TECHNICAL REPORT
 R-79

FAST INTERPLANETARY MISSIONS WITH
LOW-THRUST PROPULSION SYSTEMS

By W. E. Moeckel

Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NA

TECHIICAL REPORT R-79

FAST INTERPLANETARY MISSIONS WITH LOW-THRUST PROPULSION SYSTEMS

By W. E. Moeckel

ABSTRACT
A simple family of indirect transfer trajectories between circular orbits is used to evaluate the mass ratio required to complete round-trip interplanetary missions using low-thrust propulsion systems. The results indicate that indirect interplanetary trajectories yield substantial reductions in total round-trip time for low-thrust as well as high-thrust vehicles, and that space vehicles propelled with electric rockets may produce greater reductions in trip time, for a given initial weight, than those propelled by high-thrust nuclear rockets.
(Initial NASA distribution: 4l, Propulsion Systems, Electric; 46, Space Mechanics; 48, Space Vehicles; 53, Vehicle Performance.)

CONTENTS

Page
SUMMARY 1
INTRODUCTION I
MISSION ANALYSIS 2
General Discussion 2
Mass Ratio for Constant-Thrust Phases 3
Mass Ratio for Variable-Thrust Phases 7
Mass Ratio for Interplanetary Round Trips 10
TRAJECTORY ANALYSIS 13
Direct Transfer Between Circular Orbits 19
Indirect Transfers Between Circular Orbits 20
Weight Ratios for Mars Round Trips 26
Thrust and Specific-Impulse Program 28
MANNED MARS MISSIONS 31
CONCLUDING REMARKS 33
APPENDIXES
A - SYMBOLS 34
B - MISSION WEIGHT CALCULATIONS FOR NUCLEAR ROCKET 37
REFERENCES 39
TABLES 40
FIGURES 42

TECHNICAL REPORT R-79

FAST INTERPIANETARY MISSIONS WITH LOW-THRUST PROPUISION SYSTEMS
By W. E. Moeckel

SUMMARY

A simple family of indirect transfer trajectories between circular orbits is used to evaluate the mass ratio required to complete roundtrip interplanetary missions using low-thrust propulsion systems. These trajectories, although not optimum, yielded very substantial reductions in total round-trip time for Mars missions with moderate increases in initial weight. For a powerplant specific weight α of 10 pounds per kilowatt of jet power, trip times were reduced from 1200 to 600 days, for a typical manned mission, with an initial weight increase of a factor of two. Comparison with a nuclear rocket with 1000-second specific impulse indicated that the electric-propulsion system required less initial weight for trip times as low as 550 days with $\alpha=10$ and as low as 400 days with $\alpha=5$ pounds per kilowatt. Further weight reductions would be expected with more nearly optimum trajectories.

INTRODUCTION

The study of round-trip interplanetary missions using low-thrust propulsion systems (such as electric propulsion) is more difficuit than similar studies for high-thrust systems, because the trajectory cannot, in general, be represented in closed form. To determine the propellant mass required, a complete integration of the trajectory equations is generally necessary for each trajectory chosen. It is naturally desirable to choose those trajectories that minimize the total initial weight required to complete a mission in a given length of time. For one-way trips to Mars, such an optimization program was reported in reference 1. A discussion was also given in reference l of round-trip missions consisting of optimum one-way trajectories; but, since no attempt was made to include the effect of waiting time at the destination planet (which is required to effect rendezvous with the Earth), no valid conclusions could be drawn on the propellant requirements as functions of overall mission time. It is, in fact, clear from studies of high-thrust trajectories (refs. 2 to 4) that direct Earth-planet trajectories such as those of reference 1 are
unlikely to produce the largest mission-time reductions for a given initial weight.

Another study of low-thrust round-trip missions was included in reference 5, wherein constant-tangential-thrust trajectories were used. However, as was pointed out in that reference, an extensive program of trial-and-error computations would be required to make these trajectories useful for round-trip missions much faster than the minimum-energy mission. Consequently, it has hitherto not been determined whether faster roundtrip interplanetary missions are possible using electric-propulsion systems, or what weight penalties are likely to be involved to achieve such time reductions. The purpose of the present report is to answer these questions in a preliminary way.

The approach used herein is to select a particular family of continuous-thrust trajectories (not necessarily optimum) for which it is easy to vary trip time, transit angle, and perihelion or aphelion distance. Combinations of members of this family of trajectories are then found that minimize the initial weight for a given total trip time. The results are then applied to typical manned and unmanned Mars missions to show how initial weight varies with mission time and to compare this weight with that possible using high-thrust nuclear rockets.

MISSION ANALYSIS

General Discussion
Before considering the particular trajectories selected, it is well to derive general expressions for determining initial weight required for any round-trip interplanetary mission. These missions can generally be divided into seven phases: (1) Earth escape, (2) Earth-planet transfer, (3) descent to planetary orbit (or surface), (4) waiting time, (5) escape from planet, (6) planet-Earth transfer, and (7) descent to Earth orbit (or surface). For one-way interplanetary probes, only the first two or three of these phases need be considered; while for round-trip missions, all must be included. With high-thrust propulsion systems, only phases (1), (3), (5), and (7) involve propulsion periods; while with low-thrust systems all phases except phase (4) may require continuous propulsion.

For preliminary studies of mission capabilities and feasible trajectories, such as those contained herein, it is assumed that:
(1) Only a single gravitational mass need be considered during each phase (the Earth in phases (1) and (7), the destination planet in phases (3), (4), and (5), and the Sun in phases (2) and (6)).
(2) The orbits of the Earth and the destination planet are circular and coplanar.

These assumptions are justifiable on the grounds that the major energy changes involved in the actual mission are included in this simplified model.

The escape and descent phases of the mission (phases (1), (3), (5), and (7)) can be adequately handled using the charts of reference 5. These charts present trajectory parameters for constant specific impulse and constant thrust directed parallel to the instantaneous velocity vector. It has frequently been indicated (e.g., refs. 1 and 5) that constant-tangential-thrust trajectories are close to optimum with respect to propellant consumption for accelerations from satellite orbits to escape velocity.

The Earth-planet transfer phases (2) and (6) will be evaluated using a particular trajectory family to be derived. These phases consist of transfers between two circular orbits (those of the Earth and the destination planet) with the boundary condition that the vehicle velocity is equal in magnitude and direction to that of the Earth at the Earth's orbit and that of the destination planet at its orbit. For such transfers, reference 1 indicated that propellant consumption is minimized if maximum jet power is applied at all times (as in the constant-thrust case) but with the thrust varied to follow certain optimum trajectories. Phases (2) and (6) will therefore be called variable-thrust phases; and the trajectory family to be derived, although not optimum, is of the constantpower, variable-thrust type.

Mass Ratio for Constant-Thrust Phases

As pointed out in reference 5, mass losses other than propellant consumption can sometimes become important in calculating the trajectories and performance of low-thrust vehicles. Particularly for manned missions, the consumption and ejection of subsistence supplies may significantly affect the trajectory during the lengthy propulsion periods. The massratio expressions, both for constant-thrust and variable-thrust trajectories, will therefore be derived for the case where supplies, other than propellant, are being ejected without generating thrust. It is assumed that this ejection takes place at a constant rate, since discontinuous ejection of sizable mass requires stepwise integration of the equation of motion.

To determine the trajectory as a function of time from the charts of reference 5, the two parameters that must be specified are a_{0} and V_{j}, where $a_{0}=F / m_{0} g_{0}$ is the initial thrust acceleration, and $V_{j}=v_{j} / v_{c, 0}$
is the effective jet velocity parameter. (Subscript 0 is used to designate values in the reference orbit, which is either the departure orbit for escape phases or the destination orbit for descent phases.) The expression for effective jet velocity parameter is derived as follows:

$$
\begin{equation*}
v_{j}=\frac{F}{\dot{m}_{n}}=\frac{F}{\dot{m}_{p r}+\dot{m}_{S}} \tag{I}
\end{equation*}
$$

where v_{j} is effective jet velocity, F is thrust, $\dot{m}_{p r}$ is propellant consumption rate, and \dot{m}_{S} is supply ejection rate. (All symbols are defined in appendix A.) Now

$$
\dot{m}_{\mathrm{pr}}=\frac{\mathrm{F}}{\mathrm{v}_{\mathrm{j}, \mathrm{pr}}}
$$

where $v_{j, p r}$ is propellant jet velocity, so that

$$
\begin{equation*}
v_{j}=\frac{v_{j, p r}}{l+\frac{\dot{m}_{s}}{\dot{m}_{p r}}} \tag{2}
\end{equation*}
$$

Making all velocities dimensionless with the reference circular velocity $\mathrm{v}_{\mathrm{c}, 0}$ yields

$$
\begin{equation*}
V_{j}=\frac{{ }^{V_{j, p r}}}{l+\frac{\dot{m}_{S}}{\dot{m}_{p r}}} \tag{3}
\end{equation*}
$$

With V_{j} and a_{0} specified, constant-thrust phases of the trip can be determined from the charts of reference 5. The mass ratio for these propulsion periods is given by

$$
\begin{equation*}
\frac{m_{b}}{m_{a}}=1-\frac{a_{0} \tau}{v_{j}} \frac{m_{0}}{m_{a}} \tag{4}
\end{equation*}
$$

where $\tau=v_{c}, o^{t} / r_{O}$, the dimensionless propulsion-time parameter, and where $m_{0}=m_{a}$ for outward paths and $m_{0}=m_{b}$ for inward paths.

For electric-propulsion systems, thrust and propellant jet velocity (or a_{0} and $v_{j, p r}$) are not independent. For constant jet power, they are, in fact, related by

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{pr}} \mathrm{v}_{j, \mathrm{pr}}^{2} \equiv \mathrm{Fv}{ }_{j, p r}=1476 \mathrm{P}_{j} \tag{5}
\end{equation*}
$$

where F is expressed in pounds, $V_{j, p r}$ in feet per second, and P_{j} (the jet power) in kilowatts. In dimensionless form this becomes

$$
\begin{equation*}
\mathrm{a}_{0} \mathrm{~V}_{j, p r}=\frac{1476}{\mathrm{~V}_{\mathrm{c}, 0}} \frac{\mathrm{~W}_{i}}{m_{0} g_{0}} \frac{P_{j}}{W_{i}} \tag{6}
\end{equation*}
$$

where $W_{i}=m_{i} g 00$ is the initial space vehicle weight. This initial weight is introduced to permit use of two design parameters: the specific powerplant weight $\alpha\left(=W_{p p} / P_{j}, l b / k w\right)$ and the ratio of powerplant weight to initial gross weight $\beta\left(=W_{p p} / W_{i}\right)$. With these parameters, equation (6) becomes

$$
\begin{equation*}
a_{0} V_{j, p r}=\frac{1476}{v_{c, 0}} \frac{W_{i}}{m_{0} g_{0}} \frac{\beta}{\alpha} \tag{7}
\end{equation*}
$$

The mass ratio for the propulsion period can be expressed in a more useful form, in terms of the propulsion time and the parameters α and β. Thus,

$$
\begin{equation*}
\frac{m_{b}}{m_{a}}=1-\frac{m_{0}}{m_{a}} \frac{a_{0} \tau}{V_{j, p r}}-\frac{\dot{m}_{s} t_{f}}{m_{a}} \tag{8}
\end{equation*}
$$

where t_{f} is the propulsion time. But

$$
\begin{equation*}
V_{j, p r}=\frac{1476}{a_{0} v_{c, 0}} \frac{W_{i}}{m_{0} g_{0}} \frac{\beta}{\alpha} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{0}=\frac{\left(a_{0} \tau\right)}{\tau_{f}}=\frac{\left(a_{0} \tau\right)}{\frac{v_{c, 0} t_{f}}{r_{0}}} \tag{10}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
\frac{m_{b}}{m_{a}}=1-4.14 \times 10^{-5} r_{0}\left(a_{0} \tau\right)^{2}\left(\frac{m_{0}}{m_{a}}\right)^{2} \frac{m_{a} g_{0}}{w_{i}} \frac{\alpha}{\beta t_{f}}-\frac{\dot{m}_{S} t_{f}}{m_{a}} \tag{11}
\end{equation*}
$$

where r_{0} is expressed in miles and t_{f} in days.
For the outward trajectory $\left(m_{0}=m_{a}\right)$, equation (ll) is the solution for m_{b} / m_{a}. For the inward trajectory $\left(m_{0}=m_{b}\right)$, the solution of the quadratic for m_{b} / m_{a} is

$$
\frac{m_{b}}{m_{a}}=\frac{\sqrt{1+4 c\left(1-\frac{\dot{m}_{s} t_{f}}{m_{a}}\right)}-1}{2 C}
$$

where

$$
C=4.14 \times 10^{-5} r_{0}\left(a_{0} \tau\right)^{2} \frac{m_{a} g_{0}}{W_{i}} \frac{\alpha}{\beta t_{f}}
$$

For values of C and $\dot{m}_{S} t_{f} / m_{a}$ much less than unity (which is generally the case), expansion of the radical yields, to first order in C and $\dot{m}_{a} t_{f} / m_{a}$,

$$
\frac{m_{b}}{m_{a}} \approx\left(1-\frac{\dot{m}_{s} t_{f}}{m_{a}}\right)(1-C)
$$

This expression can also be written in the following more convenient form (for later derivations):

$$
\begin{equation*}
\frac{m_{b}}{m_{a}} \approx\left(1-\frac{\dot{m}_{\mathrm{s}} t_{f}}{m_{a}}\right)\left[1+4.14 \times 10^{-5} r_{0}\left(a_{0} \tau\right)^{2} \frac{m_{a} g_{0}}{w_{i}} \frac{\alpha}{\beta t_{f}}\right]^{-1} \tag{IIa}
\end{equation*}
$$

Equation (11) (with $m_{0}=m_{a}$) will be used for computations of mass ratio for outward paths, and equation (Ila) for inward paths. Use of equation (lla) is conservative, in that values of m_{b} / m_{a} obtained are lower than those resulting from the exact equation.

The dimensionless total-impulse parameter ($a_{0} \tau$) is determined from reference 5 for the energy change required during the propulsion period. For values of a_{0} and V_{j} corresponding to escape from, and descent to, circular orbits near the planets with electric-propulsion systems, the value of $a_{0} \tau$ is approximately 0.9 and is rather insensitive to moderate variations in a_{0} and V_{j} in the range of interest for electric propulsion. This value will therefore be used for the escape and descent phases of interplanetary missions.

It is clear from equation (11) that, for each constant-thrust propulsion period, an optimum propulsion time exists that minimizes the sum of the propellant weight and supply weight required. Representing equation (11) by

$$
\begin{equation*}
\frac{m_{b}}{m_{a}}=1-a_{1} t_{f}^{-1}-a_{2} t_{f} \tag{12}
\end{equation*}
$$

and differentiating with respect to t_{f} yield the following values for optimum propulsion time and maximum mass ratio:

$$
\begin{align*}
& t_{\text {opt }}=\sqrt{a_{1} / a_{2}}, \quad \text { days } \tag{13}\\
& \left(\frac{m_{b}}{m_{a}}\right)_{\max }=1-2 \sqrt{a_{1} a_{2}} \tag{14}
\end{align*}
$$

For most missions of interest, $t_{\text {opt }}$ is unreasonably large. In particular, if a_{2} is negligible (very small supply ejection rate), equation (12) leads to the obvious conclusion that the propulsion time should be as large as possible to reduce propellant consumption. This optimization is therefore not a useful one when reductions in total trip time are being sought.

Mass Ratio for Variable-Thrust Phases

For variable-thrust propulsion phases, the derivation of convenient expressions for the mass ratio proceeds in a manner similar to that of reference 1 , except that supply consumption and ejection are considered. The differential mass loss can be expressed as follows:

$$
\begin{align*}
d m & =-d m_{p r}-d m_{S} \\
& =-\frac{F}{v_{j, p r}} d t-\dot{m}_{S} d t \\
& =-\left(\frac{m^{2} a^{2}}{F v_{j, p r}}+\dot{m}_{S}\right) d t \tag{15}
\end{align*}
$$

where the constant-power condition

$$
\begin{equation*}
F v_{j, p r}=1476 P_{j} \tag{16}
\end{equation*}
$$

has been used. Equation (15) can be written in integral form as follows:

$$
\begin{equation*}
\frac{1}{m_{b}}-\frac{1}{m_{a}}-\dot{m}_{s} \int_{0}^{t_{f}} \frac{d t}{m^{2}}=\int_{0}^{t_{f}} \frac{a^{2} d t}{1476 \mathrm{P}_{j}} \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{0.28 P_{j}}{m_{a} g_{a} v_{c}, a}\left(\frac{m_{a}}{m_{b}}-1-\dot{m}_{s} m_{a} \int_{0}^{t_{f}} \frac{d t}{m^{2}}\right)=\int_{0}^{\tau_{f}}\left(\frac{a}{g_{a}}\right)^{2} d \tau=r \tag{18}
\end{equation*}
$$

where $\mathrm{v}_{\mathrm{c}}, \mathrm{a}$ is expressed in miles per second. The integral of the square of the nondimensional acceleration γ is the quantity to be determined from the particular trajectories selected.

To obtain the mass ratio in a reasonably simple manner from equation (18), the mass in the denominator of the supply-consumption integral is represented by a mean value, given by

$$
\begin{equation*}
\bar{m}=k\left(m_{a}+m_{b}\right)=k m_{a}\left(1+\frac{m_{b}}{m_{a}}\right) \tag{19}
\end{equation*}
$$

With this substitution, equation (18) becomes

$$
\begin{equation*}
\frac{0.28 P_{j}}{m_{a, g_{a} v_{c}, a}}\left[\frac{m_{a}}{m_{b}}-1-\frac{\frac{\dot{m}_{s} t_{f}}{m_{a}}}{k^{2}\left(1+\frac{m_{b}}{m_{a}}\right)^{2}}\right]=r \tag{20}
\end{equation*}
$$

In terms of the parameters α and β,

$$
\begin{equation*}
\frac{0.28 P_{j}}{m_{a} g_{a} v_{c}, a}=\frac{0.28 P_{j}}{W_{i} v_{c}, a} \frac{m_{i}}{m_{a}} \frac{g_{00}}{g_{a}}=\frac{0.28}{v_{c, a}} \frac{g_{00}}{g_{a}} \frac{m_{i}}{m_{a}} \frac{\beta}{\alpha} \tag{21}
\end{equation*}
$$

so that equation (20) can be written

$$
\begin{equation*}
\frac{m_{a}}{m_{b}}-1-\frac{\frac{\dot{m}_{s} t_{f}}{m_{a}}}{k^{2}\left(1+\frac{m_{b}}{m_{a}}\right)^{2}}=\frac{m_{a}}{m_{i}} \frac{\alpha}{\beta} \Gamma \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma=\frac{v_{c}, a}{0.28} \frac{g_{a}}{g_{00}} r, \quad \frac{k w}{1 b} \tag{23}
\end{equation*}
$$

Equation (22) is the required relation between mass ratio and the trajectory parameters. It is plotted in figure 1 for several values of the supply-consumption ratio $\dot{m}_{S} t_{f} / m_{a}$ for the particular value $k=l / 2$. That this value of k is a reasonable one for moderate supply-consumption rates was verified by comparing the curves of figure l with values obtained for two special cases for which the m^{-2} integral in equation (18) is easily evaluated. These cases are (1) $\mathrm{m} / \mathrm{m}_{\mathrm{a}}=1$ - ct, and (2) $\left(\mathrm{m} / \mathrm{m}_{\mathrm{a}}\right)^{2}=1$ - ct. For the first case (constant mass-consumption rate), equation (22) becomes

$$
\begin{equation*}
\frac{m_{b}}{m_{a}}=\frac{1-\frac{\dot{m}_{s} t_{f}}{m_{a}}}{1+\frac{m_{a}}{m_{i}} \frac{\alpha}{\beta} \Gamma} \tag{22a}
\end{equation*}
$$

For the second case, equation (22) becomes

$$
\begin{equation*}
\frac{m_{a}}{m_{b}}-1-\frac{\frac{\dot{m}_{s} t_{f}}{m_{a}} \ln \left(\frac{m_{a}}{m_{b}}\right)^{2}}{\left(1-\frac{m_{b}}{m_{a}}\right)^{2}}=\frac{m_{a}}{m_{i}} \frac{\alpha}{\beta} \Gamma \tag{22b}
\end{equation*}
$$

Values obtained from equations (22a) and (22b) are indicated in figure 1 for the case $\dot{m}_{S} t_{f} / m_{a}=0.3$. The comparison indicates that, at least for values of $\dot{m}_{S} t_{f} / m_{a} \leq 0.3$, the curves obtained for $k=1 / 2$ are adequate for preliminary mission studies. These curves do not, however, yield the correct values of m_{b} / m_{a} at $\Gamma=0\left[\left(m_{b} / m_{a}\right)_{\Gamma=0}=1-\left(\dot{m}_{s} t_{f} / m_{a}\right)\right]$. The dashed curves were therefore faired into the correct value to improve the accuracy near the abscissa.

With the curves of figure 1 , the mass ratio required to follow constant-power trajectories can be determined when the value of γ for those trajectories is found. For the particular case of heliocentric transfer from the orbit of the Earth, the relation between γ and Γ is

$$
\begin{equation*}
\Gamma=0.04 r \tag{24}
\end{equation*}
$$

[It should be noted that the r of this report is not the same a.s that of reference 1 . The relation between them is

$$
\alpha \Gamma=\left(r^{2}\right)_{\operatorname{Ref} \cdot} 1
$$

The expression r^{2} / α plotted in reference l is related to present parameter by

$$
\Gamma=0.454\left(\frac{r^{2}}{\alpha}\right)_{\operatorname{Ref} \cdot I}, \quad \frac{\mathrm{kw}}{\mathrm{lb}}
$$

where the factor 0.454 converts the α of reference l (which is in $\mathrm{kg} / \mathrm{kw}$) into pounds per kilowatt.]

Mass Ratio for Interplanetary Round Trips

The mass ratios required for the seven phases of a round-trip interplanetary mission can now be summarized as follows:

Phase (1). - Escape from circular orbit of radius r_{i} around Earth (from eq. (ll)):

$$
\begin{equation*}
\frac{m_{1}}{m_{i}}=1-3.35 \times 10^{-5} r_{i} \frac{g_{i}}{g_{00}} \frac{\alpha}{\beta t_{1}}-\frac{\dot{m}_{s} t_{1}}{m_{i}} \tag{25}
\end{equation*}
$$

Phase (2). - Earth-planet transfer (eq. (22)):

$$
\begin{equation*}
\frac{m_{1}}{m_{2}}-1-\frac{\frac{4 \dot{m}_{s} t_{2}}{m_{1}}}{\left(1+\frac{m_{2}}{m_{1}}\right)^{2}}=\frac{m_{1}}{m_{i}} \frac{\alpha}{\beta} \Gamma_{2} \tag{26}
\end{equation*}
$$

(The solution of this equation is given in fig. l.)
Phase (3). - Descent to circular orbit at radius r_{3} around planet (eq. (II)):

$$
\begin{equation*}
\frac{m_{3}}{m_{2}}=1-3.35 \times 10^{-5} r_{3} \frac{m_{3} g_{3}}{m_{i} g_{00}} \frac{m_{3}}{m_{2}} \frac{\alpha}{\beta t_{3}}-\frac{\dot{m}_{s} t_{3}}{m_{2}} \tag{27}
\end{equation*}
$$

or, from equation (lla):

$$
\begin{equation*}
\frac{m_{3}}{m_{2}} \approx\left(1-\frac{\dot{m}_{s} t_{3}}{m_{2}}\right)\left(1+3.35 \times 10^{-5} r_{3} \frac{m_{2}}{m_{i}} \frac{g_{3}}{g_{00}} \frac{\alpha}{\beta t_{3}}\right)^{-1} \tag{27a}
\end{equation*}
$$

Phase (4). - Waiting or exploration period:

$$
\begin{equation*}
\frac{m_{4}}{m_{3}}=1-\frac{\dot{m}_{s} t_{4}}{m_{3}}-\frac{m_{\mathrm{ex}}}{m_{3}} \tag{28}
\end{equation*}
$$

where $m_{\text {ex }}$ is the mass, other than provisions, that is used during this period and left behind (such as landing and exploration equipment).

Phase (5). - Escape from circular orbit at radius r_{3} around planet (eq. (11)):

$$
\begin{equation*}
\frac{m_{5}}{m_{4}}=1-3.35 \times 10^{-5} r_{3} \frac{m_{4}}{m_{i}} \frac{g_{3}}{g_{00}} \frac{\alpha}{\beta t_{5}}-\frac{\dot{m}_{S} t_{5}}{m_{4}} \tag{29}
\end{equation*}
$$

Phase (6). - Planet-Earth transfer (eq. (22)):

$$
\begin{equation*}
\frac{m_{5}}{m_{6}}-1-\frac{\frac{4 \dot{m}_{s} t_{6}}{m_{5}}}{\left(1+\frac{m_{6}}{m_{5}}\right)^{2}}=\frac{m_{5}}{m_{i}} \frac{\alpha}{\beta} \Gamma_{6} \tag{30}
\end{equation*}
$$

(The solution of this equation is plotted in fig. l.)
Phase (7). - Descent to circular orbit at radius r_{7} around Earth (eq. (11)):

$$
\begin{equation*}
\frac{m_{7}}{m_{6}}=1-3.35 \times 10^{-5} r_{7} \frac{m_{7}}{m_{6}} \frac{m_{7}}{m_{i}} \frac{g_{7}}{g_{00}} \frac{\alpha}{\beta t_{7}}-\frac{\dot{m}_{s} t_{7}}{m_{6}} \tag{3I}
\end{equation*}
$$

or, from equation (lla):

$$
\begin{equation*}
\frac{m_{7}}{m_{6}} \approx\left(1-\frac{\dot{m}_{S} t_{7}}{m_{6}}\right)\left(1+3.35 \times 10^{-5} r_{7} \frac{m_{6}}{m_{i}} \frac{g_{7}}{g_{00}} \frac{\alpha}{\beta t_{7}}\right)^{-1} \tag{3la}
\end{equation*}
$$

The mass m_{7} is the mass returned to an orbit around the Earth, and includes (l) the return payload mass (crew quarters and supplies, except consumed provisions, crew shielding, communication and navigation equipment, instrumentation, etc.), (2) the powerplant mass $m_{p p}$, and (3) the reserve propellant and provisions $m_{r e s}$. If the basic payload and reserve are grouped together and denoted by m_{p}, the return payload mass, then

$$
\begin{equation*}
\frac{m_{p}}{m_{i}}=\frac{m_{7}}{m_{i}}-\beta \tag{32}
\end{equation*}
$$

All structure weight is assumed to be included in the powerplant weight.

It is worth noting that the parameters α and β appear in equations (25) to (3la) only as the ratio α / β, which is equal to W_{i} / P_{j}. Consequently, the final- to initial-weight ratio $\mathrm{m}_{7} / \mathrm{m}_{i}$ can be determined without separately specifying α and β. To find the portion of the final mass m_{7} that is payload, of course, requires specification of powerplant weight ratio β.

For the general manned mission, the payload must be calculated by the step-by-step process, starting with an assumed initial mass m_{i}. If the payload turns out to be less than or greater than that needed for the mission, other values of m_{i} must be assumed, and the correct value can be obtained by plotting a curve of m_{p} against m_{i}.

For preliminary calculations, aimed at determining optimum values of the many parameters involved in equations (25) to (32), it is better to simplify these equations by neglecting $m_{\text {ex }}$ and the supply consumption \dot{m}_{S}. It is also convenient to consider a specific mission. The mission .chosen for consideration herein is a round-trip Mars journey starting and ending in an orbit around the Earth at radius $r_{i}=r_{7}=4360$ miles $\left(g_{i}=g_{7}=26.6 \mathrm{ft} / \mathrm{sec}^{2}\right)$. At Mars, a waiting orbit at $r_{3}=2500 \mathrm{miles}$ is assumed $\left(g_{3}=8.7 \mathrm{ft} / \mathrm{sec}^{2}\right)$. With these simplifications, equations (25) to (32) can be combined to yield the following expression for the ratio of payload weight to initial weight:
$\frac{m_{p}}{m_{i}}=\frac{\frac{m_{1}}{m_{i}}\left\{1+\frac{m_{1}}{m_{i}} \frac{\alpha}{\beta}\left[\Gamma_{2}+0.0226\left(\frac{1}{t_{3}}-\frac{1}{t_{5}}\right)\right]\right\}}{\left[1+\frac{m_{1}}{m_{i}} \frac{\alpha}{\beta}\left(\Gamma_{2}+\frac{0.0226}{t_{3}}\right)\right]^{2}+\frac{m_{1}}{m_{i}} \frac{\alpha}{\beta}\left(\Gamma_{6}+\frac{0.1207}{t_{7}}\right)\left\{1+\frac{m_{1}}{m_{i}} \frac{\alpha}{\beta}\left[\Gamma_{2}+0.0226\left(\frac{1}{t_{3}}-\frac{1}{t_{5}}\right)\right]\right\}}-\beta$
where

$$
\begin{gather*}
\frac{m_{1}}{m_{i}}=1-0.1207 \frac{\alpha}{\beta t_{1}} \tag{34}\\
\Gamma_{2}=0.04 r_{2}, \quad \mathrm{kw} / \mathrm{lb} \tag{35}\\
\Gamma_{6}=0.04{\frac{r_{E}}{r_{M}}}^{5 / 2} r_{6}=0.014 r_{6}, \quad \mathrm{kw} / \mathrm{lb}
\end{gather*}
$$

Further simplification is permissible for those trips for which the terms involving t_{3} and t_{5} are negligible in comparison with Γ_{2}, as they will be for the faster trips to be considered. (This is equivalent to ignoring the mass used for phases (3) and (5).) Equations (33) and (34) then yield

$$
\begin{align*}
\frac{m_{p}}{m_{i}} & =\frac{\frac{m_{l}}{m_{i}}}{1+\frac{\alpha}{\beta} \frac{m_{l}}{m_{i}}\left(\Gamma_{2}+\Gamma_{6}+\frac{0.1207}{t_{7}}\right)}-\beta \\
& \equiv \frac{\frac{m_{1}}{m_{i}}}{1+\frac{m_{1}}{m_{i}} \frac{\alpha}{\beta} \Gamma^{\prime}}-\beta \tag{37}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma^{\prime}=\Gamma_{2}+\Gamma_{6}+\frac{0.1207}{t_{7}} \tag{38}
\end{equation*}
$$

Equation (37) can be used for initial estimates of mass ratio both for one-way trips and round trips (for the former, Γ^{\prime} is simply Γ_{2}). This equation indicates also that an optimum value of β exists for fixed values of m_{1} / m_{i} and Γ^{\prime}. Differentiation with respect to β yields

$$
\begin{equation*}
\beta_{\text {opt }}=\frac{m_{1}}{m_{i}} \sqrt{a \Gamma^{\prime}}\left(1-\sqrt{a \Gamma^{\prime}}\right) \tag{39}
\end{equation*}
$$

and substitution of this value of β into equation (37) yields

$$
\begin{equation*}
\left(\frac{m_{p}}{m_{i}}\right)_{\max }=\frac{m_{1}}{m_{i}}\left(1-\sqrt{\alpha \Gamma^{1}}\right)^{2} \tag{40}
\end{equation*}
$$

For the missions considered herein, typical values of m_{I} / m_{i} range between 0.80 and 0.95 .

Equations (39) and (40) are plotted in figure 2 for $m_{I} / m_{i}=1.0$. The results for this case are the same as in reference 1 . With equations (34) to (39), initial estimates for weight ratios as functions of trip times can be made when Γ_{2} and Γ_{6} have been determined from the equations for transfer between circular orbits.

TRAJECIORY ANALYSIS

The differential equations for the trajectory followed by a vehicle propelled continuously in a central gravitational field are (ref. 5)

$$
\begin{equation*}
\rho^{\prime \prime}-\rho\left(\theta^{\prime}\right)^{2}+\frac{1}{\rho^{2}}=\frac{a_{r}}{g_{a}} \tag{4I}
\end{equation*}
$$

and.

$$
\begin{equation*}
\rho \theta^{\prime \prime}+2 \rho^{\prime} \theta^{\prime}=\frac{a_{\theta}}{g_{a}} \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{r}=\frac{F \sin \delta}{m} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{\theta}=\frac{F \cos \delta}{m} \tag{44}
\end{equation*}
$$

and where δ is the direction angle of thrust vector, measured outward from the circumferential direction (see sketch (a)). The radius

Sketch (a)
ratio ρ is r / r_{a}, and the derivatives are with respect to the time parameter $\tau=v_{c}, a^{t} / r_{a}$.

Equations (41) and (42) have been integrated in the past for several types of trajectories. In reference 5, the thrust is constant and directed at all times parallel to the velocity vector (tangential thrust). In reference 6, the acceleration F / m is constant, again with tangential thrust. In reference l, auxiliary equations are derived, using variational methods, whose solutions yield trajectories that minimize γ for a given one-way trip time between two circular orbits. Other integrations have been carried out for circumferential thrust $\left(\delta=0^{\circ}\right)$ and radial thrust
$\left(\delta=90^{\circ}\right)$. None of these approaches are satisfactory for fast round-trip analyses, because, as pointed out previously, the trajectories most likely to reduce total round-trip time with minimum propellant consumption are not direct transfers between circular orbits. Although indirect transfer trajectories can be obtained by trial-and-error patching of various constant-thrust and zero-thrust trajectories, the procedure is much too laborious for preliminary analyses.

The approach used herein is to prescribe a family of fairly simple trajectories, calculate the thrust and acceleration programing required to follow these trajectories, and determine the combinations of members of this family that yield minimum values of the two-way mass-ratio parameter $\left(\Gamma_{2}+\Gamma_{6}\right)$.

Two families of trajectories were considered. For the first, the equations of motion were left intact, and an attempt was made to find simple equations for the path that were capable of satisfying the boundary conditions for transfer between circular orbits. A reasonable form for the trajectory is obtained if ρ is assumed to be a sine function of θ. The angle θ, in turn, was represented by a power series in τ. The resulting equations for the trajectory were

$$
\begin{gather*}
\theta=\tau\left[\theta_{0}^{\prime}+\frac{\tau}{\tau_{f}}\left(3 \frac{\theta_{f}}{\tau_{f}}-2 \theta_{0}^{\prime}-\theta_{f}^{\prime}\right)+\left(\frac{\tau}{\tau_{f}}\right)^{2}\left(\theta_{0}^{\prime}-2 \frac{\theta_{f}}{\tau_{f}}+\theta_{f}^{\prime}\right)\right] \tag{45}\\
\rho=1+\frac{\rho_{f}-1}{2}\left[1+\sin \frac{\pi}{2}\left(\frac{2 \theta}{\theta_{f}}-1\right)\right] \tag{46}
\end{gather*}
$$

where subscript f refers to conditions at the final orbit. These equations satisfy the boundary conditions

$$
\left.\begin{array}{ll}
\text { At } \tau=0: & \theta=0, \rho=1, \rho^{\prime}=0 \tag{47}\\
\text { At } \tau=\tau_{f}: & \theta=\theta_{f}, \rho=\rho_{f}, \rho^{\prime}=0
\end{array}\right\}
$$

Substitution of these expressions for θ and ρ and their derivatives into equations (41) and (42) and subsequent integration of the square of the acceleration yield γ as a function of θ_{f}, τ_{f}, and the initial and final circumferential-velocity parameters θ_{0}^{\prime} and θ_{f}^{\prime}. If circular velocity is desired at both extremities, then $\theta_{o}^{\prime}=1$ and $\theta_{f}^{\prime}=\rho_{f}^{-3 / 2}$. These values produce a direct transfer between two circular orbits. For such transfers, an optimum θ_{f} is found that minimizes γ for each transit time τ_{f}. For indirect transfers, combinations of paths can be used as illustrated in sketch (b). Both portions $\overline{a b}$ and $\overline{b c}$ could be

Sketch (b)
transfers between circular orbits, but lower values of γ for the combined path can be obtained by varying the circumferential-velocity parameters θ_{b}^{\prime} at the intermediate point b. A number of one-way and round-trip trajectories were calculated for this family, but it was found that lower values of γ were obtained with the second family tried. Since the second family is also simpler to deal with in that closed expressions are obtained for the γ^{\prime} s, no further discussion of the first family will be presented.

For the second family of trajectories, the assumption was made that at all points the relation

$$
\begin{equation*}
\theta^{\prime}=\rho^{-3 / 2} \tag{48}
\end{equation*}
$$

was maintained. This assumption implies that the circumferential component of the velocity is equal to the local circular velocity at all times. For this family of trajectories, the equations of motion (eqs. (41) and (42)) assume the particularly simple form

$$
\begin{gather*}
\frac{a_{r}}{g_{a}}=\rho^{\prime \prime} \tag{49}\\
\frac{a_{\theta}}{g_{a}}=\frac{1}{2} \rho^{-3 / 2} \rho^{\prime} \tag{50}
\end{gather*}
$$

The expression for γ then becomes

$$
\begin{equation*}
r=\int_{0}^{\tau_{f}}\left(\frac{a}{g_{a}}\right)^{2} d \tau=\int_{0}^{\tau_{f}}\left[\left(\rho^{\prime \prime}\right)^{2}+\frac{1}{4} \rho^{-3}\left(\rho^{\prime}\right)^{2}\right] d \tau \tag{51}
\end{equation*}
$$

The assumption $\theta^{\prime}=\rho^{-3 / 2}$ defines the relation between the two independent variables θ and ρ, but still permits arbitrary variations of p as a function of time. It is now only necessary to find an expression for ρ as a function of τ that satisfies the following boundary conditions for transfer between two circular orbits:

$$
\left.\begin{array}{ll}
\text { At } \tau=0: & \rho=1, \rho^{\prime}=0 \tag{52}\\
\text { At } \tau=\tau_{f}: & \rho=\rho_{f}, \rho^{\prime}=0
\end{array}\right\}
$$

The simplest expression that satisfies these conditions is

$$
\begin{equation*}
\rho=1+\left(\rho_{f}-1\right)\left(\frac{\tau}{\tau_{f}}\right)^{2}\left(3-2 \frac{\tau}{\tau_{f}}\right) \tag{53}
\end{equation*}
$$

Denoting τ / τ_{f} by ξ, the expressions for ρ and its derivatives are

$$
\begin{gather*}
\rho=1+\left(\rho_{f}-1\right) \xi^{2}(3-2 \xi) \tag{54}\\
\rho^{\prime}=\frac{6\left(\rho_{f}-1\right)}{\tau_{f}} \xi(1-\xi) \tag{55}\\
\rho^{\prime \prime}=\frac{6\left(\rho_{f}-1\right)}{\tau_{f}^{2}}(1-2 \xi) \tag{56}
\end{gather*}
$$

For indirect trips, such as those of sketch (b), combinations of two transfers between circular orbits can again be employed, but there is no choice of the magnitude of the circumferential velocity of the intermediate radius, because this velocity is circular, for these trajectories, when $p^{\prime}=0$. Substitution of equations (54) to (56) into (51) yields

$$
\begin{equation*}
r=\frac{3\left(\rho_{f}-l\right)^{2}}{\tau_{f}}\left[\frac{4}{\tau_{f}^{2}}+3 F\left(\rho_{f}\right)\right] \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
F\left(\rho_{f}\right)=\int_{0}^{1} \frac{\xi^{2}(1-\xi)^{2} d \xi}{\left[1+\left(\rho_{f}-1\right) \xi^{2}(3-2 \xi)\right]^{3}} \equiv \int_{0}^{1} f\left(\xi, \rho_{f}\right) d \xi \tag{58}
\end{equation*}
$$

and where $f\left(\xi, \rho_{f}\right)$ is equal to the integrand of the second term.

The value of θ_{f} for these trajectories is, from equations (48) and (54),

$$
\begin{align*}
\theta_{f} & =\int_{0}^{\tau_{f}} \rho^{-3 / 2} d \tau=\tau_{f} \int_{0}^{l} g\left(\xi, \rho_{f}\right) d \xi \\
& =\tau_{f} G\left(\rho_{f}\right) \tag{59}
\end{align*}
$$

where

$$
\begin{equation*}
G\left(\rho_{f}\right) \equiv \int_{0}^{1} g\left(\xi, \rho_{f}\right) d \xi=\int_{0}^{1} \frac{d \xi}{\left[1+\left(\rho_{f}-1\right) \xi^{2}(3-2 \xi)\right]^{3 / 2}} \tag{60}
\end{equation*}
$$

The functions $F\left(\rho_{f}\right)$ and $G\left(\rho_{f}\right)$ are plotted in figure 3 . For the entire range of ρ_{f} shown, an excellent approximate expression for $F\left(\rho_{f}\right)$ is

$$
\begin{equation*}
F\left(\rho_{f}\right)=0.033 \rho_{f}^{-3 / 2} \tag{6I}
\end{equation*}
$$

For a limited range of $\rho_{f}\left(0.3<\rho_{f}<3.0\right)$, which is of interest for Mars and Venus trips, the function $G\left(\rho_{f}\right)$ is given to good approximation by

$$
\begin{equation*}
G\left(\rho_{f}\right)=\rho_{f}^{-3 / 4} \tag{62}
\end{equation*}
$$

Substituting these expressions into equations (57) and (59),

$$
\begin{gather*}
r=\frac{3\left(\rho_{f}-1\right)^{2}}{\tau_{f}}\left(\frac{4}{\tau_{f}^{2}}+0.1 \rho_{f}^{-3 / 2}\right) \tag{63}\\
\theta_{f}=\tau_{f} \rho_{f}^{-3 / 4}, \text { radians } \\
 \tag{64}\\
=57.3 \tau_{f} \rho_{f}^{-3 / 4}, \text { deg }
\end{gather*}
$$

Equations (63) and (64) are the equations for the trajectory parameters upon which the remainder of the discussion will be based.

Direct Transfer Between Circular Orbits

Although much of the present report is devoted to round-trip interplanetary missions, it is of interest to discuss briefly the use of $\theta^{\prime}=\rho^{-3 / 2}$ trajectories for one-way direct transfers between circular orbits. Such transfers are needed for missions such as raising or lowering satellites and for one-way planetary probes. Furthermore, combinations of such direct transfers will subsequently be used for analysis of round-trip missions. For heliocentric paths starting from the Earth's orbit, Γ is given by

$$
\begin{equation*}
\Gamma=0.04 \gamma \tag{65}
\end{equation*}
$$

and the trip time parameter is

$$
\begin{equation*}
\tau_{f}=\frac{v_{c, a} t_{f}}{r_{a}}=\frac{18.5 \times 0.864 \times 10^{5} t_{f}}{92.9 \times 10^{6}}=0.0172 t_{f} \tag{66}
\end{equation*}
$$

where t_{f} is expressed in days.
Values of Γ calculated from equations (63) and (65) are shown in figure 4 as a function of τ_{f} for various radius ratios ρ_{f}. Shown for comparison is the curve for the optimum Earth-Mars transfer taken from reference l. It is apparent that the $\theta^{\prime}=\rho^{-3 / 2}$ trajectories are far from optimum for one-way interplanetary transfers. For an Earth-Mars transfer time of 175 days, for example, and for a value of $\alpha / \beta=50$, the ratio of initial to final mass m_{1} / m_{2} is about 1.007 for the trajectories of reference l and about 1.25 for the $\theta^{\prime}=\rho^{-3 / 2}$ trajectories. Although it appears doubtful that the low mass ratios obtained for the optimum trajectory can be realized in practice, even for one-way trips, the difference is so large that there is adequate basis for assuming that roundtrip mass ratios calculated with $\theta^{\prime}=\rho^{-3 / 2}$ trajectories are quite pessimistic, and that subsequent trajectory studies will produce considerably lower values for given trip times.

For geocentric missions involving transfer to higher orbits from a near-Earth orbit ($r_{0}=4360$ miles), Γ is given by (see eq. (23))

$$
\begin{equation*}
\Gamma=13.82 \gamma \tag{67}
\end{equation*}
$$

The relation between τ_{f} and t_{f} is

$$
\begin{equation*}
\tau_{f}=\frac{4.69 \times 0.864 \times 10^{5} t_{f}}{4360}=93 t_{f} \tag{68}
\end{equation*}
$$

where t_{f} is again in days. Obviously, the range of τ_{f} of interest for geocentric missions differs greatly from that of figure 4.

Indirect Transfers Between Circular Orbits

To evaluate mass ratios for indirect transfers with the $\theta^{\prime}=\rho^{-3 / 2}$ family of trajectories, two members of this family are combined, as shown in sketch (c):

Sketch (c)

Let

$$
\begin{align*}
& \rho_{a}=\frac{r_{b}}{r_{a}} \\
& \rho_{b}=\frac{r_{c}}{r_{b}} \\
& \rho_{c}=\frac{r_{c}}{r_{a}} \tag{69}\\
& \rho_{1}=\frac{r}{r_{a}} \\
& \rho_{2}=\frac{r}{r_{b}}
\end{align*}
$$

Then the expression for γ appropriate for the entire transfer $\overline{\mathrm{abc}}$ is derived as follows:

$$
\begin{aligned}
r & =\int_{0}^{\tau} c\left(\frac{a}{g_{a}}\right)^{2} d \tau_{I} \\
& =\int_{0}^{\tau_{c}}\left[\left(\rho_{1}^{\prime \prime}\right)^{2}+\frac{1}{4} \rho_{1}^{-3}\left(\rho_{1}^{\prime}\right)^{2}\right] d \tau_{1} \\
& =\int_{0}^{\tau_{a}}\left[\left(\rho_{1}^{\prime \prime}\right)^{2}+\frac{1}{4} \rho_{1}^{-3}\left(\rho_{1}^{\prime}\right)^{2}\right] d \tau_{1}+\rho_{a}^{-5 / 2} \int_{0}^{\tau_{b}}\left[\left(\rho_{2}^{\prime \prime}\right)^{2}+\frac{1}{4} \rho_{2}^{-3}\left(\rho_{2}^{\prime}\right)^{2}\right] d \tau_{2}
\end{aligned}
$$

where

$$
\begin{align*}
& \tau_{a}=\frac{v_{c, a}}{r_{a}} t_{a, b} \\
& \tau_{b}=\frac{v_{c, b}}{r_{b}} t_{b, c} \\
& \tau_{c}=\frac{v_{c, a}}{r_{a}} t_{a, c} \tag{71}\\
& \tau_{1}=\frac{v_{c, a}}{r_{a}} t \\
& \tau_{2}=\frac{v_{c, b}}{r_{b}} t
\end{align*}
$$

The integrals in this expression for r are the same as those which led to equation (63). Consequently, the value of r for an indirect trip becomes
$r=\frac{3\left(1-\rho_{a}\right)^{2}}{\tau_{a}}\left[\left(\frac{2}{\tau_{a}}\right)^{2}+0.10 \rho_{a}^{-3 / 2}\right]+\frac{3\left(1-\rho_{b}\right)^{2} \rho_{a}^{-5 / 2}}{\tau_{b}}\left[\left(\frac{2}{\tau_{b}}\right)^{2}+0.10 \rho_{b}^{-3 / 2}\right]$

Let $k=t_{a, b} / t_{a, c}$ be the fraction of the total transit time alloted to the portion $\overline{a b}$ of the trajectory. Then, since $\rho_{b}=\rho_{c} / \rho_{a}$, equation (72) becomes
$r=\frac{3\left(1-\rho_{a}\right)^{2}}{k \tau_{c}}\left[\left(\frac{2}{k \tau_{c}}\right)^{2}+0.1 \rho_{a}^{-3 / 2}\right]$

$$
+\frac{3\left(\rho_{c}-\rho_{a}\right)^{2}}{(1-k) \tau_{c}}\left\{\left[\frac{2}{(1-k) \tau_{c}}\right]^{2}+0.1\left(\rho_{a} \rho_{c}\right)^{-3 / 2}\right\}
$$

$$
\begin{equation*}
=\frac{12\left(1-\rho_{a}\right)^{2}}{\left(k \tau_{c}\right)^{3}}\left[1+\left(\frac{k}{1-k}\right)^{3} A^{2}\right]+\frac{0.30\left(1-\rho_{a}\right)^{2}}{k \tau_{c} \rho_{a}^{3 / 2}}\left(1+\frac{k}{1-k} \frac{A^{2}}{\rho_{c}^{3 / 2}}\right) \tag{73}
\end{equation*}
$$

where

$$
A=\left|\frac{\rho_{c}-\rho_{a}}{I-\rho_{a}}\right|
$$

For a given total one-way trip time $t_{a, c}$ and a given destination radius ratio ρ_{c}, equation (73) expressed γ in terms of the intermediate radius ratio ρ_{a} and the proportion of the transit time allowed for the first portion of the trip k. For each ρ_{a}, ρ_{c}, and t_{c}, an optimum value of k exists that minimizes γ for the trip. Differentiation of equation (73) with respect to k yields the following equation for this optimum k (denoted by κ_{0}):

$$
\begin{equation*}
\frac{36}{\tau_{C}^{2}}\left(1-K_{0}\right)^{-2}\left[A^{2}-\left(\frac{1-K_{0}}{K_{0}}\right)^{4}\right]+\frac{0.30}{\rho_{a}^{3 / 2}}\left[\frac{A^{2}}{\rho_{C}^{3 / 2}}-\left(\frac{1-K_{0}}{K_{0}}\right)^{2}\right]=0 \tag{74}
\end{equation*}
$$

The solutions of this equation for $\tau_{c}=0$ and $\tau_{c}=\infty$ are

$$
\begin{array}{ll}
\text { For } \quad \tau_{c}=0: & \frac{1-\kappa_{O}}{\kappa_{O}}=A^{I / 2} \\
\text { For } \quad \tau_{c}=\infty: & \frac{1-\kappa_{O}}{\kappa_{O}}=\frac{A}{\rho_{c}^{3 / 4}} \tag{75b}
\end{array}
$$

These solutions for optimum k_{0} are plotted in figure 5. Also shown are values obtained for $\tau_{c}=\sqrt{120}$. These calculations show that, for values of τ_{c} of interest for interplanetary missions, there is no appreciable change in k_{0} from the $\tau_{c}=0$ value. It is, therefore, a good approximation to use the value of k_{0} for $\tau_{c}=0$ in the expression for r (eq. (73)). This expression then becomes

$$
\begin{equation*}
r=\tau_{c}^{-3_{f_{1}}}\left(\rho_{c}, \rho_{a}\right)+\tau_{c}^{-1_{f_{2}}}\left(\rho_{c}, \rho_{a}\right) \tag{76}
\end{equation*}
$$

where

$$
\begin{gather*}
f_{1}\left(\rho_{c}, \rho_{a}\right)=12\left(1-\rho_{a}\right)^{2}(1+\sqrt{A})^{4} \tag{77a}\\
f_{2}\left(\rho_{c}, \rho_{a}\right)=0.30\left(1-\rho_{a}\right)^{2} \rho_{a}^{-3 / 2}(1+\sqrt{A})\left[1+\left(A / \rho_{c}\right)^{3 / 2}\right] \tag{77~b}
\end{gather*}
$$

The limiting forms of the functions for $\rho_{a}=1$ and $\rho_{a}=\rho_{c}$ (direct transfers) are

$$
\begin{gather*}
f_{1}\left(\rho_{c}, 1\right)=f_{1}\left(\rho_{c}, \rho_{c}\right)=12\left(1-\rho_{c}\right)^{2} \tag{78a}\\
f_{2}\left(\rho_{c}, 1\right)=f_{2}\left(\rho_{c}, \rho_{c}\right)=0.30 \rho_{c}^{-3 / 2}\left(1-\rho_{c}\right)^{2} \tag{78b}
\end{gather*}
$$

The resulting expressions for γ are, of course, identical with the direct-transfer values of equation (63).

Considerable simplification in making round-trip calculations results from noting that

$$
\begin{align*}
& A\left(\rho_{c}^{-1}, \rho_{c}^{-1} \rho_{a}\right)=\left[A\left(\rho_{c}, \rho_{a}\right)\right]^{-1} \tag{79}\\
& f_{1}\left(\rho_{c}^{-1}, \rho_{c}^{-1} \rho_{a}\right)=\rho_{c}^{-2_{f_{1}}}\left(\rho_{c}, \rho_{a}\right) \tag{80}\\
& f_{2}\left(\rho_{c}^{-1}, \rho_{c}^{-1} \rho_{a}\right)=\rho_{c} f_{2}\left(\rho_{c}, \rho_{a}\right) \tag{81}
\end{align*}
$$

The transformations $\rho_{c} \rightarrow \rho_{c}^{-1}, \rho_{a} \rightarrow \rho_{c}^{-1} \rho_{a}$ correspond to inward and outward trips between the same circular orbits along trajectories with the same intermediate radius $r_{b}(\operatorname{sketch}(d))$. If the value of r for the

Sketch (d)
outward trip (abc) is denoted by γ_{2}, and for the inward trip (dbe) by r_{6}, equations (79) to (81), together with equation (76), yield the result that

$$
\begin{equation*}
r_{6}\left(\frac{r_{a}}{r_{d}}, \frac{r_{b}}{r_{d}}\right)=\left(\frac{r_{c}}{r_{a}}\right)^{5 / 2} r_{2}\left(\frac{r_{c}}{r_{a}}, \frac{r_{b}}{r_{a}}\right) \tag{82}
\end{equation*}
$$

where $r_{d}=r_{c}$. This equation, in turn, when used in equation (36), yields the required result that

$$
\begin{equation*}
\Gamma_{6}\left(\frac{r_{a}}{r_{c}}, \frac{r_{b}}{r_{c}}\right)=\Gamma_{2}\left(\frac{r_{c}}{r_{a}}, \frac{r_{b}}{r_{a}}\right) \tag{83}
\end{equation*}
$$

Values of f_{1} and f_{2} are shown in figure 6 for $\rho_{c}=1.524$ (Earth-Mars trip) and $\rho_{c}=0.656$ (Mars-Earth trip). With these values, mass ratios required for various combinations of round-trip Mars trajectories can be calculated.

Another quantity needed for these round-trip calculations is the angular distance traveled. From equations (59) and (62),

$$
\begin{align*}
\theta & =\tau_{a} \rho_{a}^{-3 / 4}+\tau_{b} \rho_{b}^{-3 / 4} \\
& =\frac{v_{c}, a^{k t_{a}}, c}{r_{a}} \rho_{a}^{-3 / 4}+\frac{v_{c}, b}{r_{b}}(1-\kappa) t_{a}, c\left(\frac{\rho_{c}}{\rho_{a}}\right)^{-3 / 4} \\
& =\frac{\tau_{c} \rho_{a}^{-3 / 4}}{1+\sqrt{A}}\left(1+\sqrt{A} \rho_{c}^{-3 / 4}\right), \text { radians } \tag{84}
\end{align*}
$$

or

$$
\frac{\theta}{\tau_{c}}\left(\rho_{c}, \rho_{a}\right)=\frac{1+\rho_{c}^{-3 / 4} \sqrt{A}}{\rho_{a}^{3 / 4}(1+\sqrt{A})}
$$

where, as before, the optimum value of k for $\tau_{c}=0$ has been used.
The relation between values of θ / τ for inward and outward transfer between the same circular orbits with the same intermediate radius is

$$
\frac{\theta}{\tau}\left(\rho_{c}^{-1}, \rho_{c}^{-1} \rho_{a}\right)=\rho_{c}^{3 / 2} \frac{\theta}{\tau}\left(\rho_{c}, \rho_{a}\right)
$$

so that

$$
\theta\left(\rho_{c}^{-1}, \rho_{c}^{-1} \rho_{a}\right)=\theta\left(\rho_{c}, \rho_{a}\right)
$$

Even more useful for interplanetary mission studies is the lead angle φ acquired during the transit by the vehicle relative to the initial planet (Earth). Any lead angle acquired during the outward trip (and during the time spent in the vicinity of the destination planet) must be reduced to zero or augmented to 2π if the rendezvous with the initial planet is to be achieved. The lead angle acquired during the departure phase (phase (2)) is

$$
\begin{align*}
\varphi_{2} & =\theta_{2}-\frac{v_{c}, E}{r_{E}} t_{2} \\
& =\frac{v_{c}, E}{r_{E}} t_{2}\left[\frac{\theta}{\tau}\left(\frac{r_{P}}{r_{E}}, \frac{r_{b}, 2}{r_{E}}\right)-1\right] \tag{86}
\end{align*}
$$

where $v_{C, E}$ and r_{E} are the orbital speed and radius of the Earth, r_{P} is the orbital radius of the destination planet, and $r_{b, 2}$ is the intermediate radius on the outward trip. The lead angle for the return trip (phase (6)) is

$$
\begin{align*}
\varphi_{6} & =\theta_{6}-\frac{v_{c, E}}{r_{E}} t_{6} \\
& =\frac{v_{c, E}}{r_{E}} t_{6}\left[\left(\frac{r_{P}}{r_{E}}\right)^{-3 / 2} \frac{\theta}{\tau}\left(\frac{r_{E}}{r_{P}}, \frac{r_{b}, 6}{r_{P}}\right)-1\right] \\
& =\frac{v_{c}, E}{r_{E}} t_{6}\left[\frac{\theta}{\tau}\left(\frac{r_{P}}{r_{E}}, \frac{r_{b}, 6}{r_{E}}\right)-1\right] \tag{87}
\end{align*}
$$

where $r_{b, 6}$ is the intermediate radius for the return trip. The lead angle acquired during the time spent in the vicinity of the destination planet (phases (3), (4), and (5)) is

$$
\begin{align*}
\varphi_{W} & =\left(\dot{\theta}_{P}-\dot{\theta}_{E}\right) t_{W} \\
& =\frac{v_{c, E}}{r_{E}} t_{W}\left[\left(\frac{r_{E}}{r_{P}}\right)^{3 / 2}-1\right] \tag{88}
\end{align*}
$$

where $t_{W}=t_{3}+t_{4}+t_{5}$.
For the Earth-Mars trip $\left(\mathrm{v}_{\mathrm{C}, \mathrm{E}} / \mathrm{r}_{\mathrm{E}}=0.0172\right.$ radian $/$ day $=0.986^{\circ} /$ day $)$, these lead angles become

$$
\begin{gather*}
\frac{\varphi_{2}}{t_{2}}=0.986\left[\frac{\theta}{\tau}\left(1.524, \frac{r_{0}, 2}{r_{E}}\right)-1\right], \mathrm{deg} / \text { day } \tag{89}\\
\frac{\varphi_{6}}{t_{6}}=0.986\left[\frac{\theta}{\tau}\left(1.524, \frac{r_{0}, 6}{r_{E}}\right)-1\right], \mathrm{deg} / \text { day } \tag{90}\\
\frac{\varphi_{W}}{t_{W}}=-0.462, \mathrm{deg} / \mathrm{day} \tag{91}
\end{gather*}
$$

The function $\varphi / t=0.986\left[\frac{\theta}{\tau}\left(1.524, \frac{r_{b}}{r_{E}}\right)-1\right]$ is plotted in figure 7. With this curve, the radius ratio required for the return trip, for a given outward trip and waiting time, can be determined with the relation

$$
\begin{equation*}
\varphi_{6}+\varphi_{2}+\varphi_{W}=2 n \pi \quad(n=0,1,2,3) \tag{92}
\end{equation*}
$$

For fast trips, the case $n=0$ is of most interest.

Weight Ratios for Mars Round Trips

To evaluate the weights needed as functions of trip time for interplanetary round-trip missions, either with the step-by-step method (eqs. (25) to (32)) or with approximate methods, the values of Γ_{2} and Γ_{6} must be determined for combinations of trajectories that satisfy equation (92). For Earth-Mars missions, the expressions for Γ_{2} and Γ_{6} are

$$
\begin{equation*}
\Gamma_{\mathrm{n}}=0.04\left(\frac{58.2}{t_{n}}\right)\left[\left(\frac{58.2}{t_{n}}\right)^{2} f_{1}\left(1.524, \frac{r_{\mathrm{b}, \mathrm{n}}}{r_{\mathrm{E}}}\right)+\mathrm{f}_{2}\left(1.524, \frac{r_{\mathrm{b}, \mathrm{n}}}{r_{\mathrm{E}}}\right)\right] \tag{93}
\end{equation*}
$$

where $n=2$ for the outward trajectory and $n=6$ for the inward trajectory. This function of transit time and r_{b} / r_{E} is plotted in figure 8. Since I has a sharp minimum at $r_{b} / r_{E}=1.0$, it was thought likely that the lowest values of $\Gamma_{2}+\Gamma_{6}$ for a given total trip time would be obtained when either the outward or return trip is a direct one $\left(r_{b} / r_{马}=1.0\right)$. Subsequent calculations confirmed this conjecture, and further calculations were therefore made for $r_{b, 2} / r_{E}=1.0$. The first step was to calculate $\Gamma_{2}+\Gamma_{6}$ as a function of t_{2} for several fixed values of t_{W} and t^{\prime}, where t^{\prime} is the total round-trip time with the exceptions of the Earth escape and descent phases; that is,

$$
\begin{equation*}
t^{\prime}=t_{2}+t_{w}+t_{6} \tag{94}
\end{equation*}
$$

Equations (94) and (92) and figure 7 determined φ_{6}, t_{6}, and $r_{b, 6} / r_{E}$ as a function of $t_{2} ; \Gamma_{2}$ and Γ_{6} were then obtained from figure 8. This calculation yielded the optimum distribution between t_{2} and t_{6} for given t^{\prime} and t_{W}, together with the values of Γ_{2}, Γ_{6}, and $r_{b}, 6 / r_{E}$ corresponding to these optimum trips. The results are shown in figure 9 for $t_{W}=50$ days. The curves show that the outward (direct) trip time t_{2} is about one-quarter of t^{\prime}, and that the optimum intermediate radius for the return trip $r_{b, 6}$ is about 57×10^{6} miles and is almost independent of t^{\prime}.

Using the values from figure 9, a calculation was next undertaken using equations (34) and (37) to determine the best distribution between t_{1} and t^{\prime} for a given total trip time. Values for β of 0.2 and α of 10 were used for this part of the calculation. The ratio m_{p} / m_{i} was found to be rather insensitive to small redistributions of total trip time between t_{1}, t^{\prime}, and t_{7}. The resulting breakdown of trip times is shown in table I.

Using these values, the ratio of initial mass to payload mass was calculated from equation (33), which is the more precise equation for the case $m_{e x}=0, \dot{m}_{S}=0$. Results are shown in figure 10 for $\alpha=5$ and 10 pounds per kilowatt. Also shown for comparison are mass ratios for the same mission using nuclear rockets with specific impulses of 800 and 1000 seconds. The computation procedure and trajectories used for the nuclear rocket are described in appendix B. The two branches of the curves for the nuclear rockets result from use of a different type of trajectory for low and high trip times.

Figure 10 shows that, contrary to general opinion, electric rockets are potentially as capable as nuclear rockets of making fast interplanetary round trips. In fact, for mass ratios less than 10 , it appears that electric rockets can accomplish the mission considerably faster than nuclear rockets. These comparisons, of course, depend on practical achievement of the assumed performance parameters for both systems, but the ones chosen are generally regarded as being attainable. Another interesting result shown in figure 10 is that the mass ratio increases very slowly as trip time is reduced quite drastically below the minimum-energy values.

Thrust and Specific-Impulse Program

It is of interest to calculate, for some typical missions, the thrust and specific impulse required to follow the assumed trajectories. For constant-power trajectories, such as those considered herein, thrust and specific impulse (or jet velocity) are related by equation (5), which can be expressed as

$$
\begin{equation*}
\frac{F}{m_{i} g_{00}} I=45.9 \frac{P_{j}}{m_{i} g_{00}}=45.9 \frac{\beta}{\alpha} \tag{95}
\end{equation*}
$$

If $F / m_{i} g_{00}$ is denoted by a_{00}, equation (95) becomes

$$
\begin{equation*}
I=\frac{45.9}{a_{00}} \frac{\beta}{\alpha} \tag{96}
\end{equation*}
$$

For constant-thrust phases (phases (1), (3), (5), and (7)),

$$
\begin{equation*}
a_{00}=a_{0} \frac{m_{0} g_{0}}{m_{i} g_{00}}=\frac{a_{0} \tau}{\tau} \frac{m_{0} g_{0}}{m_{i} g_{00}}=\frac{0.9}{\frac{v_{c, a^{t}}}{r_{a}}} \frac{m_{0} g_{0}}{m_{i} g_{00}} \tag{97}
\end{equation*}
$$

where $m_{0} g_{0}=m_{a} g_{a}$ for phases (1) and (5), and $m_{0} g_{0}=m_{b} g_{b}$ for phases (3) and (7). Thus, for phase (1) (Earth escape), with $g_{a} / g_{00}=26.6 / 32.2=0.826$, and $m_{a}=m_{i}$,

$$
\begin{equation*}
a 00,1=\frac{0.008}{t_{1}} \tag{98}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{1}=5740 \frac{\beta t_{1}}{\alpha} \tag{99}
\end{equation*}
$$

For phase (3) (Mars descent), $g_{b} / g_{00}=8.7 / 32.2=0.270$,

$$
\begin{equation*}
a_{00,3}=\frac{0.00335}{t_{3}} \frac{m_{3}}{m_{i}} \tag{100}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{3}=13,700 \frac{\beta t_{3}}{\alpha} \frac{m_{i}}{m_{3}} \tag{101}
\end{equation*}
$$

For phase (5) (Mars escape),

$$
\begin{equation*}
a_{00,5}=\frac{0.00335}{t_{5}} \frac{m_{4}}{m_{i}} \tag{102}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{5}=13,700 \frac{\beta t_{5}}{\alpha} \frac{m_{i}}{m_{4}} \tag{103}
\end{equation*}
$$

For phase (7) (Earth descent),

$$
\begin{equation*}
a_{00,7}=\frac{0.008}{t_{7}} \frac{m_{7}}{m_{i}} \tag{104}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{7}=5740 \frac{\beta t_{7}}{\alpha} \frac{m_{i}}{m_{7}} \tag{105}
\end{equation*}
$$

For variable-thrust phases (phases (2) and (6)), the accelerations are obtained from equations (49), (50), (54), (55), and (56), and the thrust is calculated from

$$
\begin{equation*}
a_{00} \equiv \frac{F}{m_{i} g_{00}}=\frac{m g_{a}}{m_{i} g_{00}} \sqrt{\left(\frac{a_{r}}{g_{a}}\right)^{2}+\left(\frac{a_{\theta}}{g_{a}}\right)^{2}} \tag{106}
\end{equation*}
$$

Thus, for phase (2) (direct Earth-Mars trajectory),

$$
\begin{equation*}
\frac{a_{r, 2}}{g_{a}}=\frac{10,650}{t_{2}^{2}}(1-2 \xi) \tag{107}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{\theta, 2}}{g_{a}}=\frac{91.4}{t_{2}} \sqrt{f(1.524, \xi)} \tag{108}
\end{equation*}
$$

where $f(1.524, \xi)$ is the function under the integral sign in equation (58).
For phase (6) (Mars-Earth indirect return), the accelerations for the first portion are

$$
\begin{equation*}
\frac{a_{r, 6}}{g_{a}}=\frac{-42,300}{\left(0.42 t_{6}\right)^{2}}(1-2 \xi) \tag{109}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{\theta, 6}}{g_{a}}=-\left(\frac{193}{0.42 t_{6}}\right) \sqrt{f\left(\rho_{a}, 6, \xi\right)} \quad\left(\rho_{a, 6}=\frac{r_{b}}{r_{M}}\right) \tag{110}
\end{equation*}
$$

and for the second portion,

$$
\begin{equation*}
\frac{a_{r, 6}}{g_{a}}=\frac{2980}{\left(0.58 t_{6}\right)^{2}}(1-2 \xi) \tag{111}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{a_{\theta, 6}}{g_{a}}=\frac{51.2}{0.58 t_{6}} \sqrt{f\left(\frac{r_{E}}{r_{b}, 6}, \xi\right)} \tag{112}
\end{equation*}
$$

The thrust and specific-impulse programs are shown in figure ll(a) for a 500-day trip and in figure $11(\mathrm{~b})$ for an 800 -day trip. Values of a and β used were: $\alpha=10$ pounds per kilowatt and $\beta=0.20$. These figures show that the specific impulse ranges from 2,500 to 37,000 for the 500-day trip, and from 4,000 to 38,000 for the 800 -day trip. The mass-flow rates required for a given power vary as I^{-2}, so that massflow variation by a factor of 100 is needed if I varies by a factor of 10. Although these large variations are not impossible with ion accelerators, a reduction in the range of variation will certainly be desirable. It is possible that trajectories can be found that do not require such large thrust variations and that will not significantly increase the mass ratio. Considerable investigation to find such trajectories is certainly warranted.

The time variations of several trajectory variables for the EarthMars transfer portion (phase (2)) of the trips shown in figure ll are plotted in figure 12. Of particular interest are the curves for the direction of the thrust vector δ, which show that the thrust is radial at both ends of the trajectory and is inclined at large angles to the velocity vector throughout most of the transfer. The fact that the thrust is radial at both ends of the trajectory for all $\theta^{\prime}=\rho^{-3 / 2}$ transfers can also be seen from equations (49), (50), and (56), which show that the radial component of the thrust vector decreases linearly with ξ from its maximum positive value at $\xi=0$ to its maximum negative value at $\xi=1$, while the circumferential component is zero at both ends $\left(\rho^{\prime}=0\right)$ and reaches its maximum value near the middle of the transfer path.

MANNED MARS MISSIONS

Using the near-optimum parameters of table I, calculations were made of the weights required for a manned Mars mission similar to that discussed in references 5 and 7 ; that is, an 8-man expedition capable of landing on Mars. The constants of the journey are the same as used for the unmanned trips of the previous section, and the additional constants are $\dot{m}_{S} g_{00}=80$ pounds per day (based on a consumption rate of 10 lb per man per day) and exploration equipment $m_{\text {exgoo }}$ equal to 40,000 pounds.

$$
\text { Equations (25) to (32) for this mission become, with } \beta=0.2 \text { : }
$$

Phase (1):

$$
\begin{equation*}
\frac{W_{1}}{W_{i}}=1-\frac{0.604 \alpha}{t_{1}}-\frac{80 t_{1}}{W_{i}} \tag{113}
\end{equation*}
$$

Phase (2):

$$
\begin{equation*}
\frac{W_{1}}{W_{2}}-1-\frac{4\left(\frac{80 t_{2}}{W_{1}}\right)}{\left(1+\frac{W_{2}}{W_{1}}\right)^{2}}=5 \alpha \Gamma_{2} \frac{W_{1}}{W_{i}} \quad \text { (solution plotted in fig. I) } \tag{114}
\end{equation*}
$$

Phase (3):

$$
\begin{equation*}
\frac{W_{3}}{W_{2}}=\frac{1-\frac{80 t_{3}}{W_{2}}}{1+\frac{0.113 \alpha}{t_{3}} \frac{W_{2}}{W_{i}}} \tag{115}
\end{equation*}
$$

Phase (4):

$$
\begin{equation*}
\frac{W_{4}}{W_{3}}=1-\frac{80 t_{4}}{W_{3}}-\frac{40,000}{W_{3}} \tag{116}
\end{equation*}
$$

Phase (5):

$$
\begin{equation*}
\frac{W_{5}}{W_{4}}=1-\frac{0.113 \alpha}{t_{5}} \frac{W_{4}}{W_{i}}-\frac{80 t_{5}}{W_{4}} \tag{117}
\end{equation*}
$$

Phase (6):

$$
\begin{equation*}
\frac{W_{5}}{W_{6}}-1-\frac{4\left(\frac{80 t_{6}}{W_{5}}\right)}{\left(1+\frac{W_{6}}{W_{5}}\right)^{2}}=5 a \Gamma_{6} \frac{W_{5}}{W_{i}} \quad \text { (solution plotted in fig. } 1 \text {) } \tag{118}
\end{equation*}
$$

Phase (7):

$$
\begin{equation*}
\frac{W_{7}}{W_{6}}=\frac{1-\frac{80 t_{7}}{W_{6}}}{1+\frac{0.604 \alpha}{t_{7}} \frac{W_{6}}{W_{i}}} \tag{119}
\end{equation*}
$$

The return payload ratio is, as before,

$$
\begin{equation*}
\frac{W_{p}}{W_{i}}=\frac{W_{7}}{W_{i}}-0.20 \tag{120}
\end{equation*}
$$

Using equations (113) to (120) and the parameters of table I, the return payload weight W_{p} was calculated as a function of initial weight for several trip times and for values of specific powerplant weight of 10 and 5 pounds per kilowatt. Results are shown in figure 13. For a return payload of 50,000 pounds, the initial weights are shown as functions of trip time in figure 14. Also shown in figure l4, for comparison, are initial weights required for the same mission with a nuclear rocket having a specific impulse of 1000 seconds and a powerplant weight of 20,000 pounds. Appendix B describes the calculation procedure for the nuclear rocket.

Among the features of interest in figure 14 is the result that the initial weight increases very slowly, with electric propulsion, as the
trip time is reduced from the minimum-energy value of about 1200 days (refs. 5 and 7) to about 700 days for $\alpha=10$ or about 550 days for $\alpha=5$. The rate of increase is even slower than that for the unmanned. mission (fig. 10), because reduction in supply weight needed tends to compensate for the increased propellant weight as trip time is reduced. The relative position of the curves for electric and nuclear rockets remains about as for the unmanned-mission calculation.

CONCLUDING REMARKS

The results of this study show that, even with a simple, nonoptimum family of trajectories, it is possible to produce drastic reductions in the time required for round-trip interplanetary missions using continuous, low-thrust propulsion. It is to be hoped that further trajectory optimization studies will produce even greater trip-time reductions for given initial mass. It is also desirable, although perhaps not essential, to find trajectories that require less variation in thrust and specific impulse than those used herein.

Lewis Research Center
National Aeronautics and Space Administration Cleveland, Ohio, April 22, 1960

APPENDIX A

SYMBOLS
$A \quad\left|\frac{\rho_{c}-\rho_{a}}{1-\rho_{a}}\right|$
a
a_{r}
a_{θ}
a_{0}

C
$r_{M} \quad$ Mars orbital radius, 141.5×10^{6} miles
t time, days
t_{W} time for phases (3), (4), and (5), $t_{3}+t_{4}+t_{5}$
t' total round-trip time except phases (1) and (7), $t_{2}+t_{W}+t_{6}$
$\mathrm{V}_{j} \quad$ jet velocity parameter, $\mathrm{v}_{j} / \mathrm{v}_{\mathrm{c}, 0}$
$\mathrm{v}_{\mathrm{c}} \quad$ circular velocity
$\mathrm{v}_{\mathrm{c}, 0}$ circular velocity in reference orbit (departure orbit for escape phases and destination orbit for descent phases)
$v_{j} \quad$ jet velocity
W weight, mgoo
$W_{i} \quad m_{i} g_{00}$
a specific powerplant weight, $W_{p p} / P_{j}, ~ l b / k w$
$\beta \quad$ ratio of powerplant weight to initial vehicle weight, $W_{p p} / W_{i}$
$\Gamma \quad\left(v_{c, a} g_{a} / 0.28 g_{00}\right) r, k w / 1 b$
γ integrated acceleration parameter for variable-thrust phases
δ angle between thrust vector and circumferential direction
$\theta \quad$ trajectory angle (anomaly)
$\psi \quad$ angle between velocity vector and circumferential direction
k fraction of time alloted to first portion of indirect transfer
$\xi \quad \tau / \tau_{I}$
p radius ratio
$\tau \quad$ time parameter, $\mathrm{v}_{\mathrm{c}}, \mathrm{ot} / \mathrm{r}_{0}$
$\tau_{c} \quad$ see eq. (71)
φ lead angle
Subscripts:
a values at start of phase
$b \quad$ values at end of phase

```
E Earth
f final values at end of propulsion period
i initial
p payload
pp powerplant
pr propellant
s subsistence supplies
w wait time (phases (3), (4), and (5))
0 reference orbit
l-7 phases of interplanetary mission
Superscript:
    indicates differentiation with respect to \tau
```


APPENDIX B

MISSION WEIGHT CALCULATIONS FOR NUCLFAR ROCKET

For a high-thrust interplanetary mission, starting and ending in an orbit around the Earth, there are four propulsion phases ((1), (3), (5), and (7)), each characterized by velocity increment Δv required to follow the chosen trajectories. If only the propellant mass reduction resulting from each Δv is considered, the mass ratio for each firing is

$$
\begin{equation*}
\frac{m_{b, n}^{\prime}}{m_{a, n}}=e^{-\Delta v_{n} / v_{j}} \quad(n=1,3,5,7) \tag{BI}
\end{equation*}
$$

For the nuclear rocket, it is assumed that a single nuclear reactor and thrust chamber will be used throughout the mission, so that no motor staging will take place. However, after each firing, some propellant tankage can be disposed of. If it is assumed that the tankage weight is proportional to the propellant used, the weight after each propulsion period can be represented as

$$
\begin{equation*}
m_{b, n}=m_{b, n}^{\prime}-\epsilon_{n}\left(m_{a, n}-m_{b, n}^{\prime}\right) \tag{B2}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{m_{b, n}}{m_{a, n}}=\left(1+\epsilon_{n}\right) e^{-\Delta v_{n} / v_{j}}-\epsilon_{n} \quad(n=1,3,5,7) \tag{B3}
\end{equation*}
$$

where ϵ_{n} is the ratio of disposed propellant tankage to propellant used. A value of ϵ_{n} of 0.05 was used in the present computations. If the mass ratio of equation (B3) is denoted by m_{n}^{\prime}, the initial weight for a complet manned interplanetary mission can be written as follows:

$$
\begin{equation*}
W_{i}=\frac{W_{p}+W_{p p}+m_{7}^{\prime} \dot{W}_{s} t_{6}+m_{5}^{1} m_{7}^{\prime}\left(\dot{W}_{s} t_{4}+W_{e x}\right)+m_{3}^{1} m_{5}^{1} m_{7}^{1} \dot{W}_{S} t_{2}}{m_{1}^{1} m_{3}^{1} m_{5}^{1} m_{7}^{1}} \tag{B4}
\end{equation*}
$$

where $\dot{W}_{S}=80$ pounds per day for the 8 -man mission considered, and $W_{e x}=40,000$ pounds. For the unmanned mission $\left(\dot{W}_{S}=W_{e x}=0\right)$, equation (B4) reduces to

$$
\begin{equation*}
\frac{W_{i}}{W_{p}}=\frac{1+\frac{W_{p p}}{W_{p}}}{m_{1}^{\prime} m_{3}^{\prime} m_{5}^{\prime} m_{7}^{1}} \tag{B5}
\end{equation*}
$$

For the nuclear-rocket curves of figure 10, equation (B5) was used, with $W_{p p} / W_{p}$ assumed negligible; while for the curves of figure 14 , equation (B4) was used with $W_{p p}$ assumed to be 20,000 pounds.

The values of Δv and trip times were obtained from reference 4 , which contains results of systematic calculation of Earth-Mars round-trip trajectories. For each range of total trip time, the trajectories yielding minimum total Δv were used. For trip times between the minimum-energy value of 970 days and 650 days, the best routes found in reference 4 were of the direct type for the outward trip and an aphelion route (passing outside the Mars orbit) for the return trip. For the trip time range below 600 days, lowest Δv^{\prime} s were found when outward and return trip were both along perihelion routes (passing inside the Earth's orbit). Some interpolation was necessary in the times and Δv^{\prime} 's of reference 4 , since, for some of the trajectories of interest, values were given only for 100 days' and zero days' waiting time (t_{4}) in the vicinity of Mars. To obtain the weight ratio comparable with those for the low-thrust missions, a value of $t_{W}\left(=t_{4}\right)$ of 25 days was assumed unless larger waiting times produced smaller $\Delta v^{\prime} s$. The resulting values for the Δv^{\prime} s and times are given in table II. The times required for the propulsion phases were assumed to be negligible. A slight correction was made in the values of Δv_{3} and Δv_{5} obtained from reference 4 , to allow for the difference between the 2500-mile orbit assumed herein and the orbit at $1.1 r_{M}$ used in reference 4. This correction amounted to changes of the order of 0.06 mile per second or less from the values of Δv_{3} and Δv_{5} obtained from reference 4 .

Table II shows that, for trip times greater than 810 days, the waiting time at Mars is greater than 25 days for the optimum trajectories. No calculations for $t_{4}>25$ days were made for the low-thrust propulsion system; however, the results of references 5 and 7 for minimum-energy paths $\left(t_{4}=450\right.$ days, $t_{\text {tot }} \approx 1200$ days) yielded initial weights comparable to those obtained herein for $t_{4}=25$ days, $t_{\text {tot }}=800$ days. Consequently, it is expected that trajectories can be found, in the range of $t_{\text {tot }}$ from 800 to 1200, that yield longer waiting times than 25 days with little, if any, increase in initial weight.

The round-trip missions analysed herein are not necessarily the most economical for either nuclear rockets or electric rockets. Other missions possible with nuclear rockets might include nuclear boost from the Earth as part of the escape phase (phase (1)), whereby some improvement in overall mass ratio might be realized relative to electric rockets. Such a mission should be compared with one in which electric rockets are launched into orbit with nuclear rockets to determine whether there is sufficient advantage in switching to electric rockets for the interplanetary part of
the mission. Use of atmospheric braking, both at the destination planet and upon return to Earth, would reduce the weight ratio needed for both nuclear and electric rockets for a given total trip time. The reduction might be greater, percentagewise, for nuclear rockets than for electric rockets, because reductions in the effective Δv tend to be more significant with systems having lower specific impulse. Such analyses, as well as discussion of the relative optimism or pessimism in the assumed performance parameters of the two systems, are beyond the scope of this report.

REF'ERENCES

l. Irving, J. H., and Blum, E. K.: Comparative Performance of Ballistic and Low-Thrust Vehicles for Flight to Mars. Vistas in Astronautics. Vol. II. Pergamon Press, 1959, pp. 191-218.
2. Moeckel, W. E.: Interplanetary Trajectories with Excess Energy. Proc. IX Int. Astronautical Cong. (Amsterdam), 1958. Vol. I. SpringerVerlag, 1959, pp. 96-119.
3. Ehricke, K. A., Whitlock, C. M., Chapman, R. L., and Purdy, C. H.: Calculations on a Manned Nuclear Propelled Space Vehicle. Rep. 532-57, Am. Rocket Soc., Inc., Dec. 1957.
4. Dugan, James F., Jr.: Analysis of Trajectory Parameters for Probe and Round-Trip Missions to Mars. NASA IN D-281, 1960.
5. Moeckel, W. E.: Trajectories with Constant Tangential Thrust in Central Gravitational Fields. NASA TR R-53, 1960.
6. Perkins, Frank M.: Flight Mechanics of Low-Thrust Spacecraft. Jour. Aero/Space Sci., vol. 26, no. 5, May 1959, pp. 291-297.
7. Moeckel, W. E.: Propulsion Methods in Astronautics. Inst. Ser. on Aero. Sci. and Space Flight. Vol. 2. Pergamon Press, 1959, pp. 1078-1097.

TABLE I. - NEAR-OPTIMUM PARAMETERS FOR EARTH-MARS ROUND TRIPS FOR $\quad t_{W}=50$ DAYS USING $\quad \theta^{\prime}=\rho^{-3 / 2}$ TRAJECTORIES

Total trip time, days	t_{1}	t^{\prime}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	$\begin{gathered} \Gamma_{2}, \\ \mathrm{kw} / \mathrm{lb} \end{gathered}$	$\begin{gathered} \Gamma_{6}, \\ \mathrm{kw} / \mathrm{lb} \end{gathered}$	$\frac{r_{b, 6}}{r_{E}}$
400	15	370	98	15	25	10	222	15	0.0315	0.063	0.61
450	20	410	110				250	20	. 023	. 044	. 62
500	25	455	122				283	20	. 0165	. 031	. 62
550	30	495	130				315	25	. 0132	. 0235	. 625
600	35	540	148				342	25	. 0095	. 0185	. 63
700	50	620	160				410	30	. 0060	. 0124	. 63
800	70	700	190	\checkmark	\downarrow	*	460	30	. 0043	. 0090	. 63

TABLE II. - TRAJECTORY PARAMETERS USED FOR NUCLEAR-ROCKET CALCULATIONS

Total trip time, days	t_{2}	t_{W}	t_{6}	Δv_{1}	Δv_{3}	Δv_{5}	Δv_{7}	$\Delta v_{\text {tot }}$, miles/sec	Route
970	260	450	260	2.20	1.36	1.36	2.20	7.12	Minimum-energy
900	260	225	415	2.20	1.36	2.62	2.32	8.50	Direct-aphelion
850	260	110	480	2.20	1.36	3.22	2.44	9.22	Direct-aphelion
810	260	25	525	2.20	1.36	3.64	2.53	9.73	Direct-aphelion
650	160	25	465	4.48	2.05	4.84	4.58	15.95	Direct-aphelion
550	263	25	262	4.60	2.19	2.68	5.00	14.47	Perihelion-perihelion
500	226	25	249	4.70	2.78	2.68	4.30	14.46	Perihelion-perihelion
400	155	25	220	4.70	3.56	3.17	4.00	15.43	Perihelion-perihelion
350	123	25	202	4.60	4.36	3.76	4.90	17.62	Perihelion-perihelion

$\frac{m_{a}}{m_{i}} \frac{\alpha}{\beta} \Gamma$

Figure 1. - Relation between mass ratio and Γ for variablethrust propulsion periods involving mass ejection.

Figure 2. - Optimum powerplant mass ratio and maximum payload ratio as functions of $\Gamma^{\prime} \alpha$ for $m_{1} / m_{i}=1.0$.

r, $\frac{\mathrm{kw}}{\mathrm{Ib}}$

Figure 5. - Limiting values of optimum κ_{0} for $\rho_{c}=1.524$.

Figure 6. - Values of f_{1} and f_{2} for Earth-Mars transfers.

Figure 8. - Values of Γ for Earth-Mars transfers.

Figure 10. - Mass-ratio comparison for Mars round trips ($\mathrm{m}_{\mathrm{ex}}=0 ; \dot{m}_{2}=0$).

Mass ratio,

Trip phase

(a) 500-Day trip.

Figure ll. - Time history of mass, thrust, and specific impulse for 500day and 800 -day Mars round trips $(\alpha=10 \mathrm{lb} / \mathrm{kw}, \beta=0.20)$.

Figure 11. - Concluded. Time history of mass, thrust, and specific impulse for $500-d a y$ and $800-d a y$

Figure 12. - Time history of several trajectory variables for Earth-Mars transfer along $\theta^{\prime}=\rho^{-3 / 2}$ trajectories.

Figure 13. - Return payload as function of initial weight for 8 -man Mars expedition, using low-thrust propulsion system $\left(\beta=0.20 ; W_{e x}=40,000 \mathrm{Ib}\right)$.

Figure 14. - Comparison of initial weights required for 8-man Mars mission as function of total trip time (return payload $=50,000 \mathrm{lb} ; \mathrm{W}_{\mathrm{ex}}=40,000 \mathrm{lb}$).

