Exploration of the Viability of HEEET as a TPS for Saturn, Neptune, and Uranus Entries

Dinesh K. Prabhu

AMA, Incorporated*

Entry Systems and Technology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

Background and Objective

https://ntrs.nasa.gov/search.jsp?R=20190002181 2019-08-30T

- HEEET has been developed as a replacement for full density carbon-phenolic (FDCP) material for use as a TPS for missions with extreme entry environments
 - FDCP has been used successfully as thermal protection material in NASA's Pioneer-Venus and Galileo missions, but this legacy material is no longer manufactured for use in NASA planetary science missions
- HEEET is a dual-layer 3D woven material with a mid-level phenolic infusion, while FDCP is 2D woven material with a high level of phenolic infusion
 - The outer layer of HEEET is a dense weave of carbon fiber intended to handle the heat flux of atmospheric entry: recession layer (RL)
 - The inner layer of HEEET, a lower density weave of blended carbon and phenolic yarn, is intended to handle the heat load of atmospheric entry: insulation layer (IL)
 - Weave thicknesses can be customized (within loom constraints) to a specific mission
- HEEET, with its lower mass density and thermal conductivity, will result in more mass-efficient solutions than FDCP
- HEEET has been successfully tested in the arcjets at NASA Ames and at AEDC over a range of heat fluxes and pressures
 - Based on the testing to date, recommended max pressure is 5 bar and recommended max heat flux is 5 kW/cm² limits can be used to constrain the steepness of entry
- A 1 m (dia) ETU has been built using a layout of HEEET tiles
 - Based on manufacturing demonstrated to date, recommended minimum radius of spherical nose cap is 250 mm
- HEEET was proposed as thermal protection material in the Ice Giants Study Report (JPL D-100520, 2017) and for a proposed New Frontiers mission to Saturn

The estimated TPS thickness from some of these studies indicated the need for a loom upgrade beyond currently established capabilities, Looms 1 and 2 in the figure on the right

Objective

To explore a range of ballistic coefficients, entry flight path angles, and nose radii of 45° sphere-cone geometries such that HEEET solutions can be woven within the limits of the first two looms

HEEET manufacture has been demonstrated for Looms 1 & 2 **Region** *below* each loom limit line is the region of feasibility

Sizes or Masses

$D_{b} = \sqrt{(4m)/(\pi\beta C_{D})}; C_{D} = 1.05$			
β kg/m ⁻²	<i>m</i> 200 kg	<i>m</i> 250 kg	<i>m</i> 300 kg
	Diameter (D _b)/mm		
200	1101	1231	1349
250	985	1101	1206
300	899	1005	1101
350	832	931	1019

Methodology

Insulation layer (IL) thickness/cm Insulation layer (IL) thickness/cm Insulation layer (IL) thickness/cm Insulation layer (IL) thickness/cm

All sizing has been performed assuming a 3.8 mm thick layer of HT-424 adhesive and 3.2 mm thick Al-2024 structural component can be easily switched to another material. The impact on sizing will depend on the heat capacity of the new structural material relative to Al.

Conclusions & Further Refinements

- For the cases explored here, there are several possible HEEET solutions that fall within the manufacturing capabilities of Looms 1 and 2, *i.e.*, no upgrade is required beyond the present loom capability
 - Additional manufacturing development work (other than weaving) may be required if the estimated thicknesses of the recession layer deviate substantially from the currently demonstrated capability
- The entry flight path angle determines the maximum deceleration and pressure loads. Therefore, the entry flight path angle will be limited by the ability to demonstrate material performance in ground-test facilities, e.g., arc jets
 - Ultimate pressure capability of HEEET has not been established, and future tests should be able to expand the currently known HEEET performance envelop
- Regardless of entry flight path angle considerations, HEEET is most mass efficients. Ballistic coefficients between 200 and 250 kg/m² (±25 kg/m²) work for the cases explored here
- The ballistic coefficient selected can be translated into either a mass (given the base diameter) or a diameter (given the entry mass)
- In addition to limiting the ballistic coefficient to lie between 200 and 250 kg/m², it is better to keep the nose radius between 300 and 400 mm
 - The convective heating of the deceleration module decreases because of increased bluntness, and
- The HEEET constraint of a minimum spherical radius of 250 mm is satisfied
- The cases explored here were limited to a representative entry velocity at each destination (dictated by the interplanetary trajectories available). Sensitivity of material sizing to entry velocity has to be explored
- The heating estimates used in sizing HEEET were derived from engineering correlations. Verification of these correlations against results from detailed flow computations remains to be done

Acknowledgments

The development of the TRAJ tool, its integration with FIAT (material thermal response tool) and a margins policy made possible the present work. Illuminating technical discussions with the Common Probe Study & the HEEET Development teams are gratefully acknowledged.

*AMA, Incorporated supported by the Entry Systems and Technology Division under contract NNA15BB15C.