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ABSTRACT 

Statistical filter theory is employed to develop a method for 
determining the best possible estimate of the position and velocity of a 
space vehicle in the midcourse phase of flight. Results of a computer 
sinru.lation are given to illustrate the performance attainable. An 
on-board system is visualized in which the source of information is an 
arbitrary sequence of observations of space angles, corrupted by measure­
ment errors. The scheme is in effect a dynrunical time-varying filter, 
implemented by a digital computer, which processes the incoming data to 
compute an up-to-date optimal estimate of position and velocity. 
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SUMMARY 

Concepts from statistical filter theory a re applied to the problem 
of in-flight determination of the position and veloc ity of a spac e vehicle 
for the purposes of midcourse guidance. The source of information is 
assumed to be an a rbitrary sequence of measurements of any desired set of 
"observables" (e.g., space angles), the measurements being corrupted by 
additive errors so that the position and velocity are never known perfectly. 
A state transition approach is employed which leads naturally to a com­
putational scheme that is readily implemented by a digital computer. The 
scheme can be regarded as a dynamical time-varying filter which weights 
the incoming observations in an optimal sense for use in producing an 
up-to-date optimal est i mate of position and veloc ity. 

The advantages of the scheme are (1) it provides the bes t possible 
estimate (minimum error) based upon ensemble statist ic s of injection 
conditions and measurement errors ; (2) it is extremely versatile, not 
requiring adherence to a predetermined ob servat ion schedule or reference 
trajectory; and (3) the computations a re sufficiently simple to be 
practical in an on- board computer. 

A digital computer simulation of the proposed sys tem is employed to 
demonstrate the feasibility of an all on-board system and to illustrate 
the performance attainable in a hypothetical physical situation . 
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INTRODUCTION 

One of the problem areas in research relating to space flights is 
that of midcourse guidance. For the manned circumlunar mission used as 
an example in this report, the midcourse phase is defined as all of the 
flight after boost and before re-entry into the earth's atmosphere for 
landing. Studies of trajectories suitable for such a mission indicate 
that small errors at injection produce such large errors later along the 
trajectory (for instance, near the moon) that guidance is generally nec­
essary in the midcourse phase to insure the success of the mission. The 
problem then is to design a system that will perform this function to 
some specified degree of accuracy with a minimum expenditure of fuel. 
The mating of the midcourse guidance system with other aspects of the 
complete system is also an important part of the design problem, but will 
not be considered in this report. 

The design of the guidance system is a closed-loop control problem, 
the aspects of which may be described as follows. First, it is necessary 
to determine by means of data obtained from imperfect sensors (that is, 
instruments whose measurements are subject to errors) as good an estimate 
as possible of the position and velocity of the vehicle. This can be 
called trajectory determination since the position and velocity vectors 
at any time uniquely determine the trajectory in a free-fall situation. 
Then, on the basis of the best estimate of the trajectory, end-point 
conditions Illl.lst be predicted (e.g., what would the estimated perilune and 
perigee be if no corrective action were taken). Next, a guidance law 
IID..lst be used which would make possible the calculation of desired correc­
tive action to change the estimated end-point conditions to correspond to 
those desired. Finally, the indicated control action must be implemented 
by applying thrust . To close the loop, the applied thrust, acting through 
the ki nematics and geometry, influences the observables which constitute 
the input to the sensors. 

In this paper will be described results of studies of the trajectory 
estimation portion of the control system problem. The remainder of the 
problem, with application to a specific (hypothetical) manned circumlunar 
mission, is treated in another NASA paper (ref. 1). 

The description of the problem given above is seen to be rather 
general. Specifics are required to begin a solution and these may be 
stated as a set of ground rules, or conditions, as follows: 
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First, it is assumed that corrective maneuvers in m.idcourse will be 
applied not continuously, but intermittently and impulsively. The jus­
tification for this assumption is one of practicability; that is, propul­
sive devices presently at the highest state of development are relatively 
high-thrust rocket engines. To be employed most efficiently in a situa­
tion where relatively small corrective maneuvers are envisioned, such 
rocket engines must be turned on only briefly and at widely separated 
time intervals. The result of such a mode of operation is that most of 
the time the control loop is not closed, and trajectory estimation can be 
treated separately from the remainder of the guidance problem except 
during the brief periods of control action. 

The second condition is that the trajectory estimation system must 
constitute a completely on-board operation; that is, observational data 
will be obtained by on-board sensors (e.g., optical devices for measuring 
space angles) and all trajectory calculations will be performed by an 
on-board computer. The justification for this requirement is that in a 
manned mission an on-board system provides added safety for the crew of 
the vehicle by eliminating dependence upon the earth-vehicle communication 
link. This does not mean that the mission will be totally dependent upon 
the on-board system, of course, and the question of whether or not the 
on-board system will be the primary system need not be considered at this 
time. The most significant consequence of this condition is that the 
on-board system must be in itself accurate enough to satisfy mission 
objectives and at the same time simple so that it can be reliable and 
light in weight . 

The problem is to find the best estimate of the trajectory from a 
sequence of imperfect observations of certain arbitrary space angles made 
repetitiously in any pattern deemed desirable. This is basically a 
filtering problem and is attacked in the report by means of statistical 
filter theory. First, the theoretical development of the optimal trajec­
tory estimation system is given. Then it is shown how such a scheme 
might be implemented in an actual space vehicle, Finally, the results of 
a sinnllation study are presented to illustrate the potential usefulness 
of such a system in an on-board navigation scheme. 

SYMBOLS 

Lower case English letters are used for vectors (column matrices), 
except for r, v, p; upper case letters generally denote multiple-column 
matrices. 

D 

F 

submatrix in M related to n 

perturbation matrix 
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H 

I 

K, I(l!-

m 

M 

n 

A 
p 

~ p 

p 

Q 

r 

~ r 

R 

Ro 

t 

V 

~ 
V 

X 

A 
X 

~ X 

x* 

X,Y,Z 

y 

submatrix in M relating m to x 

unit matrix 

weighting matrix in optimal filter 

message, Bx 

matrix relating y to x* 

observational error vector 

magnitude of the predicted deviation from reference at perilune 

magnitude of the error in prediction of position at perilune 

covariance matrix of ~ 
X 

covariance matrix of observational error, n 

magnitude of position deviation from reference 

magnitude of error in estimating position 

covariance matrix of deviation from reference, x 

radius of earth 

time 

white noise 

magnitude of velocity deviation from reference 

magnitude of error in estimating velocity 

deviation from reference 

estimate of x 

error in estimating A x, x-x 

generalized state variaole, including x atJ.d n 

position coordinates in geocentric reference frame 

observation or measurement of m 

declination angle of earth as seen from vehicle 



1,2, ... ,e 

0 

e 

m 

n 

s 

right ascension angle of earth as seen from vehicle 

half' the earth-subtended angle as seen from vehicle 

indicates "increments of 11 as in 6t, 6 1\. 

standard deviation of a single observational error 

standard deviation of random variable xi(t 0 ) 

element of qi 

transition matrix 

Notat ion Conventions 

inverse of matrix ( ) 

transpose of matrix() 

submatrix of ( ) 

expected value of[], sometimes used without the brackets 

Subscripts 

numbered state variables 

at injection 

earth 

at kth observation 

moon 

related to observation errors, n 

sun 

5 
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ANALYSIS 

Problem Formulation 

The approach employed in solving the problem of traj ectory 
determinat ion is a specialization 0£ some concepts of statistical filter 
theory proposed by R. E . Kalman (ref. 2) . This approach utilizes the 
state transit i on formulation whi ch in the present problem may be summa­
rized as follows : Given the equations of mot ion for the space vehicle, 
as developed in appendix A, the trajectory of the vehicle can be specified 
uniquely from a knowledge at any time of the three components of the 
vehicle ' s posi t i on vector and three components of i ts velocity vector i n 
an orthogonal reference frame . These six vari ables are def i ned as the 
state vector which is a cont i nuous time funct i on generated by integration 
of the equations of motion with appropriate i ni t i al condi t i ons . Because 
the initial condi tions are not known precise ly, the present state is also 
not known, and i t is the function of the trajectory determination system 
to estimate the state on the bas is of observations made by on-board 
i nstruments. The system is then regarded as a multidimensi onal filter, 
its i nput be i ng a time sequence of observations of var i ables related to 
the state, corrupted by addi t i ve errors. Its output is the estimate of 
the state at present time, and the f i lter i s to be des i gned to make this 
an opt i mal estimate in the sense of mini mizing some funct ion of the 
estimation error. 

I n the filter design, i t is convenient to think of the input to the 
trajectory determination system as composed of a 11message 11 plus 11 noise. 11 

The message in thi s case is a set of observables (e.g ., space angles) 
whi ch are a consequence of the physical situation as defined by the state. 
The message -generating process can t hen be r epresented by an integrat i on 
of the equat i ons of mot i on to obtai n the state, fol lowed by computation 
of the observables, a s illustrated in sketch (a). 

INJECTION 
CONDITIONS 

EQUATIONS 
OF MOTION 

STATE COMPUTATION 
OF 

OBSERVABLES 

Sketch (a). - Message -generating process. 

MESSAGE 

This message process is , of course, nonlinear. To employ techniques 
from linear theory, suppose that the nonli near equations of motion are 
linearized . The procedure used is described in appendix Band is, in 
effect, a Taylor series expansion about a reference trajectory, retaining 
only the first -order terms in the expansion. The state can then be 



expressed in the form of a deviation state vector, x(t), which is the 
solution of a set of linear time-varying differential equations. In 
standard matrix form these equations may be written as 
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x(t) = F(t)x(t) (1) 

which is called the perturbation equation. Alternatively, equation (1) 
can be written i n the form 

x(t + 6t) = ~(t + 6t; t)x(t) (2) 

where state transition concepts are emphasized. The matrix ~(t + 6t; t) 
is the transition matrix associated with the linearized equation of 
motion and describes how the state changes from time t to time t + 6t . 
It has the properties that ~(t; t) is the unit matrix, I, and 
~(t2j ti)= ~-l(ti; t2)• 

Note that no forcing function appears in equations (1) and (2). 
This is because a free-fall condition, wi th negligible disturbing forces, 
is postulated for the vehicle trajectory. 

In the linearization process, the equations that relate the 
observables to the state variables are also linearized a s shown in appen­
dix C. The message is then expressed in terms of deviations from a 
reference, and is linearly related to the deviation state: 

m(t) = H(t)x(t) 

The message process can now be represented by the linear system illustrated 
in sketch (b). 

x{t +~t) INJECTION 
CONDITIONS_.....,,...,~------,......-

------t cp{t +~t; t) 

x{ t) 
H {t) 

Sketch (b). - Linearized message process. 

--.........- m{t) 

The actual injection conditions, of course, are not known, but it is 
assumed that they can be described probabilistically at least up to 
second-order statistics. Thus, the injection conditions are regarded as 
a vector-valued random variable. When expressed in terms of deviation 
from expected (or ideal) injection conditions, this random variable has 
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zero mean . If the linear model of the message process is assumed to be 
valid, the state and the message are then also random variables wi th zero 
mean. The second-order statistics assumed are the covariance matrix of 
i nject ion errors defined as follows: 

The covariance matrix of trajectory deviations is then given, by means of 
eg_uation (2), as 

cov[x(t), x(t)] = ~[x(t)xT(t)] 

= ¢(t; t 0 )P0 ~(t; to) 

Furthermore, by use of eg_uation (3), 

cov[m(t), m(t)] = H(t)¢(t; t 0 )P0 ~(t; t 0 )RT(t) 

Thus, the statistics of the message are expressed in terms of the statis­
t i cs of injection conditions and the linear model of the message -generating 
process. 

A treatment similar to that accorded the message statistics is 
employed for the instrument errors. However, without assuming a particular 
i nstrumentat i on system, it is not possible to be as specific as in the 
case of the message process. Nevertheless, the assumption, which is 
standard i n engineering applicat i ons of statistical filter theory, is 
that these errors can be represented as the output, n(t), of a dynamic 
system excited by an i ndependent (vector -valued) Gaussian random process, 
un(t). The i nstrument errors are regarded collectively as a vector, n(t), 
having as many components as the individual sources of error considered. 
The error, n (t) , then can be represented by the eg_uation 

where 

Here 
error 
terms 

n(t + 6t) = ¢n(t + 6t; t)n(t) + ut (t + 6t, t) ( 4) 

I
t+6t 

u 1 (t + 6t, t) = t ¢n(t + 6t; -r)un(-r)d-r 

l½:J_(t) is "white noise, 11 and ¢n is the transition matrix of the 
process. The statistical properties of n(t) are expressed in 
of ¢n and the covariance matrices, 

N0 = cov[ n( t 0 ) , n( t 0 )] = E[ n ( t 0 ) n'I'( t 0 )] 

Qn(t) = cov[un(t), un(t)] = E[un(t)ul(t)] 

The mean values of n(t0 ) and un(t) , hence also of n(t) , are assumed 
zero. (This represents no loss in generality since nonzero means would 
normally be calibrated out of the on-board instruments.) 
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The linear equations (2) and (4) may now be combined in the form 

x* (t + 6t) = <D* (t + 6t; t )x*(t) + u(t + 6t) t ) 

where x* is a generalized state vector including both the vehicle 
and . instrument error components) and <D* includes both <D and <Dn, 
statistical properties of x* are thus expressed in terms of <D* 
the covariance matrices P0 ) No) and Q*(t + Lt; t)) where Q* is 
defined as 

Q* = [~ 

t+6t 
Q1 (t + 6t) t) = 1 <Dn(t + 6t; 't)Qn("t')<Dl(t + 6t; 't)d"t' 

(5) 

state 
The 

and 

(6) 

To complete the formulation of the problem) it is necessary to obtain 
an eXl)ression for the observations by appropri ately combining equations 
(3) and (4). If additive instrument errors are assumed, the observations 
will be the sum of two random processes, which constitute another random 
process having values only at times tk when observations are made. 
Thus, the observation, termed y(tk), is a linear combination of the 
generalized state variables, a s follows: 

y(tk) = m(tk) + D(tk)n(tk) 

~ E(tk)x(tk) + D(tk)n(tk) 

= M( tk)x*( tk) (7) 

It is noted that since x* has zero mean) so does y. Since each 
observation may be perturbed by several different sources of noise (such 
as calibration errors) readout errors, tracking errors, etc.) the matrix 
D is provided to combine the various noise sources appropriately into a 
single observation error. Thus n may be of larger (or smaller) dimension 
than m. 

TREORY OF TEE OPI'IMAL FILTER 

We now come to the principal problem, which may be stated as follows: 
Given a set of observed values of the message) y(to), y(t 1 )) ... y(tk), 
find a "best II estimate x*( t ) of x*( t)' where the judgment of what is 
"best 11 (i .e., the optimality criterion) is yet to be specified. 

To arrive at a reasonable optimality criterion, it is natural to 
assign some penalty ( i.e., loss) for incorrect estimates. If the error 
in estimate is defined as x*(t) = x*(t) - x*(t), it is clear that this 
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loss must be positive for every nonzero value of x*(t). Among the more 
obvious of such loss functions is the scalar product x*Tx*. This is 
the vector equivalent of the familiar squared-error criterion of one­
dimensional filter problems. Although it is possible to raise some 
arguments about the appropriateness of this criterion, the general form 
seems correct because it implies minimization of fuel requirements for 
midcourse corrections. The implication of fuel minimization is explained 
by noting that the error in determination of the proper velocity correc­
tion at any time t is for all practical purposes a linear function of 
x*(t). Thus, minimizing xJ(-T(t)x*(t) also minimizes fuel waste for a 
correction made at time t. The mathematical convenience of this cri­
terion is persuasive, and furthermore it gives an estimation formula 
that is correct for a somewhat more general criterion (refs. 2 and 3). 

It is next assumed that the optimal estimate will be restricted to 
be a linear function of the observations; that is, the best estimate of 
the form 

k 

x* = I AiYi ( 8) 

i=J. 

is to be obtained.i Although this assumption is in keeping with the 
linear philosophy employed throughout this development, it may be objected 
that this is too restrictive. Rowever, it should be realized that for 
an on-board system the utmost simplicity is important, and a linear 
_estimating procedure probably is the simplest. Another way of stating 
this argument is to say that there is some loss or penalty associated 
with computer complexity, and if this were incorporated in the optimality 
criterion the expected result should be to favor a linear system. 

Under the above assumptions it is clear the optimal estimator may be 
regarded as a linear filter whose input is the actually occurring sequence 
.of observations. The next step in the development of the theory is to 
view this filter from the state transition point of view; that is, the 
:estimation computations are to be considered as proceeding in real time, 
utilizing only the previous estimate and the latest observations at any 
one time. With the assumption that at the time of the kth observation 
the estimate based on the k-1 previous observations has been computed, 
it is readily deduced that the new estimate based on k observations 
l!D..lst be of the linear form 

i*(tk) = ~*(tk; tk-i)x*(tk-i) 

+~(tk)[y(tk) - M(tk)~*(tk; tk-i)~*(tk-i)] (9) 

J.If x(t), n(t) are Gaussian, the unrestricted optimal estimate is 
of the linear form (8). In other words, only when the system inputs are 
not Gaussian can the estimate be improved by a nonlinear estimator. Tbus, 
the restriction to linear estimation could be.replaced by the assumption 
of Gaussian inputs if so desired. (See refs. 2 and 3.) 
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It is noted here that the quantity ~*(tk; tk_1 )x*(tk-i) is the estimate 
of ~*(tk) based on the first k-1 observations . The quantity in brackets 
is then the difference between the kth observation, y(tk), and the 
estimated value of the vector observable at time tk. The matrix, K*(tk) 
weights the residual (quantity i n brackets) to produce an increment to be 
added to the estimate. Thus, the form of the estimation equation is 
perfectly natural, for if the current observation should happen to agree 
perfectly with the estimated observable, the fact that an observation 
took place should have no effect on the estimate. 

Equation (9) can be represented in block diagram form as shown in 
sketch (c), where it is seen that realization of the optimal filter 

* r-...-------i <:,(tk i tk-1) 

Sketch (c) 

requires only a model of the x*(t) generating system and the weighting 
matrix K*(tk). Thus, the optimal properties of the filter depend upon 
the proper selection of K*(tk). 

To obtain an equation whereby K*(tk) may be computed, the principle 
of orthogonal projection in a multidimensional space is employed. Kalman 
shows (ref. 2) that for the norm-squared error criterion and linear filter 

" restriction, the optimal estimate x* is the orthogonal projection of 
x* upon a linear manifold, or vector space, formed by the set of all 
linear combinations of the random variables in the set of observations, 
y(t1 ), ... , y(tk). The result is that the error in estimate, x*(tk) is 
orthogonal to the estimate xl!-(tk). This principle is used in reference 2 
to show that the weighting matrix is given by the expression 

( 10) 
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where ?(tk) is the covariance matrix of the estimation error at time 
tk based on the previous k-1 observations. The matrix F is in 
turn given by the re~ursion relation 

F(tk+i) = ~(tk+i; tk)[~(tk) - ~(tk)M(tk)~(tk)J<l)T(tk+i; tk) 

+ Q*( tk+1., tk) ( 11) 

Thus, the computation of the optimal estimate is seen to be a straight­
forward step-by-step procedure. To begin the computations some starting 
values of 1* and ~ are reg_uired. These might be, for instance, an 
initial estimat e of injection conditions and noise, and the covariance 
matrices N0 and P0 , as obtained from some source such as the boost 
guidance system. 

It should be noted that the estimate x* includes both an estimate 
of the vehicle state, x, and an estimate of the instrument error, . n. 

Simplification for a Special Case 

In this section a specialized s.ituation will be considered, described 
as follows: 

( 1) Each observation consists of a set of space angles measured 
simultaneously by the on-board instrumentation system. 

(2) The instrument errors are uncorrelated from one observation time 
to the next (although there may be correlation between the errors i n the 
separate components of an individual observation). 

The f'irst assumption above is entirely arbitrary, introduced so that 
the discussion of system performance can be more specific. The second 
assumption is not unrealistic in that observations on board the vehicle 
are likely to be well separated in time, particularly if' the number of 
observations reg_uired for navigation is not large. 

It is readily shown with the second assumption that the implementation 
of the estimate of' instrument errors can be omitted from the optimal 
filter and the computations thereby markedly simplified. The development 
of' this simplification is given in appendix D. The major effect is to 
reduce the order of the matrices involved in the calculations, since only x, the covariance matrix of x (designated P), and the weighting matrix 
associated with x (designated K) need be computed. The eg_uations to be 
solved are: 
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tk-i )~( tk-i)] 

= P(tk)JII'(tk)~(tk)P(tk):ffl'(tk) + Q(tk)]-i 

= <Il(tk+ij tk) [P(tk) - K(tk)R(tk)P(tk)] cr,T(tk+ij tk) 

( 12) 

( 13) 

( 14) 

The Q(tk) is presumed known a priori as described in appendix D. It is 
noted that only the model of the message process and not of the instrument 
error process is required in tbe optimal filter. 

For purposes of computation which will be explained later, it is 
convenient to represent equation (14) in the form of two operations: 

P(tk+i) = <Il(tk+ij tk)P'(tk)~(tk+ij tk) 

P'(tk) = P(tk) - K(tk)H(tk)P(tk) 

( 15) 

(16) 

It is noted that equation (16 ) represents the manner in which P changes 
at time tk as a result of the information contained in the observation, 
and equation (15) represents the way in which it changes as a result of 
transition along the trajectory. 

These equations will now be specialized to the case of observations 
consisting of three angles. These angles may be, for instance, the sub­
tended angle of the earth and the right ascension and declination of the 
earth center as viewed from the vehicle, as assumed in the simulation 
studies presented later. Since the angles depend only on vehicle position 
and not on velocity, the R matrix may be in this case partitioned in 
the form 

where Hi is a 3x3 matrix of partial derivatives of the three angles 
with respect to the X, Y, Z coordinates of vehicle position, and O is 
a 3x3 null matrix. If P is likewise partitioned in the form 

where the submatrices are all 3x3 1s, equation (13) can be written in the 
form 

K = [:},T [1r1P1H1 T + Qr ( 17) 

The computation of K is thus seen to be relatively simple, involving 
only the inversion and multiplication of 3x3 matrices. 
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IJvlPLEMEN'TATION OF THE ESTIMATION EQUATIONS 

Some comments regarding the implementation of the optimal filter 
are desirable to clarify the manner in which the calculations might be 
performed in an on-board digital computer. The simplified system 
described in the last section will be considered. 

First of all, it is clear from equation (12) that the model of the 
m(t) generating system (the message process) employed in the opt i mal 
f ilter need not be the lineariz ed version but could be a more accurate 
(generally nonlinear) representation - in other words, the equations of 
mot i on themselves. The computations would then not be i n terms of devi ­
ation quantities but the ori ginal variables. A block di agram representa­
tion of the computation would then appear as shown in sketch (d). The 
i nput is the actual observation from which the latest estimate of the 

OBSERVATIONS 

+ 

CALCULATION 
OF ESTIMATED 
OBSERVABLES 

Sketch (d) 

ESTIMATED STATE 

INTEGRATION 
OF EQUATIONS 

OF MOTION 

UPDATED PREVIOUS ESTIMATE 

vector observable is subtracted. The difference is then multiplied by 
the matrix K, just as before, to increment the estimate. The new esti­
mate then is a new set of starting conditions used for i ntegration of the 
model equations until the time of the next observation. 

Computation of P and hence K still requires the linearization 
approach because of the manner in which the ~, H, and Q matrices appear 
in equations (13) and (14) . Since Q represents the statistics of the 
errors i n the measuring i nstruments, which are presumably known a priori, 
it seems reasonable that this would be a stored matrix. Likewise, ~ and 
H could theoretically be stored since they represent the equations of 
motion linearized about the reference trajectory which is known before 
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launch. However, in practice it might be awkward to store these in an 
easily utilized form because of the arbitrariness in the times at which 
observations are made. Thus, it appears simpler to arrange to compute 
these matrices in the vehicle. It is seen that these computations need be 
performed only at times observations are made, the va lues at other times 
having no meaning for the problem. 

Another reason for computing Hand~ in the vehicle is that this 
makes it possible to linearize around the estimated rather than the refer­
ence trajectory. This is clearly the correct procedure since P has to 
do with the difference between the estimate and the true state, and the 
estimate is on the average closer to the true state than is the reference. 
Errors arising from the linearization assumptions are thereby minimized. 
It is noted that if this procedure is used, very large deviations from 
the reference (such as would occur i n an abort situation for instance) 
would not jeopardize the accuracy of the trajectory determination scheme 
as long as the estimate itself was always reasonably good. 

One possible method of computing the transition matrix required in 
equation (14) is given in appendix E. This requires a sixfold simultaneous 
integration of the perturbation equation (1), starting over again at the 
time of each observation. To linearize around the estimated state, it is 
necess~ry that the F matrix of the perturbation equation be computed 
from x(t). Thus, the integration of the equations of motion gives 
~(t) in the interval t~-i < t < tk. Simultaneously, x(t) is used to 
compute F(t), and F(t) is employed to obtain ~(t; tk-i). 

The operation of the entire system is represented in figure 1, which 
may be explained as follows: When an observation has been made and is to 
be processed, integration of the equations of motion is initiatedQ), 2 

(by any suitable integration routine) beginning with the estimate of 
position and velocity computed at the last observation. Simultaneously, 
scheme ®, described in the previous paragraph, is used to compute the 
transition matrix from the last observation G) . This process continues 
until computer time equals the time of the observation. The integration 
is then stopped, P( tk) is computed© from equation ( 15), and H( tt) is 
computed(2) from the last estimate of the state. The matrix K( tk) is 
then computed® . The estimated angles are also computed<:!) from the last 
estimate of the state just prior to the observation. These are subtracted 

@from the actually observed angles, the difference is multiplied by 
K( tk) ®, and the estimate is incremented @.by this amount to produce the 
new estimate of the state. The P I matrix is then computed UU from 
equation (16 ), reflecting the change in P due to the observ~ion, and 
P' is stored. The delay unit @represents the storage of P' (tk) until 
the time of the next observation when it is needed to compute P(tk+i). 

2 Circled numbers identify computer operations illustrated in 
figure 1. 
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The computation cycle having thus been completed, the computer simply 
waits, either in standby or off condition, until the next observation is 
to be processed . 

In regard to computer speed requirements for the foregoing 
computations, it is, of course, necessary that the time required to com­
plete the computation cycle be less, on the average, than the time inter­
val between successive observations. If relatively few observat i ons are 
necessary for satisfactory navigation, this consideration is of little 
consequence since times on the order of minutes or even hours would be 
available for each cycle. What is more critical is the fact that a long 
time delay between making an observation and obtaining the improved esti­
mate would likely be undesirable for a number of reasons. Even so, a 
relatively modest computer speed would appear adequate. It may be noted 
that with widely spaced observations the computer would actually be off 
most of the time, resulting in a considerable saving in power consumption 
as compared to running conti nuously. 

RESULTS OF SIMULATION STUDY 

Description of the Simulation Program 

In this section the results of a digital computer study are presented 
to ill ustrate the performance of a trajectory determination scheme of the 
type which has been described. A lunar circumnav igation mission is 
assumed, wi t h a nominal traj ectory such that the vehicle achieves a peri­
lune altit ude of 4766 km in 3.28 days of flight and returns to a vacuum 
perigee altit ude of 72 km . This tra jectory is shown in figure 2, A 
diagonal covariance matrix of injection errors is a ssumed: 

Oxl 
2 0 0 0 0 0 

0 0x2 
2 0 0 0 0 

0 0 Ox3 
2 0 0 0 

P(to) = 
0 0 0 Ox4 

2 0 0 

0 0 0 0 ~5 
2 0 

0 0 0 0 0 Ox62 

The observation schedule assumed is described as follows : 
Observations of three angles - earth-subtended angle and two angles which 
describe the direction of the vehicle - earth l i ne - are made with optical 
instruments on board the vehicle. The physical situation i s descri bed in 
appendix C. The first measurement is made 1/2 hour after injection, and 
subsequent observations are spaced at 6-minute intervals until a total 
of 20 observations has been completed. 



It is assumed that additive noise having zero mean and a diagonal 
covariance matrix, 

Q(t) = 0 

0 

0 

0 

0 

0 

17 

contaminates these measurements. The noise in each angular measurement 
has the same Gaussian distribution which does not vary with time. Also, 
there is no correlation between the noise samples at different observation 
times. 

The average, or ensemble, performance of the system can be seen to 
be given by the variance equations, (15) and (16). The solution of these 
equations obviously depends upon the initial condition P(t0 ), the matrix 
parameters Q, H, and~, and the spacing of observations. The choice of 
nominal trajectory, starting time, and observation schedule, as described 
above, essentially removes Hand~ as parameters. Thus, we are concerned 
with determining the effects of varying P(t 0 ) and Q. From equation (13) 
it can be seen that the t i me constant or rate of decay of P(t) depends 
upon the relative magnitudes of Q and P( t 0 )j that is, if Q and P(to) 
were both increased by the same scale factor the shape of the P(t) curve 
would be unchanged. Its magnitude, however, would be increased in pro­
portion to the increase in P(t0 ). Thus, a change in P(t 0 ) is equivalent 
to a change in Q except for scale factor. Therefore, to determine the 
nature of the variation due to varying P( t 0 ) and Q we need vary only 
one of these. Here we choose to vary the instrumentation noise, Q. 

The problem as stated was programmed for a digital computer in the 
form shown in figure 1, with the addition of a computation of the 
covariance matrix of deviations from the nominal trajectory, 

(18) 

and a computat ion of the estimate and error in estimate of position at 
nominal perilune using linear prediction. Together these computations 
make possible an assessment of the average, or statistical, performance 
of the system. At the same time, with specific randomly selected injection 
errors and noise as inputs, each computer run gives a specific member of 
the ensemble of actual trajectories and estimates thereof. 

For convenience in presentation, the data are given only in terms of 
t he magnitudes of position and velocity deviations. Thus, the actual 
trajectory resulting from the specific injection conditions employed is 
represented by the quantities 
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} ( 19) 

which are the magnitudes of the devi at i ons i n pos i tion and velocity from 
the nomi nal trajectory . Si milarly, the error i n estimate x fo r a 
specific run is gi ven i n terms of i t s position and velocity components: 

~ 
= Jxi2 x22 :x32 l r + + 

~ 
= J:x:42 + xs2 + Xe2 V 

( 20) 

where Xi= Xi - Xi· Likewise, in presenting ensemble results, we plot 
rms pos i t ion and velocity devi ati ons. From the six terms in the 
pri nc i pal di agona l of the R matrix we obta i n 

rrms = J Exi 2 + Ex22 + Ex32 l (21) 

Vrms = JEx42 + Exs2 + Exe2 

and s i milarly, from the p matrix we obtain the rms position and 
veloci ty estimation errors: 

~ = J Exi 2 Ex22 Ex32 l rrms + + 
(22) 

~ = JEx42 + Exs2 + Exe2 Vrms 

A Fortran program des igned for use on the IBM 704 di gital computer was 
wri tten to perform the computat i ons described above. The s torage space 
used by the program ( i ncludi ng provisions for a number of other computa ­
tional features not used i n the present study) is about 13, 000 words . 
Computation t i me on the IBM 704 is roughly 15 minutes for the 2- 1/ 2-hour 
flights simul at ed i n the study. 

Performance of System for Different Ob servation Error Magnitudes 

To illustrate the effect of varying the magnitude of the observat ion 
errors as defi ned by Q, four computer runs were obtained simulating an 
observation rout i ne consisting of a total of 20 observations spaced at 
6 -minute intervals begi nning 1/ 2 hour after injection. 

The statistical descriptions of the inputs were specified a s follows: 
(1) For Q, On was taken to be 5, 20, 50, and 200 sec arc , respectively, 
in each of t he four runs. ( 2) For P(t 0 ), crxi, crx2 , and crX3 were taken 
to be 1 km, and crx4 , Ox5 , and Ox6 were taken to be 1 m/ sec, the same 
for all runs . 
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The specific injection conditions and observation errors were chosen 
randomly in accordance with the as sumed statistics as follows: (1) 
Observation errors were generated by a Gaussian random number computation 
and scaled for use in each run acc ording to the crn employed. The time 
histories of the sample employed are shown in figure 3, and were the same 
for all runs except for scale factor. (2) The injection errors were 
selected at random from a table of Gaussian random numbers. The same 
values were used for each run: 

xi(to) = 0.495 km 

X2(to) = -0. 886 km 

X3(to) = -1.001 km 

:l4(to) = 0.281 m/sec 

X5(to) = 1.999 m/sec 

xs(to) = 0.194 m/sec 

Figure 4 shows, for the four different observation error levels, the 
errors in estimating position and velocity as a function of time. The 
irregularities in the estimate a s a function of time are due to the noise 
and are of the same character for each of the runs because the same noise 
sample (except for scale) was used in each case. The actual deviations 
from the nominal trajectory are also shown in figure 4 for comparison 
with the estimation errors. It should be noted that if no observations 
were made, or equivalently if the system were designed for infinite 
measurement errors, the nbest estimaten would be the nominal trajectory 
itself, and the error in estimate would be the actual deviations from 
nominal, given by the quantities rand v. The differences between r 
and r, v and v, thus represent the improvement in knowledge of the 
trajectory due to the observations. 

Figure 5 shows several time histories of the system performance with 
the same injection errors in each case, but with different noise time 
histories, crn = 20 sec arc. A run made with no noise is also shown for 
comparison, to give an indication of how IID.lch the estimate is perturbed 
by the noise. 

The first portions of the rand v curves represent the errors in 
estimate prior to the first observation. As previously explained, these 
are simply the deviations from the nominal trajectory due to injection 
errors, which are the same for all runs. It is seen that the estimation 
error is generally larger when noise is present than when it is not. 
This is a result of presenting the estimation errors in terms of the 
magnitude quantities rand v. If the error components were shown sepa­
rately (e.g., x1 , x2 , etc.), the no-noise results would tend to represent 
the average of the several noise time histories. 
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Figure 6 shows the ensemble average estimation errors, obtai ned from 
the P matrix. The average deviations from the nominal trajectory, 
rrms and Vrms, obtai ned from the R matri x, are also plotted for compar­
ison. The average i mprovement i n knowledge of the trajectory is repre­
sented by the differences between rrms and rrms, Vrms and Vrms, which 
are seen to be always positive and greatest when the noise is the least . 
Compari son of figures 4, 5, and 6 indicates that the indivi dual perform­
ances shown in figures 4 and 5 are reasonable members of the ensembles 
shown i n f i gure 6. 

The performance of the system in predicting the error at perilune is 
shown in f i gure 7 for the four different noise levels. The actual est i mate 

A 
of the devi at i on from reference, des i gnated p, and the mean-square error 
in the estimate, Prms, are plotted as a funct i on of t i me. The i rregular 
character of the p curves is again due to the noise. It is seen that 
A 
p tends to bui ld up in a roughly exponential manner toward the actual 
miss (4528 km), the t i me constant be i ng greater for the larger noi se 
magni tude, reflecting the poorer confi dence i n the measurements whi ch 
exi sts when the noise i s large. 

In figure 8 a different method of presenting the est i mation error 
data i s employed to i llustrate the fact that the estimate is better i n 
some direct i ons than i n others . This fact is obscured in the plots of 
f i gure 6 but i s significant i n determining the character of the informat i on 
that the assumed set of observat i ons contributes to the est i mate. I t 
should be noted that the elements of the P matri x descr i be the shape, 
size, and orientat i on of a t i me -varyi ng estimation error ellipsoid. This 
elli psoi d may be cons i dered as centered on the current esti mate of the 
trajectory. The i ntersect i on of this ellipsoi d with the equatorial plane 
is shown i n figure 8 for the case of crn = 20 sec arc . The equi valent 
elli pse obtai ned from the R matrix, whi ch illustrates the statistics of 
devi ations from the reference trajectory, is also shown for comparison. 
One interest i ng poi nt to be noted is that the major axis of the error 
elli pse tends to be ori ented along the vehicle-earth line . The i mplicat ion 
is that the specified observations gi ve less i nfor mat i on regarding the 
pos i t i on along this line than i n any other direct ion . Si nce the distance 
from the earth is obtai ned princ i pally from the measurement of subtended 
earth angle, thi s i ndi cates that the i nformati on avai lable from this 
angle is relat i vely poor. 

Effect of Varyi ng the Observation Rate 

I f the number of observat i ons made during a gi ven period of t i me is 
increas ed, an improvement i n the knowledge of the trajectory should be 
expected . To illustrate this effect, a run was made using the s ame 
initial condi t i ons and noise as i n a previous run with crn = 20 sec arc, 
wi th obs ervat i ons start i ng at the same t i me but spaced 3 minutes 
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were apart. Thus, during the same 2-hour period 39 observations 
completed. Figure 9 compares the performance for this case with that for 

increased 20 observations at 6-minute intervals. It is seen that the 
observation rate produces a reduction of roughly 20 percent in 
and about 17 percent in Yrms· 

~ 
rrms 

The Effect of Bias Errors 

The assumption that the instrumentat ion noise samples at different 
observation times are statistically independent is reasonable for certain 
sources of noise. However, it is expected that generally there wi ll exist 
in any instrumentation scheme additional errors which are systematic in 
nature (e.g., telescope boresight errors), and thus are definitely not 
independent from one observation to another. Such errors might also be 
termed bias errors since they tend to remain the same over a long peri od 
of time. To give some insight into the manner in which these errors 
affect the performance of the system, which is not optimized for such 
errors, three additional computer runs were made, each with a constant 
bias error of +5 sec arc added to one of the three angles being measured 
in addition to the random noise (crn = 20 sec arc) previously assumed. 
The results of these runs are shown in figure 10, together with the 
corresponding no-bias run repeated from figure 3 for comparison. It is 
seen that bias error on ~ and ~e (the declinat i on and r ight ascension 
0£ the earth, respectively} has virtually no effect on rand v but that 
the same bias on Ye (the earth-subtended angle) produces a substantial 
effect, increasing rand v by roughly a third. The conclusion to be 
drawn is that the system is quite a bit more sensitive to bias errors on 
Ye than on ~e and ~e, although this cannot be stated as a general 
conclusion since there is an obvious dependence upon the geometry of the 
particular situation simulated. Nevertheless , it can be stated that bias 
errors of certain types should be investigated carefully in the design of 
a guidance system. If necessary, such bi as errors can be treated as 
additional state variables and estimated along with the others. The 
theory presented is sufficiently general to allow this, provided suitable 
statistical descriptions of the errors can be supplied. 

COMPARISON WITH SOME OTHER TRAJECTORY ESTIMATION METHODS 

Bayes Estimate 

The most widely recognized trajectory estimation technique, and one 
which is in actual use by Jet Propulsion Laboratory (ref . 4) and others, 
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is based on Bayes estimation.3 This is an optimal method which, since it 
utilizes the same optimality criterion as in the filter theory approach, 
one should suspect should give the same results. Such is not immediately 
apparent in viewing the two formulations. 

The Bayes estimation approach is developed from decision theory 
concepts, the estimate being based upon maximizing a multivariate a pos­
teriori probability density function. The f ilter theory approach uses the 
idea of orthogonal projection in a multidimensi onal space (ref. 2). A 
careful study of these ideas shows that they are basically the same. The 
two approaches differ then only (1) in the manner of introducing such 
matters as linearizing a basically nonlinear process4 and assuming 
Gaussian distributions, and (2) i n the form of the estimation equations. 
The Bayes estimat i on equations are generally expressed in a form such 
that the estimate ~(tk) is obtained by operating on the entire set of 
k observat i ons at once, whereas in the filter formulation the estimation 
procedure is a sequential operation on the observations taken one at a 
time in the order of their occurrence. One way of demonstrating the 
equi valence of the two approaches then is to develop recursion relations 
for the Bayes estimation equations so that the mode of operation is the 
same as that employed in the filter approach. This has been done in 
appendix F for the restricted case of uncorrelated observations, where it 
is shown that the equations are the same and hence the methods equivalent. 
A rigorous general treatment is not attempted, the purpose being primarily 
to verify what common sense already indicates, namely, that there cannot 
be two different optimal methods having the same optimality criterion and 
basic assumptions. 

The two methods then should not be called by different names - both 
are Bayes estimation . The equations whereby the estimate is obtained by 
operating upon the entire set of observations comprise the closed-form 
solution of the Bayes estimation problem. In contrast, the equations 
developed from filter theory are the difference equations corresponding 
to the closed-form solution; the estimate i n this case is obtained by a . 
process analogous to solution of differential equations by numerical 
i ntegration. 

The question of which of these methods of solution is superior is 
not easily answered since it depends on the application intended. A 
point in favor of using the closed solution is that if the solution at 

3This method has been called maximum likelihood estimation by 
J.P. L., although technically speaking it should be termed 11Bayes 
estimation. 11 The distinction i n t he present context is that the Bayes 
estimate utilizes the a priori statistics of injection errors and the 
maximum likelihood estimate does not. See references 5, 6, and 7 for more 
detailed definitions. 

4 The difference in the manner in which linearization is employed in 
the two methods should result in a slight numerical difference in the 
answers obtained. However, this is a practical rather than a theoretical 
consideration, the two methods still being fundamentally identical. 
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only one point is desired, only a single calculation is required, although 
it must be noted that this calculation may be far more complex than each 
of the many computations i nvolved in using the difference equation. This 
is part icularly true if the observations are correlated, for then the 
closed-form solution i nvolves the inversion of the very large Q matrix, 
which is quite apt to be ill-conditioned. Of course, it is assumed that 
Q is known a priori and the difficult inversion process need not be 
performed in the on-board computer; that is, the Q-i matrix could be 
precomputed and stored. However, if the solution is to be obtained at a 
number of points, for instance, at each observation time as in the present 
problem, it is seen that Q-i is different for each calculation and a 
very large storage would be necessary . In this case, the difference 
equation form of solution appears to be the natural approach since the 
number of calculations required is the same for both methods (i.e., one 
calculation for each observation), but the calculations are much less 
complex. This conclusion applies particularly to the case where correlated 
observation errors are considered. However, even with uncorrelated 
observations the difference equation solution is apt to be simpler because 
the closed-form solution always involves the inversion of a 6x6 matrix 
(eq. (F15)), whereas the difference equations involve inversion of a 
matrix which is of order equal only to the number of measurement components 
comprising an observation (see eq. (13)). It should be further noted that 
if the measurements comprising an observation are themselves uncorrelated, 
each measurement could be treated as an independent observation (even 
though they occur at the same time); the matrix to be inverted is in this 
case a JXl, and the inversion is trivial so that the ultimate in 
calculation simplicity is realized. 

A Minimum Data Method 

Although the trajectory determination technique presented is optimal, 
the question naturally arises as to how much better it is than other 
nonoptimal schemes which may be simpler and therefore have an advantage 
from an implementation point of view. No definitive answer to the question 
will be attempted here because the number of possible nonoptimal systems 
is myriad. However, some idea of the trade-off considerations involved 
can be obtained by a cursory examination of two alternative schemes. The 
first of these is a mininn.un data method wherein determination of the 
trajectory is based on two observations, each consisting of three angles. 
The second (given in the next section) is a least squares data smoothing 
method described in reference 8. 

The two-observation method can be described as follows. A measurement 
is made of the earth-subtended angle and direction of the vehicle-earth 
line at time t 1 , which is taken to be 1/2 hour after injection to 
coincide with the time observations begin in the optimal system. Then 
during the subsequent 2-hour period another similar observation is made. 
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On the basis of the two observations, an estimate of the position and 
velocity of the vehicle can be computed from purely geometrical relation­
ships if the times of the observations are known. The estimation error 
due to the instrumentat ion noise can also be computed. In figure 11 this 
error is plotted as a function of the time of the second observation for 
noise magnitude crn = 1 sec arc in each angle. The position estimation 
error, figure ll(a), depends only on the second observation and increases 
with time, whereas the velocity estimation error, figure ll(b), generally 
decreases as the spacing increases as should be expected. The slight 
upturn in the velocity error curve at the end of the observation period 
indicates that there is a distinct optimum spacing. For the situation 
assumed, this spacing is about 0.055 day (1.32 hours). The increased 
error for larger spacing is due principally to the rapidly increasing 
error in position determination. For crn = 20 sec arc the errors in 
position and velocity estimation are about five times as great as for the 
optimal filter in the interval between 2 and 2-1/2 hours after injection. 
It should be noted that this error is almost as great as the expected 
deviation from the reference trajectory for the assumed magnitude of 
injection errors. Thus, under these conditions, this type of calculation 
adds very little to the knowledge of the trajectory and is not competitive 
with the optimal system. Of course, since the two-observation calculations 
are so simple, a digital computer is not required as it is for the optimal 
system. Thus, such a technique might be seriously considered as a standby 
which could be used during certain periods of the flight in case of a 
failure of the computer. 

A Least Squares Method 

The next method to be considered, taken from reference 8, is a least 
squares curve-fitting scheme. The idea here is to smooth the observat i ons 
themselves (i.e., the measured angles), using a method of least squares. 
After a number of observations the angles would then be known with greater 
accuracy than they would be from any single observation, and could then 
be employed to obtain a navigation fix as in the minimum data method 
described above. When this idea is applied to the problem of estimating 
angles from the data obtained in a series of uniformly spaced observations, 
the precision of the angle estimates is given approximately by the 
following formula, taken from reference 8: 

crn(d + 1) 
Gm=-----

.Jk 
where 

am standard deviation of the estimation error 

crn standard deviation of instrumentation error 

(23) 
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d order of polynomial that fits the true angle time history 
sufficiently accurately 

k number of observations 

From the estimated angles an estimate of the position of the vehicle 
can be computed. When crm is known for each of the three smoothed angle 
measurements, the precision of the estimate of vehicle position can be 
calculated readily if it is assumed that the estimated angles are inde­
pendent random variables. This precision is plotted as a function of 
time in figure ll(a) with crm assumed to equal 1 second for each of the 
three angles. At 2-1/2 hours after injection (the time of the last 
estimate made by the optimal system), the precision is seen to be about 
1.5 km per second of arc. At this time the optimal system with 20 obser­
vations, crn = 20 sec, gives a precision of about 4.8 km. Thus, to give 
the same precision, the least-squares method must result in a crm of 
3.2 seconds of arc. If we assume that d = 1 is adequate to fit the angle 
time histories (a higher d gives a poorer estimate), it is seen from 
equation (23) that 156 observations are required to achieve the same 
accuracy as the optimal system obtains with 20 observations. A similar 
calculation for crn = 200 sec arc shows that about 1300 observations are 
necessary to match the optimal system performance. 

A large number of observations is required with this technique 
because the method is not optimal, in large part because it does not make 
use of available statistical information regarding injection conditions. 
The large number of measurements also implies a close spacing of 
observation times which tends to invalidate the assumption of independent 
observations. Additional disadvantages of the technique are that it 
involves certain approximations that introduce errors the magnitudes of 
which are difficult to determine, and further, that the technique is not 
very flexible. Nevertheless, the computations required are perhaps simpler 
than those of Bayes estimation, although the processing of so much data 
is not necessarily an easy t ask. 

An analysis similar to that given above could be applied to the 
determination of vehicle velocity with results similar to those obtained 
for position estimation. The details of such an analysis are of limited 
interest here and will not be developed. 

CONCLUDING REMARKS 

No attempt has been made here to present the theory of optimal 
filtering in a particularly sophisticated form. The idea has been prima­
rily to describe the application of the theory in a manner readily under­
stood by system design engineers. It is of particular interest that, 
unlike many applications of optimization theory, here the theory is 
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actually embodied in the system design rather than simply establishing a 
criterion for the assessment of the performance of systems designed in 
some other way. Thus, theoretical optimal performance is actually 
attainable (as long as the basic assumptions are not violated). However, 
it should be borne in mind that certain approximations might still be 
~uite fruitful in simplifying the system design, and such matters deserve 
further consideration. 

Some of the problems remaining in the practical design of a system 
utilizing the theory have already been mentioned. These include: 

(1) Design of a digital computer to implement the computations 

(2) Design of an instrumentation system and observation schedule 

(3) Detailed consideration of the true nature of injection errors 
and instrumentation errors (including biases) 

(4) Integration of the system into a complete guidance system, 
including such possible operating modes as abort, lunar orbiting and/or 
la:.: rl_ing, rendezvous, and re-entry 

Although the trajectory determination scheme has been described here 
in terms of guidance of a circumlunar vehicle, it is apparent that the 
same scheme is also applicable, perhaps with some practical modifications, 
to guidance problems for near-earth satellites and interplanetary vehicles. 
It also is not restricted to on-board applications, but could form the 
basis of an earth-based tracking system. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., Nov. 20, 1961 
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APPENDIX A 

TRE EQUATIONS OF MOTION 

The equations of motion are derived on the basis of including the 
gravitational effects on the vehicle of the earth (including the second 
harmonic term of the earth's oblateness) and a spherical and homogeneous 
moon and sun. 

The coordinate system chosen is that of a nonrotating Cartesian 
geocentric frame. The Z axis lies along the earth's :polar axis, positive 
to the north. The X and Y axes are in the equatorial plane with the 
positive X axis in the direction of the first point of Aries and the 
Y axis oriented so as to produce a right-handed orthogonal system. A 
diagram of this coordinate system is given in the accompanying sketch. 

z 

EARTH 
POLAR 
AXIS 

0 
VEHICLE 
(X, Y, Z) 

0 
SUN 

(Xs,Ys,Zs) 

0 MOON 
(Xm,Ym, Zm) 

X VERNAL EQUINOX 

The equations of motion expressed in the coordinate system described 
are as follows (see, e.g., ref. 9): 
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y = 
µeY 

[1 + r3 

z µeZ 
[1 + = - r3 

where 

J (~)2(1 5 ~=)] µm(Y - Ym) µmYm 
6m3 - r3 -

m 

J c ~)2c3 5 ~=)] µm(Z - Zm) µruZm - -- -6m3 r m3 

r == Jx2 + y2 + z2 

6m = J(x - Xm)
2 

+ (Y - Ym)
2 + (z - Zm) 2 

6s = J ( X - Xs ) 2 + ( y - y s ) 2 + ( Z - Zs) 2 

µe = 3 .986135x1oi4 m3/sec2 

µm = 4.8982ox1oi2 m3/sec2 

µ s = l .3253x1a2° m3/sec2 

µs(Y - Ys) 
6s3 

µs(Z - Zs) 
6s3 

a = radius of earth at e~uator = 6 .37826x106 m 

µSYS 
- rs3 

(A2) 

µ SZS ---rs3 

(A3) 

The first, second, and fourth terms on the right side of each of equa ­
tions (Al), (A2), and (A3) represent the gravitational attraction upon 
the vehicle of an oblate earth (second harmonic only), a spherical moon, 
and a spherical sun , respectively. The third and fifth terms represent 
the i nf luence of the moon and sun upon the earth, or may alternatively 
be interpreted as accounting for the principal part of the acceleration 
of the earth-centered coordinate system in inertial space. 
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APPENDIX B 

THE LINEAR PERTURBATION EQUATION 

The equations of motion, (Al) to (A3), are of the form: 

X = fi(X, Y, Z) 

y = f2(X, Y, Z) ( Bl) 

z = fs(X, Y, Z) 

To linearize these equations, we expand each in a Taylor series about a 
reference position, XR, YR, ZR, for example, 

+ higher order terms (B2) 

and similarly for the Y and Z equations. Here it is understood that 
the partial derivations are evaluated at the reference position. If the 
higher order terms are dropped (a reasonable approximation when the 
difference quantities X - XR, etc., are small), the equations are linear 
in the difference quantities. 

It is convenient to describe the state of this system of dynamical 
equations in terms of the difference quantities, remembering that X, Y, 
z, XR, YR, ZR are all functions of time (i.e., the Taylor's series 
expansion is performed at each point in time, using a reference trajectory 
to specify the XR, YR, ZR quantities). Thus, the state is a six vector: 



where 

Xi = X - XR 

X2 =Y - YR 

X3 = z - ZR 

4 = X - XR = Xi 

x6 = Z - ZR = X3 

Equations (Bl) are then of the form 

.. clf2 clf2 clf2 
X2 = - Xi + - X2 + - X3 

clX clY clZ 

.. clf3 clf3 clf3 
X3 = - Xi + - X2 + -X3 

clX clY clZ 

In the so- called standard form, equations (B4) appear as 

Xi = X4 

X2 = X5 

X3 = Xs 

4 
clfi + clfi + clfi = - Xi - X2 -X3 
clX clY clZ 

clf2 clf2 clf2 
X5 = - Xi + - X2 + - X3 

clX clY clZ 

clf3 clf3 clf3 
Xe = - Xi + -X2 + - X3 

clX clY clZ 

or in short-hand notation 

x(t) = F(t)x(t) 

(B3) 

(Bl+) 

(B5) 

(B6) 
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where x(t) is a six vector and F(t) is a (time -varying) 6x6 matrix 
defined as follows: 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

F= ofi ofi ofi 0 0 0 (B7) 
ox oY oz 

of2 of2 of2 0 0 0 
ox oY oz 

of3 of3 of3 0 0 0 
ox oY oz 

If the partials in F are evaluated along the reference trajectory, they 
are merely functions of time once this reference has been selected . If 
the reference for which the partials are evaluated is the estimated tra­
jectory, then the partials IID.lst be computed as the flight progresses since 
the estimate is not known a priori and is subject to change as each 
observation is made. 
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APPENDIX C 

REIATIONS l3ETWEEN SPACE ANGLES AND POSITION 

The system under study employs optical on-board instrumentation 
capable of measuring the directions in space of lines of sight from the 
vehicle to selected celestial bodies. Within this restriction there is 
no attempt made here to optimize the choice of angles to be measured. A 
particular plausible set of angles is selected simply to permit examination 
of the behavior of the trajectory determination system. This is necessary 
because the relationships between the location of the vehicle and the 
angles measured are an integral part of the system. Derivations of these 
relations are developed in this appendix for the chosen set of angles. 

Because the observational period studied here is such that the 
vehicle is relatively close to the earth, it is natural to conceive of an 
instrumentation system that involves looking at the earth, Such a system 
could conceivably provide si:rmlltaneous measurements of the direction of 
the vehicle-earth line of sight and the subtended earth angle. The 
geometry of this situation is illustrated in the accompanying sketch 

z 
VEHICLE 
(X,Y, Z) 

ARIES 

where the direction of the line of sight is specified by the angles ae 
and l3e, and the subtended earth angle is 2-y e. The angle l3e is assumed 
to be measured clockwise from Aries (the X axis), and ae is taken to 
be positive if the vehicle is below the equatorial plane (i.e., Z < 0). 

There are many possible instrumentation arrangements that could 
provide measurements (either directly or indirectly) of ae, l3e, and Ye, 
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the fundamental difference being in the way the inaccuracies in the 
measurements (i.e., the noise) enter the system . To avoid involvement in 
the details of specifying a particular instrumentation scheme, we simply 
assume, without any considerations of practicality, that the three angles 
are measured independently, with the same kind of Gaussian errors in each 
angle. The noise covariance matrix is therefore diagonal. 

The equations which relate the angles °'e, Se, Ye to vehicle 
positions are readily derived from the geometry. They are: 

<ie = -sin -i (i) 
sin-i -

y 

(X2 + Y2 )i / 2 

Se = 

cos-i - X 

(X2 + y2)1 /2 

Ye= sin-i c:o) 

where Ro= radius of earth 

R = (X2 + y2 + z2)i /2 

( Cl) 

The linear perturbation form of equations (Cl) is obtained by Taylor's 
series eX})ansion about a reference trajectory in the same manner as 
described for the equations of motion in appendix A. Thus, 

oa,e 
ca,e che cla,e 

Xi ------
_c)X clY clZ 

oSe = clSe clSe clSe 
X2 (C2) 

clX clY clZ 

0re 
cly e cl, e cly e 

clX clY clZ 
X3 

where oa,e, oSe, ore, xi, x2 , and x3 are deviations from the angles and 
positions associated with the reference trajectory, and the partials are 
evaluated along this trajectory. The 3x3 matrix of partial derivatives 
is the Hi matrix of the body of the report and is, of course , time­
varying. Explicit expressions for the partials are obtained by partial 
differentiation of equations (Cl) and are tabulated in the following 
table: 



Quantity ( q_) 
oq_ oq_ oq_ 
ox oY oz 

:xz yz z2 - R2 
a.e 

R2 .J x2 + y2 R2 .j X2 R.2.Jx2 + y2 + y2 

l3e -Y X 0 
x2 + y2 'f + y2 

-RoX -R0Y -Ref' 
)' e 

R2 .JR2 - Ro2 R.2.JR2 - Ro2 R2.J R2 - Ro2 

R2 = X2 + y2 + z2 

R0 = radius of earth 

It may be noted parenthetically that the three angles ae, 13e, ie, 
are sufficient for a position fix. Although the computation of such a 
fix i s not necessary in the data reduction method employed in this report, 
it is used in some navigation techniq_ues. Eq_uations for calculating the 
fix are obtained by inverti ng eq_uations (Cl): 

X = -
R0 cos aecos l3e 

sin I e 

y 
R0 cos aesin 13e 

( c3) = sin te 

X = -
R0 sin ae 
sin 'e 
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In the situation of ~correlated instrument errors, it is readily 
shown that the estimate n is not required. Suppose the estimate 
x*(tk-i) is represented in partitioned form 

(Dl) 

The operation ~*(tk; tk_1 )x*(tk-i) indicated in equation (9) can thus be 
represented in the form 

(D2) 

where arguments have been omitted for simplicity. Now, since for 
uncorrelated instrument errors %(tk; tk-i) = o, it is apparent that the 
updated estimate of n is simply zero and there is no point in implement­
ing this portion of the estimation calculations. 

The same sort of analysis applies to the computation of the p* and 
r matrices. If the matrix in braces in equation (11) is denoted as 
F*', this equation can be rewritten 

p* = ~p*t<J)T + Q* (D3) 

where p*' can be written in the partitioned form 

(D4) 

The subscripts sand n refer, respectively, to errors in the estimate 
of x and n, and sn refers to correlation between these errors. Note 
that any covariance matrix, such as P* ', is symmetric, and therefore the 
off-diagonal submatrices can be expressed as transposes of each other. 
Equation (D3) can then be written 



( D5) 

Obviously, if <I>n. = o, this reduces to 

p = ~p.~ j (D6) 

The parts of P* which refer to the errors in estimating x and n are 
thus uncorrelated, and may be computed separately. The matrix Q' is 
computed from equation (6), where it is seen that for uncorrelated errors 
the lower limit of the integral can be replaced by -oo. Thus, in this 
case Q' is a function only of t, and is designated Q(t). Since Q(t) 
may be assumed to be known a priori this computation may be omitted, 

The computation can be further simplified when the computation of 
Ps is examined in detail. In partitioned form, the operation _MPlf-:Ml' 
can be written 

where 

p = <I>Ps~ ( DB) 

The operation to compute P'* I (the matrix in braces in eq. (11)) is then : 

p*' = p* - Yw'B-J.MP* 

~ OJ _ [ PJITB-1HP PJirB-11 
= (D9) 

Q QDTB-1.HP QDTB-1DQ 

From a comparison of equations (D4) and (D9), it is clear that the 
submatrix Ps is computed by the relation P - .mTB-1.JIP, Substituting 
this into equation (DB) then gives the recursion relation for P as : 

P(tk+1.) = <I>(tk+1.; tk)[P(tk) - P(tk) JIT(tk)B-1H(tk)P(tk)Jcz,T(tk+l; tk) 

(DlO) 
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where 

Here a further simplification has been introduced; because Q appears in 
the equations only in the form DQDT, no generality is lost by redefining 
Q to be DQDT. 

The r matrix may be written 

(Dll) 

Only the upper part of this has to do with incrementing the estimate of 
x. Designating this portion 0£ r as K, we then have 

(D12) 

Following the same procedure, the operation M~~ in equation (9) 
is reduced to R(l)x. 

With the simplifications given above, the optimal estimation 
equations become 

x(tk) = ~(tk; tk-1)x(tk-1) + K(tk)[y(tk) - H(tk)~(tk; tk-1)~(tk-i)J 

(Dl3) 

K(tk) = P(tk)H'l'(tk)[R(tk)P(tk)H'l'(tk) + Q(tk)]-i 

P(tk+i) = ~(tk+i; tk)[P(tk) - K(tk)R(tk)P(tk)J~T(tk+1 ; tk) 

(D14) 

(D15) 



APPENDIX E 

COJ'.1PUTATION OF THE TRANSITION MA.TRIX 

All solutions of the linear differential equation (B6) can be 
written in the form 

x(t) = ~(t ; to)x(to) (El) 

where x(t0 ) is a vector initial condition at time t 0 , x(t) is the vector 
state variable at time t, and ~(t; t 0 ) is the trans i tion matrix which 
relates the two. As was shown i n the mai n body of thi s report, we are 
principally interested i n the transition from one observation to the next . 
Since the transition matrix dep(;;nds on the particular trajectory the 
vehicle is on, and since the observation times are arbitrary, it is 
desirable that ~ be continuously calculated in the vehicle. 

It is seen in equation (El) that i f an initial condition of unity is 
put on x 1 at time t 0 with all other component s of x set equal to 
zero, then the ensuing time history of x is the first column of the 
~(t; t 0 ) matri x . This is demonstrated as follows . I f we define 

~( t; t 0 ) = (E2) 

cp6l. 

where each element cpij is a function of t and t 0 , then we see that 

cpH 1 

cp2 l. 0 

cp3 l. 0 
= ~(t; t 0 ) (E3) 

cp.u 0 

cp5l. 0 

cp51 0 
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This is equivalent to introducing the proper initial conditions into the 
perturbation equations and integrating numerically, a ~rocedure readily 
implemented by means of a digital computer, If this is done simultaneously 
for six sets of perturbation equations, with each set having a unit initial 
condition on one of the components of x and zero on all the others, all 
six columns of the transition matrix can be gene_ ~ted continuously. The 
transition matrix from the latest observation is always available if the 
initial conditions are reset after each observation. 
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APPENDIX F 

RECURSION RELATIONS FOR A BAYES ESTIMATION PROCEDURE 

To formulate Bayes estimation equations, we begin with the same 
assumptions employed in the development of the optimal filter theory. 
These are: 

(1) The equations of motion are linearized with respect to a reference 
trajectory, and the state and observables are described in terms of 
deviations from the reference. Thus, the state is given at time tk by 

(Fl) 

where ~ is the 6x6 transition matrix from time t 0 to time tk. The 
set of deviation observables at time tk is given by 

(F2) 

where Hk is the matrix of partial derivatives of the observables with 
respect to the state variables at time tk. 

(2) An observation is made at time tk with additive error 
uncorrelated with errors at successive observation times: 

(F3) 

:Here, if 
and xk 

Yk is a j vector ( i.e., j components in the observation) 
is a 6 vector, Hk is a jX6 matrix. 

A series of k observations of the type described might then be 
represented in the form 

y = H(l)x0 + n (F4) 

which may be partitioned 

0 0 

0 

= H+ (F5) 

0 
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If Yi and ni are j vectors, and x 0 is a 6 vector, the Hi~i are 
jX6 matrices. When Gaussian injection errors and noise are assumed, with 
zero means, the statistical description of the random vectors x0 and n 
is given by the covariance matrices 

cov(x0 , x0 ] = P0 

cov(n, n] = Q, 

If the ni are uncorrelated ( i.e., observations uncorrelated), Q, may 
be partitioned in the form 

0 0 

Q, = 

0 

Suppose it is desired to estimate the injection state, x0 , from the 
series of observations, y. When the problem is considered probabilistic­
ally, it is evident that all the information about the initial condition, 
x0 , conveyed by the observations, y, is contained in the so-called a 
posteriori probability density function, written as p(x0 ly). Now, from 
dec ision theory it can be shown (e.g., ref. 5) that to minimize a mean­
square-error loss function (or more correctly, a quadratic loss function 
in the case of a multidimensional estimation problem) the estimate of 
x 0 , which may be called x0 , is the mean of t he a posteriori random 
variable (x0 l y). This is called a Bayes estimate in decision theory. 

To obtain an analytical expression for p(x0 j y), Bayes theorem is 
employed : 

Since the noise and injection errors are assumed Gaussian and 
i ndependent, the density funct ions in equation (F6) can be written 
(e.g., see ref. 7, p. 13): 

(F6) 
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where 

1 [ 1 T p-i ] 
6 1./2 exp - 2- x0 0 x 0 

[(21r) !Pol ] 

p(y) = 1 exp [ - _21 yT(Q + r)-1.y] 
[(21r)jklQ + rl ]1.

12 

j = number of measurements in an observation 

k = number of observations 

Thus, the a posteriori density function is 

p(xo l Y) 

which, after some manipulation, becomes 

(F8) 

(F9) 

(FlO) 

_ IQ + r11. 12 
[ 1 T 

p(xo l Y) - 3 1. 12 1. 12 exp - 2 (xo 
(21r) IP0 1 IQ[ 

- y1'Q-1H~A)A-1 (x0 - A~THTQ-1 y)] 

(Fll) 

where 

Clearly, the mean of the random variable (x0 [y) is 

(Fl2) 

Also, the covariance matrix of the error in estimate, x0 = x 0 - x0 , is A. 

If the estimate of the state at time tk is desired, this is given 
by 

where ~ is the 6x6 transition matrix from t 0 to tk. The covariance 
matrix of the error in estimate is 



,... 
These explicit formulas for the estimate xk and the statistics of 

the error in estimate involve the multiplication and inversion of matrices 
of rather high order when there are a large number of observations. Some 
simplification in this regard is possible under the assumption of inde­
pendent observations if equations (F13) and (F14) are written in terms of 
the partitioned parts of Q, H, and~: 

k i k ,... ~ (p~l. + l ~+ H+ -1. H· ~-)- I~+ T - 1. 
xk l l Qi l l l Hi Qi Yi 

i=l i=l. 

(F15) 

k 
)-l. 

1'>k = ~ ( p;l. + I~ 
H'+' Qi:l. Hi ~i ~£ l (F16 ) 

i=l. 

Now if it is supposed that the estimation calculations are to be performed 
on a step-by-step basis - that is, the state estimate is 11improved 11 at the 
time each new observation is obtained - it is clear that the previous 
estimate is always available. For instance, at time tk when the kth 
observation is made, the estimate xk-i of the state at tk-1. has 
already been computed on the basis of the first k-1 observations: 

k-1. k-1. 

+ l ~I HI Q1
1 

Hi ~i)-1. I <Pr Hy Qt Yi (Fl 7) 

i=l. i=l. 

Also, the est~mate of xk 
by updating xk-1. to time 

k-1 observations is obtained simply 

k-1. 

~~=l. ik-1. = ~ (p;l. + l ~I H1 Qi:1 
i=l. 

(F18 ) 

where ~~=1. is simpl y the transition matrix from time t k -1. t o t k . 
Next, it is seen that e quations (F15) and (F18 ) may be rewritten as: 

k k 

(p;l. + l ~ HI Q/ Hi ~i) ~l. ~k =I~ HI Qil. Yi (Fl9) 

i=l. i=l. 

k-1. k-1. 

( 
-1. 

Po + l ~I 
i=l. 

=I~ 
i=l. 

HT ('\-l 
i ~i Yi (F20) 
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Subtracting e quation (F20) from (F19) gives 

k 

(p;l. + L <t>i Hi Q? Hi <l>i) ( ~]_ xk - <t>k::1. ~k-1.) 

i =J.. 

or 

(F21) 

It is seen that this equation would be identical to equation (12) in the 
text, developed from filter theory, if 

That this relationship is true will be proved here in two steps : First, 
it will be shown that Ak, the covariance matrix of Bayes estimation 
errors, is equal to the P'(tk) covariance matr ix; this is proved by 
showing that A'k and P ' ( tk) satisfy the same recursion equations. 
Second, it is necessary to prove the matr ix relationship 

where A~ = Ak + (M)k, and (M)k is the change in the covariance matrix 
of estimation errors which occurs when the observation is made, (In other 
words, two covariance matrices at time t k are considered : Ak based 
on k-1 observations, and ./{k based on k observations.) 

To develop a recursion formula for Ak, it is noted that the change 
in this matrix due to the kth observation is given by 

(M)k = Ak - Ak = ~ [cp~1 
+ t 1ir -~~1 

+ I\rJ ~ 
i=l. l. 

(F22) 
where 

(F23) 

is the covariance matrix before the information from the kth observation 
T T -1. . ( ) has been included, and fi = <l>i Hi Qi Hi<l>i . Equation F22 can be 

rearranged to give 
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( 
- l. 

Po + 

(F24 ) 

Now the matrix identity 

or 

(F25) 

is substituted into equation (F24) to obtain 

Thus, 

(F26 ) 

The recursion forIID.llas (F23) and (F26 ) for ilk are seen to be identical 
to the equivalent equations, (15) and (16 ), for the P(tk) roatrix. 
Therefore, P(tk) is exactly the same as ~-
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The second portion of the proof is developed as follows: Expression 
(F26 ) is substituted into the weighting function ~H! Qki, with the 
result that 

(F27) 

This completes the proof. Thus, the Bayes estimate is seen to be identical 
to the eRtimate obtained by the filter theory approach. 



REFERENCES 

1 . McLean, John D., Schmidt, Stanley F., and McGee , Leonard A.: Optimal 
Filtering and Linear Prediction Applied to a Midcourse Navigation 
System for the Circumlunar Mission. NASA TN D-1208, 1962 . 

2. Kalman, R. E.: A New Approach to Linear Filtering and Prediction 
Problems. Jour. of Basic Engr., vol. 82, no. 1, March 1960, 

3 . 

pp. 35-50 . (Also pub . as: RIAS, Inc . , Monograph 60- 11; Office of 
Scientific Research TN 59-268; and ASME Paper 59-IRD-11.) 

Kalman, R. E., and Bucy, R. S .: New Results in Linear Filtering and 
Prediction Theory. Jour. of Basic Engr., vol. 83, no . 1, March 1961, 
pp. 95- 108. (Also pub . as: RIAS, Inc., Monograph 61- 8; and ASME 
Paper 60-JAC-12.) 

4. Carr, Russell E., and Hudson, R. Henry: Tracking and Orbit ­
Determination Program of the Jet Propulsion Laboratory. TR 32-7, 
Jet Propulsion Lab., Pasadena, Calif . , Feb. 22-26, 1960 . 

5. Abramson, N. M.: Seminar on Dec ision Theory and Its Applications to 
Communication Theory. RJ-MR-8, IBM, San Jose, Calif . , Jan . 1958 . 

6. Blackwell, David, and Girshick, M. A.: Theory of Games and Statistical 
Decisions. John Wiley and Sons, Inc., N. Y., 1954. 

7 . Shapiro, I. I.: The Prediction of Ballistic Missile Trajectories From 
Radar Observations. McGraw-Hill Book Co., N. Y., 1957. 

8 . Proschan, Frank: Precision of Missile Least S~uares Position and 
Velocity Estimates. Tech . MEMO EDL-M263, Electronic Defense Lab . , 
Inc., Mountain View, Calif., Feb. 29, 1960. 

9. Baker, Robert M. L., Jr., andMakemson, Maud W.: An Introduction to 
Astrodynamics. Academic Press, Inc., N. Y. and London, 1960. 



48 



OBSERVATIONS 

UNIT 
INITIAL 

CONDITIONS 

AT tk-l 

® ® 

K ( t) 

'-----f GEOMETRY 
EQUATIONS 

COMPUTE 

F (t) 

® 
6-FOLD 

PERTURBATION 

EQUATIONS 

@) 

CD-----..... 
EQUATIONS /I-----' 

OF 
MOTION 

@ 
Q (tk) 

COMPUTE 
@) 

<l>(tk i tk-1) 
COMPUTE 

p (tk) 

p'(tk- I) 

ESTIMATED STATE 

COMPUTE 
K (tk) 

@ 

COMPUTE 
p'(tk) 

@ 

Fi gure 1 .- Block di agram of trajectory est i mation system . 
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peri lune for vari ous magni tudes of observat i on errors . 
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Figure 8 .- Devi at i on and estimat i on error ellipses in the equatori a l 
plane ; On = 20 sec arc . 
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Figure 9 ,- Root-mean-square estimation errors for two different 
observation rates. 
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Figure 11.- Root-mean-s~uare estimation errors for a mininn.lm data method 
of trajectory estimation. 
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