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FAST INTERPIANETARY MISSIONS WITH LOW-THRUST PROPULSION SYSTEMS

By W. E. Moeckel

ABSTRACT

A simple family of indirect transfer trajectories between circular
orbits is used to evaluate the mass ratio required to complete round-trip
interplanetary missions using low-thrust propulsion systems. The results
indicate that indirect interplanetary trajectories yield substantial re-
ductions in total round-trip time for low-thrust as well as high-thrust
vehicles, and that space vehicles propelled with electric rockets may
produce greater reductions in trip time, for a given initial weight, than
those propelled by high-thrust nuclear rockets.

(Initial NASA distribution: 41, Propulsion Systems, Electric; 46, Space
Mechanics; 48, Space Vehicles; 53, Vehicle Performance.)
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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL REPORT R-79

FAST INTERPIANETARY MISSIONS WITH LOW-THRUST PROPUISION SYSTEMS

By W. E. Moeckel

SUMMARY

A simple family of indirect transfer trajectories between circular
orbits is used to evaluate the mass ratio required to complete round-
trip interplanetary missions using low-thrust propulsion systems. These
trajectories, although not optimum, yielded very substantial reductions
in total round-trip time for Mars missions with moderate increases in
initial weight. For a powerplant specific weight o of 10 pounds per
kilowatt of jet power, trip times were reduced from 1200 to 600 days,
for a typical manned mission, with an initial weight increase of a factor
of two. Comparison with a nuclear rocket with 1000-second specific im-
pulse indicated that the electric-propulsion system required less initial
weight for trip times as low as 550 days with o = 10 and as low as 400
days with @ = 5 pounds per kilowatt. Further weight reductions would
be expected with more nearly optimum trajectories.

INTRODUCTION

The study of round-trip interplanetary missions using low-thrust
propulsion systems (such as electric propulsion) is more difficult than
similar studies for high-thrust systems, because the trajectory cannot,
in .general, be represented in closed form. To determine the propellant
mass required, a complete integration of the trajectory equations is
generally necessary for each trajectory chosen. It is naturally desirable
to choose those trajectories that minimize the total initial weight re-
quired to complete a mission in a given length of time. For one-way trips
to Mars, such an optimization program was reported in reference 1. A dis-
cussion was also given in reference 1 of round-trip missions consisting
of optimum one-way trajectories; but, since no attempt was made to include
the effect of waiting time at the destination planet (which is required
to effect rendezvous with the Earth), no valid conclusions could be drawn
on the propellant requirements as functions of overall mission time. It
is, in fact, clear from studies of high-thrust trajectories (refs. 2 to
4) that direct Earth-planet trajectories such as those of reference 1 are



unlikely to produce the largest mission-time reductions for a given initial
weight.

Another study of low-thrust round-trip missions was included in
reference 5, wherein constant-tangential-thrust trajectories were used.
However, as was pointed out in that reference, an extensive program of
trial-and-error computations would be required to make these trajectories
useful for round-trip missions much faster than the minimum-energy mission.
Consequently, it has hitherto not been determined whether faster round-
trip interplanetary missions are possible using electric-propulsion sys-
tems, or what weight penalties are likely to be involved to achieve such
time reductions. The purpose of the present report is to answer these
questions in & preliminary way.

The approach used herein is to select a particular family of
continuous-thrust trajectories (not necessarily optimum) for which it is
easy to vary trip time, transit angle, and perihelion or aphelion dis-
tance. Combinations of members of this family of trajectories are then
found that minimize the initial weight for a given total trip time. The
results are then applied to typical manned and unmanned Mars missions to
show how initial weight varies with mission time and to compare this
weight with that possible using high-thrust nuclear rockets.

MISSION ANALYSIS
General Discussion

Before considering the particular trajectories selected, it is well
to derive general expressions for determining initial weight required for
any round-trip interplanetary mission. These missions can generally be
divided into seven phases: (1) Earth escape, (2) Barth-planet transfer,
(3) descent to planetary orbit (or surface), (4) waiting time, (5) escape
from planet, (6) planet-Barth transfer, and (7) descent to Earth orbit
(or surface). For one-way interplanetary probes, only the first two or
three of these phases need be considered; while for round-trip missions,
all must be included. With high-thrust propulsion systems, only phases
(1), (3), (5), and (7) involve propulsion periods; while with low-thrust
systems all phases except phase (4) may require continuous propulsion.

For preliminary studies of mission capabilities and feasible tra-
Jectories, such as those contained herein, it is assumed that:

(1) Only a single gravitational mass need be considered during each
phase (the Earth in phases (1) and (7), the destination planet in phases
(3), (4), and (5), and the Sun in phases (2) and (6)).

(2) The orbits of the Earth and the destination planet are circular
and coplanar.




These assumptions are justifiable on the grounds that the major energy
changes involved in the actual mission are included in this simplified

model.

The escape and descent phases of the mission (phases (1), (3), (5),
and (7)) can be adequately handled using the charts of reference 5. These
charts present trajectory parameters for constant specific impulse and
constant thrust directed parallel to the instantaneous velocity vector.

It has frequently been indicated (e.g., refs. 1 and 5) that constant-
tangential-thrust trajectories are close to optimum with respect to pro-
rellant consumption for accelerations from satellite orbits to escape
velocity.

The Earth-planet transfer phases (2) and (6) will be evaluated using
a particular trajectory family to be derived. These phases consist of
transfers between two circular orbits (those of the Earth and the destina-
tion planet) with the boundary condition that the vehicle velocity is
equal in magnitude and direction to that of the Earth at the Earth's orbit
and that of the destination planet at its orbit. For such transfers,
reference 1 indicated that propellant consumption is minimized if maximum
jet power is applied at all times (as in the constant-thrust case) but
with the thrust varied to follow certain optimum trajectories. Phases
(2) and (6) will therefore be called variable-thrust phases; and the
trajectory family to be derived, although not optimum, is of the constant-
power, variable-thrust type.

Mass Ratio for Constant-Thrust Phases

As pointed out in reference 5, mass losses other than propellant
consumption can sometimes become important in calculating the trajectories
and performance of low-thrust vehicles. Particularly for manned missions,
the consumption and ejection of subsistence supplies may significantly
affect the trajectory during the lengthy propulsion periods. The mass-
ratio expressions, both for constant-thrust and variable-thrust trajec-
tories, will therefore be derived for the case where supplies, other than
propellant, are being ejected without generating thrust. It is assumed
that this ejection takes place at a constant rate, since discontinuous
ejection of sizable mass requires stepwise integration of the equation of
motion.

To determine the trajectory as a function of time from the charts of
reference 5, the two parameters that must be specified are ag and Vj,

where ag = F/mogo is the initial thrust acceleration, and Vj = Vj/vc,o




is the effective jet velocity parameter. (Subscript O is used to
designate values in the reference orbit, which is either the departure
orbit for escape phases or the destination orbit for descent phases.)

The expression for effective Jjet velocity parameter is derived as follows:
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in appendix A.) Now
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Making all velocities dimensionless with the reference circular velocity
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With Vj and ag specified, constant-thrust phases of the trip can

be determined from the charts of reference 5. The mass ratio for these
propulsion periods is given by
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where T = Vg, Ot/ro, the dimensionless propulsion-time parameter, and
J

where mgy = mgy for outward paths and my = my, for inward vaths.

For electric-propulsion systems, thrust and propellant jet velocity

(or ag and Vj}pr) are not independent. For constant jet power, they
are, in fact, related by
fove . =Ty = 1476P (5)
DI ST Toige = J




where F 1s expressed in pounds, vj or
£

jet power) in kilowatts. In dimensionless form this becomes

in feet per second, and Pj (the
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where Wi = mjgpp 1s the initial space vehicle weight. This initial

weight is introduced to permit use of two design parameters: the specific
powerplant weight o (= wpp/Pj, lb/kw) and the ratio of powerplant weight

to initial gross weight B (= wpp W;). With these parameters, equation
(6) becomes
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The mass ratio for the propulsion period can be expressed in a more
useful form, in terms of the propulsion time and the parameters o and
Bat Phus’,
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where rq is expressed in miles and te in days.

For the outward trajectory (mgy = m,), equation (11) is the solution
for mb/ma. For the inward trajectory (mo = mb), the solution of the
mﬁhaﬁcfbrx%ﬁ% is
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For values of C and ﬁstf/ma much less than unity (which is generally

the case), expansion of the radical yields, to first order in C and
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This expression can also be written in the following more convenient form
(for later derivations):

m.t m,g Sl
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Equaetion (11) (with mg = my) will be used for computations of mass ratio

for outward paths, and equation (11a) for inward paths. Use of equation
(11a) is conservative, in that values of m/m, obtained are lower than

those resulting from the exact equation.

The dimensionless total-impulse parameter (aoT) is determined from

reference 5 for the energy change required during the propulsion period.
For values of ap and Vj corresponding to escape from, and descent to,

circular orbits near the planets with electric-propulsion systems, the
value of agT is approximately 0.9 and is rather insensitive to moderate

variations in ag and Vj in the range of interest for electric propul-

sion. This value will therefore be used for the escape and descent
phases of interplanetary missions.

It is clear from equation (11) that, for each constant-thrust pro-
pulsion period, an optimum propulsion time exists that minimizes the sum
of the propellant weight and supply weight required. Representing equa-
tion (11) by

o s
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and differentiating with respect to ty yield the following values for

optimum propulsion time and maximum mass ratio:

t aj/as, days (13)
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For most missions of interest, topt is unreasonably large. In
partieular, if as is negligible (very small supply ejection rate), equa-

tion (12) leads to the obvious conclusion that the propulsion time should
be as large as possible to reduce propellant consumption. This optimiza-
tion is therefore not a useful one when reductions in total trip time are
being sought.

Mass Ratio for Variable-Thrust Phases
For variable-thrust propulsion phases, the derivation of convenient
expressions for the mass ratio proceeds in a manner similar to that of
reference 1, except that supply consumption and ejection are considered.

The differential mass loss can be expressed as follows:

dm = 'dmpr - dmg
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where the constant-power condition

F = 1476P; (16)

Y isor

has been used. Equation (15) can be written in integral form as follows:
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where Ve,a is expressed in miles per second. The integral of the square

of the nondimensional acceleration Y is the quantity to be determined
from the particular trajectories selected.

To obtain the mass ratio in a reasonably simple manner from equation
(18), the mass in the denominator of the supply-consumption integral is
represented by a mean value, given by

S 1

m = k(m, + my) = km <l + ;) (19)

With this substitution, equation (18) becomes

ngty
O.ZSPj m, m,
== - |- (20)
Ma8aVe ,al™ 2< mb)
kel —
g,

In terms of the parameters o and B,
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Equation (22) is the required relation between mass ratio and the
trajectory parameters. It is plotted in figure 1 for several values of

the supply-consumption ratio ﬁstf/ma for the particular value k = 12,

That this value of k is a reasonable one for moderate supply-consumption
rates was verified by comparing the curves of figure 1 with values obtained

for two special cases for which the m-2 integral in equation (18) is
easily evaluated. These cases are (1) m/m; = 1 - ct, and (2)

m/m )2 =1 - ct. For the first case (constant mass-consumption rate
a,  J
equation (22) becomes

by Ih;:f
— = (22a)
Mg, Mgy o
s —
For the second case, equation (22) becomes
ﬁlstf Il’la -
m m, @) m
e A e S (22b)
Iy, 1m, v my B
.

Values obtained from equations (22a) and (22b) are indicated in figure 1
for the case ﬁstf/ma = 0.3. The comparison indicates that, at least for
values of mstf/ma < 0.3, the curves obtained for k = 1/2 are adequate
for preliminary mission studies. These curves do not, however, yield the

correct values of my/m; at I' =0 [(mb/ma)P=O =1 - (ﬁstf/maX]. The

dashed curves were therefore faired into the correct value to improve the
accuracy near the abscissa.

With the curves of figure 1, the mass ratio required to follow
constant-power trajectories can be determined when the value of 1y for
those trajectories is found. For the particular case of heliocentric
transfer from the orbit of the Earth, the relation between ¥ and I' is

= 0.007 (24)

[;t should be noted that the ¥ of this report is not the same as
that of reference 1. The relation between them is

of = (¥*)per. 1
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The expression Y“/a plotted in reference 1 is related to present param-
eter by

2
= 0.454(1_) Lol
% /Ref. 1 1o

where the factor 0.454 converts _the o of reference 1 (which is in
kg/kw) into pounds per kilowatt]

Mass Ratio for Interplanetary Round Trips

The mass ratios required for the seven phases of a round-trip inter-
planetary mission can now be summarized as follows:

Phase (1). - Escape from circular orbit of radius r; around Earth
(from eq. (11)):

g. m_t
21 P BASKIGRD g St
i 8o Pt1 ™
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(25)

Phase (2). - Earth-planet transfer (eq. (22)):
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(The solution of this equation is given in fig. 1.)

Phase (3). - Descent to circular orbit at radius rz around planet
(eq. (11)):
m . mzg m mt
——3—=1-3.35><1o‘°r3 o B
o Wt Eoq  BeBbgs Mg

(27)

or, from equation (1lla):
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Phase (4). - Waiting or exploration period:
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where m., 1is the mass, other than provisions, that is used during this

period and left behind (such as landing and exploration equipment) .

Phase (5). - Escape from circular orbit at radius rz around planet
(eg- (11)):

ny 83 o @ Mgts

I—E =1 - 3.35X10™° r; — e (29)
T =810 5 =
Phase (6). - Planet-Earth transfer (eq. (22)):
st
gi SrE —__Eé_—_§ . ;é & . (30)

(The solution of this equation is plotted in fig. 1.)

Phase (7). - Descent to circular orbit at radius r7 around Earth
(eqg. (11})s

m ¥ my My g m.t
L -1 - 3.35%0°p, L1 B?cb B o (31)
Mg e R R

or, from equation (lla):
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The mass my; 1s the mass returned to an orbit around the Earth, and

includes (l) the return payload mass (crew quarters and supplies, except
consumed provisions, crew shielding, communication and navigation equip-
ment, instrumentation, etc.), (2) the powerplant mass My, and (3) the

reserve propellant and provisions m,.g. If the basic payload and reserve

are grouped together and denoted by mp, the return payload mass, then

=
Bl =
~J

-

~p (32)

W |

All strueture weight is assumed to be included in the powerplant weight.




It is worth noting that the parameters o and p appear in equa-

tions (25) to (31a) only as the ratio o/B, which is equal to wi/Pj-
Consequently, the final- to initial-weight ratio m7/mi can be determined

without separately specifying a and B.
mass

Po find the portion of the final
e that is payload, of course, requires specification of powerplant

welght raciol B

For the general manned mission, the payload must be calculated by
the step-by-step process, starting with an assumed initial mass

the payload turns out to be less than

mission, other values of m; must be

be obtained by plotting a curve of m

mi . EF
or greater than that needed for the
assumed, and the correct value can

against m .

S
For preliminary calculations, aimed at determining optimum values of
the many parameters involved in equations (25) to (32), it is better to
simplify these equations by neglecting mg, and the supply consumption
Mg

It is also convenient to consider a specific mission. The mission

.chosen for consideration herein is a round-trip Mars Jjourney starting
and ending in an orbit around the Earth at radius ry = ry = 4360 miles
(gi = g7 = 26.6 ft/secz). At Mars, a waiting orbit at rz = 2500 miles
is assumed (g3 =88 ft/secz). With these simplifications, equations

(25) to (32) can be combined to yield the following expression for the
ratio of payload weight to initial weight:

s e ! i | P
m, mi{l & i o.ozze(t—3 B E):,} 5
s m ; m
1 a 0.0226 e 0.1207 m oq I
[l + o E(FZ t3 )] + m; p(I‘G + _—t7 ){l + m B[I‘z + 0.0226<-% - t_s)]}
where (33)
m
B ., s (34)
Ty = 0.04 Ty, kw/1b (35)
o 5/2
Tg = 0.04 = Tg = 0.014 vg, kw/lb (36)

Further simplification
involving tz and tg
will be for the faster

ignoring the mass used
then yield

is permissible for those trips for which the terms
are negligible in comparison with I'p, as they

trips to be considered.

(This is equivalent to
for phases (3) and (5).)

Equations (33) and (34)
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0.1207
P'=P2+1—‘6 +——E7—~ (38)

Equation (37) can be used for initial estimates of mass ratio both for
one-way trips and round trips (for the former, I'' is simply I'5). This

equation indicates also that an optimum value of p exists for fixed
values of ml/mi and I''. Differentiation with respect to [ yields

m
!
Bopt = o~ VT '(1 - ~/aT7) (39)
i
and substitution of this value of B into equation (37) yields
m m 2
(—E) = =(1 - o) (40)
me me.
i/ max 7
For the missions considered herein, typical values of ml/mi range
between 0.80 and 0.95.

Equations (39) and (40) are plotted in figure 2 for my/m; = 1.0.

The results for this case are the same as in reference 1. With equations
(34) to (39), initial estimates for weight ratios as functions of trip
times can be made when I's; and T'g have been determined from the equa-

tions for transfer between circular orbits.

TRAJECTORY ANALYSIS

The differential equations for the trajectory followed by a vehicle
propelled continuously in a central gravitational field are (ref. 5)
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a
o - p(en)Z + L o 2x (e1)
o Ea,
and
ag
p8" + 2p'0Q' = = (42)
8a
where
F sin ©
8y = 'T (43)
and
F cos ©
o L 4
ag = (44)

and where © is the direction angle of thrust vector, measured outward
from the circumferential direction (see sketch (a)). The radius

Sketch (a)

ESGH O s r/ra, and the derivatives are with respect to the time

parameter T = Vc,at/ra'

Equations (41) and (42) have been integrated in the past for several
types of trajectories. In reference 5, the thrust is constant and di-
rected at all times parallel to the velocity vector (tangential thrust).

In reflerenee 6, the geceleration F/m is constant, again with tangential
thrust. In reference 1, auxiliary equations are derived, using variational
methods, whose solutions yield trajectories that minimize Yy for a given
one-way trip time between two circular orbits. Other integrations have
been carried out for circumferential thrust (& = OO) and radial thrust
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(& = 900). None of these approaches are satisfactory for fast round-trip
analyses, because, as pointed out previously, the trajectories most likely
to reduce total round-trip time with minimum propellant consumption are
not direct transfers between circular orbits. Although indirect transfer
trajectories can be obtained by trial-and-error patching of wvarious
constant-thrust and zero-thrust trajectories, the procedure is much too
laborious for preliminary analyses.

The approach used herein is to prescribe a family of fairly simple
trajectories, calculate the thrust and acceleration programing required
to follow these trajectories, and determine the combinations of members
of this family that yield minimum values of the two-way mass-ratio
parameter (s + I'g).

Two families of trajectories were considered. For the Tfirst, the
equations of motion were left intact, and an attempt was made to find
simple equations for the path that were capable of satisfying the boundary
conditions for transfer between circular orbits. A reasonable form for
the trajectory is obtained if p is assumed to be a sine function of 6.
The angle. 6, in turn, was represented by a power series in - t. The re-
sulting equations for the trajectory were

6 2 e
e=r[eé+i<3—f—-zeé-eiu)+<L) (6-2—f+9],;,>] (45)
: o e tr tr

Bi- )
5. Sy oty et A (46)
2 2\6;

where subscript f refers to conditions at the final orbit. These
equations satisfy the boundary conditions

A = 2]

]
(@]
-
2 5)
Il
=
-
e
Il
O

(47)
At g = Tpt 2]
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D
H
-
)
Il
©
H
-
©
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Substitution of these expressions for 6 and P and their deriva-
tives into equations (41) and (42) and subsequent integration of the square
of the acceleration yield v as a function of 6f, T, and the initial
and final circumferential-velocity parameters 64 and 6. If circylar
veloecity is desired at both extremities, then Qé = Al Lz Gf = p%s/z.

These values produce a direct transfer between two circular orbits. For
such transfers, an optimum 6r 1is found that minimizes Y for each

transit time Tpe For indirect transfers, combinations of paths can be

used as illustrated in sketch (b). Both portions ab and bc could be
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nitial orbit
Final orbit

Sketch (D)

transfers between circular orbits, but lower values of Yy for the com-
bined path can be obtained by varying the circumferential-velocity
parameters 9% at the intermediate point b. A number of one-way and

round-trip trajectories were calculated for this family, but it was found
that lower values of Y were obtained with the second family tried.
Since the second family is also simpler to deal with in that closed ex-
pressions are obtained for the ¥'s, no further discussion of the first
family will be presented.

For the second family of trajectories, the assumption was made that
at all points the relation

g = p'3/2 (48)

was maintained. This assumption implies that the circumferential com-
ponent of the velocity is equal to the local circular velocity at all
times. For this family of trajectories, the equations of motion (egs.
(41) and (42)) assume the particularly simple form

a
r "
s 49
e o (49)
a
6 s e

€

The expression for Y then becomes

Te Vo
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The assumption 6' = 0'3/2 defines the relation between the two inde-
pendent variables 6 and p, but still permits arbitrary variations of
p as a function of time. It is now only necessary to find an expression
for p as a function of T that satisfies the following boundary con-
ditions for transfer between two circular orbits:

Ak T

@: p = 1,-p' =20

(52)
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Te: P pf, G ==(0)

The simplest expression that satisfies these conditions is
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Denoting T/Tf by £, -the expressions for @ and its derivatives are

p =1+ (pp - 1)E%(5 - 26) (54)
ot = Eﬁfz;;_il E(L - &) (55)
g SEerd ) i (56)

e

For indireet trips, suech as those of sketch (b), combinations of two
transfers between circular orbits can again be employed, but there is no
choice of the magnitude of the circumferential velocity of the inter-
mediate radius, because this velocity is circular, for these trajectories,
when p' = 0. Substitution of equations (54) to (56) into (51) yields

3(pp - 1)7
re—t [i% : 5F<pf)] (57)
where
1 il
2 2
F(p,) = L - )t =1 (et (56)

[} + (pf - l)§2(5 = 25)]3
0 0

and where f(ﬁ,pf) is equal to the integrand of the second term.




The value of ¢ for these trajectories is, from equations (48)
and (54),

Tf i
Or = 0'3/2 A= T g(g,pf)dg
0 0
= 7:6(pg) (59)
where
1 1
Glp,) = g(E,pp)dt = at (66}
- ; [1 + (pp - 1)E5(3 - 25)]5/2
0 0

The functions F(pp) and G(pg) are plotted in figure 3. For the entire

range. oy P shown, an excellent approximate expression for F(p is
it i

F(p.) = 0.033 p;s/z (61)

i
For a limited range of pp (0.3 < pp < 3.0), which is of interest for
Mars and Venus trips, the function G(pf) is given to good approximation
by

Slp) = ok (62)

Substituting these expressions into equations (57) and (59),
&
)

S(Qf 5 4 =
re—— (—5 9.1 pf3/2> (63)
£ =

Ll
Qf = Tfpfs/‘, radians
(64)

57.3 10035/%, deg

Equations (63) and (64) are the equations for the trajectory param-
eters upon which the remainder of the discussion will be based.
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Direct Transfer Between Circular Orbits

Although much of the present report is devoted to round-trip inter-
planetary missions, it is of interest to discuss briefly the use of

0= §’3/2 trajectories for one-way direct transfers between circular
orbits. Such transfers are needed for missions such as raising or lowering
satellites and for one-way planetary probes. Furthermore, combinations of
such direct transfers will subsequently be used for analysis of round-trip
migssions. For heliocentric paths starting from the Earth's orbit, I' is

given by
T =008 ¥ (65)
and the trip time parameter is

18.5X0.864X10°

Ve,alr
i & 6
Lo 92.9X10
where ty 1s expressed in days.

=0.0L72 £ (68)

Values of I' calculated from equations (63) and (65) are shown in
Tigure 4 as a function of T for various radius ratios Pp. Shown for
comparison is the curve for the optimum Earth-Mars transfer taken from
reference 1. It is apparent that the 8' = p’5 2 trajectories are far
from optimum for one-way interplanetary transfers. For an Earth-Mars
transfer time of 175 days, for example, and for a value of a/B = 50, the
ratio of initial to final mass ml/m2 is about 1.007 for the trajectories

of. reference 1 and about 1.25 for the 8! = p'3/2 trajectories. Although
it appears doubtful that the low mass ratios obtained for the optimum
trajectory can be realized in practice, even for one- -way trips, the dif-
ference is so large that there is adequate basis for assuming that round-

trip mass ratios calculated with 6' = 0'5/2 trajectories are quite pes-
simistic, and that subsequent trajectory studies will produce considerably
lower values for given trip times.

For geocentric missions involving transfer to higher orbits from a
near-Earth orbit (rp = 4360 miles), I' is given by (see eq. (23))

L= 13.82 1 (67)
The relation between Te and tf is

4.69X0.864X10° ty
e 4360

= 93 t, (68)

where te - 1s again in days. Obviously, the range of Te of interest for
geocentric missions differs greatly from that of figure 4.
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Indirect Transfers Between Circular Orbits

To evaluate mass ratios for indirect transfers with the 6' = p'5/2
family of trajectories, two members of this family are combined, as shown
in sketch (c):

Tnitial orbit

Final orbit

Indirect
tra jectory

Sketch (c)

Let
& N
=
Pl =
a r
a
Fiei T Ty,
lot = .
c e } (69)
s iaE
i T
tSh
Qz=a $

Then the expression for Yy appropriate for the entire transfer abc is
derived as follows:
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@

TZ_

T, :

The integrals in this expression for Y are the same as those which led
to equation (63). Conseguently, the value of ¥ for an indirect trip
becomes

2 a
2,-5/2

(T e g 3(1 - 2
e o [(f) +0.10 0;13/2] e o) Pa [(Ti) + 0.10 053/2]

*a a Tb b

(72)
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Let k = t, b/ta c Dbe the fraction of the total transit time alloted to

I Sy : .
the portion ab of the trajectory. Then, sinee Spy = pc/pa, equation
(72) becomes

SLin 2 ’
L e con ]

KTa

Il

12(1 - p,)° SR e 42
)5a [L ¥ (l < K) E ] 2 577\t T ) ()

L KTePRg Pe
where
P b
A=lc____a
_pa
For a given total one-way trip time t, . and a given destination
2

radius ratio p,, equation (75) expressed Y 1in terms of the intermediate
radius ratio p, and the proportion of the transit time allowed for the

first portion of the trip k. For each pg, P., and t,, an optimum value

of Kk exists that minimizes 77 for the trip. Differentiation of equa-
tion (73) with respect to Kk yields the following equation for this
optimum K (denoted by Ko):

36 x L - ko\* 0.30 | 4% L= gkl
;g(l—Ko) 2[A2_<____KO )]+p§/2 [pg’ﬁ—< r >]=,O i

The solutions of this equation for T, =0 and 1T, =» are

1l - K

For ., =04 I Al/2 (75a)
Ko

l—KO A

Ko pg/é

Yor 9, = w: (75b)
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These solutions for optimum Ko are plotted in figure 5. Also shown
are values obtained for T, = W/f?@. These calculations show that, for
values of 1, of interest for interplanetary missions, there is no ap-
preciable change in Ky from the T, =0 value. It is, therefore, a
good approximation to use the value of Ky for 7, =0 1in the expression

for 71 (eq. (73)). This expression then becomes

= T;:Sfl(pc’pa) g T;le(pc’pa) (76)

where

£1(PgsPg) = 12(1 - pg)3(1 + /E)% (77a)
£5(PgsPg) = 0.30(1 - p,)2035/2(1 + VEI[L + (8/0,)%/2]  (770)

The limiting forms of the functions for Pg = 1 and Py = Pe (direct
transfers) are

2

£1(Pesl) = £1(Pe,Pe) = 12(1 - o) (782)

£,(po51) = £5(pg,0,) = 0.30 p33/2(1 - p )2 (78b)

The resulting expressions for Y are, of course, identical with the
direct-transfer values of equation (63).

Considerable simplification in making round-trip calculations re-
sults from noting that

Algespaten) =1fAlps )] (79)
£ (e tecte,) = 07%, (0,8, . (80)
£o(05t,05%0,) = Pofa(Pe,Py) (81)

The transformations p, — pgl, Pg — palpa correspond to inward and out-

ward trips between the same circular orbits along trajectories with the
same intermediate radius 1 (sketch (d)). If the value of Y for the
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Nob

Sketch (4d)

outward trip (abc) is denoted by 7¥p, and for the inward trip (dbe) by
Yg, equations (79) to (81), together with equation (76), yield the re-

sult that
oM T 5/2 e
Y6<_§, _E> = <_9> Y2<_E, _b (82)
g Trg Ty, Tg Tg

where r3 = r,. This equation, in turn, when used in equation (36),
yields the required result that

Tg, i) Te l"b
Pe("—') _'E) e P2<_) _"') (83)
te' e Ta ™ Ta

Values of fl and fz are shown in figure 6 for Pa = 1524
(Barth-Mars trip) and p, = 0.656 (Mars-Earth trip). With these values,

mass ratios required for various combinations of round-trip Mars tra-
jectories can be calculated.

Another quantity needed for these round-trip calculations is the
angular distance traveled. From equations (59) and (62),

6 = Tapé3/4 + 'cbpgs/4
_ Veo,akta,c ~3f4 . Vo,b Pe s
=G iy ao e TR B
a b ?~\Pa.
-3/4
TeP
cPg 3
= m <l + —\/K pc5/4)’ radians (84)
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or
—3/4ﬁ/K
L (pa,05) = = (
T e? gt = 3/4 s
c P (1 + -/3)
where, as before, the optimum value of Kk for 7, =0 has been used.

The relation between values of G/T for inward and outward transfer
between the same circular orbits with the same intermediate radius is

/2

g
Loy) = oc/ = (PesPg)

) AT
T (p5™see
so that

lpa) 74 e(chpa)

6(pgt,e;

Even more useful for interplanetary mission studies is the lead angle
® acquired during the transit by the vehicle relative to the initial
planet (Earth). Any lead angle acquired during the outward trip (and
during the time spent in the vicinity of the destination planet) must be
reduced to zero or augmented to 2n 1if the rendezvous with the initial
planet is to be achieved. The lead angle acquired during the departure
phase (phase (2)) is

VC

JE t2
e

v A I
o tz-9(45, b’2> i (s6)
I'E T rE 1 B

where Ve B and rp are the orbital speed and radius of the Earth, Tp

P2 = 62 -

is the orbital radius of the destination planet, and ry o, 1s the inter-
2

mediate radius on the outward trip. The lead angle for the return trip
(phase (B8)) is

Ve,E
m6 = 96 - iz
=32

v 14 d e
- Yom |z Q(.E, Y
I’E I'E % rP I'P

i ) iy 4
el b’6) =1 (87)
rE T l"E rE
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where rb,6 is the intermediate radius for the return trip. The lead

angle acquired during the time spent in the vicinity of the destination
planet (phases (3), (4), and (5)) is

Py = (6p - fp)ty

(88)

|
L<
HIO
&5
t
P
=
—
Hl H
v |
v
™
S
Do
]
R i )

where tw = t3 Gk t5.

For the Earth-Mars trip (VC’E/TE = 0.0172 radian/day = 0.986°/day),
these lead angles become

? k Iy :

LT T J.504, UL Y , deg/day (89)

tz T I'E

) 2

5 _ o.086[2 (1.524, 22B) - 1], dex/any (90)

t6 T I'E
Py 5
T = -0.462, deg/day (91)
W

e
The function @/t = O.986E§ 60524, ;E) - ] is plotted in figure 7. With
E
this curve, the radius ratio required for the return trip, for a given

outward trip and waiting time, can be determined with the relation

Qg + P + @, = 2nx (n = 0,1,2,3) (92)

For fast trips, the case n =0 is of most interest.

Weight Ratios for Mars Round Trips

To evaluate the weights needed as functions of trip time for inter-
planetary round-trip missions, either with the step-by-step method (egs.
(25) to (32)) or with approximate methods, the values of I'; and Ty

must be determined for combinations of trajectories that satisfy equation
(92). For Earth-Mars missions, the expressions for Iy and Ty are




X B r r
I eanie BB e N R S s e (93)
n t t T rm a re

where n = 2 for the outward trajectory and n = 6 for the inward tra-
jectory. This function of transit time and rb/rE is plotted in figure

8. Since I' has a sharp minimum at rb/rE = 1.0, it was thought likely
that the lowest values of TI's + I'gs for a given total trip time would be

obtained when either the outward or return trip is a direct one
(rb/rE = 1.0). Subsequent calculations confirmed this conjecture, and

further calculations were therefore made for rb,Z/rE = 1.0. The first
step was to calculate T'p + P6 as a function of t, for several fixed
values of t, and t', where t' 1is the total round-trip time with the

exceptions of the Farth escape and descent phases; that is,

Lloeits + & Sk (94)

Equations (94) and (92) and figure 7 determined og, tg, and rb,G/rE

as a function of tp; I'p and I'g were then obtained from figure 8. This
calculation yielded the optimum distribution between to and tg for
given t' and t, together with the values of TI'p, I'g, and rb,G/rE

corresponding to these optimum trips. The results are shown in figure 9
for 1t = 50 days. The curves show that the outward (direct) trip time

to 1s about one-quarter of t', and that the optimum intermediate radius

for the return trip Y6 is about 57><lO6 miles and is almost independent
2

B3 gt s

Using the values from figure 9, a calculation was next undertaken
using equations (34) and (37) to determine the best distribution between.
t and. t' fior & given tobtal &rip time. Valuesifior p of 0,2 and" @

of 10 were used for this part of the calculation. The ratio mp/mi was

found to be rather insensitive to small redistributions of total trip time
between t;, t', and t;. The resulting breakdown of trip times is shown

in table I.

Using these values, the ratio of initial mass to payload mass was
calculated from equation (33), which is the more precise equation for the

case mex=0, ﬁs = 0. Results are shown in figure 10 for a = 5 and 10
pounds per kilowatt. Also shown for comparison are mass ratios for the
same mission using nuclear rockets with specific impulses of 800 and 1000
seconds. The computation procedure and trajectories used for the nuclear
rocket are described in appendix B. The two branches of the curves for
the nuclear rockets result from use of a different type of trajectory for
low and high trip-times.
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Figure 10 shows that, contrary to general opinion, electric rockets
are potentially as capable as nuclear rockets of making fast interplanetary
round trips. In fact, for mass ratios less than 10, it appears that elec-
tric rockets can accomplish the mission considerably faster than nuclear
rockets. These comparisons, of course, depend on practical achievement
of the assumed performance parameters for both systems, but the ones
chosen are generally regarded as being attainable. Another interesting
result shown in figure 10 is that the mass ratio increases very slowly
as trip time is reduced quite drastically below the minimum-energy values.

Thrust and Specific-Impulse Program

It is of interest to calculate, for some typical missions, the thrust
and specific impulse required to follow the assumed trajectories. For
constant-power trajectories, such as those considered herein, thrust and
specific impulse (or jet velocity) are related by equation (5), which can
be expressed as

S g ote g lnlilian g

13800 13 800

{95)

Qlm

1o 3 F/migoo is denoted by aggy, equation (95) becomes

1=2=2F (96)

For constant-thrust phases (phases (1), (3), (5), and (7)),

1580 8g* Yolg 0.9 ™80
b 2, i ) WM Brn . - T WaBan - Vark Mg A7)
1200 1500 c,8 1200
7
a

where mgygy = myg, for phases (1) and (5), and mggy = m,g, for phases
(3) and (7). Thus, for phase (1) (Earth escape), with

& Jeny = 26.6/32:2 =10:826, and  mw, = By,

0.008

800,1 = ¢ (98)
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For phase (3) (Mars descent), gb/goo = 8.7/32.2 = 0.270,

=
_ 0.00335 "3
WO S I (100)
and
Btz ms
T E oot e (101)
3 a m
%
For phase (5) (Mars escape),
0.00335 "4
Q % 15
and
Btz m.
To 3 00 e (103)
S > @ m
4
For phase (7) (Earth descent),
.008 ™7
860, 7 = Ot S (104)
7 my
and
ﬁt'? m:
I, = 5740 — 55 (105)
7

For variable-thrust phases (phases (2) and (6)), the accelerations
are obtained from equations (49), (50), (54), (55), and (56), and the
thrust is calculated from

2 2
AP Mg, ay ag
200 = = = — (—£> + <e— (106)
1800 1800 Y\8s g,

Thus, for phase (2) (direct Earth-Mars trajectory),

a

r,2_ 10,650

éf ==—t—ld - 28] (107)
a, ts
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and

_8,2 _ 9%;§ ~/T(1.524,¢) (108)

7
where f(1.524,¢) is the function under the integral sign in equation (58).

For phase (6) (Mars-Earth indirect return), the accelerations for the
first portion are

a
I‘,6 = -4:2;3002 (l % 2§) (109)
8a, (0.42t;)
and
a i o)
6,6 (193 )-\/7_—7 b
= SAE s ViP5t ¢ Bprs (110)
ga Oo42t6 ’ a‘} I‘M

and for the second portion,

a
e G s (1 - 2¢) (111)
a, (0.58t;)
and
a 2 ed
056 .5 Sl ( 3 ’g> (152)
ga 0-08t6 rb)e

The thrust and specific-impulse programs are shown in figure 11(a)
for a 500-day trip and in figure 11(b) for an 800-day trip. Values of
and B used were: o = 10 pounds per kilowatt and B = 0.20. These
figures show that the specific impulse ranges from 2,500 to 37,000 for
the 500-day trip, and from 4,000 to 38,000 for the 800-day trip. The
mass-flow rates required for a given power vary as I'Z, so that mass-
flow variation by a factor of 100 is needed if I varies by a factor of
10. Although these large variations are not impossible with ion acceler-
ators, a reduction in the range of variation will certainly be desirable.
It is possible that trajectories can be found that do not require such
large thrust variations and that will not significantly increase the mass
ratio. Considerable investigation to find such trajectories is certainly
warranted.
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The time variations of several trajectory variables for the Earth-
Mars transfer portion (phase (2)) of the trips shown in figure 11 are
plotted in figure 12. Of particular interest are the curves for the
direction of the thrust vector &, which show that the thrust is radial
at both ends of the trajectory and is inclined at large angles to the ve-
locity vector throughout most of the transfer. The fact that the thrust
is radial at both ends of the trajectory for all 6' = p’s/2 transfers
can also be seen from equations (49), (50), and (56), which show that the
radial component of the thrust vector decreases linearly with ¢ from
its maximum positive value at € = O to its maximum negative value at
¢ = 1, while the circumferential component is zero at both ends (p' = 0)
and reaches its maximum value near the middle of the transfer path.

MANNED MARS MISSIONS

Using the near-optimum parameters of table I, calculations were made
of the weights required for a manned Mars mission similar to that dis-
cussed in references 5 and 7; that is, an 8-man expedition capable of
landing on Mars. The constants of the journey are the same as used for
the unmanned trips of the previous section, and the additional constants

are ﬁsgoo = 80 pounds per day (based on a consumption rate of 10 1lb per
man per day) and exploration equipment Max8oo €qual to 40,000 pounds.

Equations (25) to (32) for this mission become, with B = 0.2:

Phase (1):

=

80t

. 604
it il al
Phase (2):
80t2
(solution plotted in fig. 1)
+w_2_ (114)
l
Phase (3):
| sotg
W3 w2
i i (L15]
2 1 Ol Sens 2
et e
0 W,
S i
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Phase (4):
Wy 80ty 40,000
e— =1~ - (118)
Wz Wz Wz
Phase (5):
W W 80tz
WE i O.ilSa,Wé T 5 (117)
4 5 i 4
Phase (6)
80t
W N W_
S 5 5
—-1-——2_=5d; — (solution plotted in fig. 1)
W 2 W
6 Wg i
L+ (118)
5
Phase (7)
g 80t
W . e
7 6
B W (119)
6 0.604a "6
T
; i
The return payload ratio is, as before,
wp Wy
W= - 0.20 (120)
3 i

Using equations (113) to (120) and the parameters of table I, the
return payload weight WP was calculated as a function of initial weight

for several trip times and for values of specific powerplant weight of 10
and 5 pounds per kilowatt. Results are shown in figure 13. For a return
payload of 50,000 pounds, the initial weights are shown as functions of
trip time in figure 14. Also shown in figure 14, for comparison, are
initial weights required for the same mission with a nuclear rocket having
a specific impulse of 1000 seconds and a powerplant weight of 20,000
pounds. Appendix B describes the calculation procedure for the nuclear
rocket.

Among the features of interest in figure 14 is the result that the
initial weight increases very slowly, with electric propulsion, as the
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trip time is reduced from the minimum-energy value of about 1200 days
(refs. 5 and 7) to about 700 days for a = 10 or about 550 days for

@ = 5. The rate of increase is even slower than that for the unmanned
mission (fig. lO), because reduction in supply weight needed tends to
compensate for the increased propellant weight as trip time is reduced.
The relative position of the curves for electric and nuclear rockets re-
mains about as for the unmanned-mission calculation.

CONCLUDING REMARKS

The results of this study show that, even with a simple, nonoptimum
family of trajectories, it is possible to produce drastic reductions in
the time required for round-trip interplanetary missions using continuous,
low-thrust propulsion. It is to be hoped that further trajectory optimiza-
tion studies will produce even greater trip-time reductions for given
initial mass. It is also desirable, although perhaps not essential, to
find trajectories that require less variation in thrust and specific im-
pulse than those used herein.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, April 22, 1960



34

APPENDIX A

SYMBOLS

Pai = Pg
1 - Py,

thrust acceleration
radial thrust acceleration

circumferential thrust acceleration

thrust acceleration in reference circular orbit for constant-
thrust phases

4.4X107° ro(aoT)z(magO/Wi)(a/Btf)

thrust, 1b

gravitational acceleration

gravitational acceleration in reference circular orbit
gravitational acceleration at Earth surface (32.2 ft/secz)
specifie dmpulse, sec

mean-value parameter

mass, slugs

mass, other than provisions, used and left behind (phase (4))
Jjet power, kw

distance from center of gravitational body

intermediate radius for indirect trajectory

Earth orbital radius, 92.9x10°

miles
Mars orbital radius, 141.5X10° miles

time, days
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t, time for phases (3), (4), and (5), tz + t4 + ts

1 total round-trip time except phases (1) and (7), t, + t, + tg

Vs jet velocity parameter, Vj/vc,o

i circular velocity

Vc,O circular velocity.in ?eferen§e orbit (departure orbit for escape
phases and destination orbit for descent phases)

A& Jet veloeity

W weight, mgn g

s 3 €00

a specific powerplant weight, pr/Pj, lb/kw

B ratio of powerplant weight to initial vehicle weight, wpp/wi

) (vc’aga/O.ZSgoo) T, kw/1b

i integrated acceleration parameter for variable-thrust phases

o) angle between thrust vector and circumferential direction

6 trajectory angle (anomaly)

v angle between velocity vector and circumferential direction

K fraction of time alloted to first portion of indirect transfer

E T/T,

fo) radius ratio

T time parameter, Vc,Ot/rO

To see eq. (71)

() lead angle

Subscripts:

a values at start of phase

b values at end of phase
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E Earth

£ final values at end of propulsion period
1 initial

j¢) payload

PP powerplant

pr propellant

S subsistence supplies

W wait time (phases (3), (4), and (5))
0 reference orbit

1-7 phases of interplanetary mission
Superscript:

 ;

indicates differentiation with respect to T
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APPENDIX B

MISSION WEIGHT CALCULATIONS FOR NUCLEAR ROCKET

For a high-thrust interplanetary mission, starting and ending in an
orbit around the Earth, there are four propulsion phases ((1), (3), (5),
and (7)), each characterized by velocity increment Av required to follow
the chosen trajectories. If only the propellant mass reduction resulting
from each Av is considered, the mass ratic for esch firing is

1

m ) -
-—Ef—n = e Avn/VJ (n = ]_,3,5,7) (Bl)
T ,n

For the nuclear rocket, it is assumed that a single nuclear reactor and
thrust chamber will be used throughout the mission, so that no motor
staging will take place. However, after each firing, some propellant
tankage can be disposed of. If it is assumed that the tankage weight is
proportional to the propellant used, the weight after each propulsion
period can be represented as

My,n = Mp,n - €n(ma,n 5 mﬁ,n) (82)
or
my -Av /v- ,
e—=m (ke Jo. Ftid - o (n =" ,5.5,7) (B3)
- o 4
where €, is the ratio of disposed propellant tankage to propellant used.
A value of € of 0.05 was used in the present computations. If the mass

n
ratio of equation (B3) is denoted by m!, the initial weight for a complet

manned interplanetary mission can be written as follows:

: e .
g Wy + Wop + miWgtg + mama (W t, + W) + mimimiW_to ik
(o m'm!m'm/ :
la3as
where WS = 80 pounds per day for the 8-man mission considered, and
Wox = 40,000 pounds. For the unmanned mission (WS = 0), equation
(B4) reduces to
1 4+ B2
W W
it D
W wmimm (E5)

P eeSeomy
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For the nuclear-rocket curves of figure 10, equation (B5) was used, with
wpp/wp assumed negligible; while for the curves of figure 14, equation

(B4) was used with W, assumed to be 20,000 pounds.

The values of Av and trip times were obtained from reference 4,
which contains results of systematic calculation of Earth-Mars round-trip
trajectories. For each range of total trip time, the trajectories yield-
ing minimum total Av were used. For trip times between the minimum-energy
value of: 970/days and 650 days, the best routes found in reference 4 were
of the direct type for the outward trip and an aphelion route (passing
outside the Mars orbit) for the return trip. For the trip time range
below 600 days, lowest Av's were found when outward and return trip were
both along perihelion routes (passing inside the Earth's orbit). Some
interpolation was necessary in the times and Av's of reference 4, since,
for some of the trajectories of interest, values were given only.for 100
days' and zero days' waiting time (tg) in the vicinity of Mars. To ob-

tain the weight ratio comparable with those for the low-thrust missions,
a value of tw(= t4) of 25 days was assumed unless larger waiting times

produced smaller Av's. The resulting values for the Av's and times

are given in table II. The times required for the propulsion phases were
assumed to be negligible. A slight correction was made in the values of
Avz and Avg obtained from reference 4, to allow for the difference be-

tween the 2500-mile orbit assumed herein and the orbit at 1.1 Iy used

in reference 4. This correction amounted to changes of the order of
0.06 mile per second or less from the values of Avz and Avg obtained

from reference 4.

Table II shows that, for trip times greater than 810 days, the
waiting time at Mars is greater than 25 days for the optimum trajectories.
No calculations for t4 > 25 days were made for the low-thrust propulsion

system; however, the results of references 5 and 7 for minimum-energy

paths (ty = 450 days, tiot =~ 1200 days) yielded initial weights comparable
to those obtained herein for t, = 25 days, ti,¢ = 800 days. Consequently,
it is expected that trajectories can be found, in the range of tiot from

800 to 1200, that yield longer waiting times than 25 days with little, if
any, increase in initial weight.

The round-trip missions analysed herein are not necessarily the most
economical for either nuclear rockets or electric rockets. Other missions
possible with nuclear rockets might include nuclear boost from the Earth
as part of the escape phase (phase (l)), whereby some improvement in over-
all mass ratio might be realized relative to electric rockets. Such a
mission should be compared with one in which electric rockets are launched
into orbit with nuclear rockets to determine whether there is sufficient
advantage in switching to electric rockets for the interplanetary part of
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the mission. Use of atmospheric braking, both at the destination planet
and upon return to Earth, would reduce the weight ratio needed for both
nuclear and eléctric rockets for a given total trip time. The reduction
might be greater, percentagewise, for nuclear rockets than for electric
rockets, because reductions in the effective Av tend to be more
significant with systems having lower specific impulse. Such analyses,
as well as discussion of the relative optimism or pessimism in the as-
sumed performance parameters of the two systems, are beyond the scope of
this report.
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TABLE I. - NEAR-OPTIMUM PARAMETERS FOR EARTH-MARS ROUND TRIPS

FOR t_= 50 DAYS USING ©' = 0-3/2 TRAJECTORIES

Total | £, [5' | Bp | t5 [ta [Bs]%s |57 | T2 O
trip xw/1b | kw/1b | T
time, / / E
days

400 15511570 98 115 |25 |10 | 222 | 15 |0.0315 [0.0635 |0.61

450 20 | 410 | 110 250 | 20 .023 .044 .62
500 25 | 455 | 122 283 | 20 .0165 H0l .62
550 30 [ 495 | 130 Sla| 25 .OiSZ 0235(  .B25
600 | 35 | 540 | 148 342 | 25 .0095 .0185| .63

700 | 50 | 620 | 160 410 | 30 .0060 .0124| .63

800 70 | 700 | 190 5y, Y | 460 | 30 .0043 .0090| .63
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TABLE II. - TRAJECTORY PARAMETERS USED FOR NUCLEAR-ROCKET CALCULATIONS
To?al t2 5 t6 Awi Avg ANS AN7 AVe ot s Route
Ei;g, miles/sec
days
970 (260 | 450 | 260 | 2.20|1.36(1.36(2.20 7.12 | Minimum-energy
900 [ 260 | 225 [ 415 |'2.2011.36]2,62{72.32 8.50 |[Direct-aphelion
850 260 |.110 | 480 | 2.20|1.36/|3.22}2.44 SR Direct-aphelion
810 2608 251 | 5250422011 36| 36412 .55 Sl Direct-aphelion
650 |160 25 | 465 |14.4812.05|4.8414.58|] 15.95 Direct-aphelion
5501265 25 262 | 4.60| 2. 19| 2:6815.00] 14.47 Perihelion-perihelion
500 | 226 25 | 249 |4.70|2.78|2.68|4.30| 14.46 Perihelion-perihelion
400 |155 25 1220 {4, 705.56]5.17{4.00] -15:.43 Perihelion-perihelion
350 11235 25 11202 [ 4. 60|4.36 13, 764,90 17.62 Perihelion-perihelion




42

l-6 ‘ ‘ e
5\\‘ \ k=l/2
F o Fairing to correct
) ] P =0 wvalue
1A LN
\ X Special cases
1.4 T -
U Aty
‘ 1 \‘ = = 0.3
| :
T £
WA o I _ 1 - Const. (—)
\ e te
| WAVEAY AN
. o <£)=1-Const. (L)
1 \Y ma tf 1
N[NNI
LI T
| WA
loo \
\ \WIEAVEAY
\[ 1\
\
\ \ ‘\ *
T WA mgt
1T YHIA N :lf
3l .8 \ a
Q| -~ \ \ \
g 18 N
L THHLY \
Al
\ N\
\ \.O
\ \\ \\
B r: \.4
\ 'l\
\ \ \
\
NS
\ .2\
| lNe
\
\ \ \
{ “3 \
\ \ by \ N
3 by N
Xl.4 N \
S \\ f \ \ \
X N
\ ‘ N
N
A\ N N,
‘ ‘\
\ N N
AR N N Ny
\ b b
N N
0 -7 .4 o6 8! 16419,

Mass ratio, m.b/ma

Figure 1. - Relation between mass ratio and I' for variable-
thrust propulsion periods involving mass ejection.




43

1.0

T Bop’c
v /// \\ \\\‘
S
/ \\\ \\\
NS
o / \\\ 3

T~

\\

0 il Ve ) .4 D o5 ol «+8
Ma

Figure 2. - Optimum powerplant mass ratio and maximum payload ratio as functions
of I'Ma for my/my = L.O.




Radius ratio, ps

100
60 \\
\
40
b\\
B \<~ a(p,)
20 N N
ST F(Pf)
\\\
10 0.0333 p;3/2 = e AVAW
N N
. 1SS! ‘\\\
4 - p;3/4 _/\\
N
N N\
NU \
2 B
A

v N \

6 N

.4 \\ \

N
b N
N
N

Ak 3
.0001 .0002 .0004 .001 .002 .004 .006 .01 .02 .04 .06 ok 2 4
Functions F(pf) and G(pr)

Figure 3. - Exact and approximate values of functions F(pf) and G(pr).

10

144



45

1 =
.6 T
o4 ===
SRERER = '
1 N ! o T
> t Ay 5 L NE T 1 g
. A EmY i EA ¥
1 11 1
| X ™N i T
N 1, 1
A ¥
T AY [
1 \ e
WAL AY ¥ D
o1 ===
e e S==SSC = :
.08 SSS =i : SS==2 : e === SESS=Z
A == N=T TN i : SN F = |
.04 — =
== = - =
= \ = 5. 0=5
1 = AN = —
SERER \ = : : !
« 02 T ay X i :
1 t EGEEERTLET
i \ - =~ 0. 20 1]
\ N
o I N
\ \ N N N
\ A\ N NG B
.01 \ = AWl ==
=5 = ===
E 1 ‘ EEE X = E == =
- 006} REECEREEEO EEECREEETa ' :
= e e N - SN
. 004 — — ——
— —— — —= ————
X = : : 2.02=H
N g e
; EENS =S S22
. 002 i o 7 o 0.50 =5
AY =3 1 (0 s 2t 1
N 5 1 e N !
2N —
AY N
\ ~
\ N,
. 001 = - — %
. 0006 SN e e e
B - e SR SEEE=S==E = -
. 0004 == =
T T Tt T
T T NS —
. 0002 1
1 o o
N 1 1 1
> - h ——
0.9 1.20-H
NGy Vil Vo O
. 0001 > 1| HEl==)

0 it 2 3 4 5 6 i
Time parameter, Tp

Figure 4. - Values of I for &' = p'3/2 trajectories.



Fraction of time allowed for first portion

of indireet transfer, K,

8 // 2t
. i / \\ bt
/ / \\
A I
—F S P / ;/ 7 |
F
b \\ \ /// WO g )
N4 i i
\\//

Intermediate radius ratio, p,

Figure 5. - Limiting values of .optimum Kqg. for

pe = 1.524.

9y



47

—

¢y pue

1>

SUOTYOUN ]

&
Q f A_ﬁ
e i i
i = 4 # _ﬁ
ikl I
i 1T il i Y
Gt |
T a) » _ []
L & i il
‘.ﬁ 1] LS __ w ”.H_ —
3 “ﬁ
S i
CElE [ t
o
‘ it
ﬁ WLy
i A1
(aN] — 0 <f o1 —
. . o (@] (@] o

1.6

1.4

1.0

Intermediate radius ratio, Py

and f5 for Earth-Mars transfers.

Figure 6. - Values of fl




deg
day

2

Trip time ° t’

Lead angle

-6

.2 o4 «6 .8 1.0 1.2 1.4 1.6
Intermediate radius ratio, ry/rg

Figure 7. - Lead angles for Earth-Mars transfers with o' = p'3/ 2 trajectories.

1.8

2.0

8%



49

1=
=== =
= == LS
ye====cEi
4 =
SEiTE e miE : = 7
R E: ;
.2 R ;
A" \ \‘
1
1 \
1 AL INTINT TN
\
\
T\ NN
LA .
= ESSSiEsesi e s :
.06 e B B e T Wi e e : 7 = —
_— AR NN : == - : :
«OdE=—= = == = === Intermediate
\ R - radius ratio,
\ X X = = B r /T
\ : : v/ 7E
- ~<
y T L
\ \ N —
.02 = N . 40
\ h% \s\ N ~ -
%, N
\ N o, % = 1
i \ \ :
!
B
fw - onfELEL Ll 3
AR — =
| = 3 i 5 =S
<006 e e e
e T SN T
. 004 = = -
N N . - = ““
N ; ‘3% T : ¥ “\.Bo = ==
I = =
. 002 - - >
S 1 i
. 1
N 3 = T
N
NS ~
AN
. 001 L] b -
,,,,, SEE E===== : §
<0006 ESS ==t == =S==== = = ,
. 0004 S====cS==
= = = =1.0:
. 0002
. 0001

100

200 300 400
Earth-Mars transit time, t, or fg,

Figure 8.

500
days

800 700

- Values of I’ for Earth-Mars transfers.




50

- 000
- ==
.6 : 600
Ess: %
! T 1
o 4 - — 400
l tT \:
— 2=
S i : : 200
T —
\‘ —
LN - i
| \‘ A
RS = oo
" — SESEESEER
. O6EEEEEEN N o
N N e -+ -
= == N = : : = =2
] i N ] ; t —H
. 04= ' e —S—— L 1 ! iz
kw === ““ : NG
T & = : =
¥
« 02 N
— NG
o
ks N
<
i 4
-Ol_ ==5 = = & E%P2+F61
==£7y /75 =
. 006 . —.8
= } ~
. 004 I L ™S o
: T2
T
. 002
. 001
300 400 500 600 700 800 300
t', days

Figure 9. - Optimum values of parameters for Earth-Mars round trips
(ty = 50 days; t' = tp + t, + tg)e

22
days




Iy
£
Payload mass Ty

Initial mass

Sl

100 } {
N Electric rocket :
\ —— — Nuclear rocket
60 (I = 1000 sec) —
\ e e Nuclear rocket
\\ (I = 800 sec)
40
\\
. ¢ A \ \
\ WBis
20 Y )
\Q \ \
~ \ \
- T W — \ \\
= \\ N \\ \\\
N
N N e
g & R =X :
\\ \‘ N < ot
i \\ \\ ~J * e
@ =10 Ibfkw N\
\\ Bt oo
@ =195 lbkw\
éOO 400 500 600 700 800 900 1000 1100

Total trip time, days

Figure 10. - Mass-ratio comparison for Mars round trips (mex =50 ﬁ12 = 0).




5%

1.0
e
) .6 ~
3 N L
@ \
HE .4
o E
3]
o T
=
-4
U
40,000
s \
9]
=)
2 S
E0 /
- O 20,000 /
2 e o (
ot -
G L
o \ y \
o \\\r— Ll,//// \\\J
[ Lee=
9p]
0]
4
Trip phases tete———2 e 6 g
?l [3 Lg \7
4X10™=
5 \
: \
1C
w /
o
o 2 \\ \\ //
=
Sl
<l
Bt
> —
E / \
L]
: \ / /
—-—"—/
0 80 160 240 320 400 480 560
Time, days
(a2) 500-Day trip.
Figure 11. - Time history of mass, thrust, and specific impulse for 500-
day and 800-day Mars round trips (a = 10 1lb/kw, B = 0.20).




1.0 B b
\
a \T\‘
o —
- .6
o
i
HE
n g A
0
8
w2
0
p 40,000 |
()
0
i
a Sl
£ o
e Q)
@ 20,000 /\\
'vr1 -
Q:» { / \ /
©
g, L/ ] |
78]
0
Trip phases f— 1 —f« 2 ;M" 6 el
fo 4H—5
3x10-4
el c & - i Bl
I=
o 2 ~ b i L
1S
&0
i=
AL N [] , B s T
9 et
S
= i 1 / b I\ [NED /
l:i \ / \_/
\/ — — — _

0 80 160 240 320 400 480 560 640 720
Time, days

(b) 800-Day trip.

Figure 11. - Concluded. Time history of mass, thrust, and specific 1lmpulse for 500-day and 800-day
Mars round trips (a = 10 1lb/kw, B = 0.20).

800

¢S




54

150 T T T T
ts, days ‘/,4/’
]
- 122
TR 1~
120 ””,/’
100 ’//‘;/’
\. i 79 ]
= / / /l
\\\:t:::\\ - JL—""
50 /XK N
‘i) //)e\i Y
and — A\ L
/ "\
6, /_.._-— ™ —
deg ‘éggzi==:1::——-"' -——qi::::§_-
0
3}
50 \(\
\\\\\
Q
-100
l. 6 T T T
1.4
o L
8o 72 =

. /
0 - .4 .6 .8 10
£ = t/ty

Figure 12. - Time history of several trajectory variables for
Earth-Mars transfer along 6' = p'3 2 trajectories.




Return payload, 1b

140X10

55

T
Total trip

time,
days / /

& aool/ // ; / 7OW'5°° ; /
100 /}// BOO/ // / ,/
il / LiE
: iy )4 /
./I/I/ / //
6 AV ARV y o
W 1N A o 4
MY | el | A
///I’ // 7 //550 Specifif weight,
1b/kw
20 ‘// // Sy 12 |

Initial weight, Wi, 1b

1600%10°

Figure 13. - Return payload as function of initial weight for 8-men Mars expedition, using low-thrust

propulsion system (B = 0.20; Wgyx = 40,000 1b).




56

Total initial weight, m;ggq, 1b

3
1800x10
| l l l I l |
Electric rocket, a = 10 1b/kw
— — —  Electric rocket, o= 5 1lb/kw —
—— — —— Nuclear rocket, I = 1000 sec
160
1
140 v \
3
\ ‘
N
\
120 NS
TN e \‘
\
100 \
\ ‘
1 \\
\ \ \
80 \ ‘\
\ \ M
\ \
1 \
\ ;
60! ‘\
\ \ \\
\\ N ™
40! ‘\ \\
~
= [ ———
20
300 400 500 600 700 800 900 1000
Total trip time, days
Figure 14. - Comparison of initial weights required for 8-man Mars mission as function

of total trip time (return payload = 50,000 1b; W., = 40,000 1b).
2 ex ¢t

NASA - Langley Field, Va. £-812










