Building a Multi-Channel Hail Climatology in the GPM Domain

Dr. Sarah D. Bang

NASA Postdoctoral Program, Marshall Space Flight Center

Dr. Daniel J. Cecil

NASA Marshall Space Flight Center

Huntsville, AL USA

Universities Space Research Association

EGU General Assembly • Vienna, Austria

Hail Damage and Threat

Annual insured losses due to severe weather average at \$66 Billion (€58Billion) since 2008

 (in the US) Hail accounts for ~70% of this loss

Aon, Weather, Climate, and Catastrophe Insight (2018 Annual Report)

7:59 PM - 12 Jun 2016

neral Assembly • Vienna, Austria

Observing Hail

NEXRAD COVERAGE BELOW 10,000 FEET AGL

Image courtesy of NWS Birmingham and the Warning Decision Training Branch

Observing Hail

NASA

NASA

Satellite-Based Hail Climatologies

NASA's TRMM & GPM Missions

Tropical Rainfall Measuring Mission

- TRMM Precipitation Radar (PR)
 - Ku-band (13.8 GHz)
- TRMM Microwave Imager (TMI)
 - 9-channels, 10-85 GHz

Global Precipitation Measurement

- Dual-frequency Precipitation Radar (DPR)
 - Ka-/Ku-band (35.5/13.6 GHz)
- GPM Microwave Imager (GMI)
 - 13-channels 10-183 GHz

Hou et al., 2014

NASA's TRMM & GPM Missions

Tropical Rainfall Measuring Mission

- TRMM Precipitation Radar (PR)
 - Ku-band (13.8 GHz)
- TRMM Microwave Imager (TMI)
 - 9-channels, 10-85 GHz

Global Precipitation Measurement

- Dual-frequency Precipitation Radar (DPR)
 - Ka-/Ku-band (35.5/13.6 GHz)
- GPM Microwave Imager (GMI)
 - 13-channels 10-183 GHz

Hou et al., 2014

Summary provided by Stephanie Wingo, NASA MSFC

NASA's TRMM & GPM Missions

Tropical Rainfall Measuring Mission

- TRMM Precipitation Radar (PR)
 - Ku-band (13.8 GHz)
- TRMM Microwave Imager (TMI)
 - 9-channels, 10-85 GHz

Global Precipitation Measurement

- Dual-frequency Precipitation Radar (DPR)
 - Ka-/Ku-band (35.5/13.6 GHz)
- GPM Microwave Imager (GMI)
 - 13-channels 10-183 GHz
 - Constellation Partners:
 - JAXA, NOAA, DOD, EUMETSAT, CNES, ISRO
 - Cross-calibrate passive
 microwave observations
 - <4 hourly global resolution?

Hou et al., 2014

Summary provided by Stephanie Wingo, NASA MSFC

37GHz Minimum T_b (PCT) and Hail

NASA

EGU General Assembly • Vienna, Austria

9 April 2019

TPCTFs in Bin with Hail

$$f(x) = \frac{L}{1 + e^{-k(x-m)}}$$

$$f(x) = \frac{L}{1 + e^{-k(x-m)}}$$

9 April 2019

$$f(x) = \frac{L}{1 + e^{-k(x-m)}}$$

9 April 2019

EGU General Assembly • Vienna, Austria

Probability of Hail with Minimum 37 GHz PCT

EGU General Assembly • Vienna, Austria

Probability of Hail with 10 - 19 GHz Difference

Two Dimensions of Hail Probability

9 April 2019

EGU General Assembly

Vienna, Austria

Minimum 37 GHz PCT (K)

Snow/Ice Filter

9 April 2019

EGU General Assembly • Vienna, Austria

NASA

GPM Hail Climatology, Minimum 37 GHz PCT + Snow/Ice Filter

GPM Hail Climatology, Minimum 37 GHz PCT + Snow/Ice Filter

NĀSA

Normalizing by Tropopause Height

Lapse Rate Tropopause Heights on 20180409 at 12 UTC

LRT calculation performed by Nana Liu at Texas A&M Corpus Christi, see Liu and Liu, 2018

9 April 2019

EGU General Assembly • Vienna, Austria

Normalizing by Tropopause Height

Lapse Rate Tropopause Heights on 20180409 at 12 UTC

LRT calculation performed by Nana Liu at Texas A&M Corpus Christi, see Liu and Liu, 2018

 $(1 + LRT - LRT_{USA})$

Normalizing by Tropopause Height

GPM Hail Climatology, Normalized 37 GHz PCT Depression + Snow/Ice Filter

EGU General Assembly • Vienna, Austria

We create a new microwave variable, leveraging the minimum 19 GHz PCT (relative to a background state captured by the 10 GHZ PCT)

10.65

GHz

-100

 $[10_{max} - 10_{min}] - [89_{max} - 89_{min}]$

Greenland

We estimate hail probability using not only 10-19 GHz PCT difference, but also we normalize the 37 GHz PCT Depression by the height of the troposphere.

40

19 H 30

σ

1

19.35

GHz

>20

Contact us at: Sarah.D.Bang@nasa.gov

Daniel.J.Cecil@nasa.gov

Thank You!

References

- Allen, J., and M. Tippett, 2015: The characteristics of United States hail reports: 1955–2014. Electronic Journal of Severe Storms Meteorology, 10, 1–31.
- Aon Benfield, 2018: Global catastrophe recap: First half of 2018. Aon Benfield Analytics and Impact Forecasting, 1-12 pp.
- Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms J Appl Meteorol Climatol., 48 (6), 1281–1286.
- Cecil, D. J., 2011: Relating passive 37-GHz scattering to radar profiles in strong convection J Appl Meteorol Climatol., 50 (1), 233–240.
- Cecil, D. 556 J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. Journal of Climate, 25 (2), 687–703.
- Ferraro, R., J. Beauchamp, D. Cecil, and G. Heymsfield, 2015: A prototype hail detection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmospheric Research, 163, 24–35.
- Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95 (5), 701–722.
- Huuskonen, A., E. Saltikoff, and I. Holleman, 2014: The Operational Weather Radar Network in Europe. Bull. Amer. Meteor. Soc., 95, 897–907
- Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15 (3), 809–817.
- Liu, N., and C. Liu, 2018: Synoptic environments and characteristics of convection reaching the tropopause over northeast China. Monthly Weather Review, 146 (3), 745–759.
- Mroz, K., A. Battaglia, T. J. Lang, D. J. Cecil, S. Tanelli, and F. Tridon, 2017: Hail-detection algorithm for the GPM core observatory satellite sensors. J Appl Meteorol Climatol., 56 (7), 1939–1957.
- Ni, X., C. Liu, D. J. Cecil, and Q. Zhang, 2017: On the detection of hail using satellite passive microwave radiometers and precipitation radar. J Appl Meteorol Climatol., 56 (10), 2693–2709.
- Spencer, R.W., M. R. Howland, and D. A. Santek, 1987: Severe storm identification with satellite microwave radiometry: An initial investigation with Nimbus-7 SMMR data. J Appl Meteorol Climatol., 26 (6), 749–754.

