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Abstract  Observations of Neptune with the Kepler Space Telescope yield a 49-day light curve with 98% coverage at a 1-minute cadence.  A significant signature in the light curve comes from discrete cloud features.  We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-meter and Hubble Space Telescope.  The direct comparison validates the zonal wind profile and cloud feature variability information extracted from the light curve. Neptune’s clouds vary in location and intensity on short and long time scales, with large discrete storms dominating the light curves; smaller or fainter clouds contribute to its variability.  This has implications for the interpretation of information extracted from light curves of directly imaged exoplanets and cloudy brown dwarfs.         Keywords: planets and satellites: atmospheres (Neptune); planets and satellites: gaseous planets (Neptune); (stars:) brown dwarfs; stars: oscillations; stars: rotation; (stars:) starspots   
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1. Introduction 1  2 Brown dwarfs are substellar objects with masses below about 75 Jupiter masses, i.e., 3 objects that cannot sustain hydrogen fusion (Chabrier et al. 2000).  Brown dwarfs 4 share many aspects with giant planets; both classes are predominantly composed of 5 hydrogen and helium with an admixture of other elements; both have cool (at least 6 by stellar standards) atmospheres; both have atmospheres with molecules and 7 condensates that strongly influence the transport of energy by radiation.  Review 8 articles by Marley et al. (2013) and Burrows et al. (2001) compare and contrast the 9 atmospheres of brown dwarfs and giant planets in more detail. 10  11 Many have searched for rotational and dynamical variability in brown dwarfs, 12 dating back to shortly after their discovery (e.g., Tinney and Tolley 1999, Bailer-13 Jones and Mundt 2001, Gelino et al. 2002).  Recent studies reveal photometric 14 variability of many brown dwarfs in the mid infrared with the Spitzer Space 15 Telescope (e.g., Metchev et al. 2015) and near-infrared spectral variability the 16 Hubble Space Telescope (e.g., Apai et al. 2013, Yang et al. 2015).  The most extensive 17 ground-based survey was by Radigan et al. (2014), who found that L-type to T-type 18 transition brown dwarfs are both more likely to be variable and show higher 19 variability amplitudes than earlier and later spectral type objects.  20  21 Radigan et al. (2014) reviewed the long history of variability searches in a variety of 22 spectral bandpasses with a multitude of time baselines and sensitivities. Despite the 23 diversity in these searches, the unmistakable conclusion is that brown dwarfs are 24 often variable.  Amplitudes ranged from a typical few percent to the current record 25 of 26% variation in J band over about 8 hours by the T1.5 dwarf 2MASS 26 J21392676+0220226 (Radigan et al. 2012).  This variability is typically attributed to 27 inhomogeneous cloud cover resulting in a periodic brightness variation as the 28 brown dwarf rotates.  29  30 A similar phenomenon of rotational modulation is seen for giant planets in our own 31 solar system, extending back over a hundred years to visual reports of planetary 32 brightness modulations (e.g., Cassini 1665).  Ironically, for the larger giants, Jupiter 33 and Saturn, “disk-resolved” measurements are extremely challenging because these 34 objects are resolved by even small telescopes.  For these reasons it has been difficult 35 to place the abundant brown dwarf variability data in the context of giant planet 36 variability.  Gelino and Marley (2000) computed artificial visible and mid-infrared 37 light curves for Jupiter by combining multiple full disk images, mapping them onto a 38 sphere, and computing the expected rotational modulation in brightness.  Rotational 39 modulation was maximized at IR wavelengths due to maximum contrast for large 40 storms, like the Great Red Spot, suggesting that similar results would hold for brown 41 dwarfs with patchy clouds (Karalidi et al. 2015). 42  43 To help fill this gap in light curve measurement of giant planets, our collaboration 44 observed Neptune with the repurposed Kepler Space Telescope as part of the K2 45 extended mission (Howell et al. 2014). We chose Neptune because it is bright 46 



 4

enough to extract a light curve with good photon statistics, but not so oversaturated 1 for excess bleeding to substantially damage Kepler photometry.  In addition, it has 2 exhibited clear rotational modulation in the past (e.g., Joyce et al. 1977, Lockwood et 3 al. 1991).  Another key result from the Kepler prime mission was statistics of the 4 size distribution of exoplanets, finding that hundreds were Neptune-sized (e.g., 5 Batalha 2014).  Thus, these observations provide ground truth for future 6 photometry of exo-Neptunes (e.g., by space coronographs) and directly imaged 7 exoplanets, in general, as well as brown dwarfs. 8  9 Kepler observations of Neptune were acquired from November 15, 2014 to January 10 18, 2015.  Neptune and its large moon Triton were visible with 98% coverage and a 11 1-minute observation cadence starting December 1, 2015.  From this high cadence 12 data set, we generate a high-precision light curve over a 49-day period.  Kepler 13 observes over visible wavelengths (e.g., Rowe et al. 2009, Koch et al. 2010) from 14 ~430 to 890 nm, and thus the light curve represents variations in Neptune’s 15 reflected solar flux, which necessarily combines variations both in Neptune’s 16 reflectivity and in the Sun itself.   Neptune, however, is a resolved object in ground 17 and space-based facilities.  Thus, any inferred measurements from the light curves 18 can be directly compared with known cloud features in the atmosphere, effectively 19 providing ground truth for the Kepler light curve inferences.   20  21 In this paper, we described the results pertaining to Neptune’s atmosphere, which 22 dominates the Kepler light curve.  Separate papers will address the photometric 23 signal from the Sun and the signal from Neptune’s interior. We show correlation of 24 the Kepler light curve output with contemporaneous Keck and Hubble Space 25 Telescope imaging data and compare with 20 years of Neptune cloud observations.  26 Short-term temporal evolution in the light curve is also addressed.  Finally, we 27 discuss the implications for analyzing light curves of other potentially cloudy 28 atmospheres. 29  30 
2. About Neptune Light Curves  31  32 To first order, Neptune’s rotational signature dominates the signature in the Kepler 33 light curve, and stems from a few bright discrete features.  Such rotational 34 modulation has been seen in light curves with far shorter baselines in the past (e.g., 35 Lockwood et al. 1991).  Note that Neptune’s internal rotation rate is actually poorly 36 defined, and was initially based on radio emissions detected by Voyager 2 that 37 repeated every 16.11+/- 0.05 hours (Warwick et al. 1989).  Given only this brief 38 flyby, it is still unclear if that represents the true core rotation rate; some recent 39 studies have suggested that very stable polar cloud features may better constrain 40 the rate to 15.96630 +/- 0.00003 hours (Karkoschka 2011).  For consistency, we 41 adopt the usual value of 16.11 hours.  42  43 Assuming the 16.11-hour rotation rate, Voyager and subsequent ground-based 44 observations showed that Neptune’s apparent zonal winds vary with latitude (e.g., 45 Sromovsky et al. 1995, 2001a, 2001b, Hammel and Lockwood 1997, Sanchez-Lavega 46 
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et al. 2015).  Thus, Neptune light curves may reveal differential rotation as features 1 at various latitudes brighten and fade.  If a bright cloud feature moves with the local 2 zonal wind, periodogram analyses can, to first order, be used to extract that cloud’s 3 latitude.  A subtlety is that sometimes Neptune’s brightest features actually track 4 large disturbances at other latitudes, e.g., the bright Companion Cloud to Neptune’s 5 Great Dark Spot was known to track the latitude of the dark feature, not the latitude 6 of the bright companion itself (e.g., Smith et al. 1989, Sromovsky et al. 2011a).  Thus, 7 some caution must be exercised when extracting velocities from periodograms.  8  9  10 
3. Kepler Light Curve Analysis 11  12 The raw Kepler data were processed by first subtracting the constant background 13 star field.  Neptune saturates the CCD, but only to the level that adjacent pixels are 14 illuminated and photons are transferred but not lost.  Thus, the signal can be 15 summed into a disk-integrated value for each exposure.  Periodic spacecraft motions 16 and reaction wheel desaturations are removed, along with small discontinuities 17 caused by Neptune’s motion over a pixel.  These corrections result in photometry 18 with a typical noise level of about 100 parts per million or better.   19  20 The full data set includes 30-minute cadence data over a 70-day time period, but any 21 remaining data discontinuities cannot be corrected at this cadence because real 22 signals may be removed.  However, the 49-day observations at 1-minute cadence 23 allow for data discontinuities to be corrected.  Figure 1 (top panel) shows the final 24 extracted light curve as relative flux variations, after any remaining discontinuities 25 and long-term trends have been removed.  This curve shows a clear periodic signal, 26 and a possible beat frequency, indicating more than one period is likely present.  27 The curve is not perfectly smooth, with many small variations on top of the main 28 signals.  There is also some indication of time variability in the brightness and 29 frequency of the variations (Fig. 1, bottom panel).  This shows both the value, and 30 complexity, of a long duration light curve covering ~73 rotations of the planet. 31  32 A Lomb-Scargle periodogram analysis was performed on the 49-day data set, as 33 shown in Figure 2.  Spectral power >22 indicates a false alarm probability of <0.1%.  34 Distinct spectral power peaks are seen between 15 and 19 hours, with the most 35 significant peaks found at 16.8, 17.9 and 18.3 hrs.  None of these peaks correspond 36 to the periods of Neptune’s major moons, nor their harmonics.  Horizontal 37 oscillations detected in prior Keck observations (Martin et al. 2012), potentially 38 linked to tidal forcing by Triton, did not produce a corresponding 7.24-hour signal 39 in our analysis of the photometric light curve.  The peaks in the periodogram, if 40 assumed to be created by discrete cloud features, can be used to infer the latitude of 41 those features based on a symmetric zonal wind profile (Sánchez-Lavega et al. 42 2015), and roughly correspond to latitudes of 45°, 28.5° and 21.5° planetographic 43 latitude, respectively.  Since the wind profile is symmetric around the equator, these 44 results cannot distinguish between northern or southern features, and we neglect 45 any dispersion in the zonal velocities for the moment.  We can break the 46 
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hemispheric degeneracy with direct imaging observations of Neptune’s cloud 1 locations. 2  3 
4. Neptune Cloud Activity During the Kepler Observations 4  5 We obtained disk-resolved imaging to provide ground-truth imaging for the 6 photometry and to break the north-south degeneracy in the periodogram.  Figure 3 7 shows rectilinear maps extracted from images obtained on 9 and 10 January 2015 8 with the Keck 2 10-meter telescope.  We used the NIRC2 camera at H band (1.65 9 micron); this wavelength region is sensitive to relatively high clouds in the 10 atmosphere, similar to visible red wavelength, see Figure 4.  Neptune typically 11 shows less brightness variation at wavelengths shortward of 0.7 microns, therefore 12 red and near-infrared wavelengths show most of the atmosphere’s reflected light 13 variability from distinct clouds.   Past studies have shown that discrete clouds may 14 be at altitudes as high as the 60-230 mbar pressure level, with the main methane 15 haze/cloud layer near 1 bar pressure and other ices (e.g., NH3, H2S) possible at 16 deeper levels (higher pressures) (e.g., Sromovsky et al. 2001a). 17 
 18 A particularly bright discrete feature is seen at 80° W longitude in both images, 19 although it is on the limb on the 9 Jan. image. From this single image, one cannot tell 20 whether this is a “complex” that extends over many latitudes but moves as one 21 feature (e.g., the 1994 northern hemisphere complex; Hammel et al. 1995), or 22 whether it is two separate features at 40° and 50° south that happen to align on this 23 night.  The very strong periodogram signature at a period corresponding to 45°, 24 however, strongly suggests that this is indeed a “complex” that may correspond to a 25 Great Dark Spot at 45° S, and that these bright features are companion clouds. 26  27 Another group of features that is bright and isolated enough to give a rotational 28 signature is seen at 290° W on 9 January 2015, extending from about 30°S to 45° S.  29 These features would also contribute to the periodogram signal at 45°.  A steady 30 smattering of features as function of longitude appears near latitude 28°S, which is 31 consistent in the aggregate with the periodogram signature with that latitude. 32  33 The feature on 9 January at 50° west longitude (70° S) is likely the South Polar 34 Feature (SPF) which has been imaged on numerous occasions (Smith et al. 1989, 35 Rages et al. 2002, Karkoschka 2011).  The rotation rate of this feature is quite stable 36 at 15.97 hours (Karkoschka 2011), and does not match the zonal wind speed at this 37 latitude, which has a period of 12.7 hours (Sanchez-Lavega et al. 2015).  It is not 38 readily observed in the Kepler periodogram, Fig. 2., though its motion is consistent 39 with the 15.97-hour period, as is discussed later. 40  41 Comparing to the remaining features in the periodogram and their presumed 42 latitude, there is no obvious corresponding cloud feature near 20° N or S.  The Keck 43 data were acquired near the end of the Kepler 49-day time frame, so it is possible 44 that features may have evolved in brightness or migrated in latitude over the Kepler 45 time frame.  Additionally, the mean wind profile may not be an accurate 46 
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representation of the velocity of the visible features, as is noted for the SPF.  Lastly, 1 these images do not represent the visible wavelength appearance of the planet 2 (which senses a lower altitude) from which we derive the light curve. 3  4 
5. Other Neptune Observations 5  6 Hubble data were also acquired in September 2015 as part of the “Hubble 2020: 7 
Outer Planet Atmospheres Legacy” (OPAL) program (Simon et al. 2015).  The OPAL 8 program generates two global Neptune maps each year using the Wide Field Camera 9 3 (WFC3). A main goal of OPAL is to provide Neptune data for long duration time-10 domain studies of cloud activity and wind field variability, making it a perfect 11 companion to this work.  Although the data were acquired well after the Kepler 12 observations, they enable an independent high-spatial-resolution look at the clouds 13 at visible and near-IR wavelengths to show how much they vary over 9 months. 14  15 Figure 5 shows Hubble observations of a complete rotation of Neptune, created 16 from 4 orbits. Very similar cloud structure is seen in the Keck H-band (Fig. 3) and 17 Hubble 845-nm (Fig. 5, top), epochs, including the large storms system near latitude 18 45° S and the bright SPF at latitude 70° S.  However, fewer features are also 19 observed near 25° N, implying some variability since January 2015.  The color 20 comparison (bottom panel in Fig. 5) shows that many of the cloud features are 21 muted at shorter visible wavelengths, and darker bands also appear between 40° to 22 50° S and 60° to 70° S.  Thus, a panchromatic visible light curve would be dominated 23 by the variable clouds at the longer wavelengths (i.e., by the features that appear 24 white in the composite). 25  26 Observations of a second rotation of the planet were not completed due to a 27 spacecraft tracking anomaly; only part of the second map was obtained leaving a 28 longitude gap from 235 to 308° W.  However, many of the cloud features were 29 captured, allowing for feature motion measurements; these generally match the 30 wind profile in Fig. 5, with the exception of the SPF.  Small variations are expected, 31 as larger cloud features can also have internal rotation and drift rates that do not 32 represent the mean zonal wind.  This is particularly true of the SPF, which drifts at a 33 much slower rate than the zonal wind at that latitude.  Previous cloud motion 34 measurements indicate velocity dispersions of 200 m/s or higher, indicating much 35 variability in feature motions; it is unclear if this also applies to the true zonal wind 36 field as feature motions may not be identical to the zonally averaged wind (Martin et 37 al. 2012, Fitzpatrick et al. 2014). 38  39 In addition, the 845-nm filter was sampled repeatedly within the orbits, giving 40 additional coverage of features and full disk measurements.  Some small changes in 41 cloud morphology were observed, but these are unlikely to affect a disk-integrated 42 light curve.  However, 25 exposures were obtained in the 845-nm filter, as it was 43 repeated throughout each orbit, and we used the full-disk brightness to generate the 44 light curve shown in Figure 6 (see the Supplemental Online Material for a full 45 animation of the images and light curve).  Although a periodic signal with a 46 
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minimum to maximum amplitude of ~16% can be seen in this light curve, a Lomb-1 Scargle periodogram cannot pull out a unique period because of the sparse coverage.  2 The dashed line indicates the 16.8-hour period expected if the 45° S feature 3 dominated this light curve, and red and blue curves show normalized Kepler light 4 curves from Days 6 and 25, respectively.  The Hubble light curve represents the 5 maximum variation we would expect to see, as cloud contrast is maximized.  Full 6 disk counts in the 467-nm filter, from the darkest to brightest views, give a 0.2% 7 variation in total integrated counts, at the limit of the WFC3 photometric accuracy 8 (Kalirai et al. 2009, 2010).   9  10 The smaller cloud signal observed at shorter wavelengths is due to the atmospheric 11 levels sensed by these filter bandpasses, as shown in Fig. 4.  The shortest 12 wavelengths are dominated by Rayleigh scattering, which gives an overall bright 13 atmospheric background, reducing contrast for discrete cloud features.  At longer 14 wavelengths, Rayleigh scattering is reduced and particle scattering above the 1-bar 15 pressure level can be more easily detected.  At methane and other gas absorption 16 bands, photons are absorbed before reaching deeper cloud levels, and higher clouds 17 show high contrast from the rest of the atmosphere, for example at 890 nm.  Thus, at 18 shorter wavelengths, or with a panchromatic visible bandpass, the light signal from 19 discrete clouds is much more muted than at red and infrared continuum or 20 absorption band wavelengths. 21  22 
6. Discussion 23  24 The data acquired in 2015 from Keck and Hubble show that the planet varies on a 25 timescale of hours to months.  The largest feature, at 45° S has been quite stable, 26 however, as have the location of some of the bands of cloud activity.  On the other 27 hand, the planet can show dramatic variability in clouds.  Figure 7 shows a similar 28 map from Hubble data acquired in 2011 at 845 nm.  Here there are no complete 29 bands of clouds, but many more discrete clouds.  During the Voyager 2 flyby in 1989 30 there were few bright clouds, and Neptune’s dominant cloud features were the 31 Great Dark Spot near ~15° S, the SPF near 70° S, another dark spot near 55° S and a 32 bright cloud near 45° S (Smith et al. 1989).  However, Neptune’s more usual 33 appearance includes bands of activity with discrete storms.  Table 1 provides an 34 incomplete summary of cloud activity on Neptune over the past 20 years to show 35 that some latitudes have fairly constant cloud activity, but many more evolve with 36 time.  In several of these cases, cloud evolution was seen over just a few days or 37 even hours (Sromovsky 2001b, Fitzpatrick 2014). 38  39  40 Table 1. A limited 20-year summary of cloud detections 41 Date Facility North South Reference 1994 Hubble Discrete dark feature at 30°, bright features at Bright features at 30° and 45° S  Hammel et al. 1995 
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27° N to equator 1996 Hubble/ NASA’s IRTF Discrete features near 20° to 40° N Bands near 20° to 40° w/ features, feature near 60° S  Sromovsky et al. 2001a 1998 Hubble Features between 20° and 50° N Band near 45°, features at 15° to 40° S Sromovsky et al. 2001b 2001 Keck  Band at 28° N, sporadic bright clouds at 36° N Bands at 23°, 31°, 36°, 45° and 49° S Martin et al. 2012 2001 Hubble  Bright feature at 70° S Rages et al. 2002 2003 Keck, VLA Bands between 25° and 40° N Bands between 30° and 50° S, discrete features near 60-70° S 
de Pater et al. 2014 

2009 Keck  Bands at mid latitudes, features at 40° N Large feature at 65° S Fitzpatrick et al. 2014 2011 Hubble Broken bands, many features Broken bands, features from 10 to 50° S this paper 

Jan. 2015 Keck Bands from 25° to 40° N 30° S, features at 40° to 50° S this paper Sep. 2015 Hubble Broken band 30° to 40° N, features at 20° N Bands from 25° to 40° S, features at 45° and 70° S this paper 

 1  2 In addition to changing cloud activity, it has been noted that longer-lived features 3 can oscillate in latitude and longitude.  Larger features in the Voyager 2 images 4 showed that features near 21°, 42° and 54° S latitude could oscillate by 2° to 4° 5 latitude and 8° of longitude (Sromovsky 1991).  With the long Kepler coverage, it is 6 possible that different periods, corresponding to different latitudes, could be found 7 if binned over smaller time intervals rather than searched over the entire 49-day 8 duration. Figure 8 shows the same Lomb-Scargle periodogram analyses run over 9 3.5-day intervals (5.25 Neptune rotations).   10  11 Significant spectral power is seen in every segment, but none show multiple peaks, 12 and the variations are too large to represent a single cloud feature’s motion.  Rather, 13 different features may dominate on different days, as they brighten or spread and 14 then dissipate.  For example, the signature of the 70° S feature may be dominating 15 the signal at Days 45-49, even though it is not seen in the full periodogram in Fig. 2. 16 This is not unusual, as observations from Keck and Hubble over 2000 to 2001 17 showed that the SF features can come and go, evolving on timescales as short as 30 18 



 10

hours and visible in about 20% of observations (Rages et al. 2002).  Additionally, 1 noise may be preventing clean retrievals of multiple features over so few rotations 2 of the planet. 3  4 The observed Neptune variability has implications for brown dwarf light curve 5 analyses.  While some brown dwarfs show remarkably consistent light curves (e.g., 6 Gizis et al. 2015 and examples cited therein), the light curves of other brown dwarfs 7 evolve with time.  In their study with the Spitzer Space Telescope of photometric 8 variability of L3-T8 dwarfs, Metchev et al. (2015) found that about half were 9 variable in IRAC bands 1 and 2 and of these about 1/3 showed rapid light curve 10 evolution (over timescales of hours).  11  12 The largest amplitude variability among brown dwarfs occurs at the L to T type 13 transition where the thick cloudy atmospheres of the late L dwarfs transition to the 14 relatively cloud free spectra of the mid to late T dwarfs.  For example, the J band 15 thermal emission of the T2.5 brown dwarf SIMP J013656.57+093347.3 shows peak 16 to valley variations as large as 5% with a period of a few hours (Artigau et al. 2009). 17 The dwarf’s light curve clearly evolves with time, exhibiting clear morphological 18 differences in a few dozen rotations. Artigau et al. (2009) attribute the variations to 19 evolution of patches of clear and cloudy regions in the atmosphere. Likewise 20 Radigan et al. (2012) found large (26%) variations in the JHK thermal flux from the 21 T1.5 dwarf 2MASS J21392676+ 0220226 with a period of about 8 hours. The light 22 curve shape of this object also evolves over a few rotation period and Radigan et al. 23 also attribute this to evolving photospheric clouds.  24  25 In perhaps the best known example of T dwarf variability, Gillon et al. (2013) 26 monitored the L7.5/T0.5 binary WISE J104915.57-531906.1, commonly known as 27 Luhman 16AB. They found 11% variability in the atmosphere of the cooler (T0.5) 28 component that notably evolved over 12 nights of observations.  Crossfield et al. 29 (2014) later used Doppler imaging techniques to resolve individual bright and dark 30 spots over the disk of the T dwarf, supporting the interpretation that photospheric 31 clouds were responsible both for the periodic modulation of the light curve as well 32 as its evolution in time.  33  34 It is interesting to consider the light curve evolution of Neptune in this context.  35 First, it is worth repeating that the Neptune variability detected by K2 arises not 36 from variations in the thermal flux but rather the distribution and reflectivity of the 37 global cloud deck (although temperature contrasts within the atmosphere may well 38 play a role in the evolution of the cloud features).  The main component of the 39 Neptune light curve (Fig. 1) is the dramatic bright spot and this feature is long lived 40 and is responsible for the principal component of the variation over a single rotation 41 (Fig. 2). However, multiple smaller features both produce irregularities in the light 42 curve and seem to evolve over more rapid timescales, at time as quickly as within a 43 rotation or two (Fig. 8).  Without the large spot the light curve would be far more 44 irregular, and without the varying smaller spots the rapidity of the evolution would 45 be much less.   46 
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Stellar spot modeling (e.g., Mosser et al. 2009, Karalidi et al. 2015) can extract 1 latitude information depending on the stellar inclination, and assumptions about 2 spot size and albedo.  At 90° inclination, no transits/modulations are seen, and at 3 zero inclination, all spots transit in half a rotation period; other inclinations allow 4 reasonably constrained retrieval of spot latitude to +/- 10° to +/- 20° (Mosser et al. 5 2009).  As Neptune has a tilt of 28°, this type of spot-latitude modeling would 6 provide an interesting comparison to our work.   7 It should also be noted, however, that Neptune has large, latitude-dependent zonal 8 wind velocities of several hundred meters per second, and some clouds move at the 9 corresponding zonal velocity, while others do not.   Without prior knowledge of 10 Neptune’s zonal wind field, we could not exact assign latitudes to any particular 11 period in the light curve, and no features appeared at the presumed 16.11-hour 12 rotation period.   For comparison, Jupiter has lower maximum zonal velocities 13 (~150 m/s), lower obliquity (3°), and its storms typically drift at lower velocity than 14 the corresponding zonal winds (e.g., Beebe et al. 1989, Simon and Beebe 1996).  15 Here, modeling a short duration light curve does extract Jupiter’s rotation rate and 16 Great Red Spot latitude, though other spots are not obvious due to small size, low 17 contrast, and degeneracy in the latitude retrievals (Karalidi et al 2015).  In principle, 18 longer cadences could provide some zonal wind information, at least for latitudes 19 with high contrast, distinct, cloud features, though they will be biased by the storm’s 20 own motions.  This highlights the importance of simultaneous, resolved, imaging 21 when possible. 22 Perhaps the diversity seen among brown dwarf light curves, with some exhibiting 23 relatively stable sinusoidal variations while others show either no regularity or 24 rapidly evolve, is likewise a consequence of the balance of large, high contrast, and 25 smaller, more dynamic features. A logical next step would be to compare the 26 observed Neptune variations to the predictions of a global climate model that could 27 investigate the atmospheric dynamics both of irradiated giant planets and brown 28 dwarfs, as well as to study long duration light curves from the other solar system 29 giant planets.  A statistical study of the types of weather patterns and their resulting 30 variability would inform discussions such as these. 31 
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Figure Captions:  Figure 1. The Kepler light curve of Neptune.  The top panel shows the full 49-day light curve, with normalized brightness variations.  The bottom panel shows several 5-day segments emphasizing the evolution of brightness variations with time.  Figure 2. Lomb-Scargle periodogram of Neptune derived from 49 days of Kepler observations.  The retrieved periodic signals are labeled with latitudes corresponding to that rotation period based on the zonal velocity curve given by Sanchez-Lavega et al. (2015); the features could be in either hemisphere. Our assumed Neptune internal rotation rate (velocity = 0 m/s) is shown by the dashed line (16.11 hrs, Warwick et al., 1989).  Figure 3. Keck H-band images of Neptune from 9-10 January 2015, covering most longitudes.  The top panels are unmapped images, and the bottom panels show the latitude and longitude coverage mapped at 2 pixels per degree. These show typical Neptune structure: bright bands of Neptunian cloud activity from planetographic latitude 25° to 40° in the northern and southern mid-latitudes, with occasional brighter features.  Figure 4. Spectral sensitivity and atmospheric transmission. Labeled curves show the total spectral sensitivity of Kepler and HST observations (Koch et al. 2010, Dressel 2015). The Keck infrared bandpass includes NIRC2 H-band filter transmission and detector quantum efficiency, but neglects the telescope optical path outside NIRC2. The atmospheric penetration depth, right axis, is the pressure level where a two-way optical depth of unity is reached in a cloud-free model of Neptune's atmosphere, including opacity from Rayleigh scattering and gas absorption (from Sromovsky et al. 2001a).  Figure 5. Hubble map of Neptune acquired 18 September 2015.  The top panel shows a global map constructed from 845-nm images.  The bottom is a visible-wavelength color-composite map (with the blue, green, and red channels mapped to 467, 547, and 657 nm, respectively). We overplot the smoothed zonal wind profile (Sánchez-Lavega et al. 2015), showing winds up to 400 m/s (top axis).  Figure 6.  Light curve of Neptune from Hubble full-disk brightness at 845 nm (plus signs). A sinusoidal variation, with a 16.8-hour period and arbitrary amplitude, is shown by the dashed line.  For comparison, normalized Kepler light curves beginning at Day 6 and Day 25 are shown in blue and red, respectively.       
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Figure 7: Neptune global map from Hubble WFC3/UVIS acquired 25-26 June 2011 at 845 nm. High northern latitudes were not visible, and a bad column resulted in artifacts at high southern latitudes; no SPF is visible.  Figure 8. Short-interval periodogram analysis.  The top panel shows the Lomb-Scargle periodogram in 3.5-day segments; red indicates higher spectral power.  The remaining panels show the Kepler brightness variations (black curves) from three of the segments, phased to the corresponding period of maximum spectral power from the periodogram, and plotted over two rotations within that interval; the most significant period is shown as a dashed red line for each date.   
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