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ABSTRACT 25 

Woody vegetation in farmland acts as a carbon sink and provides ecosystem services for local people, 26 

but no macro-scale assessments of the impact of management and climate on woody cover exists for 27 

drylands. Here we make use of very high spatial resolution satellite imagery to derive wall-to-wall 28 

woody cover patterns in tropical West African drylands. Our study reveals a consistently high woody 29 

cover in farmlands along all semi-arid and sub-humid rainfall zones (16%), on average only 6% lower 30 

than in savannas. In semi-arid Sahel, farmland management increases woody cover to a greater level 31 

(12%) than found in neighbouring savannas (6%), whereas farmlands in sub-humid zones have a 32 

reduced woody cover (20%) as compared to savannas (30%). In the region as a whole, rainfall, terrain 33 

and soil are the most important (80%) determinants of woody cover, while management factors play 34 

a smaller (20%) role. We conclude that agricultural expansion cannot generally be claimed to cause 35 

woody cover losses, and that observations in Sahel contradict simplistic ideas of a high negative 36 

correlation between population density and woody cover. 37 

 38 

 39 

 40 

INTRODUCTION 41 

Concerns about declining woody cover in West Africa have been raised since the early 20th century1,2. 42 

In the 1970s and 80s, negative trends in woody vegetation, presumably associated with the ‘Sahel 43 

drought’ and agricultural expansion, were observed and became part of the desertification/land deg-44 

radation discourse, later termed the ‘Sahel syndrome’3. Rapidly growing settlements and urban mar-45 

kets demanded large amounts of firewood and charcoal, and concerns about an upcoming ‘fuelwood 46 

crisis’ were widespread4. Certain parts of the Sahel experienced an increase in export-oriented agri-47 

culture (e.g. groundnut production in Senegal and cotton production in Mali), which was understood 48 

to have contributed to a downward trend in woody cover as well5. All these concerns had substantial 49 

impact on natural resource policies of the Sahelian countries and the donors supporting them: New 50 

forests were planted (e.g “shelterbelts” in northern Nigeria, village wood-lots in Mali and Burkina 51 



Faso) and new attempts were made to regulate firewood harvesting and charcoal production6. Grand 52 

schemes of ‘green belts’ across the Sahel, already suggested before the 2nd World War by Stebbing1, 53 

were taken up again. However, from the 1980s and onwards, research by botanists7, foresters8, geog-54 

raphers9-12 and anthropologists13 painted a more complex picture on the relationship between humans 55 

and woody vegetation: Studies at village and landscape scales showed that increase and decrease in 56 

woody cover occurred simultaneously in different parts of the Sahel7,11,14. The ‘case study’ character 57 

of this research, however, made it difficult to generalize findings, since the representativeness for the 58 

larger region was difficult to establish15. 59 

The idea of a progressing land degradation in arid and semi-arid West Africa was also challenged 60 

from another side: Regional-scale analyses of time series of vegetation indices derived from different 61 

satellite systems showed that fluctuations of the Sahara desert boundary are common16 and that the 62 

Sahel was experiencing a ‘re-greening’ after the drought years of the 1970s and 1980s17. These studies 63 

did not, however, allow separation of the contributions from the herbaceous and woody vegetation 64 

components. Only recently has this been achieved18,19 revealing that the greening may be partly at-65 

tributed to an increase in woody cover. The coarse spatial and limited temporal resolution of the 66 

satellite images used and the complexities of the methods applied imply that such assessments of 67 

vegetation change in the Sahel do not necessarily form a robust basis for estimating trends in woody 68 

cover locally, and leave considerable room for speculations regarding the nature of the woody vege-69 

tation changes. Attempts to produce global maps20,21 of tree cover focus mainly on forests in humid 70 

areas and yield unrealistically low canopy cover estimates in drylands, which are thus commonly 71 

ignored in woody vegetation assessments22. These obstacles have made it difficult to study linkages 72 

between woody vegetation, rainfall and humans for West African farmlands and savannas - 73 

knowledge that is essential in the face of demographic and climatic change. 74 

The recent access to large volumes of DigitalGlobe, Inc. commercial satellite images with a spatial 75 

resolution as low as 0.3 m in the panchromatic band marks a technical tipping point in dryland re-76 

search23 and allows us to produce a reliable, fine-scaled assessment of woody cover24. While the short 77 



period for which these data have been available does not allow to estimate long term trends, the high 78 

level of detail of such maps makes it possible to analyze how woody cover is spatially correlated with 79 

the above-mentioned causal factors, from which explanations for changes in woody cover over time 80 

can be inferred: if woody cover is threatened by the expansion of cultivation, we would expect woody 81 

cover to be substantially lower in farmlands than in the adjacent uncultivated savannas. If local har-82 

vesting of firewood is a cause of loss of woody cover, we would expect woody cover to be lowest 83 

close to settlements. Here we test these hypotheses in order to obtain a complete understanding of the 84 

distribution of woody cover in relation to human presence and thus provide a valuable reference for 85 

individual case studies that generate in-depth contextual knowledge but have a limited scope for gen-86 

eralization.  87 

 88 

RESULTS 89 

High resolution woody cover mapping. The assessment of woody vegetation at hectare level re-90 

quires high spatial resolution satellite data in order to highlight nuanced spatial differences (Supple-91 

mentary Fig. 1). Here we derived canopy cover from multispectral DigitalGlobe QuickBird-2, Geo-92 

Eye-1 and WorldView-2 satellite images at 1.7 m resolution without using the panchromatic band 93 

(Fig. 1, Supplementary Figs 2, 3) to train Synthetic Aperture Radar (SAR) and Normalized Difference 94 

Vegetation Index (NDVI) imagery and predict continuous woody cover from 0 to 100% at 100 m 95 

resolution for the arid (150-300 mm rainfall), semi-arid (300-600 mm) and sub-humid (600-1000 mm) 96 

zones of West Africa. The validation pixels are fairly in line with the prediction (Mean Absolute Error 97 

(MAE) of 3.7, r=0.69, slope=0.84, n=661,708; Supplementary Figs 4,5) which also agrees well with 98 

independent in situ data (Fig. 1b,c). The woody cover maps shown in Fig. 2 reveal a broad scale 99 

pattern following the biogeographical regions but also a high level of detail showing differences at 100 

hectare scale. Woody cover is on average 3% in the arid zone, increases to 9% in the semi-arid, and 101 

exceeds 20% in the sub-humid zone (Fig. 2). 102 

 103 



 104 

Figure 1 | High resolution woody cover mapping and validation with field data. a, Woody cover 105 

derived from MSAVI at 1.7 m resolution (Supplementary Figs 2-5).  b, The woody cover map at 1.7 106 

m resolution was validated with in situ data from northern Senegal (MAE of 3.2, r=0.87, slope=0.98, 107 

n=144). Woody cover >10% (r=0.76); woody cover <10% (r=0.77).  c, The predicted woody cover 108 

map (100 m) was validated with independent in situ data from Senegal (n=24), Mali (n=23) and 109 

Niger (n=25)  (MAE=0.8, r=0.9, slope=1.01) both for woody cover >10% (r=0.75) and woody cover  110 

<10% (r=0.86). 111 

 112 



 113 

Figure 2 | Predicting woody cover. a, Predicted woody cover at 100 m resolution with locations of 114 

the close-up views (b-e) indicated. b, Woody cover in farmlands at the semi-arid Nigeria/Niger border.. 115 

The presence of trees within villages makes them stand out as green clusters. Woody corridors (shel-116 

terbelts) can be identified. c, Farmlands in sub-humid Burkina Faso are expanding into remnants of 117 

forest reserves. d, The villages in the Malian Seno Plain are surrounded by a well managed woody 118 

vegetation e, The sandy pastoral zone of arid Senegal has locally high concentrations of woody plants 119 

on fine textured soils of inter-dunes.. 120 

 121 

Determinants of woody vegetation cover. The coexistence of herbaceous and woody plants in sa-122 

vannas is governed by rainfall regime (mediated by run-off and water table), soil, human management 123 

(including cutting, clearing for cropping, crop-fallow management, fire and grazing)25. These factors 124 

are interlinked and vary both spatially and temporally with available rainfall (Fig. 3a). Here we tested 125 

environmental variables in a decision tree ensemble model, which explained in total 67% of the pre-126 

dicted woody cover at 100 m resolution (Fig. 3b). Out of these, mean annual rainfall26 is the major 127 

factor limiting woody cover (32%). It is followed by terrain (elevation, 23%) and human population 128 



density27 is ranked third (13%), shortly before soil28 (sand fraction, 12%) and inter-annual rainfall 129 

variability (12%). Distance to villages (6%) and fire frequency (2%) have a rather low relative weight. 130 

Taken together, climatic (44%) and edaphic (35%) factors are more important than management fac-131 

tors (21%) (Fig. 3b). Elevation here is used to represent the terrain morphology including dune struc-132 

tures, depressions, plateaus, valleys, etc. Already a moderate topography can have significant impact 133 

on rainfall run off/on and soil texture, explaining the high percentage explained by terrain. A land use 134 

and rainfall zone grouping is conducted to further explore the relationships between humans and 135 

woody cover and to rule out a bias by the rainfall gradient (Fig. 3c). 136 

 137 

 138 

Figure 3 | Determinants and patterns of woody cover. a, Factors potentially impacting woody cover 139 

are averaged along the rainfall gradient (50 mm steps). b, The relative weight of variables  in a 140 

decision tree model explaining predicted woody cover (150-1000 mm) with an overall explaining 141 

power of 67%. c, Mean woody cover grouped into savannas (n=148,286,890) and farmland 142 

(n=43,374,091), areas of dense (>50 persons km-²; n=23,127,786) and sparse (<50 persons km-²; 143 



n=167,752,160) population densities, as well as conservation areas (n=8,902,702) and their sur-144 

roundings (5 km) (n=6,040,825). Standard deviations are shown as grey background bars. Total pix-145 

els: 191,660,981. 146 

 147 

Rural management impacts on woody cover. We applied a new farmland mask at 100 m resolu-148 

tion29 to separate the study area in uncultivated savannas and farmland (Fig. 4a-c). For savannas, there 149 

is a high positive correlation between woody cover and rainfall (r=0.75, P<0.05) with saturation 150 

around 30% canopy cover in the sub-humid zone, and with considerable spatial variations (Fig 4b). 151 

The pattern is strikingly different for farmlands (Fig. 4c): Although woody cover increases with in-152 

creasing rainfall (r=0.45, P<0.05), the majority of the cultivated areas have a canopy cover of around 153 

12%, independent of rainfall, and variability is much lower than in savannas (Fig. 4a-c). Average 154 

woody cover in arid and semi-arid Sahel is higher and less variable in farmlands (arid: 3%, semi-arid: 155 

11%) than in savannas (arid: 2%, semi-arid: 9%). Sub-humid savannas on average have a higher 156 

woody cover (33%) and wider range than woody cover in farmlands (23%) (Figs 3c, 4a). More pre-157 

cisely, the median of farmland woody cover is higher as compared to savannas below 680 mm annual 158 

rainfall but lower from 680 to 1000 mm (Fig. 4a-c). 159 

In the sub-humid zone, woody cover reaches high values primarily in rural areas with low population 160 

density, and decreases in urban areas with >100 persons km-² (Fig. 4d). Interestingly, a different pat-161 

tern is observed in the arid and semi-arid Sahel, where both woody cover and population density are 162 

increasing along the rainfall gradient up to 160 persons km-². Woody cover decreases at higher pop-163 

ulation densities in and around larger cities. On average, areas with a higher population density also 164 

have a higher woody cover than sparsely populated areas in the arid (7/2%) and semi-arid (12/10%) 165 

Sahel, but the opposite is observed in the sub-humid zone (31/21%) (Figs. 3c, 4a-c).  166 

Woody cover in conservation areas is generally higher (29%) in comparison to surrounding areas (5 167 

km) (21%) (Fig 3c). This difference is most pronounced in the semi-arid Sahel (conservation 16%; 168 



conservation surroundings 11%) and sub-humid zone (conservation 35%; conservation surroundings 169 

23%). Differences between farmland (typically occupying sandy soils) and savannas (including vast 170 

areas of non-arable soils) become more comparable and exclude a bias by environmental pre-condi-171 

tions when studying woody vegetation on sandy soils only28. Sandy soils used for cultivation have 172 

remarkably higher woody cover than comparable sandy soils which are uncultivated (Fig. 4e). Buffer 173 

zones were drawn around 37,294 villages on sandy soils (Supplementary Fig. 6). Shade trees are 174 

responsible for a high canopy cover in the village centers (~12%), and areas surrounding villages 175 

within a distance up to 1.5 km have a moderately high woody cover (7-9%) which decreases gradually 176 

further away (<5%).   177 

 178 

 179 

Figure 4 | Land management impacts on woody cover. a, Woody cover grouped into farmland and 180 

savanna for each bioclimate zone. b, Woody cover (a random sample of 1%; n=2,812,563) is shown 181 

along the rainfall gradient (10 mm steps) for savannas and c, for farmlands. d, Woody cover is aver-182 

aged within intervals of population density showing opposing patterns for arid/semi-arid (150-600 183 

mm) and sub-humid (600-1000 mm) zones. e, Comparison between woody cover on farmland and on 184 



savannas, both on sandy soils only (entire region; n= 73,848,805). f, Woody cover as a function of 185 

distance to the village center (entire region; average for 37,294 villages on sandy soils). 186 

 187 

DISCUSSION 188 

The traditional assumption that human presence has an exclusively adverse impact on West Africa’s 189 

woody vegetation has been challenged by local studies showing that human presence can also have 190 

positive impacts on tree cover13, as in the case of agroforestry systems encouraging and maintaining 191 

high tree densities30. Farmers’ awareness of reforestation as a climate change adaptation measure has 192 

been shown31, and farmer managed natural regeneration or tree planting programs are common 193 

throughout West Africa. However, there regional assessments of their success are rare, and our study 194 

shows that farmlands indeed support significant woody vegetation densities, supporting the results of 195 

32. However, this is not the case in all landscapes and under all agricultural management regimes. The 196 

expansion of farmland leads to an initial reduction of woody vegetation, especially in higher rainfall 197 

zones with dense human population where savanna and woodland woody cover is dense10. If the rural 198 

population is dense, this expansion is ongoing, and forest reserves and savannas are being progres-199 

sively reduced and converted into farmland, with no woodland vegetation left except in protected 200 

areas. It has also been proposed that the recent increase in woody vegetation, which is a global phe-201 

nomenon in semi-arid lands supposedly driven by climate and altered atmospheric CO2
33,34, often 202 

takes place in sparsely populated regions whereas high population growth decreases woody cover35. 203 

However, our current study shows that this is not always the case, and once savannas and woodlands 204 

are transformed into farmland, management often aims at promoting and protecting valuable species 205 

(e.g. Faidherbia albida, Vitellaria paradoxa) by clearing/coppicing other species which also favours 206 

the growth of a few tall trees. Additionally, shade trees in village areas (e.g. Azadirachta indica) 207 

provide numerous ecosystem services which are more valuable for the local people36 than those of 208 

typical savanna species (e.g. Combretum glutinosum, Guiera senegalensis) and also contribute to 209 

carbon storage at landscape scales. 210 



 211 

The results presented allow a robust generalization concerning woody cover and the relationships 212 

between woody cover and various explanatory factors. First of all, we describe rainfall as the main 213 

determinant of woody cover. We confirm increases in woody cover in arid and semi-arid Sahel with 214 

rainfall up to ~650 mm37. The median woody cover stabilizes in the sub-humid zone (650 - 1000 mm) 215 

around 30% woody cover.  216 

Secondly, and most importantly, we show that the role of climate is modified by humans. The way 217 

management affects woody cover relates to the amount of annual rainfall and livelihood strategy: The 218 

median woody cover in arid and semi-arid zones is equal and partially higher in farmlands than in 219 

savannas up to an average annual rainfall of around 650 mm year-1. In sub-humid zones, this differ-220 

ence is reversed, with median woody cover being lower in farmlands than in savannas. Unlike the 221 

rainfall driven gradient of woody cover found in savannas, the woody cover in farmlands is spatially 222 

homogeneous (constant median, narrow range) across all rainfall zones. Local studies are likely to 223 

show considerable differences between countries and eco-regions, but on average the claim that cul-224 

tivated areas in the arid and semi-arid Sahel have a relatively high woody cover compared to savannas 225 

is robust. Two possible explanations may be suggested: (1) Farmers protect or plant trees due to a 226 

strong interest in the ecological services they provide36. Harvesting of wood for fuel and building 227 

material mostly takes place further away from the village areas in uncultivated land (and in fallows, 228 

which are here classified as farmland). (2) Farmland is generally located on the most suitable and 229 

fertile soils, whereas savannas also includes soil conditions less favorable for vegetation growth. Our 230 

results show, however, that the difference is still clear and even more evident when comparing only 231 

areas of sandy soils in both the cultivated and non-cultivated areas, so the latter explanation does not 232 

affect our conclusions.  233 

Thirdly, analysis of the effect of proximity to villages on woody cover discloses that woody cover is, 234 

on average, densest within village areas and decreases with distance. This is based on a great number 235 

of villages that are very different in size and structure and this distance-function may differ depending 236 



on village size, rainfall level, agricultural practices and ethnicity of the population. Yet, at the regional 237 

scale it is clearly demonstrated that the idea that high local population pressure causes woody cover 238 

to decrease around villages does not hold true. Rather, the alternative notion that farmers protect or 239 

plant trees in and around villages13 is supported. The cause of a dense woody cover around villages 240 

is related to the above mentioned finding that farmlands have a relatively high woody cover. Fields 241 

are often located close to villages, while more distant savannas are mainly exploited for fuelwood. 242 

Our results showing a positive relationship between population density and woody cover seems to 243 

support the ‘more people, less erosion’ argument38 of environmental recovery and sustainability as-244 

sociated with agricultural intensification. However, this only holds true in semi-arid areas and only 245 

up to a certain threshold of population agglomeration, i.e. at rural village level but not for larger urban 246 

settlements. 247 

With an average canopy cover of 13 ±17%, we found substantially higher values (including larger 248 

variations) than other studies and data sets (e.g. 1.9 ±3% in MODIS continuous fields20). It has to be 249 

taken into consideration that our definition of canopy cover is more inclusive, since we include scat-250 

tered woody vegetation, whereas the MODIS product is limited to forests with large sized trees. Stud-251 

ies based on these data sets22 are thus unable to provide detailed assessments of patterns and determi-252 

nants of dryland woody cover. 253 

The data and methods we used do not allow us to move beyond ‘woody cover’, which is the simple 254 

projected coverage of canopies. For many research applications additional variables would be of in-255 

terest. From a botanical and ecological perspective, information on species would be desirable; from 256 

a climate change point of view, carbon stocks and transpiration may be in focus; foresters may require 257 

woody volume and quality; and from a pastoralist’s perspective, the annual production of green foli-258 

age of fodder species is most important.  Finally, from a socio-economic perspective, we would profit 259 

from estimating the amount of trees available for each person. Additional work, more fully exploiting 260 

very high resolution imagery (e.g. mapping height and canopy size of individual trees), is likely to 261 

bring us further in these directions. This study was, however, able to demonstrate the potential of 262 



West African farmland and savannas to provide a range of ecosystem services. Moreover, the wall-263 

to-wall coverage and the high number of pixels in our analysis provide a solid basis for understanding 264 

woody cover in different landscapes at the regional West Africa drylands scale and this can be applied 265 

to other dryland regions globally. Case studies will still remain extremely valuable as a means of 266 

obtaining insights into the complex processes linking environmental factors and land management 267 

decisions to woody cover across the variety of local circumstances. By combining wall-to-wall anal-268 

ysis with process studies at local scale, a more robust basis for developing environmental policies 269 

may be established. 270 

 271 

METHODS 272 

We define woody cover as the percentage of ground surface covered by the vertical projection of 273 

woody plant crowns. The technical framework of this study adapts local-scale approaches of model-274 

ing dryland woody cover39,40 into reproducible regional/global scale assessments, as the unprece-275 

dented amount of very high spatial resolution (VHR) satellite images now available via the NextView 276 

license across the region allows for a new level of detail and larger geographic coverage. Most of the 277 

2006 available images are from November/December (2008-2015) when most of the evergreen and 278 

deciduous woody species have green leaves, whereas the herbaceous vegetation is senescent. If no 279 

images from these months were available, the period was extended to February. The modified soil-280 

adjusted vegetation index (MSAVI) was calculated with a spatial resolution of 1.7 m, and woody 281 

cover was extracted by using a texture based feature extraction method. Field measurements (2000-282 

2015) of woody cover at selected sites served as an independent validation of the remote sensing 283 

mapping approach. To achieve a woody cover map of the entire area, the spatially detailed woody 284 

cover data derived from VHR images were used to train a gradient boost decision tree regressor to 285 

predict woody cover from PROBA-V NDVI and PALSAR-2 images at high resolution (100 m). We 286 

tested several filtering approaches and seasonal metrics derived with various methods41,42 and decided 287 

to apply a moving median window for filtering the time series and filtered 10 day composites as input 288 



variables for the regressor to keep the process reproducible. A farmland map29, satellite based rainfall 289 

estimates26 (CHIRPS), fire (MCD45A1) and population data27 (Worldpop) were used for analysis of 290 

woody cover patterns in relation to climate and land management determinants (Supplementary Fig. 291 

7).  292 

Rainfall zones of the study area. We used rainfall isohyets derived from CHIRPS26 mean annual 293 

rainfall (1981-2016) to divide the study area in arid Sahel (150-300 mm), semi-arid Sahel (300-600 294 

mm), and sub-humid lands (600-1000 mm) (Supplementary Fig. 8a). The zones correspond well with 295 

expected bioclimatic zones with different woody species43. Whereas Acacia ssp and Capparidaceae 296 

are dominant in the arid and semi-arid, it is Combretaceae and Fabaceae in more sub-humid parts. 297 

In general, woody cover changes from sparsely scattered in the arid areas to closed canopies in the 298 

open woodland and riverine forest of the sub-humid zones. 299 

Field data. Field data is available from extensive field work in the Ferlo in Senegal (144 sites sur-300 

veyed in 2015), from the CSE (Centre de Suivi Ecologique) campaigns in Senegal (24 sites surveyed 301 

between 2000 and 2015 every other year)18, from the Gourma region in Mali (23 sites)44 and the 302 

Fakara in Niger (25 sites)45. All surveys measure the projected canopy cover44 over plots of various 303 

areas (50 m to 1 km), and the data were recalculated in m² per ha and percentage canopy cover. 304 

Extraction of canopy cover from very high spatial resolution data. The mapping technique was 305 

designed to be robust to the use of different sensor types, acquisition dates (i.e. different leaf density), 306 

atmospheric conditions, as well as being applicable to various situations ranging from sparse shrub 307 

population in arid zones to closed canopy cover woodland in the sub-humid zone. The robustness was 308 

assessed by independent field data (Fig. 1b) and is demonstrated in Supplementary Fig. 5. Digital-309 

Globe QuickBird-2, GeoEye-1 and WorldView-2 were orthorectified and the scenes were screened 310 

for clouds and other disturbances. All selected multispectral images were resampled (nearest neighbor) 311 

to 1.7 m resolution matching GeoEye-1. MSAVI was calculated and rescaled from 0 to 10045 to pro-312 

duce a quantitative base for estimation of canopy cover. Only if a pixel is fully covered with a green 313 



leaved canopy, the MSAVI will reach higher values, partly covered pixels (e.g. parts of the crown 314 

area or small size shrubs and bushes) have relatively lower values. Visual screening of numerous 315 

images showed that most woody plants have MSAVI values above 50, which was robust across all 316 

rainfall zones and image acquisition dates. A texture based Haralick feature extraction (8 bins) was 317 

then run considering all pixels with values between 50 and 10047. The advanced texture filter can be 318 

parameterized to extract objects (in our case crown canopies) from their surroundings and from larger 319 

objects. The feature termed “mean” was used - the objects have grayscale values depending on their 320 

distinctiveness - which was rescaled between 0 and 100, resulting in a quantitative estimate of the 321 

areas covered by canopies. Each image was visually screened and images dominated by obvious mis-322 

estimations (strong under- or overestimation) were discarded. The final values represent the subpixel 323 

woody coverage, with 100 being fully covered and 0 free of any green leaved woody vegetation. The 324 

advantage of this weighted method over a binary tree/no tree classification is that a sub-pixel coverage 325 

(i.e. small crowns and edge pixels) receives a lower weight, thus preventing overestimation (Supple-326 

mentary Figs 3,5). Moreover, using such weighting emphasizes larger canopies, which makes the 327 

product more robust against a rapidly changing (fire, field clearing, etc.) bush layer, which receives 328 

a lower weight. Burned areas were manually clipped to keep only high quality training images. In 329 

total, 219 images were used for the model (about 1% of the study area). The accuracy of the method 330 

was calibrated and tested with field data (144 plots) from Senegal. The square field plots are small 331 

(50 x 50 m) and include canopies of all size classes thereby being well suited to validate the VHR 332 

product. For the accuracy assessment, canopy cover surveyed for each field plot was compared with 333 

VHR imagery derived canopy cover averaged for polygons marking exactly the surveyed area. 334 

Prediction of canopy cover at 100 m resolution. Advanced Land Observing Satellite (ALOS) 335 

Phased Arrayed L-band Synthetic Aperture Radar (PALSAR)48 and PROBA-V NDVI49 were used for 336 

a large scale assessment of woody vegetation (wall-to-wall coverage of West African drylands). For 337 

PALSAR-2, we used 100 m cross-polarized HV mosaics converted to gamma-naught values and av-338 

eraged from 2009 and 2010 over the study area48. For PROBA-V, daily atmospherically corrected 339 



images at 100 m resolution were combined into 10 day maximum value composites to achieve full 340 

coverage in the lower latitudes, which are more frequently affected by cloud cover. Images are avail-341 

able from 2014 to 2016 and the maximum value for each 10 day composite over the 3 years was 342 

selected to avoid low values which can be caused by clouds and burned areas. To further filter out 343 

noise, a 30 day running median window was applied, choosing the median value of 3 images. This 344 

procedure does not only filter out low value spikes caused by clouds, but also high value spikes which 345 

can be caused by herbaceous vegetation (also dry season rainfall events can lead to a flush of herba-346 

ceous plants). Both possibilities potentially introduce noise in our analysis dedicated to woody vege-347 

tation and this filter is a simple way of reducing noise but keeping the original seasonality. 348 

The woody cover derived from the VHR imagery was used to train the PALSAR and 36 (10-day 349 

frequency) PROBA-V NDVI images to obtain a regional-scale woody cover map at 100 m resolution. 350 

First, the canopy cover images at 1.7 m resolution were aggregated to 100 m by summing all values 351 

(respresenting sub-pixel canopy coverage), multiplying each pixel with the original pixel size (1.7 × 352 

1.7 m) and dividing it by 100 so the derived map shows the projected area within the pixel covered 353 

by woody plants with the unit percent woody cover. The data was then split into training and valida-354 

tion sets by randomly dividing all pixels in two groups, each including 50% of the original pixels. A 355 

large number of pixels (n=1,323,416) were available for training and for validation. The training set 356 

was then used to fit a non-parametric gradient boost regressor (GBR), which produces a prediction 357 

model by means of an ensemble of boosted decision trees50. The input data were the PALSAR and 36 358 

filtered 10 day NDVI composites covering an entire year. The quality of the model was assessed by 359 

comparing the independent validation set with the predicted woody cover. Predicted values above 360 

100 were masked out and below 0 set to 0. Due to the large amount of training and validation pixels 361 

and their spread and representation of different landscapes, over-fitting is not a concern and the model 362 

output is expected to be robust. It should be noted that the woody cover is predicted continuously 363 

from 0 to 100 (but rounded to 1% steps), leading to a lower statistical fit than similar approaches 364 

binning canopy cover into classes of e.g. 10% intervals.  365 



Even though all woody plants have a distinctively different phenological behavior than herbaceous 366 

annuals, six different forms of evergreen and deciduous leaf phenologies exist, ranging from short 367 

deciduous plants shedding their leaves early in the dry season to evergreen species keeping their 368 

leaves throughout the year51. To avoid an underestimation of the crown cover of stands dominated by 369 

deciduous species, the median NDVI ratio between November (a period were all trees have leaves) 370 

and February-March (most deciduous species are without or only little leaves at this time) was calcu-371 

lated. Field data from Senegal on species composition (ratio deciduous/evergreen per site) was com-372 

pared with the NDVI-ratio for corresponding sites (Supplementary Fig. 4b). The output of the GBR 373 

prediction was then multiplied with this ratio, enhancing the predicted cover of stands with deciduous 374 

species but keeping evergreen stands unchanged. The impact of fire is mitigated by the multi-year 375 

maximum and median value over several images. Finally, wetlands and irrigated areas were masked 376 

out by combining Globland3052 and ESA LC CCI (2010) land cover maps. An independent accuracy 377 

assessment was conducted with field data from Senegal, Mali and Niger. These data are based on 378 

circular plots along 1 km transect lines (representing larger areas of homogeneous landscapes), spaced 379 

at 200 m intervals. The canopy cover of all woody plants was surveyed for these plots and averaged 380 

for each transect51. Polygons (3x3 km) covering the field sites were drawn and model-estimated 381 

woody cover extracted and averaged for each site giving valuable information on the overall fit of the 382 

predicted canopy cover. 383 

Environmental data. Several data sets were used to analyze the relationship between woody cover, 384 

rainfall and management. CHIRPS rainfall was summed from 1981 to 2016 for each year and an 385 

average annual climatology was calculated (Supplementary Fig. 8a). The original CHIRPS resolution 386 

of 5 km was resampled (bilinear interpolation) to match the 100 m resolution of PROBA-V. A recently 387 

developed farmland map was used29, which reflects the area under agriculture around 2014 (Supple-388 

mentary Fig. 8b). The original resolution of the farmland map was 100 m and villages areas are 389 

masked out. Conservation areas were derived from the World Database on Protected Areas53. It in-390 

cludes National Parks and protected forests of which most have been established during colonial time 391 



by the administration in charge of forest and wild life. The conservation areas are found predomi-392 

nantly in low populated regions characterized by poor soil fertility, but population growth and expan-393 

sion of farmlands has often encroached into these areas. They are however edaphically different and 394 

the woody cover is therefore not entirely comparable to neighboring farmlands. Woody cover in the 395 

conservation areas was compared with woody cover in adjacent areas (within 5 km buffer around 396 

conservation area boundaries). We used Worldpop for the year 201030 as human population data set. 397 

The resolution of 1 km was resampled (bilinear interpolation) to 100 m for this study. 398 

To improve the comparability between farmlands and savannas, we used the newly developed African 399 

soil map at 250 m resolution28 to extract sandy soils (from rock outcrops, shallow soils with dense 400 

shrubland, clayey valleys, etc) (Supplementary Fig. 8c). We used the soil texture fraction to calculate 401 

a mask leaving only areas with >70% sand in the depth 0-1 m.  402 

To test the impact of rural population on woody vegetation, all settlements with a size smaller than 5 403 

km² were extracted from the Globeland3052 data set, resulting in 37,294 villages. The original reso-404 

lution of 30 m was resampled to 100 m. We established buffer zones with 0.5, 1, 2, 5 and 20 km 405 

distance to the village areas (Supplementary Fig. 6). 406 

A gradient boost classifier50 was applied to test the determinants of predicted woody cover. Explana-407 

tory variables of this model based on an ensemble of decision trees were (1) mean annual rainfall, (2) 408 

fire frequency deriving the number of fires between 2000 and 2015 from MODIS burned area product 409 

MCD45A1 (Supplementary Fig. 8d), (3) rainfall variability (the coefficient of variation of annual 410 

sums between 1981 and 2016), (4) the sand fraction from the soil map, (5) the elevation derived from 411 

SRTM digital elevation model (90 m), (6) human population30, and (7) distance from the villages 412 

(buffer zones). Predicted woody cover was grouped in classes (0-3%, 3-10%, 10-20% and >20%) to 413 

meet the requirements of the classifier and a random sample of 1% of the pixels was chosen (n= 414 

2,812,563) which was used as response variable. The model was run with 10 different random sets of 415 

pixels to ensure that no bias emerges by the selection. Due to the decision tree structure of the model, 416 



correlations between the explanatory variables can be neglected. The accuracy of the model is calcu-417 

lated by setting aside 60% of the pixels, which are then used to test the predicted results. 418 

Data availability. Commercial very high resolution satellite images were acquired within the 419 

NextView license program. The copyright remains at DigitalGlobe and a redistribution is not possible. 420 

PROBA-V NDVI data is freely available at VITO (http://proba-v.vgt.vito.be/). Worldpop population 421 

data is freely available at the University of Southhampton (http://www.worldpop.org.uk/). MODIS 422 

MCD45A1 burned area product is can be freely obtained at http://modis-423 

fire.umd.edu/pages/news.php. The soil map is freely available at ISRIC (http://www.isric.org/con-424 

tent/african-soilgrids-250m-geotiffs). CHIRPS rainfall data is freely available at the Climate Hazard 425 

Group (http://chg.geog.ucsb.edu/data/chirps/). PALSAR mosaics are freely available from JAXA 426 

(http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm). The farmland mask is available from 427 

Marie-Julie Lambert  upon request. The woody cover map at 100 m resolution is available from the 428 

corresponding author upon request.  429 

http://modis-fire.umd.edu/pages/news.php
http://modis-fire.umd.edu/pages/news.php
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Supplementary Information 561 

 562 

Figure S01 | Examples of woody vegetation patterns. The images are pansharpened false color 563 

composites showing woody plants in reddish colors. a, Farmland in central Senegal including tall 564 

trees (to the right) with a sharp border to uncultivated land with dense cover of small trees and shrubs 565 

(to the left). b, Farmland in northern Nigeria surrounding a village with both trees and coppiced 566 

bushes. c, Rangeland in the sandy Ferlo, Senegal. Trees and shrubs are denser in the linear inter-dune 567 

depressions than on the dune. d, Woody vegetation in the pastoral lands of eastern Senegal forms a 568 

reticulate thicket of shrubs. These soils are not arable and woody cover can be high.  569 



 570 

Figure S02 | Study area and location of the available VHR images. The location of the images 571 

correspond to field sites which are described in details in literature20,49,50.  572 



 573 

Figure S03 | Development of the very high spatial resolution woody cover map. a, A pansharp-574 

ened WorldView-2 false color composite (band 753) from January 2012 shows different size classes 575 

of woody plants. b, MSAVI was calculated from WorldView-2, GeoEye-1 and QuickBird-2 and high-576 

lights all woody vegetation from their surroundings. MSAVI was rescaled from 0 to 100. c, MSAVI 577 

values between 50 and 100 (thus not considering tree shadows, very small shrubs and non-woody 578 

vegetation across different land cover) were used for a Haralick feature extraction using Orfeo toolbox 579 

(advanced textures, x radius=1, y radius=1, histogram number of bins=8). The output channel mean 580 

was calculated as follows: ∑i,j ig(i, j), where g(i,j) is the frequency of elements in the Grey Level Co-581 

occurrence Indexed List (GLCIL) whose index is (i,j). The result of the Haralick feature extraction 582 

was rescaled (0-100) to provide an estimation of the woody cover at very high spatial resolution. Note 583 

that the small bushes around the settlement receive a lower canopy cover value than grown up trees. 584 

Also note that (b) and (c) are not pansharpened.  585 



 586 

Figure S04 | Prediction of woody cover at 100 m. a, Woody cover predicted with the gradient boost 587 

regressor at 100 m is compared against the validation pixels, which were separated from the training 588 

pixels (50% of the values) before the model was established. b, The NDVI ratio used to balance an 589 

underestimation of deciduous stands is compared with field data (24 sites, 1 km transects) from Sen-590 

egal. The field data shows the percentage of evergreen species for each stand. See Brandt et al., 2016 591 

for further details on the methodology and the field sites (location and data collection). 592 

 593 



 594 

Figure S05 | Testing the work-flow in northern Senegal. Canopy cover was derived from very high 595 

spatial resolution satellite images (1.7 m; left side and bottom), aggregated to 100 m (middle), and 596 

used to train PROBA-V and PALSAR to retrieve a woody cover map at 100 m resolution (right side). 597 

The example is from the Ferlo region in Senegal (boarder region of arid and semi-arid Sahel) and 598 

demonstrates that the method is able to derive woody cover from about 30 different VHR images 599 

from different sensors and different dates with a seamless transition between the images. The range-600 

land of northern Senegal (Ferlo) was selected as the core testing area. The landscape consists of fixed 601 

dune systems with alternating sand dunes and linear inter-dune depressions with finer textured soils 602 

(from silty sands to loamy clay). Woody cover follows nutrient and water availability, with higher 603 

density on fine textured soils, low and scattered density on sandy soils and a denser shrub-cover on 604 

shallow silty sand soils on ferricrete. A higher density of larger trees can be observed along the Ferlo 605 

river. This pattern is further interfered by human management (plantations, grazing, cutting, fires). 606 



Modeling of woody cover is challenging due to the low dynamic range of values with only depres-607 

sions having a higher woody cover at 100 m scale. At coarser scale (e.g. 1 km), even depressions are 608 

merged with the remaining areas and the overall canopy cover remains below 10%, which is com-609 

monly merged into a single class. A separation of depressions and a successful estimation of subtle 610 

differences in canopy cover below 10% is thus an important step in dryland woody cover modeling 611 

by means of satellite data. The canopy cover map at 1.7 m resolution agrees well with field data with 612 

an MAE of 3.2 (% woody cover), r=0.87 and slope=0.98.  613 



 614 

Figure S06 | The principle of the buffer zone analysis is shown. The villages are derived from 615 

Globeland30 and buffer zones of different distances were applied. The zones represent areas within a 616 

certain distance to settlements. The area class being more remote from villages (7-20 km) is not shown 617 

here.  618 



 619 

Figure S07 | Flowchart showing data and methods.  620 



 621 

Figure S08 | Environmental data sets. a, Rainfall zones derived from CHIRPS 2.0 (1981-2016). 622 

Only areas with rainfall between 150 and 1000 mm are used for this study. b, The farmland mask 623 

applied. c, Sand fraction of soils. d, Fire frequency from MCD45A1 (number of fires per year). 624 


