Satellite estimates of momentum fluxes from high-impact gravity wave events in the stratosphere and their effects on circulation

Laura Holt NWRA Joan Alexander, Lars Hoffmann, Larry Coy, Bill Putman, Neil Hindley

Motivation

Large-amplitude GWs are important drivers of circulation and transport in the stratosphere, yet they are not treated correctly in most climate models

GW parameterizations remain poorly constrained by observations in part because the uncertainties in observed momentum fluxes are very large

Motivation

%

Objectives

Combine observations from AIRS and HIRDLS to estimate momentum flux from high-impact gravity wave events

Use a high-resolution global model constrained by observed large-scale (>600 km) winds and validated by observations from AIRS and HIRDLS to calculate "drag" from high-impact gravity wave events and impact on circulation and transport

Objectives

Combine observations from AIRS and HIRDLS to estimate momentum flux from high-impact gravity wave events

Use a high-resolution global model constrained by observed large-scale (>600 km) winds and validated by observations from AIRS and HIRDLS to calculate "drag" from high-impact gravity wave events and impact on circulation and transport

Gravity wave hot spots in AIRS

NH winter

SH winter

Hoffmann et al., 2013

AIRS brightness T anomalies

AIRS T_b and HIRDLS T anomalies

Uncertainty in momentum flux derived from observations is very large

More than 2 orders of magnitude between AIRS and HIRDLS estimates for the same orographic area over Norway

NH estimates are more challenging than SH because winds are more variable

Uncertainty in momentum flux derived from observations is very large

-5

-10

T'(K)

AIRS T_b and HIRDLS T anomalies

Corrected momentum fluxes

Other estimates of orographic MF

Plougonven et al., 2013

Alexander and Grimsdell, 2013

Objectives

Combine observations from AIRS and HIRDLS to estimate momentum flux from high-impact gravity wave events

Use a high-resolution global model constrained by observed large-scale (>600 km) winds and validated by observations from AIRS and HIRDLS to calculate "drag" from high-impact gravity wave events and impact on circulation and transport

AIRS and GEOS T_b anomalies

- GEOS T_b wavelength and amplitude are remarkably similar to AIRS
- GEOS is smoother, probably because of smoothed topography

Summary and Conclusions

- High-impact GW events are important for circulation in the lower stratosphere
- GW mom flux and especially drag are difficult to calculate from observations
- Combining HIRDLS and AIRS can improve estimates of GW drag
- "Drag" and circulation effects can be estimated with global high-res model

Ongoing work:

- Extending methods to other orographic hotspots to get a global picture of effects on circulation and transport
- Extending methods to nonorographic hotspots
- New global, high-resolution runs with 12-, 6-, 3-, and 1.5-km horizontal resolution

Thank you!