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Abstract
A thermodynamically-based work potential theory for modeling progressive dam-

age for laminated, unidirectional composites assuming plane stress (2D Schapery’s
theory) is extended to three dimensioanl (3D). An internal state variable, S, is defined
to account for the dissipated energy due to damage evolution in the form of microstruc-
tural changes in the matrix. With the stationary of the total work potential with respect
to the internal state variable, a thermodynamically-consistent set of evolution equa-
tions is derived. The internal state variable is related to the transverse and shear mod-
uli through microdamage functions. In the first part of this work, coupon specimens
are prepared to conduct experiments to characterize the relations between the internal
state variable and the transverse modulus as well as shear modulus. The information
is subsequent used for the prediction of three point bending test. In the second part
of this work, objectivity is studied. Three separate methods utilizing different defini-
tions of a reduced internal state variable or of the order of the polynomials are used
to represent the matrix microdamage functions are employed. The three methods are
implemented in a user defined subroutine within a commercial finite element method
software package. Results from numerical simulations of a center-notched compos-
ites panel are compared. The agreement in the maximum stress predictions among
the three methods indicates that objectivity, with respect to the functional form of the
microdamage functions, is satisfied.

A Three-Dimensional Thermodynamically Based Function for 
the Progressive Failure of Unidirectional Composites 

H. Sam Huang
Stony Brook University 

Stony Brook, New York 11794 

Evan J. Pineda 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Shaoyu Hou 
Stony Brook University 

Stony Brook, New York 11794 

NASA/TM—2019-220148 1



Introduction

Development of reliable computational methods for the prediction of laminated progressive

failure has advanced for decades and is an ongoing active research effort. Damage simula-

tions in composites can be broadly divided into four categories. The first category is based

on the first-ply failure criteria approach [1] which was initially developed for lamina in

unidirectional composites. The disadvantage in using the first-ply failure criteria approach

is that, once a failure criterion is met, the whole lamia is regarded as have failed. Neither

the position, or evolution, of damage or crack can be predicted, which often leads to error

in the structural failure predictions. The second approach is based on fracture mechanics

where the energy release rate, defined as energy dissipated during fracture per unit of cre-

ated fracture surface area, is compared against a critical energy release rate to determine

whether cracks advance [2]. The third approach uses plasticity which is more appropriate

for composites exhibiting ductile behavior [3], although substantial permanent deformation

may not exist upon unloading of the composite. The fourth approach is progressive failure

modeling based on the continuum damage mechanics (CDM) approach [4] [5] [6] [7] [8].

The advantage of the CDM approach is that it can use stress and or strain failure criteria

for predicting damage initiation coupled with progressive failure evolution.

Over the past two decades, polymer textile fiber composites (TFCs) have become attractive

for lightweight applications because of their inherent toughness and inexpensive manufac-

turing costs. Detailed introduction to TFCs can be seen in [9] and [10]. Laminated textile

composites have been used in adaptive wind turbine blades [11] and in the automobile [12].

NASA/TM—2019-220148 2



Textile fiber composites are flexible in that, the microstructure can be tailored to attain the

desired, macroscopic mechanical properties.

In order to reliably and accurately predict progressive failure of textile composites, it is

necessary to develop a model in which the morphology of the fiber tows is captured by ex-

plicitly modeling the weave architecture. However, from the hierarchical structure of textile

composites, shown in Figure 1, it can be seen that the fiber tows locally can be treated as

transversely isotropic materials. One strategy for modeling TFCs is to employ the same

methods used for unidirectional composites for the fiber tows of a mesoscale model [13]

[14]. Moreover, the plane stress assumption often used for unidirectional laminates does

not hold locally for the fiber tows because of the tow undulations and weave architecture.

Thus, a 3D, constitutive model must be developed.

Schapery proposed a thermodynamically based work potential theory for progressive fail-

ure of unidirectional composites [15]. The cited formulation utilizes a plane stress assump-

tion for laminated plates. In Schapery’s theory, the response in the fiber direction is linear,

whereas damage due to microscopic cracking in the matrix affects the transverse modu-

lus and shear modulus. Thus, the instantaneous transverse and shear moduli are functions

of damage, represented with an internal state variable, accumulated during the loading.

Schaperys theory has previously been implemented within the finite element method to

model the tensile and compressive response of 2D, notched composite plates [7] [8].

In this paper, the plane stress formulation of Schapery’s theory [15] for laminates is ex-

tended to accommodate a fully 3D stress state while maintaining the transversely isotropic

assumption commonly used for unidirectional composites. The 3D theory is implemented
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within the Abaqus finite element method software package via a user defined subroutine

(UMAT). This numerical implementation is used to model unidirectional laminates with the

intent of using it in the future for modeling progressive failure of the fiber tows in TFCs.

A crux of Schaperys theory is the use of microdamage functions, obtained from coupon

experiments, to relate the degraded stiffnesses to the internal state variable. There exists a

great amount of flexibility in how the experimental data is fit to obtain the microdamage

functions. Sicking [16] observed that the internal state variable S, which represents the

matrix microdamage evolves as the cube of the applied strain. Thus, Sicking introduced

a reduced internal state variable Sr, defined as S
1
3 . Subsequently, the Young’s modulus

and shear modulus were defined as polynomial functions in Sr. An additional focus of

the present work is to analyze and compare progressive failure predictions obtained using

various forms of the matrix microdamage functions. Three different forms for the matrix

microdamage functions, where the exponent that defines the reduced internal state variable

and the order of the polynomial fit of the stiffness versus reduced internal state variable

data are varied, are used as input in Schapery’s theory. A notched composites panel is cre-

ated to conduct compression simulations using the three methods. Finally, the results are

compared and summary are presented.

3D formulation of Schapery’s theory for unidirectional com-
posites

Schapery proposed a thermodynamically-based work potential theory for laminated composites[15].

Over the years, the theory has been used and extended by different researchers [8],[7], [6]
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to model progressive failure of laminated composites within the finite element method. An

internal state variable, S, is used to describe the energy dissipated in Figure 2 due to dam-

age or microstructural changes under loading. From experiment, it has been shown that

there is negligible stiffness degradation in the longitudinal (or fiber) direction but stiffness

degradation, due to damage accumulation, does occur in the transverse direction. Thus, the

transverse and shear stiffnesses are not constant but are functions of the internal state of the

material.

The total work potential, WT , is the sum of the recoverable, elastic strain energy density,

WStrain, and the dissipated energy potential, S.

WT = WStrain + S (1)

Due to the principle of stationarity of the total work potential with respect to the internal

state variable, at any instant of thermodynamic equilibrium, the following equation holds

∂WT

∂S
= 0 (2)

Also, the dissipated energy ,S, is not reversible. That is,

Ṡ ≥ 0 (3)

Substituting Eq (1) into Eq (2), the evolution equation for laminated composites can be

derived.

Assuming the local coordinate 1 is defined to align with the fiber direction, direction 2 and

direction 3 are aligned with the transverse direction normal to the fiber direction. The fully
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3D strain state can be expressed in terms of stress by the compliance matrix, [C]. That is ,

{ε}= [C] {σ} where [C] is expressed as follows

[C] =



1
E1

−ν21
E2

−ν21
E2

0 0 0
−ν12
E1

1
E2

−ν23
E2

0 0 0
−ν12
E1

−ν23
E2

1
E2

0 0 0

0 0 0 (1+ν23)
E2

0 0

0 0 0 0 1
2G12

0

0 0 0 0 0 1
2G12


(4)

The five parameters, E1, E2, G12, ν21, ν23 are used to describe a transversely isotropic lam-

ina, or fiber tow. Due to symmetry, the term −ν21
E2

is equivalent to the term −ν12
E1

. Thus,

ν12 is not an independent variable. By taking the inverse of the compliance matrix [C], the

stiffness matrix [K] can be expressed as the following


K11 K12 K12 0 0 0
K12 K22 K23 0 0 0
K12 K23 K22 0 0 0
0 0 0 K44 0 0
0 0 0 0 K55 0
0 0 0 0 0 K55

 (5)

where

K11 =
E1E2(−1 + ν23)

2E1ν221 + E2(−1 + ν23)
(6)

K12 =
−E1E2ν21

2E1ν221 + E2(−1 + ν23)
(7)

K22 =
−E2(E2 − E1ν

2
21)

(2E1ν221 + E2(−1 + ν23))(1 + ν23)
(8)
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K23 =
−E2(E2ν23 + E1ν

2
21)

(2E1ν221 + E2(−1 + ν23))(1 + ν23)
(9)

K44 =
E2

(1 + ν23)
(10)

K55 = 2G12 (11)

Typically, the product of two Poisson ratios is relatively small; i.e., ν21ν21 << 1. Thus, [K]

matrix can be simplified as the following

[K] =



E1
E1ν21
1−ν23

E1ν21
1−ν23 0 0 0

E1ν21
1−ν23 E2 E2ν23 0 0 0
E1ν21
1−ν23 E2ν23 E2 0 0 0

0 0 0 E2

(1+ν23)
0 0

0 0 0 0 2G12 0
0 0 0 0 0 2G12


(12)

Expanding the elastic strain energy density Wstrain = {ε}T [K]{ε}
2

by use of Eq (12), one can

obtain

Wstrain =
1

2
(G12(S)γ

2
12 + E2(S)ε

2
22 +G12(S)γ

2
31 + E2(S)ε

2
33 +

2E1ε22ε11ν23
1− ν23

+
2E1ε33ε11ν23

1− ν23

+
E1ε

2
11

1− ν23
+ 2E2(S)ε22ε33ν23 −

E1ε
2
11ν23

1− ν23
+

E2(S)γ
2
23

2(1 + ν23)
) (13)

Where γij = 2εij are the engineering (as opposed to tensorial) definitions of shear strain.

Note that, only the transverse Young’s modulus, E2, and shear modulus, G12, are functions
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of S, per the previously stated assumptions about the matrix damage modes. The damage

moduli are related to the virgin (undamaged) moduli E20 and G120 and the internal state

variable S through a pair of matrix microdamage functions es and gs that are obtained from

three coupon experiments.

E2 = E20es(S) (14)

G12 = G120gs(S) (15)

The components of the stiffness matrix K22 = K33 and K55 = K66 for all S so the stiff-

ness matrix remains transversely isotropic even as damage evolves. This type of damage

evolution mimics a spherical type of damage growth, although E11 is assumed unaffected

due because of the presence of the fiber, rather than planar cracks. This assumption was

used to simplify the formulation and implementation of this damage model by eliminating

the requirement of defining a crack orientation in 3D space.

Substituting Eq. (13) and Eq. (1) into Eq (2) results in an evolution equation that can

be used to solve for S for a given strain state. Following [15] a reduced internal state

variable Sr can be used in place of S, so that the experimental data can be easily fit with a

polynomial

Sr = S
1
n (16)

With Eq (16) and the chain rule for derivatives, Eq (2) can be written as follows
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∂Wstrain

∂Sr
= −nSn−1r (17)

In the literature [15] [6] [8], both E2 and G12 are expressed by 5th order polynomial of

Sr. In this research, two combinations of polynomials for E2 and G12 are used. In the first

method, E2 is a 6th order polynomial and G12 is a 5th order polynomial. In the second

method, E2 is a 5th order polynomial and G12 is a 5th order polynomial. In the third

method, E2 is a 5th order polynomial and G12 is a 5th order polynomial but a different

exponent (n= 1
4
) in Eq 17 is used. The summary of the functional for E2 and G12 is listed

in Table 1. In this section, derivation with regards to 6th order polynomial for E2 and 5th

order polynomial forG12 will be presented. The results for 5th order polynomial forE2 and

5th order polynomial for G12 can be easily be deduced from the results of the first method.

E2 as a 6th order polynomial function in Sr and G12 as a 5th order polynomial function in

Sr are expressed as follows:

Polynomial order of E2 Polynomial order of G12 value of n in Eq 17
First method 6 5 3
Second method 5 5 3
Third method 5 5 4

Table 1: Summary of polynomial for E2 and G12 for three methods

E2 = E20(e0 + e1Sr + e2S
2
r + e3S

3
r + e4S

4
r + e5S

5
r + e6S

6
r ) (18)

G12 = G120(g0 + g1Sr + g2S
2
r + g3S

3
r + g4S

4
r + g5S

5
r ) (19)
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Substituting Eq (18) and Eq (19), Eq (13) into the evolution equation Eq (17), one can

obtain the evolution equation in terms of a fifth order polynomial for Sr expressed as the

following

a0 + a1Sr + a2S
2
r + a3S

3
r + a4S

4
r + a5S

5
r = 0 (20)

where

a0 =
g1G120(γ

2
12 + γ231)

2
+
e1E20(γ

2
23)

4
+
e1E20(ε

2
22 + ε233)

2
+ e1E20ε22ε33ν23 (21)

a1 = g2G120(γ
2
12 + γ231) + e2E20(ε

2
22 + ε233) + 2e2E20ε22ε33ν23 +

e2E20γ
2
23

2(1 + ν23)
(22)

a2 = 3 +
3

2
g3G120(γ

2
12 + γ231) +

3

2
e3E20(ε

2
22 + ε233) + 3e3E20ε22ε33ν23 +

3

4

e3E20γ
2
23

(1 + ν23)
(23)

a3 = 2g4G120(γ
2
12 + γ231) + 2e4E20(ε

2
22 + ε233) + 4e4E20ε22ε33ν23 +

e4E20γ
2
23

(1 + ν23)
(24)

a4 =
5

2
g5G120(γ

2
12 + γ231) +

5

2
e3E20(ε

2
22 + ε233) + 5e5E20ε22ε33ν23 +

5

4

e5E20γ
2
23

(1 + ν23)
(25)

a5 = 3e6E20(γ
2
22 + γ233) + 6e6E20ε22ε33ν23 +

3e6E20γ
2
23

2(1 + ν23)
(26)
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The 5th order polynomial for Sr in Eq (20) is solved by the method in [17]. The solutions

contain both complex numbers and real numbers and the complex numbers are excluded

from being used as values for the reduced internal state variable, Sr.

Experimental validation

Characterizing internal state variable from Compressive tests

A compressive test is conducted where load is applied in the transverse direction of uni-

directional composites to establish the relation between the transverse modulus and the

internal state variable. A compressive test is conducted in [45] composites to to establish

the relation between the shear modulus and the internal state variable. Compressive tests

were performed on a servo-hydraulic universal test machine by Shimadzu Inc. An image

of the experimental setup is shown in Figure 3

The width of the specimen is 71.15 mm and the height of the specimen is 71.26 mm.

The thickness of the specimens ranges from 7.8 mm. For each experiment, two strain

gages were attached to the specimen (back to back) aligned with the loading direction

and one in the transverse direction on one side. The purpose of using two strain gages

in the loading direction is to monitor any unwanted bending that may occur during the

compression loading. In a compressive test, A small pre-load is imposed on the specimen

and all strain gages are zeroed at this state. The strain gage readings and the load cell

readings are acquired at 4Hz, while the axial cross-head movement rate imposed on the

specimen is 0.020 mm/sec.

The stress-strain curve for load applied in the transverse direction of composites is in Fig-
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ure 4. With Figure 4, at a specific location, the corresponding internal state variable (or

reduced internal state variable), S (or Sr), and degraded transverse modulus can be calcu-

lated. The coefficients for polynomial es related transverse modulus and reduced internal

state variable are summarized in Table 3. A compressive test is conducted on a [45]16

composite to extract the shear modulus and shear strain. The stress-strain curve for shear

modulus is in Figure 5. The corresponding internal state variable (or reduced internal state

variable), S (or Sr), and degraded shear modulus can be calculated. The coefficients for

polynomial gs related shear modulus and reduced internal state variable are summarized in

Table 3. The plot of polynomial es for transverse modulus and the plot of polynomial gs

for shear modulus are in Figure 6 and Figure 7.

e0 1 g0 1
e1 0.137676 g1 -0.0837419
e2 -0.0349585 g2 0.00756448
e3 0.00286427 g3 -0.000310913
e4 -0.000103419 g4 5.215e-6
e5 1.357e-6 g5 -9.9161e-8

Table 2: The coefficients of ei and gi for unidirectional composites

Three point bending tests and simulations

The material parameters extracted from the coupon tests are implemented in 3D Schapery’s

theory for predicting unidirectional composites under three point bending tests. The com-

posites plate of dimension 147.5 mm by 120 mm by 6.2 mm and the setup of the three

point bending test is in Figure 8. The 3D extension of Schaperys theory for unidirec-

tional composites is implemented in a UMAT user defined subroutine in Abaqus[18]. The
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stress-strain curves used in simulations for E2 and G12 are in Figure 4 and Figure 5. These

stress-strain curves exhibit post-peak strain softening. It has been well documented that nu-

merical simulations utilizing constitutive laws exhibiting post-peak strain softening suffer

from pathological mesh dependence [19]. It should be noted that Schaperys theory has pre-

viously been enhanced to eliminate pathological mesh dependence through regularization

of the energy dissipated in the post-peak regime via introduction of a characteristic ele-

ment length and additional internal state variables[6]. However, that formulation is omitted

herein to focus on extension of only the microdamage model to 3D.

The unloading path at any point on the stress-strain curve is assumed to follow a line con-

necting the current point and the origin (secant). Thus, the transverse stiffness and shear

stiffness, as a function of the internal state variable S, can be calculated.

Sr = S
1
3 is used following [15] [6], as a reduced internal state variable for eS(Sr) and

gS(Sr) in Figure 6 and Figure 7. In each step during the simulations, an incremental strain

is given, and with the information given above, the corresponding Sr at this step can be

calculated from Eq (20). The transverse modulus and shear modulus can then be calculated

with Eq (18) and Eq (19) with the coefficients in Table 3 and used to update the integration

point stresses, satisfying equilibrium. The comparison of simulations with four tests are in

Figure 9. The simulations and experimental results show good agrement before the failure

occurs.
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Objectivity

First method: sixth order polynomial for eS(Sr),fifth order polynomial
for gS(Sr), Sr = S

1
3

This 3D extension of Schaperys theory for unidirectional composites is implemented in a

UMAT user defined subroutine in Abaqus[18]. The stress-strain curves used in simulations

for E2 and G12 are in Figure 10 and Figure 11. These stress-strain curves exhibit post-peak

strain softening. It has been well documented that numerical simulations utilizing constitu-

tive laws exhibiting post-peak strain softening suffer from pathological mesh dependence

[19]. It should be noted that Schaperys theory has previously been enhanced to eliminate

pathological mesh dependence through regularization of the energy dissipated in the post-

peak regime via introduction of a characteristic element length and additional internal state

variables[6]. However, that formulation is omitted herein to focus on extension of only the

microdamage model to 3D.

The unloading path at any point on the stress-strain curve is assumed to follow a line con-

necting the current point and the origin (secant). Thus, the transverse stiffness and shear

stiffness, as a function of the internal state variable S, can be calculated. In this first method,

Sr = S
1
3 is used (see Table 1), following [15] [6], as a reduced internal state variable for

eS(Sr) and gS(Sr) in Figure 12 and Figure 13. A sixth order polynomial,
∑6

i=0 eiSr
i is

used to interpolate both eS and a 5th order polynomial
∑5

i=0 gjSr
j is used to interpolate gS .

The coefficients of ei and gi are summarize in Table 3. In each step during the simulations,

an incremental strain is given, and with the information given above, the corresponding Sr

at this step can be calculated from Eq (20). The transverse modulus and shear modulus can
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then be calculated with Eq. (18) and Eq. (19) with the coefficients in Table 1 and used to

update the integration point stresses, satisfying equilibrium.

e0 1 g0 1
e1 0.0793859 g1 0.0698501
e2 -0.447837 g2 -0.406715
e3 0.200224 g3 0.144906
e4 -0.0716981 g4 -0.0465796
e5 0.011131 g5 0.00564894
e6 1.02441−6

Table 3: The coefficients of ei and gi for the first method

Second Method: fifth order polynomial for eS(Sr),fifth order polyno-
mial for gS(Sr), Sr = S

1
3

In the second method, a 5th order polynomial,
∑5

i=0 eiSri and a 5th order of polynomial∑5
j=0 gjSrj is used for both eS and gS , similar to [15] [6]. The coefficients are summarized

in Table (4). The E2 and G12 as a function of reduced internal state variable for eS(Sr) and

gS(Sr) are in Figure 14 and Figure 15

It is to be noted that when E2 and G12 are both expressed as 5th order polynomial, Eq (20)

has to be modified to the following

a0 + a1Sr + a2S
2
r + a3S

3
r + a4S

4
r = 0 (27)

That is, only a0 to a4 are Eq (27) is required to obtain the state value at each step. The

expressions for a0 to a4 are the same as those from Eq (21) to Eq (25)

NASA/TM—2019-220148 15



e0 1 g0 1
e1 0.0698501 g1 0.0698501
e2 -0.406715 g2 -0.406715
e3 0.144906 g3 0.144906
e4 -0.0420695 g4 -0.0420695
e5 0.00564894 g5 0.00564894

Table 4: The coefficients of ei and gi for the second method

Third method: fifth order polynomial for eS(Sr),fifth order polynomial
for gS(Sr), Sr = S

1
4

In the third method, instead of using Sr = S
1
3 as in the literature [15] [6], Sr = S

1
4 is

introduced as the reduced internal state variable that is the argument for the transverse and

shear microdamage functions used to represent the input data and formulate the equations

for progressive failure. To accommodate this change, Eq (23) has to be modified to Eq (28),

and Eq (24) has to be modified to Eq (29), whereas Eq (21) , Eq (22), Eq (25), and Eq (26)

remain the same.

a2 =
3

2
g3G120(γ

2
12 + γ231) +

3

2
e3E20(ε

2
22 + ε233) + 3e3E20ε22ε33ν23 +

3

2

e3E20(γ
2
23)

2(1 + ν23)
(28)

a3 = 4 + 2g4G120(γ
2
12 + γ231) + 2e4E20(ε

2
22 + ε233) + 4e4E20ε22ε33ν23 + 2

e4E20(γ
2
23)

2(1 + ν23)
(29)

A 5th order polynomial,
∑5

i=0 eiSri and 5th order of polynomial
∑5

j=0 gjSrj , are used to

interpolate eS and gS . The coefficients for eS(Sr) and gS(Sr) are listed in Table (5)

The transverse stiffness microdamage function eS , as a function of Sr, is shown in Figure

16 and shear modulus microdamage function gS as a function of Sr in Fig 17. Eq (27) is
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e0 1 g0 1
e1 0.0750464 g1 0.0750464
e2 -0.203932 g2 -0.203932
e3 -0.136793 g3 -0.136793
e4 0.0404142 g4 0.0404142
e5 -0.00313515 g5 -0.00313515

Table 5: The coefficients of ei and gi for the third method

used to obtain the state value where the expression of a0 to a4 is the same as that in Eq (21)

to Eq (25)

Simulation Results and Discussion

To compare influence of these three different forms for the matrix microdamage functions

on the non-linear response of a composite, finite element simulations of a 10 in. x 10 in. x

0.4 in. unidirectional composite panel with a central circular notch of radius of 0.5 in. under

compression, shown in Fig 18, are conducted. Compressive displacement is imposed along

the x direction, aligned with the fiber direction. It is noted that the range of state variable

within composites from the first method and the second method is between 0 and 2.2 and

the range of the state variable within composites from the third method is between 0 and

1.8 ( to be consistent with the definition from Figs 12 -Fig 17). If the calculated Sr from

Eq. (20) is not within the allowed range, the value will not be used in the computation in

the UMAT subroutine. The comparison of stress versus strain curve for three methods is

shown in Fig 19. It can be seen that the initial slope of curve is close to the stiffness of

fiber as the compression is conducted along the longitudinal direction. Degradation of the

transverse and shear moduli is activated by the transverse and shear strain induced in the
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finite element. The maximum stress obtained in the first method is close to the maximum

stress in the second method and the third method. The maximum load in all three cases

is the point at which the FEM solutions diverge due to a large extent of damage and non-

linearity in the transverse and shear moduli of the composite. The resulting stress-strain

curves for the three methods agree very well, independent of the definition of Sr (n = 1
3

or n = 1
4
). This indicates objectivity of the evolution equation Eq (17) with respect to the

functional form of the microdamage functions.

Objectivity

In continuum mechanics, objectivity is defined as physics parameter that don’t change

with respect to change of reference coordinate. Here, Objectivity is defined as a physics

parameter that don’t change when different order of polynomials are used.

The 5th order of polynomial used in the Table 4 where n=3 (Sr1 = S1/3) is the reference

case for the discussion of objectivity. The e(Sr1) in Eq (30) and g(Sr1) in Eq (31) as a

function of Sr1 are shown in Figure 14 and Figure 15. The coefficients er1i, i=1,5 and

gr1i, i=1,5 are directly obtained from the interpolation.

e(Sr1) = (er10 + er11Sr1 + er12S
2
r1 + er13S

3
r1 + er14S

4
r1 + er15S

5
r1) (30)

g(Sr1s) = (gr10 + gr11Sr1 + gr12S
2
r1 + gr13S

3
r1 + gr14S

4
r1 + gr15S

5
r1) (31)

One can replace the reduced internal state variable Sr1 = S
1
3 with a different definition of
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the reduced internal state variable Sr2 = S
1
4 by replacing Sr1 with S

4
3
r2. As such, Eq (30)

and Eq (31) are rewritten as

e(Sr2) = (er10 + er11S
4
3
r2 + er12S

8
3
r2 + er13S

12
3
r2 + er14S

16
3
r2 + er15S

20
3
r2 ) (32)

g(Sr2) = (gr10 + gr11S
4
3
r2 + gr12S

8
3
r2 + gr13S

12
3
r2 + gr14S

16
3
r2 + gr15S

20
3
r2 ) (33)

The order exponents Eq (32) and Eq (33) as functions of Sr2 are not integers. The solution

of the evolution equation becomes more challenging if Eq (32) and Eq (33) are used because

the exponents in the equation are not integers.

On the other hand, one can directly obtain the 5th order polynomial by using the curve

e(Sr2) and g(Sr2) directly from e(S) and g(S) where S is initial internal state variable.

The coefficient of 5th order of polynomial after interpolation are in the Table (5) where

n=4 and (Sr2 = S1/4)

e(Sr2) = (er20 + er21Sr2 + er22S
2
r2 + er23S

3
r2 + er24S

4
r2 + er25S

5
r2) (34)

g(Sr2) = (gr20 + gr21Sr2 + gr22S
2
r2 + gr23S

3
r2 + gr24S

4
r2 + gr25S

5
r2) (35)

The comparison of e(Sr2) in Eq (32) and e(Sr2) in Eq (34) is shown in Figure 20. The

two curves show excellent agreement The evolution equation involves the derivativse of
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e(Sr2) and g(Sr2) . Here, the comparison of derivative of e(Sr2) in Eq (32) and e(Sr2) are

in Eq (34) is shown in Figure 21. It can be seen that the two curves match very well.

The agreement of e(Sr2) in Eq (32) and e(Sr2) in Eq (34) from Figure 20 and the derivative

e(Sr2) in Eq (32) and e(Sr2) in Eq (34) in Figure 21 are the required conditions to satisfy

objectivity of the evolution equation with respect to the functional form of the microdamage

functions. Strictly speaking, e(Sr2) in Eq (32) and e(Sr2) in Eq (34) are not mathematically

equivalent. However,these two functions can be regarded to be equivalent if the differences

between the two functions and the corresponding derivative are negligible.

Summary

In this paper, the Schapery’s thermodynamically-based work potential theory for laminated

composites assuming a state of plane stress is extended to accommodate fully 3D stress and

strain fields. In the first part of the work, 3D Schaper’s theory for unidirectional composites

is used to model unidirectional composites under three point bending. Compressive tests

are conducted to obtain the relation between the internal state variable and the transverse

modulus, shear modulus. The simulations and experimental results show good agrement

before the failure occurs. In the second part of the work, objectivity is studied. Three meth-

ods for representing the matrix microdamage functions used to control the degradation of

the transverse and shear stiffnesses in Schapery’s theory are presented. In these three rep-

resentations, the order of the polynomial used to fit the data and the value of the exponent

utilized in the reduced definition Sr of the microdamage internal state variable S are varied.

The simulations of a square, center-notched panel under compression using the three dif-
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ferent microdamage function representations are compared. Simulation results show that

the polynomial order doesn’t affect the maximum stress given the same Sr. The response

of composites is not sensitive to the choice Sr (as different exponent of S) as long as the

objectivity is satisfied. However, an additional internal state variable may be introduced to

represent different failure mechanisms, other than matrix microdamage.
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Figure 1: Hierarchical structures of textile composites.
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Figure 2: Schematic of state variable S and recoverable energy density W [6]
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Figure 3: Setup of compression test
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Figure 4: Stress strain curve for transverse modulus
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Figure 5: Stress strain curve for shear modulus

5 10 15 20 25
Sr

0.4

0.6

0.8

1.0

eHSrL

Figure 6: es as a function of reduced state variable Sr

10 20 30 40
Sr

0.4

0.6

0.8

1.0

gHSrL

Figure 7: gs as a function of reduced state variable Sr
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Figure 8: Setup of for three point bending
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Figure 9: Comparison of simulations with test data of three point bending
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Figure 10: Transverse stress versus transverse strain curve used to obtain functional degra-
dation of transverse Young’s modulus E2
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Figure 11: Shear stress versus shear strain used to obtain functional degradation of shear
modulus G12
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Figure 12: State variable Sr vs e
used to represent degraded transverse Young’s modulus E2 for the first method
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Figure 13: State variable Sr vs g used to represent degraded shear modulus G12 for the first
method
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Figure 14: State variable Sr vs e
used to represent degraded transverse Young’s modulus E2 for the second method
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Figure 15: State variable Sr vs g used to represent degraded shear modulus G12 for the
second method
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Figure 16: State variable Sr vs e used to represent degraded transverse Young’s modulus
E2 for the third method
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Figure 17: State variable Sr vs g used to represent degraded shear modulus G12 for the
third method
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Figure 18: Finite element model of 10 in. by 10 in. by 0.4 in. notched panel
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Figure 19: Comparison of simulations of notched square panel under compression for three
methods. All three methods produce similar results, indicating objectivity of the microdam-
age evolution equation with respect the functional form of the microdamage functions.
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Figure 20: Comparison of internal state variable for two formulation. The curve 1 is from
Eq (32) and the curve 2 is from Eq (34)
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Figure 21: Comparison of derivative of internal state variable for two formulation. The
curve 1 is from the derivative of Eq (32) and the curve 2 is from the derivative of Eq (34)
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