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Modeling Strategies for Superconducting Microstrip
Transmission Line Structures
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Abstract—Strategies are explored to reduce the electromag-
netic simulation time of electrically large superconducting trans-
mission line structures while retaining model accuracy. The com-
plex surface reactance of an infinite thin-film superconducting
sheet is evaluated with the BCS (Bardeen-Cooper-Schrieffer)
theory and used as an input to model the phase velocity
and characteristic impedance of finite width transmission line
structures. Commercially available electromagnetic simulation
software are employed for the calculations and the results are
compared with limiting analytic forms from the literature. The
influences of line width, metallization thickness, and substrate
height on microstrip transmission line propagation are considered
in detail and a scaling approach is presented to compensate
for the leading order effect in numerical simulations. These
findings are particularly important near the energy gap of the
superconductor due to the influence of the kinetic inductance on
the transmission line dispersion.

Index Terms—Electromagnetic propagation, Finite Element
Analysis, Method of Moments, Microstrip transmission lines,
Superconductors.

I. INTRODUCTION

PLANAR superconducting microstrip transmission lines
have been widely used in cryogenic microwave and

millimeter-wave systems. Over typical frequency and param-
eter ranges of interest these low-loss thin-film structures can
be realized with a well defined impedance, have a quasi-TEM
symmetry, and approximate single-mode propagation [1], [2].
The range of applicability for these desirable characteristics
is limited by the finite binding energy of electron (Cooper)
pairs in the thin film metallization [3], losses in the dielectric
substrate, and the onset of higher order propagating modes
and radiation to free-space arising from the finite substrate
thickness relative to the radiation wavelength [4].

Given a detailed knowledge of material properties, the
microstrip transmission line geometry can be used to suitably
define and control the impedance scale and signal propagation.
Characteristic impedance levels in microstrip transmission
lines from a few to ≈ 100 Ω are readily achievable and enable
compact planar transmission line structures. When used in con-
junction with its complementary slotline, co-planar waveguide,
or parallel plate waveguide structures, these transmission line
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elements provide a rich pallet for the synthesis and realization
of superconducting electronic circuitry.

To realize these functions the propagation characteristics
of transmission line structures must be adequately controlled.
In microstrip, tolerances are primarily a function of the line
width, height, and substrate permittivity [5]. The thickness of
the line [6] and ground planes, surface finish of metalliza-
tion layers, and homogeneity of dielectrics [7] typically play
secondary roles. The enclosure geometry, inter-line spacing,
spurious radiation excitation [1], and onset of surface wave
propagation [4] also present practical considerations in defin-
ing the isolation between planar structures and the overall
fidelity of the packaged system response. The introduction of
superconducting elements in the architecture also necessitates
consideration of the metallization purity, grain structure, and
uniformity, as well as, the details of the end operational
environment.

For structures involving superconducting elements, an ac-
curate representation of the dynamic or kinetic inductance as-
sociated with Cooper pairs is needed to achieve a high fidelity
representation of the circuit response in electromagnetic (EM)
simulations. This is a widely explored practical problem [8],
[9], [10] and in the limiting case of a simple microstrip
line, analytical solutions for the characteristic impedance and
effective phase velocity have been derived using conformal
mapping [11]. The Wheeler incremental inductance rule [12],
[13] provides an analytically trackable means of computing
the complex surface impedance when the line dimensions and
radius of curvature are much greater than the depth of field
penetration. This perturbative approach provides significant
physical insight, however, has not lead to a general treatment
of edge and junction effects present in planar geometries.
Homogenous dielectrics with rectangular conductors [14] and
associated ground plane losses [15] represent other extensions
and limiting cases of interest. Alternatively, equivalent bound-
ary condition approaches for modeling of superconducting
transmission line structures can be employed in numerical
simulations [16].

In general, a three dimensional representation of circuit
elements and fields in an EM simulator is needed to accurately
predict the transmission line propagation properties. However,
this can be computationally challenging for relatively simple
transmission line structures with high aspect ratios or large
electrical lengths, especially when an accurate representation
of the phase delay is a driving performance consideration
in the design. This has lead to the representation of super-
conducting layers using a surface impedance approximation
for zero thickness (ZT) trace and ground metallization layers
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in transmission line model simulations [8], [9]. From this
perspective, models of finite thickness (FT) structures can
be constructed from sheets appropriately interconnected with
edge metallization sheets or vias and simulated with signifi-
cantly reduced computational resources.

In this work, scaling considerations are reviewed and pre-
sented in Section II, which provide a path to address the
challenges in efficiently modeling superconducting structures
of finite width with high fidelity. In Section III, the details of
the model geometry and electromagnetic finite element simula-
tions (FEM) performed are presented. In Section IV, the results
of finite- and zero-thickness microstrip transmission line mod-
els are presented and the scaling relationships between these
solutions are evaluated. Finally in Section V, the accuracy
and applicability of this general approach are discussed in the
context of a representative five-section transmission line filter
simulation.

II. ELECTROMAGNETIC CONSIDERATIONS

The surface impedance of a superconducting media of
infinite lateral extent having metallization thickness, t, and
London penetration depth, λL, can be expressed as,

Zs = jωµoλL coth(t/λL), (1)

where ω and µo are the angular frequency and free-space
permeability [3], [16]. This reduces to the commonly used
formula, Zs ' jωµoλL, in the bulk limit, t � λL. In the
finite thickness limit a transmission line model can be used to
compute the effective sheet impedance for a superconducting
trace excited on one side. The resulting impedance can be
expressed as a product of separable functions,

ZFT
s (t/h, t/λL) = ζ(t/λL) · Zs(t/λL), (2)

where ζ accounts for the magnetic energy stored in the
superconducting media (see Ref. [8], Fig. 6),

ζ ∼=

1− t/λL
2 coth(t/λL)

+

√
1 +

(
t/λL

2 coth(t/λL)

)2
 . (3)

Equation 2 approximates the characteristic impedance, Zo, of
microstrip lines to 4% relative to analytical results for trace-
width to substrate-height ratios, w/h < 7 [11].

Inspired by the success of this method for infinite super-
conducting layers with finite metallization thickness, general-
ization of the method to accommodate the influence of the
finite line width is advocated through the use of effective
propagation parameters. Implementing the microstrip trace and
ground plane layers as zero-thickness structures, a separable
function, ξ, is numerically evaluated while enforcing the
following relationship:

ZZT
s (w/h, t/h, t/λL) = ξ(w/h, t/h) · ZFT

s (t/h, t/λL). (4)

In this approach the scaling function, ξ, maps effects of crowd-
ing of the current density for a strip of finite width, w, and
thickness, t, onto an equivalent zero-thickness trace. Forcing
the phase velocity, vphase = 1/

√
µeff · εeff , of microstrip

lines with finite trace dimensions to be equivalent to a zero-
thickness structure can reduce the size of a computational

problem. In self-consistently carrying out this phase velocity
matching procedure it is useful to recall that the media’s
wave impedance, Zwave =

√
µeff/εeff , is also linked to

the effective permittivity, εeff and permeability, µeff of the
transmission line [10]. This allows a unique specification of
wave propagation on the equivalent transmission line system.
While this method is inherently applicable to two dimensional
transmission line structures in the mean field approximation,
no attempt has been made to correct for junction effects
between abutted line sections with differing effective surface
impedances.

The physical energy densities of the field configuration
remains integrable and finite over the entire domain defined by
the model. For the case of conducting surfaces, the singular
components of the electric and magnetic field vectors scale
inversely with the square root of the distance from the edge,
while the field strengths parallel to the edge component are
finite [17]. These effects increase the energy density near the
metallization edges [14], [18] and the resulting change in prop-
agation properties can be seen as a direct result of minimizing
the free energy associated with the current distribution across
the transmission line structure geometry in the presence of
kinetic inductance.

III. ELECTROMAGNETIC SIMULATIONS

The functional decomposition proposed in Eq. 4 is ex-
plored for uniform microstrip lines. The microstrip lines are
represented as either perfect electric conductor or niobium
superconducting films. In exploring this approach, the method
of moments and finite-element EM solvers are used to nu-
merically evaluate the scaling function, ξ. ANSYS HFSS is
used as the base line electromagnetic simulator as it allows
the non-linear frequency dependent thin-film properties of a
superconductor to be fully implemented. The software capa-
bilities are summarized in Table I.

TABLE I: EM solver package capabilities. ωo is a constant
reference frequency.

HFSS v17.1 Sonnet v11.56 Designer v17.1
PlanarEM

Method 3D FEM 3D MoM 2D MoM
Simulation
volume
boundary

PEC PEC Radiation

EM port type Full-Wave Lumped Lumped
Metallization
thickness Finite Finite Zero

Surface
impedance, Zs

ω L(ω) ω L(ωo) ωo L(ωo)

2D scale
function, ξ

Relative to 3D
HFSS model

Relative to 3D
Sonnet model

Relative to 3D
HFSS model

evaluated at ωo

A. Microstrip Transmission Line Model

A microstrip transmission line with a 6µm line width,
w, and a 5µm thick Si substrate, h, is used as a reference
model. See Fig. 1 for the model configuration. A constant
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and lossless relative dielectric function, εr =11.55, is adopted
for simplicity to represent a cryogenic mono-crystalline bulk
silicon substrate. A perfect electric conductor (PEC) is used
as an enclosure above the line and along the walls of the
microstrip to define a boxed configuration. See Table I for
details of the model setup defined within each simulator
package. The box width, W , is 60µm and the box lid is
45µm above the microstrip transmission line trace. A perfect
magnetic wall was used to reduce the model size by enforcing
a symmetry plane at the center of the microstrip line.

For simulating the finite-thickness microstrip, a kinetic
inductance surface reactance is applied to all sides of the
conductor and the inner volume is perfect electric conductor
to eliminate the volume internal to the conductor in the model.
The conductor thickness used in this paper is t1 = 0.29µm
and t2 = 0.25µm for the microstrip and ground layers
respectively, which reflect practical geometries implemented
using micro-fabrication processes.

Fig. 1: Model of a boxed microstrip line and the boundary
conditions used to validate HFSS and Sonnet simulations. A
magnetic symmetry plane is used to reduce the model size.
For Designer, the material layers are infinite in extent and the
simulation boundaries provide an ideal termination.

B. Superconducting Metallization Specification

In addition to λL(0) being a material dependent param-
eter, the associated change in the penetration length scale
with frequency increases the challenge in modeling of the
behavior of circuit elements. Arguably, accurately capturing
the functional form of λL(ω) is essential to predicting the
response of complex superconducting circuits. To specify the
film properties, the kinetic sheet inductance as a function of
frequency was evaluated using BCS theory [19] and applied
to the ground and trace conductor surfaces. The computed
sheet kinetic inductance, L(ω) = µ0λL(ω), for Nb is shown in
Fig. 2. A superconducting transition temperature, Tc of 9.2 K,
and a zero temperature λL of 90 nm is adopted for Nb. The

finite metallization thickness correction term, ζ, is computed
and applied to the microstrip line surfaces following [8].

The kinetic inductance was applied as a frequency-
dependent sheet reactance in HFSS through a polynomial
curve fitting function. The kinetic inductance was introduced
in the models as a surface reactance following Fig. 2 [8]. In
Sonnet, a specific value is discretely applied at each simulation
frequency. The response of the microstrip lines are evaluated
between 10 and 450 GHz. This data is used to numerically
verify that the line impedance and phase velocity follow
the separation of frequency and spatial dependent variables
specified in Eq. 4. The microstrip line parameters derived
from evaluating this family of models are summarized in
Table II. The EM simulations for this test case reveal that
employing finite thickness Nb in HFSS provides the closest
agreement to closed-form expressions for microstrip [2], while
more significant deviations are observed when modeling a zero
thickness Nb microstrip in HFSS, Sonnet or Designer. It is
evident from this example that some form of compensation
is needed to capture the propagation properties response with
the desired fidelity.

Fig. 2: Kinetic sheet inductance of a Nb film as a function
of frequency for superconducting microstrip line derived from
BCS theory [19].

TABLE II: Modeled microstrip line characteristics (90 GHz)

Approach Trace
Material

Ground
Material Zo (Ω)

Phase
Velocity

(108 m/s)
Analytical [2] ZT PEC ZT PEC 41.9 1.078
HFSS ZT PEC ZT PEC 41.3 1.044
HFSS FT PEC ZT PEC 41.8 1.083
Sonnet ZT PEC ZT PEC 42.2 1.079
Designer ZT PEC ZT PEC 44.1 1.077
Analytical [5] FT Nb ZT Nb 41.2 1.038
HFSS ZT Nb ZT Nb 43.4 1.018
HFSS FT Nb ZT Nb 41.8 1.044
Sonnet ZT Nb ZT Nb 43.6 1.045
Designer ZT Nb ZT Nb 45.5 1.058

IV. ZERO-THICKNESS FILM MODEL SCALING FUNCTION

While the finite thickness surface reactance model can
capture the propagation properties of the superconducting
microstrip line structure, the computation time can be signif-
icantly higher and even prohibitive when modeling complex
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circuit structures. To overcome this potential obstacle, Eq. 4
was used to evaluate the scaling function ξ from HFSS EM
simulations, which maps the impedance and phase velocity of
a finite thickness microstrip line onto a zero thickness film.

The scaling function is evaluated in two limiting cases.
First, both the superconducting trace and ground layers of
the microstrip are compensated with the same ξ value to
produce an equivalent response to a microstrip line using
a finite thickness film model. In another scenario, only the
superconducting trace layer is compensated and the ground
layer is modeled as a zero thickness perfect electric conductor.
Microstrip with Si substrate thicknesses of 0.45, 1.5, and
5µm were modeled with a line widths ranging from 2µm to
24µm. The scaling function, ξ, is determined by requiring the
zero and finite thickness line models to yield the same phase
velocity between 10 and 450 GHz with a fractional uncertainty
less than ±1% under a matched port impedance termination.

The simulation results demonstrate the phase velocity cor-
rection, ξ, can be approximated as a linear function of the
logarithm of the line-width to substrate dielectric thickness
ratio. See dashed line in Fig. 3. When the kinetic inductance
properties are only applied to the microstrip trace and the
ground plane is treated as PEC, further reduction in model
size can be achieved, however, the functional complexity of
the phase velocity correction ξ increases. See solid line in
Fig. 3 and note a break point in ξ is present near w/h ' 2.
This corresponds to a transition in field confinement from
being under the trace to less tightly bound in this region.
From a circuit perspective this corresponds to the change in
the characteristic impedance scale from low-to-high on the
microstrip line [2]. In HFSS, less than a 6% difference in the
characteristic impedance was observed over the range of zero
and finite thickness models explored here.

The microstrip line configurations were also solved in two
other EM software packages, Designer and Sonnet, to evaluate
the characteristics of ξ via a methods of moment simulation
approach. A similar functional form for ξ to that observed
with HFSS is obtained using the method of moment analysis
by Sonnet, see Fig. 4. In Designer, the kinetic inductance
is applied as a constant surface impedance and for the 2D
microstrip line structure, a reference frequency of 100 GHz is
adopted.

V. MICROSTRIP FILTER SIMULATION

To quantify the validity and accuracy of the zero thickness
scaling function in a representative application, the baseline
S-parameter responses of a superconducting Nb microstrip
transmission line filter with zero and finite thickness boundary
conditions are calculated with HFSS. See Fig. 5 (top) for
the microstrip filter’s layout. Without correction, the zero
thickness model produces ∼4% shift in the 3dB corner fre-
quency compared to a finite thickness model. See middle
panel in Fig. 5. To correct for this systematic deviation, the
appropriate scaling function, ξ, is applied to the zero thickness
superconducting film layer. The magnitude of the scaling
function, ξ, was evaluated for each microstrip line width as
dictated by the relationship derived from Fig. 3. The modeled

Fig. 3: Dimensionless scaling function, ξ, for microstrip as
a function of line width over substrate thickness (HFSS: Si
substrate t1 = 0.29µm, εr = 11.55). Data is presented for
two cases: trace and ground plane layer compensation (dashed
line) and trace compensation with a PEC ground plane (solid
line). A breakpoint in the function ξ occurs in the second case
near w/h ' 2, where the field confinement transitions from
being largely under the trace to less tightly bound to the line.

Fig. 4: Dimensionless scaling function, ξ, for microstrip as a
function of line width over substrate thickness derived from
Designer and Sonnet (Si substrate t1 = 0.29µm, εr = 11.55).
Data is shown for microstrip trace compensation with a PEC
ground plane. HFSS simulation results are also plotted for ease
of comparison.
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S-parameter response using a zero thickness film and ξ are
in agreement with the finite thickness model. The observed
shift in the filter’s 3 dB corner frequency is less than 1%. In
addition to tests performed in HFSS, the zero thickness scaling
function approach was validated in Sonnet and Designer. The
corresponding ξ value was evaluated for each microstrip line
and applied to the trace layer while the ground plane remains
a PEC.

The simulation results (Fig. 5; lower panel) show that the
simulation in Sonnet produces similar S-parameter responses
to that observed in HFSS, while the filter response in Designer
remains relatively accurate in the vicinity of the reference fre-
quency of 80 GHz where each ξ was evaluated and gracefully
degrades with increasing spectral offset. This limitation could
be addressed by varying the reference frequency, ωo, for each
simulation frequency of interest. See Table III for a summary
of HFSS simulation durations. The Sonnet and Designer
models are zero thickness and their simulation times are 23:15
and 3:01 (minute:second) respectively and independent of the
use of the scaling function. One observes the model with
finite thickness films essentially doubles the processing time
required relative to the zero thickness model.

TABLE III: HFSS simulation time of the band-stop filter
geometry specified in Figure 5. The S-parameter convergence,
∆S, value is achieved within the indicated simulation time.
Simulations were carried out on a computer with Intel Xeon
E5-1650 processor, 64 GByte of memory, and multi-processing
feature enabled for eight CPU cores.

Conductor
Material

Convergence
Criteria, ∆S

Simulation time
(minute:second)

2D PEC 0.018 19:44
2D Nb
Uncompensated 0.016 30:01

2D Nb
Compensated 0.012 37:19

3D Nb 0.014 50:40

VI. CONCLUSION

A zero-thickness sheet kinetic inductance scaling function
is proposed to reduce EM simulation time for complex super-
conducting microwave circuits while maintaining comparable
accuracy to results obtained with models containing finite-
thickness films. Strategies for implementing the zero-thickness
scaling function in three commonly employed EM simulation
software packages were presented, however, this technique is
broadly applicable to other EM numerical modeling tools.
Variations on this theme are applicable to modeling other
single-mode superconducting transmission line topologies.
Experience suggests that the strategy retains utility in the
limit the inter-line couplings represent a perturbation on the
dominant mode of propagation. The accuracy of the numerical
approach enables reliable design of superconducting filters
for bolometric passband definition in broadband ground-based
millimeter wave astronomical polarimetry and related applica-
tions. Improvements over the results described can be achieved

Fig. 5: (Top) Transmission line filter realized on 5µm-thick
silicon substrate used to validate the superconducting scaling
model. The filter stub lengths (l1 = 499, l2 = 457, and
l3 = 459µm) and inter-section delay line (l12 = 298 and
l23 = 282 µm) are indicated. The structure’s overall dimen-
sions are 620µm × 415µm. (Middle) Simulations of niobium
superconducting microstrip lines with finite and zero thickness
models implemented in HFSS. Without compensation, the
lower edge of the filter is shifted by ≈ 3 GHz or a fractional
error ≈ 0.03, which represents a significant design bias in the
realization of superconducting filters. (Bottom) Comparison
of the compensation factor method performed with selected
electromagnetic simulation tools. For Designer notice the
superconductor’s surface reactance is a constant set by the
80 GHz reference frequency.

thru refinement of the underlying convergence parameters
employed in defining and extracting the transmission line
scaling function.
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