quin, 

2H, J= 7.4 Hz, 2’-H), 1.62 (quin, 2H, J= 7.6 Hz, 4’-H), 1.31 (m, 2H, 3’-H); 
13

C NMR (126 

MHz, CDCl3) δ 192.5 (3-CO), 181.6 (COOH), 138.9 (C-8’), 137.6 (C-2), 136.9 (C-7a), 133.8 

(C-11a’), 130.6 (C-15a’), 130.4 (C-11’), 128.4 (C-12’), 127.0 (C-14’), 126.8 (C-3a), 126.5 

(C-13’), 126.0 (C-9’), 125.7 (C-15’), 124.7 (C-10’), 123.3 (C-6), 122.7 (C-5), 122.2 (C-4), 

117.4 (C-3), 110.1 (C-7), 46.4 (C-1’), 37.3 (C-5’), 29.9 (C-2’), 26.3 (C-3’), 25.3 (C-4’); ESI-

MS calcd for C25H23NO3 385.17, found 386.03 [M+H]
+
. 

Bivalent compound 10. The carboxylic acid 9 (7.4 mg, 19 μmol) and HOBt.H2O (2.9 mg, 

19 μmol) were dissolved in 1.5 mL of DMF and DIC (2.9 µL, 19 μmol) was added. It was 

stirred for 5 min, then 5 (20.7 mg, 38 μmol) and DIEA (6.6 µL, 38 μmol) were added and the 

solution was stirred overnight at 50°C. Then it was evaporated in vacuo and the crude product 

was purified by semipreparative HPLC on a Vydac 218TP1010 column that yielded 12.1 mg 

of 10 (79%) as yellow oil. Rf 0.63 (CHCl3–MeOH 9:1); HPLC k’= 2.94 (tR= 13.9 min, linear 

gradient of 30→60% B in A over 25 min); 
1
H NMR (500 MHz, CDCl3) δ 

1
H NMR (CDCl3) δ 

8.40 (d, 1H, J= 6.8 Hz, 4’-H), 8.15 (d, 1H, J= 8.4 Hz, 15’-H), 7.96 (d, 1H, J= 8.1 Hz, 11’-H), 

7.90 (d, 1H, J= 8.1 Hz, 12’-H), 7.65 (d, 1H, J= 6.8 Hz, 9’-H), 7.52 (t, 1H, J= 7.6 Hz, 10’-H), 

7.50 (t, 1H, J= 7.5 Hz, 13’-H), 7.45 (t, 1H, J= 7.6 Hz, 14’-H), 7.41 (s, 1H, 2’-H), 7.39 (s, 1H, 

7’-H), 7.32 (m, 2H, 5’-H, 6’-H), 6.81 (d, 1H, J= 8.2 Hz, 2-H), 6.74 (brs, CONH), 6.72 (d, 1H, 

J= 8.2 Hz, 1-H), 6.43 (brs, CONH), 4.99 (s, 1H, 5-H), 4.57 and 4.47 (2×d, 2×1H, J= 16.1 Hz, 

O-CH2-CO), 4.08 (t, 2H, J= 6.9 Hz, 16’-H), 3.85 (s, 3H, OCH3), 3.73 (brs, 1H, 9-H), 3.26 

(2×brs, 5H, 1”-H, 2”-H, 16-H), 3.21 (d, 1H, J= 19.0 Hz, 10-H), 3.00 (d, 1H, J= 19.0 Hz, 10-

H’), 2.84 (s, 4H, NCH3, 15-H), 2.73 (brs, 2H, 7-H, 16-H’), 2.40 (d, 1H, J= 8.2 Hz, 15-H’), 

2.09 (t, 2H, J= 5.7 Hz, 20’-H), 1.81 (quin, 2H, J= 7.1 Hz, 17’-H), 1.76 (m, 1H, 8-H), 1.65 (d, 

1H, J= 8.0 Hz, 7-H’), 1.56 (quin, 2H, 6.9 Hz, 19’-H), 1.35 (m, 1H, 8-H’), 1.27 (m, 2H, 18’-

H); 
13

C NMR (126 MHz, CDCl3) δ 192.3 (Ar-CO), 174.3 (20’-CONH), 170.9 (O-CH2-

CONH), 156.7 (C-6), 145.9 (C-4), 143.8 (C-3), 139.0 (C-8’), 138.2 (C-2’), 137.2 (C-7a’), 

133.9 (C-11a’), 130.9 (C-15a’), 130.2 (C-11’), 128.6 (C-12), 128.4 (C-12’), 127.1 (C-3a’), 

126.9 (C-14’), 126.5 (C-13’), 126.1 (C-9’), 126.0 (C-15’), 124.8 (C-10’), 123.8 (C-6’), 123.0 

(C-5’), 122.9 (C-4’), 121.6 (C-11), 120.0 (C-1), 117.6 (C-3’), 115.8 (C-2), 110.3 (C-7’), 86.9 

(C-5), 73.2 (O-CH2-CO), 70.4 (C-14), 65.7 (C-9), 56.8 (OCH3), 47.3 (C-16), 47.1 (C-16’), 

46.2 (C-13), 42.1 (NCH3), 39.8 and 39.6 (C-1”, C-2”), 36.1 (C-20’), 29.6 (C-17’), 29.3 (C-7), 

28.6 (C-8), 26.4 (C-18’), 25.1 (C-19’), 24.1 (C-10), 17.3 (C-15); MALDI-MS calcd for 

C47H51N5O7 797.38, found 798.34 [M+H]
+
. 
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Bivalent compound 11. Prepared as described for 10, but 6 (23 mg, 38 μmol) was used. 

Yield 11.6 mg of 11 (71%) as brown oil. Rf 0.60 (CHCl3–MeOH 9:1); HPLC k‟= 6.55 (tR= 

19.7 min, linear gradient of 10→100% B in A over 25 min);
 1

H NMR (500 MHz, CDCl3) δ 

8.41 (d, 1H, J= 7.5 Hz, 4’-H), 8.14 (d, 1H, J= 8.3 Hz, 15’-H), 7.96 (d, 1H, J= 8.2 Hz, 11’-H), 

7.90 (d, 1H, J= 8.1 Hz, 12’-H), 7.63 (d, 1H, J= 6.6 Hz, 9’-H), 7.52 (t, 1H, J= 7.9 Hz, 10’-H), 

7.50 (t, 1H, J= 8.2 Hz, 13’-H), 7.44 (t, 1H, J= 7.6 Hz, 14’-H), 7.38 (overlapping d, 1H, 7’-H), 

7.37 (s, 1H, 2’-H), 7.33 (m, 2H, 5’-H, 6’-H), 6.81 (d, 1H, J= 8.2 Hz, 2-H), 6.72 (d, 1H, J= 8.3 

Hz, 1-H), 6.26 (brs, 1H, 1”-NH), 6.06 (brs, 6”-NH), 5.00 (s, 1H, 5-H), 4.58 and 4.50 (2×d, 

2×1H, J= 15.9 Hz, O-CH2-CO), 4.07 (t, 2H, J= 6.8 Hz, 16’-H), 3.85 (s, 3H, OCH3), 3.78 (brs, 

1H, 9-H), 3.30 (q, 1H, J= 6.3 Hz, 1”-H), 3.24 (brs, 1H, 16-H), 3.23 (d, 1H, J= 19.4 Hz, 10-H), 

3.14 (m, 2H, 1”-H’, 6”-H), 3.03 (d, 1H, J= 19.3 Hz, 10-H’), 2.91 (d, 1H, J= 18.7 Hz, 6”-H’), 

2.84 (s, 3H, NCH3), 2.73 (brs, 2H, 7-H, 16-H’), 2.69 (m, 1H, 15-H), 2.60 (m, 1H, 15-H’), 2.11 

(t, 2H, J= 6.4 Hz, 20’-H), 1.80 (quin, 3H, J= 7.0 Hz, 17’-H, 8-H), 1.68 (d, 1H, J= 8.5 Hz, 7-

H’), 1.57 (quin, 2H, 6.3 Hz, 19’-H), [1.42 (m, 4H) and 1.26 (brs, 4H)] (2”-H, 3”-H, 4”-H, 5”-

H), 1.34 (m, 1H, 8-H’), 1.26 (brs, 2H, 18’-H); 
13

C NMR (126 MHz, CDCl3) δ 192.4 (Ar-CO), 

173.8 (20’-CONH), 170.0 (O-CH2-CONH), 156.8 (C-6), 145.6 (C-4), 143.9 (C-3), 139.0 (C-

8’), 138.3 (C-2’), 137.2 (C-7a’), 133.9 (C-11a’), 130.8 (C-15a’), 130.2 (C-11’), 128.4 (C-12’), 

128.3 (C-12), 127.1 (C-3a’), 126.9 (C-14’), 126.5 (C-13’), 126.1 (C-9’), 126.0 (C-15’), 124.8 

(C-10’), 123.9 (C-6’), 123.1 (C-5’), 123.0 (C-4’), 121.3 (C-11), 120.0 (C-1), 117.6 (C-3’), 

116.0 (C-2), 110.2 (C-7’), 86.4 (C-5), 73.3 (O-CH2-CO), 70.4 (C-14), 66.0 (C-9), 56.9 

(OCH3), 47.6 (C-16), 47.1 (C-16’), 46.0 (C-13), 42.0 (NCH3), 39.4 (C-6”), 38.7 (C-1”), 36.2 

(C-20’), 29.5 (C-17’), (29.2, 28.3, 26.1, 26.0) (C-2”, C-3”, C-4”, C-5”), 29.0 (C-7), 28.4 (C-

8), 26.4 (C-18’), 25.3 (C-19’), 24.0 (C-10), 17.9 (C-15); MALDI-MS calcd for C51H59N5O7 

853.44, found 854.49 [M+H]
+
. 

Bivalent compound 12. Prepared as described for 10, but 7 (26.8 mg, 38 μmol) was used. 

Yield 11.1 mg of 12 (61%) as yellow oil. Rf 0.70 (CHCl3–MeOH 9:1); HPLC k’= 3.03 (tR= 

15.3 min, linear gradient of 30→60% B in A over 25 min);
 1

H NMR (500 MHz, CDCl3) δ 

8.42 (d, 1H, J= 6.8 Hz, 4’-H), 8.16 (d, 1H, J= 8.3 Hz, 15’-H), 7.97 (d, 1H, J= 8.1 Hz, 11’-H), 

7.90 (d, 1H, J= 8.1 Hz, 12’-H), 7.65 (d, 1H, J= 6.6 Hz, 9’-H), 7.53 (t, 1H, J= 7.6 Hz, 10’-H), 

7.51 (t, 1H, J= 7.5 Hz, 13’-H), 7.45 (t, 1H, J= 7.3 Hz, 14’-H), 7.40 and 7.39 (2×s, 2×1H, 2’-

H, 7’-H), 7.34 (m, 2H, 5’-H, 6’-H), 6.80 (d, 1H, J= 8.2 Hz, 2-H), 6.71 (d, 1H, J= 8.3 Hz, 1-

H), 6.68 (brs, CONH), 6.55 (brs, CONH), 5.01 (s, 1H, 5-H), 4.59 and 4.50 (2×d, 2×1H, J= 

15.9 Hz, O-CH2-CO), 4.09 (t, 2H, J= 6.9 Hz, 16’-H), 3.87 (s, 3H, OCH3), 3.77 (brs, 1H, 9-H), 

3.58-3.41 (m, 12H, 3”-H, 5”-H, 6”-H, 8”-H, 9”-H, 11”-H), 3.26 (brs, 1H, 16-H), 3.27 (brs, 
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4H, 1”-H, 13”-H), 3.22 (d, 1H, J= 19.1 Hz, 10-H), 3.03 (d, 1H, J= 18.6 Hz, 10-H’), 2.86 (s, 

3H, NCH3), 2.74 (brs, 2H, 7-H, 16-H’), 2.70 (brs, 1H, 15-H), 2.60 (d, 1H, J= 12.0 Hz, 15-H’), 

2.12 (t, 2H, J= 6.5 Hz, 20’-H), 1.81 (m, 3H, 8-H, 17’-H), 1.70 (m, 5H, 7-H’, 2”-H, 12”-H), 

1.59 (quin, 2H, 6.7 Hz, 19’-H), 1.37 (brs, 1H, 8-H’), 1.27 (m, 2H, 18’-H); 
13

C NMR (126 

MHz, CDCl3) δ 192.3 (Ar-CO), 173.7 (20’-CONH), 169.9 (O-CH2-CONH), 156.7 (C-6), 

145.7 (C-4), 143.9 (C-3), 139.0 (C-8’), 138.2 (C-2’), 137.2 (C-7a’), 133.9 (C-11a’), 130.9 (C-

15a’), 130.2 (C-11’), 128.4 (2C, C-12, C-12’), 127.1 (C-3a’), 126.9 (C-14’), 126.5 (C-13’), 

126.1 (C-9’), 126.0 (C-15’), 124.8 (C-10’), 123.8 (C-6’), 123.05 (C-5’), 122.97 (C-4’), 121.3 

(C-11), 119.9 (C-1), 117.6 (C-3’), 116.0 (C-2), 110.2 (C-7’), 86.5 (C-5), 73.3 (O-CH2-CO), 

(70.3, 70.1, 70.0, 69.9, 69.4) (7C, C-14, C-3”, C-5”, C-6”, C-8”, C-9”, C-11”), 66.0 (C-9), 

57.0 (OCH3), 47.6 (C-16), 47.1 (C-16’), 46.2 (C-13), 42.0 (NCH3), 38.1 and 37.1 (C-1”, C-

13”), 36.1 (C-20’), 30.6 (C-8), 29.6 (C-17’), 29.2 (C-7), 28.9 (C-2”, C-12”), 26.4 (C-18’), 

25.2 (C-19’), 24.1 (C-10), 17.8 (C-15); MALDI-MS calcd for C55H67N5O10 957.49, found 

958.23 [M+H]
+
. 

(1H-Indol-3-yl)(naphthalen-1-yl)methanone (13). Indole (250 mg, 2.13 mmol) was 

dissolved in 5 mL of DCM and 1.74 mL of Et2AlCl (25% (w/w) in toluene (3.2 mmol) was 

added at 0
o
C. The mixture was stirred at 0

o
C for 30 min and 1-naphthoyl chloride (609 mg, 

3.2 mmol dissolved in 8 mL of DCM) was added dropwise to the solution at 0
o
C, and it was 

stirred overnight. Then the reaction mixture was quenched with 100 mM NaHCO3. The 

precipitate was filtered and the filtrate was evaporated in vacuo. The crude product was 

purified by column chromatography on silica gel 60 (n-hexane–EtOAc 2:1) to give 13 (406 

mg, 70%) as yellow solid. Rf 0.44 (n-hexane–EtOAc 2:1); 
1
H NMR (300 MHz, CDCl3)  

10.76 (brs, 1H, NH indole), 8.41 (d, 1H, 4-H), 8.10 (d, 1H, J= 8.1 Hz, 15‟-H), 7.88 (d, 1H, J= 

8.1 Hz, 11’-H), 7.82 (d, 1H, J= 7.8 Hz, 12’-H), 7.59 (d, 1H, J= 6.1 Hz, 9’-H), 7.47-7.35 (m, 

5H, 10’-H, 13’-H, 14’-H, 2-H, 5-H), 7.27-7.23 (m, 2H, 6-H, 7-H); 
13

C NMR (300 MHz, 

CDCl3)  192.5 (CO), 139.1 (C-8‟), 135.8 (C-7a), 133.6 (C-11a’), 130.7 (C-15a‟), 129.8 (C-

11‟), 128.1 (C-12‟), 126.6 (C-14‟), 126.2 (C-3a), 126.1 (C-13‟), 125.8 (C-9‟), 125.7 (C-15‟), 

124.4 (C-10‟), 123.5 (C-6), 122.5 (C-5), 122.3 (C-4), 122.2 (C-3), 117.4 (C-2), 111.8 (C-7); 

ESI-MS calcd for C19H13NO 271.10, found 272.24 [M+H]
+
. 

tert-Butyl 5-bromopentylcarbamate (14). To a stirred solution of tert-butyl 5-

hydroxypentyl-carbamate (500 mg, 2.46 mmol) and TEA (498 mg, 4.92 mmol) in 5 mL DCM 

at –10
o
C was added MsCl (338 mg, 2.95 mmol) dropwise and the solution was stirred at the 

same temperature for 5 h. The reaction was then quenched with water. The organic layer was 

washed with water, brine, dried over MgSO4, filtered and evaporated under reduced pressure 
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to give the desired product as yellow oil (552 mg, 80%, Rf 0.5 (EtOAc)) The mesylate was 

used in the next step without any further purification. Under N2 atmosphere 5-(tert-

butoxycarbonylamino)pentyl methanesulfonate (350 mg, 1.2 mmol) was dissolved in 5 mL 

THF followed by the addition of LiBr (313 mg, 3.6 mmol) to the solution. The reaction 

mixture was stirred for 16 h under reflux, then THF was removed under vacuum. The mixture 

was diluted with 10 mL water and it was extracted with DCM (3 × 10 mL). The combined 

organic phase was washed with water (3 × 10 mL) and brine (3 × 10 mL), dried over MgSO4 

and evaporated in vacuo. The product was purified by column chromatography on silica gel 

60 (n-hexane–EtOAc 9:1) to give white crystalline product (230 mg, 72%). Rf 0.6 (n-hexane–

EtOAc 4:1); 
1
H NMR (300 MHz, CDCl3) δ 4.53 (brs, 1H, NH), 3.40 (t, 2H, J= 8.4 Hz, 5-H), 

3.10 (q, 2H, J= 7.8 Hz, 1-H), 1.86 (quin, 2H, J= 7.3 Hz, 4-H), 1.52-1.48 (m, 4H, 2-H, 3-H), 

1.43 (s, 9H, CH3); ESI-MS calcd for C10H20BrNO2 265.07, found 266.12 [M+H]
+
. 

tert-Butyl (5-(3-(1-naphthoyl)-1H-indol-1-yl)pentyl)carbamate (15). To a stirred 

solution of NaH (60% dispersion in mineral oil, 15.4 mg, 0.44 mmol) in 5 mL of DMF at 0°C 

was added 13 (100 mg, 0.368 mmol) in 10 mL DMF dropwise and the mixture was stirred at 

80°C for 1h. The reaction mixture was cooled to 0°C and a solution of 14 (108 mg, 0.41 

mmol) in 5 mL DMF was added dropwise and stirred at 0°C for 30 min, and then stirred for 

18 h at r.t. Then it was evaporated and the oily residue was dissolved in EtOAc (50 mL). The 

organic layer was washed with water (3 × 50 mL) and brine (3 × 50 mL), dried over Na2SO4 

and evaporated in vacuo. The crude residue was purified by column chromatography on silica 

gel 60 (ethyl acetate /hexane 1:2) to yield 15 (142 mg, 85%) as orange-red oil. Rf 0.59 (n-

hexane–EtOAc 2:1); 
1
H NMR (300 MHz, CDCl3)  8.47 (m, 1H, 4-H), 8.17 (d, 1H, J= 8.3 

Hz, 15’-H), 7.95 (d, 1H, J= 8.2 Hz, 11’-H), 7.89 (d, 1H, J= 8.1 Hz, 12’-H), 7.63 (d, 1H, J= 

6.9 Hz, 9’-H), 7.55 (t, 1H, J= 7.5 Hz, 10’-H), 7.42 (t, 1H, J= 7.1 Hz, 14’-H), 7.33 (t, 1H, J= 

7.1 Hz, 13’-H), 7.31-7.23 (overlapping m, 4H, 2-H, 5-H, 6-H, 7-H), 4.09 (t, 2H, J= 7.3 Hz, 

1’-H), 3.04 (t, 2H, J= 7.4 Hz, 5’-H), 1.88 (quin, 2H, J= 7.3 Hz, 2’-H), 1.57 (quin, 2H, J= 7.4 

Hz, 4’-H), 1.47 (m, 2H, 3’-H), 1.40 (s, 9H, CH3); ESI-MS calcd for C33H40N2O3 512.30, 

found 513.25 [M+H]
+
. 

(1-(5-Aminopentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone (16). The Boc-protected 

amine 15 (137 mg, 0.3 mmol) was dissolved in 2 mL DCM containing 50% (v/v) TFA and it 

was stirred for 30 min at rt. The solution was evaporated and the product was washed with 

DCM and evaporated in vacuo to give 16 (135 mg, 97%); Rf 0.56 (MeOH–AcOH 95:5); 

HPLC k‟= 3.64 (tR= 13.0 min, linear gradient of 20→100% B in A over 25 min); ESI-MS 

calcd for C28H32N2O 412.25, found 413.34 [M+H]
+
. 
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N-(5-(3-(1-Naphthoyl)-1H-indol-1-yl)pentyl)acetamide (17). The amine 16 (17mg, 36 

μmol) dissolved in 1 mL of DCM followed by the addition of 0.3 mL TEA and 0.3 mL acetic 

anhydride. The mixture was then stirred overnight at rt, then it was evaporated in vacuo. The 

crude 17 was purified by column chromatography on silica gel 60 (EtOAc–DCM 9:1) to give 

17 (13 mg, 91%); Rf 0.54 (n-hexane–EtOAc 2:1); HPLC k‟=4.70 (tR= 16.0min, linear gradient 

of 20→100% B in A over 25 min); 
1
H NMR (300 MHz, CDCl3)  8.47 (m, 1H, 4-H), 8.17 (d, 

1H, J= 8.4 Hz, 15’-H), 7.95 (d, 1H, J= 8.2 Hz, 11’-H), 7.88 (d, 1H, J= 6.9 Hz, 12’-H), 7.63 

(d, 1H, J= 6.9 Hz, 9’-H), 7.54-7.42 (m, 3H, 10’-H, 13’-H, 14’-H), 7.37-7.32 (overlapping m, 

4H, 2-H, 5-H, 6-H, 7-H), 4.04 (t, 2H, J= 8.4 Hz, 1’-H), 3.12 (q, 2H, J= 7.3 Hz, 5’-H), 1.88 (s, 

3H, CH3), 1.79 (quin, 2H, J= 7.3 Hz, 2’-H), 1.42 (quin, 2H, J= 7.3 Hz, 4’-H), 1.25 (quin, 2H, 

J= 7.4 Hz, 3’-H); 
13

C NMR (300 MHz, CDCl3)  192.1 (3-CO), 170.1 (CONH), 138.9 (C-8’), 

137.9 (C-2), 137.0 (C-7a), 133.7 (C-11a’), 130.7 (C-15a’), 130.0 (C-11’), 128.2 (C-12’), 

127.0 (C-14’), 126.8 (C-3a), 126.3 (C-13’), 125.9 (C-9’), 125.8 (C-15’), 124.6 (C-10’), 123.7 

(C-6), 122.9 (2C, C-4, C-5), 117.6 (C-3), 110.0 (C-7), 47.0 (C-1’), 39.2 (C-5’), (29.4 and 

29.1) (C-2’, C-4’), 24.0 (C-3’), 23.3 (CH3); ESI-MS calcd for C30H34N2O2 454.26, found 

455.85 [M+H]
+
. 

Tyr-D-Ala-Gly-Phe-NH2. It was prepared as described.
158

  

Bivalent compound 18. Overall isolated yield 21%; Rf 0.71 (ACN–MeOH–H2O 4:1:1); 

HPLC k’= 4.43 (tR= 15.2 min, linear gradient of 20→100% B in A over 25 min); 
1
H NMR 

(300 MHz, (DMSO-d6) δ 9.34 (s, 1H, Tyr OH), 8.57 (d, 1H, J= 6.9 Hz, D-Ala NH), 8.28 (d, 

1H, J= 7.2 Hz, 15’-H), 8.20 (t, 1H, Gly NH), 8.08-7.94 (m, 8H, Phe ArH, Tyr NH, Phe NH, 

5’-NH), 7.74 (s, 1H, 2-H), 7.66-7.44 (m, 5H, 9’-H, 10’-H, 11’-H, 12’-H, 13’-H), 7.33 (quin, 

1H, 14’-H), 7.21-7.09 (m, 4H, 4-H, 5-H, 6-H, 7-H), 7.01 (d, 2H, J= 8.7 Hz, Tyr ArH), 6.68 (d, 

2H, J= 8.7 Hz, Tyr ArH), 4.41 (q, 1H, Phe H

), 4.28 (quin, 1H, D-Ala H


), 4.15 (t, 2H, 1’-H), 

3.95 (q, 1H, Tyr H

), 3.63 (d, 2H, Gly H


), 2.97-2.67 (m, 6H, Phe H


, Tyr H


, 5’-H), 1.65 

(quin, 2H, 2’-H), 1.25 (quin, 2H, 4’-H) 1.10-1.02 (m, 4H, 3’-H, D-Ala H

); ESI-MS calcd for 

C47H50N6O6 794.94, found 795.63 [M+H]
+
. 

Bivalent compound 19. Overall isolated yield 14%; Rf 0.73 (ACN–MeOH–H2O 4:1:1); 

HPLC k’= 4.24 (tR= 14.7 min, linear gradient of 20→100% B in A over 25 min); 
1
H NMR 

(300 MHz, (DMSO-d6) δ 9.30 (s, 1H, Tyr OH), 8.49 (d, 1H, J= 6.9 Hz, D-Ala NH), 8.27 (m, 

2H, Gly NH, 15’-H), 8.18 (t, 1H, Gly NH), 8.07-7.96 (m, 6H, 9’-H, 10’-H, 11’-H, 12’-H, 13’-

H, Tyr NH, Phe NH), 7.87 (brs, 1H, Tyr NH), 7.75 (s, 1H, 2-H), 7.65-7.48 (m, 6H, 14’-H, 4-

H, 5-H, 6-H, 7-H, 5’-NH), 7.19-7.13 (m, 5H, Phe ArH), 6.98 (d, 2H, J= 8.7 Hz, Tyr ArH), 
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6.66 (d, 2H, J= 8.7 Hz, Tyr ArH), 4.47 (q, 1H, Phe H

), 4.30 (quin, 1H, D-Ala H


), 4.16 (t, 

2H, 1’-H), 3.91 (q, 1H, Tyr H

), 3.56 (d, 2H, Gly H


), 2.96-2.70 (m, 6H, 5’-H, Tyr H


, Phe 

H



quin, 2H, 2'-H), 1.36 (quin, 2H, 4‟-H), 1.18 (quin, 2H, 3’-H), 1.01 (d, 3H, D-Ala 

H

); ESI-MS calcd for C49H53N7O7 851.99, found 852.63 [M+H]

+
. 

Bivalent compound 20. Overall isolated yield 25%; Rf 0.68 (ACN–MeOH–H2O 4:1:1); 

HPLC k’= 4.23 (tR= 14.6 min, linear gradient of 20→100% B in A over 25 min); 
1
H NMR 

(300 MHz, (DMSO-d6) δ 9.33 (s, 1H, OH Tyr), 8.55 (d, 1H, D-Ala NH), 8.28 (d, 1H, 15’-H), 

8.20 (t, 1H, Gly NH), 8.09-7.97 (m, 9H, Phe ArH, Phe NH, -Ala NH, Tyr NH, 5’-NH), 7.77-

7.49 (m, 7H, 2-H, 9’-H, 10’-H, 11’-H, 12’-H, 13’-H, 14’-H), 7.34-7.17 (m, 4H, 4-H, 5-H, 6-

H, 7-H), 7.01 (d, 2H, Tyr ArH), 6.68 (d, 2H, Tyr ArH), 4.39 (q, 1H, Phe H

), 4.29 (quin, 1H, 

D-Ala H

), 4.16 (t, 2H, 1’-H), 3.95 (q, 1H, Tyr H


), 3.58 (d, 2H, Gly H


), 2.93-2.71 (m, 6H, 

5’-H, Tyr H

, Phe H


), 2.13 (t, 2H, Ala H


), 1.67 (quin, 2H, 2’-H), 1.33 (quin, 2H, 4’-H), 

1.21-1.15 (m, 4H, -Ala H
β
,
 
3’-H), 1.05 (d, 3H, D-Ala H


); ESI-MS calcd for C50H55N7O7 

866.01, found 867.14 [M+H]
+
. 

Bivalent compound 21. Overall isolated yield 12%; Rf 0.67 (ACN–MeOH–H2O 4:1:1); 

HPLC k’= 4.27 (tR= 14.8 min, linear gradient of 20→100% B in A over 25 min); 
1
H NMR 

(300 MHz, (DMSO-d6) δ 9.32 (s, 1H, Tyr OH), 8.54 (d, 1H, D-Ala NH), 8.29 (d, 1H, 15’-H), 

8.20 (t, 1H, Gly NH), 8.06-8.00 (m, 8H, Phe ArH, Phe NH, Tyr NH, 5’-NH), 7.75 (s, 1H, 2-

H), 7.63-7.52 (m, 6H, 12’-H, 9’-H, 10’-H, 11’-H, 14’-H, 13’-H), 7.30-7.11 (m, 4H, 4-H, 5-H, 

6-H, 7-H), 6.96 (d, 2H, Tyr ArH), 6.69 (d, 2H, Tyr ArH), 4.40 (q, 1H, Phe H

), 4.29 (quin, 

1H, D-Ala H

), 4.18 (t, 2H, 1’-H), 3.96 (q, 1H, Tyr H


), 3.64 (d, 2H, Gly H


), 2.94-2.70 (m, 

7H, Tyr H

, Phe H


, Gaba NH‟-H), 1.93 (t, 2H, Gaba H


), 1.69 (quin, 2H, J= 7.3 Hz, 2’-H), 

1.49 (quin, 2H, Gaba H

), 1.33 (quin, 2H, 4’-H), 1.21 (m, 4H, 3’-H, Gaba H


), 1.06 (d, 3H, D-

Ala H

); ESI-MS calcd for C51H57N7O7 880.04, found 881.23 [M+H]

+
. 

1-Pentyl-1H-indole (22). To a stirred solution of indole (1.17 g, 10 mmol) in ACN (10 mL) 

were added TEA (1.01 g, 10 mmol) and 1-iodopentane (1.98 g, 10 mmol), then the solution 

was stirred at 80
o
C overnight. The solvent was evaporated in vacuo and the residue was 

extracted with water and CHCl3 (3×20 mL). The combined organic phase was washed with 

brine, and dried over Na2SO4. After evaporation the crude product was purified by column 

chromatography (n-hexane−EtOAc 95:5) to give 1.40 g (75%) of pure 22 as an oil. Rf 0.70 (n-

hexane−EtOAc 95:5); HPLC k’= 3.73 (tR= 13.2 min, linear gradient of 50→100% B in A 

over 25 min); 
1
H NMR (500 MHz, CDCl3) δ 7.63 (d, 1H, J= 7.9 Hz, 4-H), 7.35 (d, 1H, J= 8.1 

Hz, 7-H), 7.20 (t, 1H, J= 7.6 Hz, 5-H), 7.10 (d, 1H, J= 3.1 Hz, 2-H), 7.09 (t, 1H, J= 8.0 Hz, 6-
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H), 6.49 (d, 1H, J= 3.1 Hz, 3-H), 4.12 (t, 2H, J= 7.2 Hz, 1’-H), 1.85 (quin, 2H, J= 7.2 Hz, 2’-

H), 1.33 (m, 4H, 3’-H, 4’-H), 0.89 (t, 3H, J= 7.0 Hz, CH3); 
13

C NMR (126 MHz, CDCl3) δ 

136.1 (C-7a), 128.7 (C-3a), 127.9 (C-2), 121.4 (C-6), 121.1 (C-4), 119.3 (C-5), 109.5 (C-7), 

100.9 (C-3), 46.6 (C-1’), 30.1 (C-2’), 29.3 (C-3’), 22.5 (C-4’), 14.1 (CH3); ESI-MS calcd for 

C13H17N 187.14, found 188.02 [M+H]
+
. 

5-Bromo-1-pentyl-1H-indole (23). 1.96 g of 5-bromo-1H-indole (10 mmol) was dissolved 

in 20 mL of DMF containing 1.6 g of powdered NaOH, then 1-iodopentane (1.98 g, 10 mmol) 

was added dropwise. After 4 h stirring at ambient temperature the mixture was filtered and the 

filtrate was evaporated in vacuo. The resulting oil was dissolved in CHCl3 and extracted with 

water. The organic phase was washed with brine and dried over Na2SO4. The crude product 

was purified by column chromatography (n-hexane–EtOAc 95:5) to give 1.75 g (66%) of pure 

23 as an oil. Rf 0.62 (n-hexane–EtOAc 95:5); HPLC k’= 4.79 (tR= 16.2 min, linear gradient of 

50→100% B in A over 25 min); 
1
H NMR (CDCl3) 

1
H NMR (500 MHz, CDCl3) δ 7.74 (d, 

1H, J= 1.6 Hz, 4-H), 7.27 (dd, 1H, J= 8.8 Hz, 1.6 Hz, 7-H), 7.21 (d, 1H, J= 8.8 Hz, 6-H), 7.09 

(d, 1H, J= 3.0 Hz, 2-H), 6.42 (d, 1H, J= 2.9 Hz, 3-H), 4.08 (t, 2H, J= 7.2 Hz, 1’-H), 1.82 

(quin, 2H, J= 7.3 Hz, 2’-H), 1.31 (m, 4H, 3’-H, 4’-H), 0.88 (t, 3H, J= 7.1 Hz, CH3); 
13

C NMR 

(126 MHz, CDCl3) δ 134.8 (C-7a), 130.3 (C-3a), 129.1 (C-2), 124.3 (C-6), 123.5 (C-4), 112.6 

(C-5), 111.0 (C-7), 100.6 (C-3), 46.7 (C-1’), 30.1 (C-2’), 29.2 (C-3’), 22.4 (C-4’), 14.1 (CH3); 

ESI-MS calcd for C13H16BrN 265.05, found 266.18 [M+H]
+
. 

Naphthalen-1-yl(1-pentyl-1H-indol-3-yl)methanone (24). To a stirred solution of 22 (281 

mg, 1.5 mmol) in 10 mL of dry DCM at 0
o
C was added dropwise 1.5 mL of 1M Et2AlCl in 

hexane (1.5 mmol). The solution was stirred at 0
 o

C for 1 h followed by the dropwise addition 

of 286 mg of 1-naphthoyl chloride (1.5 mmol) in 3 mL DCM. The reaction mixture was 

stirred at 0 
o
C overnight then the solution was poured carefully into a mixture of ice and 0.1 

M HCl and it was extracted with DCM. The combined organic phase was evaporated and the 

residue was dissolved in diethyl ether that was washed with 15% K2CO3. The organic phase 

was evaporated and the crude product was purified by column chromatography (n-

hexane−EtOAc 4:1) to give 368 mg (72%) of pure 24 as an oil. Rf 0.44 (n-hexane−EtOAc 

4:1); HPLC k’= 4.29 (tR= 14.8 min, linear gradient of 50→100% B in A over 25 min); 
1
H 

NMR (500 MHz, CDCl3) δ 8.48 (m, 1H, 4-H), 8.19 (d, 1H, J= 8.4 Hz, 15’-H), 7.97 (d, 1H, J= 

8.2 Hz, 11’-H), 7.91 (d, 1H, J= 8.1 Hz, 12’-H), 7.66 (d, 1H, J= 6.9 Hz, 9’-H), [7.53 (t, 1H, J= 

7.5 Hz) and 7.52 (t, 1H, J= 7.1 Hz)] (10’-H and 13’-H), 7.47 (t, 1H, J= 7.6 Hz, 14’-H), 7.41-

7.35 (overlapping m, 4H, 2-H, 5-H, 6-H, 7-H), 4.07 (t, 2H, J= 7.3 Hz, 1’-H), 1.81 (quin, 2H, 

J= 7.4 Hz, 2’-H), 1.28 (m, 4H, 3’-H, 4’-H), 0.85 (t, 3H, J= 7.0 Hz, CH3); 
13

C NMR (126 
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MHz, CDCl3) δ 192.2 (CO), 139.3 (C-8’), 138.1 (C-2), 137.2 (C-7a), 133.9 (C-11a’), 131.0 

(C-15a’), 130.1 (C-11’), 128.3 (C-12’), 127.2 (C-3a), 126.9 (C-14’), 126.4 (C-13’), 126.2 (C-

9’), 126.0 (C-15’), 124.7 (C-10’), 123.7 (C-6), 123.1 (C-5), 123.0 (C-4), 117.7 (C-3), 110.1 

(C-7), 47.3 (C-1’), 29.6 (C-2’), 29.1 (C-3’), 22.3 (C-4’), 14.0 (CH3); ESI-MS calcd for 

C24H23NO 341.18, found 341.95 [M+H]
+
. 

Naphthalen-1-yl(5-bromo-1-pentyl-1H-indol-3-yl)methanone (25). Prepared as 

described for 24, but starting from 23 (400 mg, 1.5 mmol). The crude product was purified by 

column chromatography (n-hexane–EtOAc 4:1) to give 517 mg (82%) of pure 25 as an oil. Rf 

0.40 (n-hexane–EtOAc 4:1); HPLC k’= 5.49 (tR= 18.2 min, linear gradient of 50→100% B in 

A over 25 min); 
1
H NMR (500 MHz, CDCl3) δ 8.71 (d, 1H, J= 1.6 Hz, 4-H), 8.17 (d, 1H, J= 

8.3 Hz, 15’-H), 7.98 (d, 1H, J= 8.2 Hz, 11’-H), 7.92 (d, 1H, J= 8.0 Hz, 12’-H), 7.65 (dd, 1H, 

J= 6.9 Hz, 0.7 Hz, 9’-H), [7.53 (t, 1H, J= 7.6 Hz) and 7.52 (t, 1H, J= 6.7 Hz)] (10’-H and 13’-

H), 7.48 (dt, 1H, J= 7.7 Hz, 1.2 Hz, 14’-H), 7.45 (dd, 1H, J= 8.7 Hz, 1.8 Hz, 6-H), 7.32 (s, 

1H, 2-H), 7.26 (d, 1H, J= 8.4 Hz, 7-H), 4.04 (t, 2H, J= 7.2 Hz, 1’-H), 1.79 (quin, 2H, J= 7.4 

Hz, 2’-H), 1.26 (m, 4H, 3’-H, 4’-H), 0.85 (t, 3H, J= 7.1 Hz, CH3); 
13

C NMR (126 MHz, 

CDCl3) δ 191.9 (CO), 138.8 (C-8’), 138.5 (C-2), 135.9 (C-7a), 133.9 (C-11a), 130.9 (C-15a), 

130.4 (C-11’), 128.7 (C-3a), 128.4 (C-12’), 127.0 (C-14’), 126.8 (C-13’), 126.5 (C-9’), 126.0 

(2C, C-15’, C-6), 125.8 (C-4), 124.7 (C-10’), 117.2 (C-3), 116.8 (C-5), 111.5 (C-7), 47.5 (C-

1’), 29.6 (C-2’), 29.0 (C-3’), 22.3 (C-4’), 14.0 (CH3); ESI-MS calcd for C24H22BrNO 419.09, 

found 420.14 [M+H]
+
. 

Tritium labeling of 11. 2 mL 1.15 mg/mL MeOH solution of 9 (6 mol) was mixed with 

250 L 3 % (v/v) ICl in MeOH (14.2 mol) and the solution was stirred at ambient 

temperature for 60 min. Then 50 mg/mL Na2S2O5 in water was added until decolorization, 

and the iodo derivative of 9 was purified by semipreparative HPLC on a Phenomenex Luna 

C18(2) stationary phase. The resulting 1.6 mg (55%) of iodo-9 was dissolved in 400 L DMF 

and 3 mg of Pd/BaSO4 (10% Pd) catalyst and triethylamine (1.4 μL, 10 μmol) were added and 

tritium labeling was performed as described for [
3
H]JWH-018 to give 64 MBq of [

3
H]9 with a 

specific activity of 64 GBq/mmol. Finally, 37 MBq of [
3
H]9 and HOBt.H2O (0.3 mg, 1.9 

μmol) were dissolved in 150 L of DMF and DIC (0.3 µL, 1.9 μmol) was added. It was 

stirred for 5 min, then 6 (2.1 mg, 2.9 μmol) and DIEA (1.4 µL, 8 μmol) were added and the 

solution was stirred overnight at rt. It was then evaporated in vacuo and the crude product was 

purified by HPLC on a Phenomenex Luna C18(2) column that yielded 5.5 MBq [
3
H]11 
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(15%). S.a. 64 GBq/mmol; HPLC k‟= 5.48 (tR= 13.6 min, linear gradient of 20→100% B in A 

over 25 min). 

Tritium labeling of 19. To a solution of 19 (970 L 1 mg/mL MeOH, 1 mol) 1.8 mg of 

IPy2BF4 (Bis(pyridine)iodonium tetrafluoroborate) (4.8 mol) and 4.4 L of HBF4 in Et2O 

were added and the reaction mixture was stirred for 1h at rt under nitrogen. The reaction was 

quenched with a solution of Na2S2O5 in water and the iodo derivative of 19 was purified by 

HPLC on a Phenomenex Luna C18(2) stationary phase yielding 0.8 mg (60%) of diiodo-19. It 

was dissolved in 400 L DMF and 2.5 mg of Pd/BaSO4 (10% Pd) catalyst and triethylamine 

(0.8 μL, 5.6 μmol) were added and tritium labeling was performed as described for [
3
H]JWH-

018 to give 80 MBq of [
3
H]19 with a specific activity of 185 GBq/mmol. HPLC k‟= 6.78 (tR= 

16.3 min, linear gradient of 5→95% B in A over 25 min). 

 

  



75 
 

Table A1. Calculated parameters of the antagonist effect of 10 and 12 in agonist induced 

[
35

S]GTPS binding assays in rat brain membrane homogenates. 

 
Emax (%) EC50 (nM)  

oxycodone  137±5.3 25±3.1  

  + 10 M 10 101±1.0*** n.r.  

  + 10 M 12 100±0.9*** n.r.  

  + 10 M naloxone 99±1.7*** n.r.  

Tyr-D-Ala-Gly-Phe-NH2 159±3.5 154±14  

  + 10 M 10 102±3.5*** n.r.  

  + 10 M 12 97±4.1*** n.r.  

  + 10 M naloxone 98±2.4*** n.r.  

JWH-018 (24) 167±4.1 36±1.8  

  + 10 M 10 107±3.8*** n.r.  

  + 10 M 12 110±4.0*** n.r.  

  + 10 M (rimonabant and AM630) 100±3.3*** n.r.  

11 146±2.1 198±9.3  

  + 10 M 10 102±3.2*** n.r.  

  + 10 M 12 101±2.8*** n.r.  

19 161±2.4 110±9.7  

  + 10 M 10 103±2.3*** n.r.  

  + 10 M 12 99±1.5*** n.r.  

Calculated maximal G-protein stimulation efficacy (Emax) and ligand potency (EC50) values 

of the agonists oxycodone, Tyr-D-Ala-Gly-Phe-NH2, JWH-018, 11 and 19 in the absence or 

presence of 10 µM naloxone, 10 µM rimonabant, 10 µM AM 630, 10 µM 10 or 10 µM 12. 

Statistical comparison of the Emax and EC50 values were performed by one-way ANOVA 

followed by the Bonferroni‟s multiple comparison test (***, P< 0.001). n.r. not relevant. 


