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     Discovery and early work:  Pluto was discovered 

in 1930 at Lowell Observatory in the belated resump-

tion of a wide-field photographic search originally be-

gun at Percival Lowell’s direction prior to his death in 

1916.  Photometry in the 1950s [1] established the ro-

tation period of 6.4 hours and a color redder than the 

Sun, but the mass, density, size and albedo were un-

known.  Near-infrared photometry in 1976 indicated 

the presence of CH4 frost, suggestive of a relatively 

high surface albedo and a diameter comparable to the 

Moon [2].  The large satellite Charon was discovered 

in 1978 [3], followed by an epoch of mutual transits 

and occultations of Pluto and Charon from 1985 to 

1990, as viewed from Earth.  These events resulted in 

reliable sizes and masses of the two bodies, as well as 

the orbit of Charon.  The mutual events also demon-

strated that Pluto and Charon are in locked synchro-

nous rotation and revolution, a configuration unique 

among the planets [4].  The atmosphere of Pluto was 

discovered in 1988 from a stellar occultation observed 

from the Kuiper Airborne Observatory and ground 

stations [5,6], with indications of a haze layer (or a 

temperature inversion) in the lower atmosphere.  Sub-

sequent stellar occultations showed that the extent of 

the atmosphere is variable on a timescale of a few 

years.  The spectroscopic detection of N2 and CO ice in 

1993 [7] demonstrated that the atmosphere must be 

primarily composed of N2, with CH4 and CO as minor 

components; the spectroscopic detection of gaseous 

CH4 was reported in 1994 [8].  

     New Horizons Mission:  Discussions with NASA 

for a spacecraft mission to Pluto began in 1989 [9-11], 

and after several studies, proposals, and programmatic 

changes, a mission to the Kuiper Belt and Pluto was 

recommended by the first Planetary Decadal Survey at 

the highest priority for NASA’s first New Frontiers 

mission [12].  New Horizons was selected in 2001 in 

competition with other mission proposals. 

     Scientific Results:  NASA’s New Horizons mission 

to the Kuiper Belt and Pluto was launched on January 

19, 2006, and after flying by Jupiter some 13 months 

later, passed by Pluto at a distance of 12,500 km and 

Charon at a distance of 28,800 km on July 14, 2015.  

Four small satellites previously discovered with the 

Hubble Space Telescope were imaged, and their rota-

tion periods measured.  Details of the spacecraft, in-

struments, and the flyby are given in [9-11], with an 

early report on the science results in [13], while many 

subsequent papers, not fully referenced here, give de-

tails.  The diameters of Pluto and Charon were refined 

to 2376 and 1210 km, respectively, and the densities 

were found to be 1.854 and 1,702 g/cm3, respectively 

[13].  The complexity of Pluto’s surface and atmos-

phere, as well as the near-space environment, revealed 

by New Horizons far exceeded predictions and expec-

tations.  The degree of current and recent geological 

activity was not anticipated for this relatively small, 

cold, and ancient planetary body [14].  In order to sup-

port the range of vertical relief of ~6 km observed 

across the surface, the most probable bedrock material 

is H2O ice.  Some exposures of H2O ice are seen, but 

most of the bedrock is overlain by a veneer of much 

more volatile N2, CH4, and CO, all of which are spec-

troscopically detected [15-17].  The 1000-km wide 

nitrogen glacier (Sputnik Planitia) is being fed by ice 

flows from nearby highland sources, while the glacier 

itself is slowly convecting [18], with surface expres-

sions of convective cells, wind-blown dunes of dark 

material [19], and no evidence on the surface of impact 

craters larger than a few hundred meters.  Sputnik 

Planitia formed as a large impact basin, thinning the 

planet’s crust and creating a gravity anomaly [20].  The 

anomaly was enhanced as solid N2 accumulated in the 

basin [21].  Although there are other scenarios for the 

evolution of Sputnik Planitia, the net effect of the al-

tered gravity field was to cause Pluto to reorient so as 

to line up exactly with Charon at the antipode of the 

planet’s opposite hemisphere.  Pluto appears to have 

once had a global subsurface ocean, which may persist 

to the present, with some regions of the surface sug-

gesting relatively recent (<109 y) episodes of ejection 

of cryovolcanic fluids from subsurface reservoirs.  

Pluto’s multiple layers of atmospheric haze and lower 

escape rate were unexpected [22].  The yellow and red-

brown colors widely distributed on Pluto’s surface are 

suggestive of a tholin composed of complex organic 

chemicals, some of which have fallen from the atmos-

phere as haze particles, with some created by sunlight 

and solar wind particles acting on the CH4 and N2 ices 

covering much of the surface.  The color properties of 

much of Pluto’s surface are closely similar to those of 

tholin produced in the lab by energetic processing of a 

Pluto-mix of ices (CH4, N2, CO), and consisting of a 

mix of many organic molecular structures [23-25]. 

     Pluto shows evidence of major changes in atmos-

pheric pressure on Milankovich (~million-year) time-
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scales due to precession of the rotational pole, possibly 

resulting in past episodes of running or standing liquid 

on the surface [26, 27].  The atmosphere is in vapor 

pressure equilibrium with the volatile surface ices and 

is well mixed horizontally above ~10 km.  The tropo-

pause is variable over location and time of day.  The 

photochemical products C2H2, C2H4, and C2H6 were 

detected.  As many as 20 haze layers were seen; the 

haze may contribute to cooling the atmosphere [28].  In 

forward scattering the atmosphere is blue as a result of 

Rayleigh scattering.   

     Before the New Horizons flyby the estimates of the 

atmospheric escape (presumed to be mostly N2 mole-

cules) ranged from as low as 1.5 x 1025 s-1 to as high as 

2 x 1028 s-1. Combining these atmospheric escape rates 

with Voyager and New Horizons observations of the 

solar wind at 33 AU produced estimates of the scale of 

the interaction region from 7 to 1000 Pluto radii [29]. 

Observations by the SWAP instrument revealed a sur-

prisingly small interaction region, confined on its up-

wind side to within ~6 Pluto radii [30, 31]. The occul-

tation measurements by New Horizons revealed Pluto’s 

atmosphere to be colder and less extended than ex-

pected, which reduces the escape rate to only 6 x 1025 

molecules s-1 and the main escaping gas is now thought 

to be mostly methane rather than nitrogen [32]. The 

surprisingly small size of the interaction region is con-

sistent with a reduced atmospheric escape rate as well 

as a particularly high solar wind flux, enhanced by a 

factor of ~4 due to a passing compression region in the 

solar wind. 

     The cratering record on both Pluto and Charon 

demonstrates a paucity of small impactors in their re-

gion of the Solar System, suggesting an early depletion 

of small fragments of colliding Kuiper Belt bodies 

[33].  The generally gray-colored surface of Charon is 

dominated by H2O ice, but an additional component 

identified as an ammonia hydrate or ammoniated salt is 

found in many locations.  The red-brown color of the 

north polar region is interpreted as a tholin formed by 

UV processing of CH4 ice derived from methane es-

caping from Pluto’s atmosphere and frozen on the po-

lar region during prolonged darkness [34].  Charon 

exhibits a very large equatorial extentional tectonic belt 

that may have formed by the freezing of a former liquid 

H2O ocean [35].  

     Pluto’s four small irregularly shaped icy satellites, 

Styx, Nix, Kerberos, and Hydra, range in size 

from16x9x8 km (Styx) to 65x45x25 km (Hydra), and 

all are in chaotic rotation states.  Nix and Hydra have 

spectral bands of H2O ice and an ammonia signature, 

while the other two were not measured with the imag-

ing spectrometer [36]. 

     Legacy:  The scientific results of New Horizons at 

Pluto and its satellites have changed our perception of 

planetary bodies in their size range, demonstrating that 

geological activity on both large and small scales can 

occur long after the epoch of planet formation.  A few 

other dwarf planets comparable in size to Pluto and 

Charon are known in the transneptunian population, 

and the extraordinary discoveries by New Horizons 

inform open questions of their origins and physical-

chemical characteristics that will remain until they, too, 

can be explored. 
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