
BALLET 

Balloon Locomotion for Extreme Terrain 

NASA Innovative Advanced Concepts (NIAC) Phase I Final Report 

Principal Investigator: 
Co-Investigators:  

Research Technologist: 

Date: 

Hari Nayar 
Michael Pauken 
Morgan Cable 
Michael Hans 

March 4, 2019 

https://ntrs.nasa.gov/search.jsp?R=20190002499 2019-08-30T21:29:21+00:00Z



©2017 California Institute of Technology. Government sponsorship acknowledged.  2 

Table of Contents 
1. Introduction ..................................................................................................................... 3 

1.1. Concept Description ................................................................................................ 3 

1.2. Motivation ................................................................................................................ 4 

1.3. Phase 1 Study Overview ......................................................................................... 4 

2. Science Objectives ......................................................................................................... 5 

2.1. Mars Recurring Slope Lineae ................................................................................. 5 

2.2. Titan Shorelines ...................................................................................................... 6 

2.3. Titan Dunes ............................................................................................................. 7 

2.4. Titan Cryovolcanic regions ...................................................................................... 8 

3. Mission Formulation...................................................................................................... 11 

3.1. Spacecraft and Deployment .................................................................................. 11 

3.2. Mechanical Design and Materials ......................................................................... 17 

4. Concept Evaluation....................................................................................................... 18 

4.1. Analyses ................................................................................................................ 18 

4.2. Results ................................................................................................................... 23 

4.2.1. Titan................................................................................................................ 23 

4.2.2. Mars................................................................................................................ 29 

4.2.3. Earth ............................................................................................................... 34 

5. Locomotion ................................................................................................................... 38 

5.1. Obstacle Avoidance Motion Planning ................................................................... 39 

5.2. Path Planning and Foot Trajectory Control .......................................................... 39 

5.3. BALLET Model and 3D Visualization .................................................................... 42 

6. Conclusions .................................................................................................................. 44 

Acknowledgements .............................................................................................................. 47 

References ........................................................................................................................... 47 

Appendix A: Analysis Software Listing………………………………………………………  A.1 

Appendix B: OpenFOAM Aerodynamics Software Listing………………………………     B.1 

Appendix C: Locomotion and Visualization Software Listing……………………………    C.1 

  



©2017 California Institute of Technology. Government sponsorship acknowledged.  3 

1. Introduction 

1.1. Concept Description 

BALLET is a limbed robot that uses a balloon for its structure and has its payload in its feet.  

Science and engineering sub-systems on BALLET including instruments, electronics, 

power and control systems, and energy storage are evenly distributed into six modular feet. 

Each foot is connected to the balloon using three cables (Figure 1) -- the minimum needed 

to control the foot position in 3-D. Cable lengths are controlled using three winches within 

each foot. Coordinated control of cable lengths places each foot at desired locations on the 

ground.  

To locomote BALLET lifts one foot at a time, places it at a new location on the ground, then 

re-positions the balloon with respect to the new feet positions by re-adjusting all cable 

lengths. This procedure is repeated in sequence for the other feet. The balloon is small 

relative to the total payload mass because the buoyancy required is only needed to lift one 

foot, i.e. one-sixth of the total payload. BALLET is stable because it is effectively anchored 

to the ground with its CG close to ground level. An additional advantage BALLET offers is 

Figure 1 Visualization of the BALLET concept with balloon and 6 suspended payloads serving as feet. Each 
payload is connected to the balloon by 3 cables that allow positioning of the payload with respect to the 
balloon. 
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the potential to add a secondary mission by jettisoning five of its payloads and performing 

atmospheric exploration as a conventional balloon. While the physics of BALLET will apply 

on Venus, the environmental conditions and available component technology limit our 

consideration to Mars and Titan. 

A thorough review of prior published research on surface mobility systems and on balloons 

for Earth and planetary exploration applications was performed to gather background 

information on BALLET. Survey papers, for example, on mobility [Seeni 2010] and balloons 

[Cutts 1995, Elfes 2003, Elfes 2008] do not describe this new hybrid concept. A range of 

options have been considered [Backes 2008, Nesnas 2012, Seeni 2010, Wilcox 2007] for 

access to rugged terrain on planetary surfaces. Some unusual surface mobility concepts 

with light-weight or buoyant components have been reported. For example, rovers with 

inflatable wheels and wind-driven tumbleweed rovers [Hajos 2005]. Underwater walking 

robots [Schue 1993] have been proposed and developed that use the physics principals of 

BALLET although none put their payload in their feet. 

1.2. Motivation 

Safe and stable in-situ access to steep and rugged terrain has the potential for enormous 

science value in understanding geology, surface and subsurface chemistry, hydrology and 

potentially prebiotic processes on Titan and Mars. Exploration of these destinations are 

prioritized in the 2013 Decadal Survey [Space Studies Board, 2013]. 

Wheeled vehicles are used for surface exploration missions because they are relatively 

simple and highly efficient in traversing over benign terrain. Operational constraints for Mars 

(and likely for other planetary surfaces) limit their traverse over obstacles to less than the 

wheel height and slopes less than 20o. As a consequence, sites chosen for Mars’ missions 

trade-off science against mobility. Conventional legged vehicles handle more difficult terrain 

but with greater mass and complexity, and reduced stability and safety. 

1.3. Phase 1 Study Overview 

This report documents the work performed in our investigation into the BALLET concept. 

We focused on four areas in this Phase I effort. They were 1) identifying the science targets 

and objectives with the corresponding requisite instrumentation and operational capabilities 

that could be achieved with a BALLET mission, 2) developing an architecture for the 

deployment and operation of this concept for a future mission to a planetary body, 3) 

analyzing a parametric physical model of BALLET under the environmental conditions of 

Mars, Titan and Earth to determine its feasibility, and 4) developing and demonstrating 
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coordinated control of the BALLET mobility system to enable locomotion over rugged 

terrain. The results of our investigations in these focus areas are documented in the 

following sections. A paper summarizing the preliminary results from this study has been 

accepted for publication and presentation at the 2019 IEEE Aerospace Conference [Nayar, 

2019]. 

2. Science Objectives 

2.1. Mars Recurring Slope Lineae 

Recurring slope lineae (RSL) are one of the primary targets for understanding the 

hydrologic cycle and possibility of extant life on Mars. These features are narrow, dark 

markings on steep slopes that appear and incrementally lengthen during warm seasons 

(Figure 2). RSL fade in cooler seasons and recur over multiple Mars years. They are 

associated with hydrated salts (Ojha et al. 2015) and are believed to be formed by 

intermittent flow of briny water (McEwen et al. 2014). These briny environments could be 

host to life such as halophilic microorganisms (Oren et al. 2014). However, access to these 

tantalizing features is a challenge as they only occur on slopes of 25-40°. 

Unambiguous life detection in RSL would be significantly challenging without in situ 

sampling. Several techniques exist that can discern biosignatures (amino acids, fatty acids, 

Figure 2 Recurring slope lineae (RSL) on the steep slopes of ancient bedrock in Coprates Chasma. 
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nucleobases, etc.) in situ, even in the presence of significant salt concentrations, and 

techniques such as sublimation or supercritical water extraction can be used to separate 

biomolecules from salty matrices for analysis downstream. Sampling a transect and/or a 

depth profile would strengthen the credibility of any positive biosignature detection. A 

payload suite containing biosignature detection instrumentation and probes to monitor soil 

properties (Table 1) would provide life detection capability placed in context important for 

interpretation of those measurements. 

2.2. Titan Shorelines 

Titan, the largest moon of Saturn, has many challenging regions that could be 

accessed via the BALLET platform. Titan is the only other body aside from Earth with 

standing liquid on its surface. However, due to its low surface temperature (94 K), this liquid 

is not water but hydrocarbons – primarily methane and ethane, which pool in lakes at the 

Figure 3 (Left) Bathymetric profile of Ontario Lacus, a lake in the south polar region of Titan, from Hayes et 

al. 2010. (Right) Cassini radar altimeter data for Vid Flumina, a methane-filled canyon in the northern 

hemisphere flowing into Ligeia Mare, Titan’s second-largest sea, from Poggiali et al. 2016. Both have edges 

too steep for a traditional rover to access. 
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poles (Stofan et al. 2007). Due to the absorption and scattering of methane and haze 

particles in Titan’s atmosphere, respectively, determination of surface composition by 

remote sensing is extremely challenging. Observations through the methane windows in 

the NIR only allows rough slopes to be estimated; no spectral assignments can be made to 

identify species. In situ sampling, or spectroscopy at the surface, avoids these issues. 

Further, in situ missions have much greater spatial resolution, and are able to discern trends 

invisible to orbit or flyby missions. 

Recent work provides fairly rigorous constraints on the composition of the lake liquid 

(Mitchell et al. 2015); however, the composition of the evaporite region around existing 

lakes and of dry lakebeds (Cordier et al. 2013 and references therein) is still a mystery. 

Though many lake landers and submersibles have been proposed (Stofan et al. 2010, 

Oleson et al. 2015), it is questionable whether such a platform could navigate to safely 

sample the edge of the lake where the evaporite resides, especially considering that most 

of these depressions either have steep walls (Hayes et al. 2010, Poggiali et al. 2016) or are 

surrounded by topographically high areas on the order of 1 km over distances of 50-100 

km (Lopes et al. 2007a) (see Figure 3). Any platform would certainly benefit from being able 

to move along the evaporite, as the composition likely changes with radial distance (less 

soluble species will precipitate first, and should reside in an outer ring around the lake, while 

more soluble species will precipitate last and be concentrated closer to the center). Several 

instruments (Table 1) would help with identification of key molecules and their chemical 

environments (co-crystal, clathrate, etc.).  

2.3. Titan Dunes 

The dunes in the equatorial region of Titan (Figure 4) are another primary target of 

exploration. These are found mainly within ±30° of the equator in dark regions (in the visible, 

NIR and radar), and cover approximately 20% of Titan's surface (Radebaugh et al. 2008, 

Lorenz and Radebaugh 2009). Though the fact that they are dark in most wavelengths 

suggests they are comprised of a significant proportion of organics, we still do not know the 

composition of these dunes, or how they formed or may be changing. The dunes appear to 

be approximately 100 m in height, with slopes ranging from steep (20:1 to 50:1) to shallow 

(200:1), though higher slopes could be present below the resolution of Cassini radar. We 

note that the steepest slope attempted by any rover on Mars to date is 32°, and slippage 

was so great in this case that the course was abandoned (Webster et al. 2016). Slopes 

greater than 20° are considered steep for rover traversal; this becomes significantly more 

challenging on terrains with loose material, as unconsolidated dune inclines most likely 

would have. 
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2.4. Titan Cryovolcanic regions 

Several areas of Titan’s surface, such as Sotra Patera and Hotei Regio (Figure 5), have 

features that have been identified as putative cryovolcanoes (Lopes et al. 2013). 

Cryovolcanism may be an important resurfacing process on Titan, and may also be a major 

contributor to atmospheric methane (Lopes et al. 2007b). Importantly, these regions may 

be the only places on Titan where material from the global, subsurface water ocean is being 

expressed on the surface. Any mission seeking to understand the habitability of this 

subsurface ocean would find areas of cryovolcanism very attractive sampling sites. As 

these regions exhibit some of the greatest elevation change on Titan’s surface, only a 

mission architecture capable of traversing/sampling steep slopes can reach these areas to 

confirm their composition and origin.  

Figure 4 Cassini SAR image of dunes in Shangri-La, Titan. Image credit: NASA/JPL-Caltech/ASI. 
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Figure 5 Digital elevation model (DEM) of Hotei Regio, an area of putative cryovolcanism on Titan. From 

Lopes et al. 2013. 
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Table 1 Baseline instrument payload for a BALLET mission. *These instruments exceed the payload limit for 

a foot on Mars but future lighter-weight versions will likely be available in the timeframe for a BALLET mission. 

Instrument Description Body Mass Power 

High-resolution 
mass spec 
(Orbitrap) 

Non-pyrolysis front end (liquid chromatography, MALDI, 
etc.) – prototypes are under development that may fit within 
the required mass envelope for BALLET. 

Titan 10 kg 50 W 

Microfluidics 
package 

Labeling of key functional groups and biochemistry and 
cold separation with ethanol or a similar solvent. 
Prototypes at JPL and UC Berkeley/SSL fit well within 
mass/power/volume requirements. 

Mars/Titan 4.0 
kg 

20 W 

Raman 
microscope 
(SHERLOC) 

Key molecular species on Titan form co-crystals and other 
structures which are uniquely identified with Raman 
spectroscopy. The microscope enables mapping of small 
images to determine grain composition (as opposed to bulk 
composition) and context. SHERLOC is being designed to 
fit on the arm of Mars2020, so this instrument should fit 
within mass/volume constraints. 

Titan 4.5 
kg 

80 W 

Seismic package Geophone or seismometer with 3-axis arrival information. 
This could help detect cryovolcanic events or ‘booming’ of 
dunes. 

Titan 1.2 
kg 

0.05 
W 

Gas 
chromatograph 
mass 
spectrometer 

Needed to separate biomarkers (i.e., chiral amino acids, 
peptides, lipids) and enable identification of structural 
isomers (i.e., glycine and methyl carbamate) or branching 
in long carbon chains. 

Mars 2.0 
kg 

16 W 

Vis/NIR imaging 
spectrometer 

To identify hydrated salts and areas where water is 
concentrated for in situ sampling. 

Mars/Titan 3.7 
kg 

46 W 

Environmental 
sensing (REMS) 

Rover Environmental Monitoring Station instrument 
measures the thermal environment, ultraviolet irradiation 
and water cycling. 

Mars/Titan 1.2 
kg* 

17 W 

Activity/context 
camera 
(Mastcam) 

Multi-spectral imaging local area for contextual setting. Mars/Titan 1.3 
kg* 

13 W 

Microscopic 
camera (RMI) 

Remote microscopic imaging of selected site. The foot 
placement system would be used select site. 

Mars/Titan 0.3 
kg 

<10 W 

Near IR 
Spectrometer 
(MicrOmega) 

Ultra-miniaturized spectral microscope for in situ analysis 
of samples. 

Mars/Titan 1 kg 7 W 

Di-electric & soil 
properties probe 
(SPARTTA) 

Soil shear Properties Assessment, Resistance, Thermal, 
and Triboelectric Analysis multiTool for shallow subsurface 
measurements. 

Mars/Titan 1 kg 5 W 

Digital 
holographic 
microscope 

Capable of distinguishing between particles and cells via 
density and motility. 

Mars/Titan 10 kg 15 W 

Wet Chemistry 
Laboratory 
(WCL) 

Measurement of soil pH, eH and conductivity, along with 
ion-selective electrodes for key ions of interest (calcium, 
magnesium, etc.) 

Mars <10 
kg 

<15 W 
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3. Mission Formulation 

3.1. Spacecraft and Deployment 

The BALLET robotic exploration platform could be adapted to investigate either Titan or 

Mars by making appropriate adaptions for each unique atmospheric environment. At Titan, 

BALLET could carry 5 kg in each of its six feet and a 45 kg radioisotope thermoelectric 

power generator (RTG). The Titan balloon envelope would be made from a laminate of 

polyester fabric and film and would have a volume of approximately 12 m3. For Mars, 

BALLET could carry 1 kg in each foot and use solar power. An illustration of the BALLET 

vehicle concept on Mars is shown in Figure 6. The Mars balloon would be fabricated from 

a bi-laminate Mylar film and the envelope volume would be about 88 m3. Laminated film 

materials are less susceptible to pin hole leaks than single layer films. The science payload 

and supporting systems for power, telecom, command and data handling would be divided 

among the feet that anchor the balloon to the surface. 

 

Figure 6 The BALLET vehicle floats above the Martian surface while the payload 

instruments anchor the balloon to the ground. (Background image courtesy NASA). 

The BALLET vehicle would be packaged inside a nested flight system for delivery to Titan 

or Mars. The major flight system components include a carrier vehicle, atmospheric entry 

system, lander platform and the BALLET vehicle. The carrier vehicle depicted in Figure 7 

would be powered with its own RTG system for Titan and would also serve as an orbiting 
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communication relay. As an orbiter, it could have its own science mission that could 

compliment the BALLET mission. For a Mars mission the carrier vehicle would use solar 

arrays for power and it is assumed communications can be accommodated with existing 

orbiting assets. Therefore, the Mars carrier vehicle would not serve any other purpose than 

to deliver BALLET to Mars. This is similar to a cruise stage used to deliver Mars rovers and 

landers. 

 

Figure 7. The BALLET vehicle is packaged within a Cruise Vehicle transport to Mars or 

Titan. 

After launch, the cruise vehicle would separate from the launch vehicle and provide for all 

thermal, power and communication needs for BALLET. Health checks and software 

uploads would be typical interaction with the vehicle during cruise to either Mars or Titan. 

The cruise vehicle would have propulsion needed to provide trajectory correction 

maneuvers and spin capabilities for inertial guidance. The Titan cruise vehicle would also 

need to reject RTG waste heat from both the cruise and the BALLET  vehicles. The Mars 

cruise vehicle does not need this capability. 

As the spacecraft approaches Mars or Titan the atmospheric entry vehicle, as illustrated in 

Figure 8, would separate from the cruise vehicle. For a Mars mission, the cruise vehicle 
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would stop spinning and separate from the entry vehicle about 20 minutes prior to 

atmospheric entry. The cruise vehicle would then be diverted to a separate trajectory into 

the atmosphere to avoid collision with the entry vehicle. Ultimately the cruise vehicle would 

impact the Mars surface. For a Titan mission, the cruise vehicle would enter into an orbit 

around Titan and become an orbiter. The entry vehicle would be kicked off the orbiter which 

would track the progress of the entry into the atmosphere. The orbiter continues to circle 

Titan and perform relay functions for the BALLET vehicle during entry, deployment and 

mission operations. 

 

 

Figure 8 The BALLET vehicle is protected from atmospheric entry by an aeroshell. 
(Background image credit NASA Solar Systems Directorate). 

 

The sequence of events between atmospheric entry and landing the BALLET vehicle is 

shown in Figure 9. Upon atmospheric entry, shown in panel A, the heat shield removes a 

significant amount of energy from vehicle slowing it down until a parachute can be deployed. 

The shape of the aeroshell and location of the center of gravity could be designed such that 
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it could be used as a lifting body and provide guided entry (panel B) to reduce landing ellipse 

error for the target destination. Backshell thrusters would be used to provide navigational 

guidance during entry. Deployment of the parachute uses a drogue chute first to pull out 

the main parachute (panel C). Once the parachute deployment has stabilized, the heat 

shield would be jettisoned (panel D) and fall to the ground and out of the way of the vehicle. 

As the BALLET lander approaches the surface (panel E), the lander legs would be deployed 

and it would be dropped from the backshell. Then descent thrusters and guidance 

navigation would slow the lander until touchdown on the surface. Lander rocket thrusters 

would also perform a lateral maneuver to avoid collision between the falling 

backshell/parachute and the lander vehicle during descent. 

 

 
Figure 9 Atmospheric entry sequence for landing the BALLET vehicle. Panel A shows entry into 

the atmosphere and heating. Panel B shows the guided entry phase. Panel C shows the deployment 
of the parachute to slow the spacecraft down. Panel D shows the ejection of the heat shield and the 
descent of the spacecraft. Panel E shows the parachute jettisoned and the use of thrusters for 
power landing on the surface. 
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After the lander pallet has reached the surface as shown in Figure 10, the BALLET balloon 

would be inflated as shown in Figure 11. The balloon sits on the top of the lander pallet and 

is released from a constraint envelop which holds the folded balloon in place until ready for 

inflation. Compressed helium gas would be stored on board the lander for balloon inflation. 

The science payload would be packaged on the top surface of the lander but underneath 

the balloon. An inflation hose connected to the balloon would be cut after the inflation is 

completed and a valve on the balloon would be closed to seal the balloon. After the inflation 

hose is cut, the balloon would be raised up from the lander by extending the instrument 

tethers. Once the balloon is stable, the BALLET vehicle would move the feet using the 

tethers to walk off the lander and move to a target destination and begin its science mission 

as shown in Figure 12.  

 

Figure 10 The BALLET Lander pallet configuration deployed on the surface of Mars or 

Titan. 
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Figure 11 The BALLET balloon is inflated from the top of the lander pallet while the 

science payload remains in place. 
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Figure 12 The BALLET vehicle walks off the Lander Pallet to begin the mobile science 

mission. 

3.2. Mechanical Design and Materials 

The balloon envelop would be constructed from gores that are connected together using 

pressure and heat sealed overlapping seams. JPL technology development programs in 

the 2000s for Mars and Titan balloons used these kinds of seals on envelope gores. The 

end fitting there the inflation tube is connected has a circular doubler layer to reduce stress 

since this region is a stress concentration point. Anchor points for the tethers would also be 

attached using a pressure and heat sealed patch which incorporate a loop for securing a 

tether line to the balloon envelope. The patches would be sized to accommodate the tensile 

stresses induced by the loads on the tethers during motion and wind drag. The ends of the 

balloon are oval or circular caps that are sealed to each of the longitudinal gores. The gores 

and end caps are evident in the illustrations shown in Figures 6, 11 and 12. 
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Packaging the balloon for stowage on the lander pallet involves folding the balloon along 

the length of the gores and laying the folded gores on top of each other. Thin sheets of 

packing material would be placed between the gores. The packing material falls away from 

the balloon during inflation. This method provides sufficient curvature radius in the center 

of each gore to prevent pinholes from being formed in the envelope. After the balloon is 

folded by gores, it is carefully rolled up from each end towards the center. During inflation, 

the balloon would simultaneously unroll and unfold. The folded balloon is not tightly packed 

like parachutes normally are. The packing density of the balloon needs to be comparatively 

low to prevent folding pinholes into double folded corners that often arise in packing 

balloons. A restraint cover is placed over the balloon to secure it to the lander pallet during 

transit. The restraint cover is removed prior to inflation on the planetary surface. 

4. Concept Evaluation 

4.1. Analyses 

Analyses were performed with the goal of characterizing the stability of the BALLET balloon 

in the environments of Earth, Mars, and Titan. A representative balloon size was chosen 

for these analyses as defined by Equation (1). 

                 (1)                                                          

Where a, b, and c are the lengths of the semi-major axes in the x, y, and z directions 

respectively. 

Due to symmetry, the buoyant force of the balloon is assumed to act at the center of the 

ellipsoid. According the Archimedes' principle, the buoyant force is equal to the weight of 

the air displaced by the balloon. In this analysis, the buoyant force is considered to be the 

total upward force after subtracting the weight of mass added to the balloon. Added mass 

includes the mass of the balloon material, as well as the RTG proposed for a mission to 

Titan. The buoyant force 𝐹𝑏 and balloon volume V are given by: 

                 (2) 

                                                                (3)      

𝜌𝑎𝑡𝑚 is the atmospheric density, 𝜌𝐻𝑒 is the density of helium at the planet's surface, 𝑔 is the 

gravitational acceleration, 𝑚𝑎𝑑𝑑 is mass added to the balloon, and a, b, and c are the 

semimajor axis given in Equation (1). Note that the density of the atmosphere and helium 

can vary cyclically with days and seasons on Earth, Mars, and Titan causing the buoyant 
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force to fluctuate according to Equation (2). Initial estimates of required balloon volume for 

testing on Earth and proposed missions to Titan and Mars are shown in Table 2 with added 

mass and buoyant force. Table 2 also shows the semi-major axis lengths resulting from the 

defined balloon volumes, following the relationship defined in Equation (1). 

 

Each limb of BALLET is made up of three cables connecting the balloon and a payload. In 

this analysis each limb is simplified as a single cable connecting the payload center to the 

average position of the three connection points on the balloon.  

Stability Analysis 

The method used here to determine the 

stability of the BALLET balloon is to quantify 

the upper and lower bounds of the mass of 

the feet. If the foot mass is too low, the 

balloon is at risk of sliding or being lifted off 

the ground with gusts of wind. With a foot 

mass that is too great, the balloon may tilt 

or become unstable when lifting a leg. 

Finding the acceptable range of the mass 

of the foot will help maintain mission safety 

while providing requirements for the 

scientific instruments that can be chosen. 

Figure 13 depicts the static force and 

moment balance analysis that is performed 

in this paper. The simplification of the limbs 

as single, vertical cables reduces the 

number of static balance equations to 

three: 

Table 2 Balloon sizes and shapes on Earth, Titan, and Mars. The table 

considers the three proposed locations (rows) and four parameters of 

interest (columns) and provides information for each of the parameters 

specific to the location that the balloon would be deployed.  

Figure 13 Top (top) and side (bottom) views of free 

body diagram of BALLET. The simplified model, 

where each payload is treated as a single vertical 

force at the average cable connection position is 

depicted. Given this configuration, only forces in the 

z axis and moments about the x and y axes are 

relevant. The buoyant force is treated as a single 

vertical force acting at the geometric center of the 

balloon. 
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                (4)      

                   (5) 

                   (6) 

where Mx are moments about the x axis, My are moments about the y axis, and Fz are forces 

in the z axis. 

Minimum Foot Mass 

The minimum mass of the feet can be found with Equation (6). The buoyant force must be 

completely counteracted by the weight of the feet. As such, the sum of the weight of all feet 

must be equal to or greater than the buoyant force. Assuming all feet will have the same 

mass, Equation (7) defines the minimum mass of a single foot mmin as: 

           (7)          

 

Where Fb is the buoyant force and g is the acceleration due to gravity. Equation (7) remains 

true for both the single and dual limb locomotion techniques. 

Maximum Foot Mass 

The maximum mass of an individual foot is limited by the moment imparted on the balloon 

when lifting feet. At the maximum mass, one or more cables will go to zero tension. If any 

additional mass was added, the cable would buckle due to its inability to resist compressive 

loads, and the balloon would tilt. In order to solve for the maximum mass, SciPy’s 

Sequential Least SQuares Programming (SLSQP) minimization capability was used in 

Python. The details of this implementation can be seen in Appendix A. The minimization 

problem is defined by Equations (8) and (9) below: 

                       (8)      

                         (9) 

where x is the mass of a foot, g is the acceleration due to gravity, and T(x,n) is the tension 

in the nth cable when the foot mass is x. 

The function T(x,n) can be obtained through the static force and moment analysis of 

Equations (4), (5), and (6). A diagram of this analysis can be seen in Figure 4.1.1. When 
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lifting one or two feet, the analysis yields an underdetermined system with infinite solutions. 

In each case this system has three static balance equations. When lifting one foot, there 

are five unknown cable tensions. When lifting two feet, there are four unknown cable 

tensions. In order to find a solution to this system, a least squares method was used. This 

method finds the solution where the magnitude of the solution vector is a minimum, while 

still satisfying the system of equations.  

Aerodynamic Force Analysis 

Aerodynamic forces will affect BALLET on Earth, Mars, and Titan. Drag will introduce 

transverse forces on the balloon which can cause the feet to slide or otherwise effect the 

balloon’s stability. Lift can also be a concern if the balloon begins to tilt relative to the wind 

direction. Two methods were used to quantify the effects of wind on BALLET. The first 

method estimates drag force FD as: 

                                      (10) 

where u is the flow velocity, 𝐶𝐷 is the drag coefficient, ρ is the air density, and A is the 

reference area. For these estimates, a 𝐶𝐷 of 0.5 is used. 

The second method uses OpenFOAM, an open source software for computational fluid 

dynamics. OpenFOAM's PisoFoam solver was used, which finds the transient behavior of 

incompressible turbulent flow. To simplify this analysis, no turbulence models were 

considered. It is likely that this simplification also results in the worst case aerodynamic 

effects due to pressure drag dominating skin friction drag for bluff body shapes like the 

BALLET balloon.  

OpenFOAM's blockMesh and snappyHexMesh tools were used with an STL model of the 

balloon to create a mesh for the simulation. For simulations measuring drag, symmetry was 

used on two planes to reduce the problem's complexity. Simulations measuring lift used 

symmetry on one plane, allowing for the balloon to tilt. All lift simulations were performed at 

an angle of attack of 10 degrees. Simulation flow inlets were given freestream velocity and 

zero gradient pressure boundary conditions. Flow outlets were given zero gradient velocity 

and zero pressure boundary conditions. Note that for incompressible flow, the pressure 

differential drives flow, not the pressure value. These boundary conditions result in a steady 

flow at the desired velocity. Flow in both the positive x and positive y axes were simulated 

in order to understand how the angle of incoming wind effects BALLET’s stability. The 

boundary conditions of the balloon are no-slip velocity and zero gradient pressure, allowing 
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for a boundary layer to form on the balloons surface. Images of typical drag and lift 

simulations are depicted in Figure 14. 

 

Earth Proof of Concept Analysis 

The final analysis of this report provides a more detailed estimate of a proof-of-concept 

BALLET constructed on Earth. The goal of this analysis is to find the range of stable balloon 

volumes for the proof-of-concept given the proposed balloon material and payload mass. 

Similar to the stable foot mass analysis, SciPy’s SLSQP minimizer was used to solve the 

following problem: 

                            (11)      

            (12)    

Where V is the balloon volume, 𝑚𝑝is the payload mass, g is the acceleration due to gravity, 

and T(V,n) is the tension in cable n at volume V. The buoyant force required when 

calculating T(V,n) is obtained through Equation (2), with the additional mass 𝑚𝑎𝑑𝑑 

calculated as: 

            (13)      

     

Figure 14 Velocity field for drag (left) and lift (right) simulations in OpenFOAM. Flow approaches an 

ellipsoid cross section from left to right in both images. The lift simulation uses an angle of attack of 

10 degrees. Flow above, below, and in front of the balloon looks very stable. Flow behind the balloon 

shows vortices shedding from the rear tip of the ellipsoid. This indicates that a transient simulation is 

necessary to find the aerodynamic forces, as these forces will be cyclic rather than approach a steady 

state. 
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where 𝜌𝑏 is the area density of the balloon material, and S is the ellipsoid surface area. The 

coefficient of 
11

10
 is introduced to account for seams and attachment features represented by 

a 10% increase in balloon mass. 

 

4.2. Results 

4.2.1. Titan 

Flat Ground 

Figure 15 and Figure 16 depict the maximum stable foot mass on Titan on flat ground for 

the balloon size given in Table 4.1.1. These results show the tension in each cable with the 

specified leg lifted off the ground. Due to the symmetry of the balloon, there are only four 

unique cases.  

 

Figure 15 Titan cable tensions with one payload lifted. The two possible configurations are show with 

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding 

cable. When leg 1 is lifted, the maximum stable foot mass is 2.89 kg, and the tension in leg 3 goes to 

zero. With leg 3 lifted, this mass is 3.45 kg, and the tension in legs 1 and 5 go to zero. 
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As seen in the above figures, at the maximum foot mass one or more tensions go to zero 

in all cases. When a single leg is lifted, the moment imparted on the balloon limits the foot 

mass. The maximum stable mass in these cases is dependent on balloon shape and 

volume. When two opposing legs are lifted as in Figure 16, they cancel out the moment 

imparted by a single lifted payload, resulting in no moment on the balloon. The weight of 

each payload at the maximum stable mass is equal to half of the buoyant force in this case. 

When lifting two opposing payloads simultaneously, only the balloon volume effects the 

maximum stable foot mass. This result shows that a two-legged gait provides the most 

stable configuration. If maneuvers can be limited to two-legged gaits exclusively, this would 

allow more scientific instruments to be stored in the payload or reduce the necessary size 

Figure 16 Titan cable tensions with two payloads lifted. The two possible configurations are show with 

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding 

cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 3.75 kg, and all other tensions go 

to zero. With legs 3 and 4 lifted, this mass is also 3.75 kg, and all other tensions go to zero.  
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of the balloon when compared to single-legged gaits. For either case, the minimum stable 

foot mass is 1.25kg according to Equation (7).  

Figure 17 demonstrates the 

benefits of two-legged gaits 

more clearly. This figure shows 

the tension in the cables while 

in a two-legged gait, when the 

payload mass is equal to the 

maximum stable mass of a 

single-legged gait found in 

Figure 15 In this case, all cable 

tensions are greater than zero, 

indicating significantly greater 

stability than the single-legged 

gait at the same payload mass. 

Slope 

It may be desirable to pitch the BALLET balloon 

when traversing a slope for multiple reasons. On a 

steep slope, it is possible that the front or back of the 

balloon could come into contact with the slope if a 

pitch isn’t applied. Also, if winds are flowing along a 

slope, a pitch can be applied to reduce the balloon’s 

angle of attack, preventing lift and drag from 

overwhelming the balloon. When the BALLET 

balloon is pitched, the moment arms that determine 

balloon stability are altered as depicted in Figure 18. 

Additionally, the moment arms are not equally 

affected on opposite sides of the balloon due to the 

connection points lying outside of the x-y plane. This 

results in the cable tensions shifting toward the front 

or back of the balloon in both the single and two-

legged gait patterns. These results are shown in Figure 19 and Figure 20. 

Figure 17 Titan cable tensions for a two-legged gait with the maximum 

foot mass of single-legged gait of 2.89 kg. Legs 1 and 6 are lifted, and 

all other cables have a tension of 0.58 N, showing the greater stability 

of two-legged gaits when compared to a single-legged gait with the 

same foot mass. 

Figure 18 Effect of pitch on the moment 

arms created by the cables. Two 

ellipsoidal balloons with differing pitch 

are superimposed. The pitch causes the 

moment arms to differ between the two 

cases, such that the greater pitch results 

in a smaller moment. 
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All results show at least one cable tension going to zero, indicating a local maximum value 

was found. All maximum stable payload masses are also less than their zero pitch 

counterparts. Figure 20 also demonstrates the uneven shift in the moment arms. When at 

zero pitch, four cable tensions go to zero for two-legged gaits, but at a 30 degree pitch, this 

is not the case. This is due to the uneven change in moment arms between the front and 

back of the balloon, as described above. For both the zero and 30 degree pitch cases, the 

minimum stable payload mass remains at 1.25kg, as defined in Equation (7). 

Figure 21 shows the maximum stable payload mass at varying values of pitch, for specific 

payloads being lifted. In both of these graphs, the lower line indicates the maximum mass 

Figure 19 Titan cable tensions with one payload lifted and a 30 degree pitch. The two possible 

configurations are show with a vertical bar at each tension point. The length of these bars is related 

to the tension the corresponding cable. When leg 1 is lifted, the maximum stable foot mass is 2.72 kg, 

and the tension in leg 3 goes to zero. With leg 3 lifted, this mass is 3.15 kg, and the tension in leg 1 

goes to zero.  

Figure 20 Titan cable tensions with two payloads lifted and a 30-degree pitch. The two possible 

configurations are show with a vertical bar at each tension point. The length of these bars is related to 

the tension the corresponding cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 

3.08 kg, and the tension in leg 2 goes to zero. With legs 3 and 4 lifted, this mass is 3.41 kg, and the 

tension in legs 1 and 2 go to zero. 
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available for the corresponding gait pattern. At low values of pitch the dual leg locomotion 

technique shows far more stability than the single legged technique. At high values of pitch, 

the advantage of the two-legged gait is greatly minimized, to the point that the single legged 

gait is equally stable. 

   

Buoyancy Changes with Atmospheric Conditions 

The temperature on Titan’s surface is not known to change drastically over the course of a 

day or season (Cottini et al. 2012). This leads to little variation in BALLET’s buoyancy force 

over time. Effects of changes in atmospheric conditions were not considered on Titan due 

to its fairly stable climate.  

Aerodynamic Forces 

A first estimate of drag forces on the BALLET balloon using Equation (10) is calculated. A 

worst case drag coefficient estimate of 0.5 is used. The resulting drag forces are as follows: 

4.073 N drag when flow is in the x direction, and 8.147 N drag when flow in the y direction.  

An open-source computational fluid dynamics package, OpenFOAM, was used to simulate 

and analyze the aerodynamic forces on BALLET. The simulation parameters used for Titan 

are a freestream velocity of 1 m/s, air density of 5.280 kg/m3, and kinematic viscosity of 

1.246e-6 m2/s. Kinematic viscosity of Titan’s atmosphere was estimated as that of pure 

Nitrogen gas at Titan’s average surface temperature due to the belief that Titan’s 

Figure 21 Maximum stable payload mass on Titan at varying pitch for single and dual-legged 

locomotion techniques. As pitch increases the maximum stable foot mass decreases in both cases, 

with the dual-legged foot mass decreasing at a greater rate. At a pitch value of near 40 degrees the 

stability advantages of dual-legged locomotion are lost. 
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atmosphere is greater than 95% Nitrogen. Results of these simulations are presented in 

Figure 22  

 

OpenFOAM results show lower drag than the Equation (10) estimate, which is expected 

given the large drag coefficient used in that calculation. The simulations also show that it is 

preferable to face BALLET into the wind, such that the flow is perpendicular to the balloon’s 

smallest cross sectional area. Facing this way will result in the lowest possible drag and lift 

forces. The drag forces found in the simulation are significant when compared to the 

buoyancy of the proposed titan balloon of 10.14N. In the case that BALLET sees flow from 

its y direction, the magnitude of the drag force will about 40% of the buoyant force. The 

effect of these forces on stability will need to be analyzed further. In the event that the flow 

Figure 22 Aerodynamic forces on Titan at nominal wind speed of 1 m/s. Forces were recorded 

with air flowing in the x and y directions. Simulations show initial perturbations in force before 

reaching a cyclic steady state. Steady state average values for x direction flow are 0.41 N drag 

at zero pitch, 0.65 N drag at 10 degree pitch, and 1.66 N lift at 10 degree pitch. Steady state 

average values for y direction flow are 4.05 N drag at zero pitch, 5.55 N drag at 10 degree pitch, 

and 9.05 N lift at 10 degree pitch. 
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incidents the balloon at an angle of attack of 10 degrees, the lift forces can be large enough 

to carry the balloon away or push it into the ground. Note that the proposed size of the Titan 

balloon is large enough to accommodate a 45kg generator. One way to minimize the 

expected lift and drag forces is to reconsider the size of this generator, allowing for a 

significantly smaller balloon. More analysis can be done to determine the relationship 

between lift and angle of attack for this balloon shape, allowing for a maximum acceptable 

tilt value to be defined.  

4.2.2. Mars 

Given the similarities between the Titan, Mars, and Earth analyses, many of the comments 

made on the Titan data in the previous section pertain to Mars and Earth as well. These 

comments will not be repeated, but the results analysis specific to Mars will be shown. 

Flat Ground 

The size and shape of the balloon used for this analysis is given in Table 2. The ratio of 

semi-major axes remains the same as the Titan analyses, but with increased volume to 

create more buoyancy in the thin atmosphere of Mars. The results are displayed on Figures 

23 and 24. 

 

Figure 23 Mars cable tensions with one payload lifted. The two possible configurations are show with 

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding 

cable. When leg 1 is lifted, the maximum stable foot mass is 0.57 kg, and the tension in leg 3 goes to 

zero. With leg 3 lifted, this mass is 0.68 kg, and the tension in legs 1 and 5 go to zero. 
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The shape of the resulting force distribution on the balloon is identical to that of the Titan 

analysis due to the similar geometry. According to Equation (7) the minimum payload mass 

is 0.248 kg.    

Slope 

The corresponding results for slopes on Earth are shown on Figures 25 and 26. And Figure 

27 shows the maximum stable payload mass at varying values of pitch. 

   

Figure 25 Mars cable tensions with one payload lifted and a 30 degree pitch. The two possible 

configurations are show with a vertical bar at each tension point. The length of these bars is related to 

the tension the corresponding cable. When leg 1 is lifted, the maximum stable foot mass is 0.54 kg, 

and the tension in leg 3 goes to zero. With leg 3 lifted, this mass is 0.62 kg, and the tension in leg 1 

goes to zero.  

Figure 24 Mars cable tensions with two payloads lifted. The two possible configurations are show with 

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding 

cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 0.74 kg, and all other tensions go 

to zero. With legs 3 and 4 lifted, this mass is also 0.74 kg, and all other tensions go to zero.  
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Buoyancy changes with Atmospheric Conditions 

Unlike Titan, the temperature of Mars fluctuates greatly on a daily and seasonal basis. This 

temperature change will have an impact on the buoyancy of the balloon. The payload mass 

must be such that BALLET remains stable for all possible buoyancy values that will be 

encountered on Mars. Data from the Viking landers is used to quantify what conditions can 

be expected at two different latitudes on Mars.  

Figure 26 Mars cable tensions with two payloads lifted and a 30 degree pitch. The two possible 

configurations are show with a vertical bar at each tension point. The length of these bars is related 

to the tension the corresponding cable. When legs 1 and 6 are lifted, the maximum stable foot mass 

is 0.61 kg, and the tension in leg 2 goes to zero. With legs 3 and 4 lifted, this mass is 0.68 kg, and the 

tension in legs 1 and 2 go to zero.  

Figure 27 Maximum stable payload mass on Mars at varying pitch for single and dual-legged 

locomotion techniques. As pitch increases the maximum stable foot mass decreases in both cases, 

with the dual-legged foot mass decreasing at a greater rate. At a pitch value of near 40 degrees the 

stability advantages of dual-legged locomotion are lost. 
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Figure 28 shows the magnitude of oscillations in buoyancy on a seasonal scale at 22.7 and 

47.64 degrees North latitude. Based on this data, Table 3 shows the range of stable payload 

masses for dual and single-legged gaits for a long term mission to Mars with a balloon of 

the defined volume and shape. These values are at zero pitch and would vary similarly to 

Figure 4.2.13 with changes in pitch. At both latitudes the stable minimum mass for a long 

term mission is larger than the 0.248 kg estimated at nominal conditions. Similarly, the 

maximum mass has decreased in all cases. 

  Single-Legged Gait Two-Legged Gait 

Latitude [deg N] Minimum Mass [kg] Maximum Mass [kg] Minimum Mass [kg] Maximum Mass [kg] 

22.27 0.32308 0.44518345 0.32308 0.57855969 

47.64 0.42383 0.50727619 0.42383 0.65925532 

Aerodynamic Forces 

A first estimate of drag forces on the BALLET balloon using Equation (10) is calculated. A 

worst case drag coefficient estimate of 0.5 is used. The resulting drag forces are as follows: 

6.501 N drag when flow is in the x direction, and 13.001 N drag when flow in the y direction. 

OpenFOAM simulations were performed as previously described. The simulation 

parameters used for Mars are a freestream velocity of 10 m/s, air density of 0.020 kg/m3, 

and kinematic viscosity of  6.54e-4 m2/s. Kinematic viscosity was estimated as that of pure 

Figure 28 Change in buoyancy over time based on Viking lander data. At 22.7 degrees N latitude 

the buoyancy of the proposed balloon can vary between about 4.5 and 7.0 N. At 47.64 degrees N 

latitude, the buoyancy can vary between about 5 and 9.5 N. 

Table 3 Stable payload mass range at Viking lander locations. The table consists of two latitudes 

(rows) and four columns of minimum and maximum masses for both gait types. 
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carbon dioxide due to it making up about 95% of Mars’ atmosphere. Results of these 

simulations are presented in Figure 29. 

Simulation results are larger than expected based on the initial estimate of Equation (10). 

This could indicate a need to better tune the expected kinematic viscosity on Mars or to 

attempt more simulations with varying viscosity values. Mars’ atmosphere changes 

significantly throughout a day and year, which would affect kinematic viscosity and thus the 

drag and lift forces. Similar to the Titan results, these show that facing BALLET such that 

the wind flows along its x-axis is preferable. Both the Equation (10) estimate and the 

OpenFOAM simulations show that aerodynamic forces will be a large problem on Mars. 

The required size of the balloon is much larger than on Titan due to the thin atmosphere, 

Figure 29 Aerodynamic forces on Mars at nominal wind speed of 10 m/s. Forces were recorded 

with air flowing in the x and y directions. Simulations show initial perturbations in force before 

reaching a cyclic steady state. Steady state average values for x direction flow are 3.16 N drag 

at zero pitch, 3.28 N drag at 10 degree pitch, and 8.31 N lift at 10 degree pitch. Steady state 

average values for y direction flow are 11.41 N drag at zero pitch, 15.43 N drag at 10 degree 

pitch, and 22.41 N lift at 10 degree pitch.  
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causing these forces to be significant.  Additionally, average windspeed on Mars is much 

greater than on Titan, exacerbating the issue. These results show that without serious 

consideration on how to mitigate these aerodynamic effects, a BALLET balloon on Mars 

may not be possible. 

4.2.3. Earth 

Flat Ground  

The corresponding results for flat ground on Earth are shown on Figures 30 and 31. 

 

 

Slope 

Figure 30 Earth cable tensions with one payload lifted. The two possible configurations are show with a 

vertical bar at each tension point. The length of these bars is related to the tension the corresponding 

cable. When leg 1 is lifted, the maximum stable foot mass is 0.58 kg, and the tension in leg 3 goes to 

zero. With leg 3 lifted, this mass is 0.69 kg, and the tension in legs 1 and 5 go to zero. 

Figure 31 Earth cable tensions with two payloads lifted. The two possible configurations are show with 

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding 

cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 0.75 kg, and all other tensions go 

to zero. With legs 3 and 4 lifted, this mass is also 0.75 kg, and all other tensions go to zero.  
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On slopes, the results on Earth are shown on Figures 32 and 33. Figure 34 shows the 

maximum stable payload mass at varying values of pitch. 

 

 

  

Figure 32 Earth cable tensions with one payload lifted and a 30 degree pitch. The two possible 

configurations are show with a vertical bar at each tension point. The length of these bars is related to 

the tension the corresponding cable. When leg 1 is lifted, the maximum stable foot mass is 0.54 kg, and 

the tension in leg 3 goes to zero. With leg 3 lifted, this mass is 0.63 kg, and the tension in leg 1 goes to 

zero. 

Figure 33 Earth cable tensions with two payloads lifted and a 30 degree pitch. The two possible 

configurations are show with a vertical bar at each tension point. The length of these bars is related to 

the tension the corresponding cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 

0.62 kg, and the tension in leg 2 goes to zero. With legs 3 and 4 lifted, this mass is 0.68 kg, and the 

tension in legs 1 and 2 go to zero. 
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Buoyancy changes with Atmospheric Conditions 

While the atmospheric conditions on Earth vary greatly with latitude, time of day, and 

season, an Earth balloon would be built as a proof-of-concept. As such, it would be tested 

largely indoors where atmospheric conditions like temperature and wind can be controlled 

to avoid large differences in buoyancy and stability as might be seen on Mars. This study 

assumes average conditions that would be found indoors, and does not attempt to define 

the stability of BALLET for all climates expected on Earth. 

Aerodynamic Forces 

A first estimate of drag forces on the BALLET balloon using Equation (10) is calculated. A 

worst case drag coefficient estimate of 0.5 is used. The resulting drag forces are as follows: 

13.946 N drag when flow is in the x direction, and 27.891 N drag when flow in the y direction. 

OpenFOAM simulations were performed as previously described. The simulation 

parameters used for Earth are a freestream velocity of 7 m/s, air density of 1.217 kg/m3, 

and kinematic viscosity of  1.5e-5 m2/s. Results of these simulations are presented in Figure 

35. 

Figure 34 Maximum stable payload mass on Earth at varying pitch for single and dual-legged locomotion 

techniques. As pitch increases the maximum stable foot mass decreases in both cases, with the dual-legged 

foot mass decreasing at a greater rate. At a pitch value of near 40 degrees the stability advantages of dual-

legged locomotion are lost. 
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These results are very similar to that of Titan and Mars. While the magnitudes of 

aerodynamic forces on Earth, Mars, and Titan vary greatly, the general trend remains the 

same. Lift and drag are significantly smaller when wind is flowing along the balloon’s x-axis. 

In the event that the balloon tilts, and/or wind flows along the balloon’s y-axis, there is a 

much greater chance of instability occurring. The forces found by this analysis show that 

winds on Earth would be an issue. As stated earlier, an Earth balloon would be largely used 

indoors, where stability issues due to wind will be minimized. Given the similarity of these 

results to the other planets, it would be beneficial to test a physical proof-of-concept balloon 

on Earth under these simulated conditions. This could lend confidence to the simulations 

and allow for extrapolation to behavior on other planets. 

Figure 35 Aerodynamic forces on Earth at nominal wind speed of 7 m/s. Forces were recorded 

with air flowing in the x and y directions. Simulations show initial perturbations in force before 

reaching a cyclic steady state. Steady state average values for x direction flow are 1.34 N drag at 

zero pitch, 2.34 N drag at 10 degree pitch, and 7.94 N lift at 10 degree pitch. Steady state average 

values for y direction flow are 9.38 N drag at zero pitch, 13.93 N drag at 10 degree pitch, and 36.85 

N lift at 10 degree pitch. 
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Earth Proof of Concept 

Finally, a proof-of-concept design is considered. The purpose of this analysis is to properly 

size the balloon for this proof-of-concept so that it will maintain stability through a range of 

testing. Two balloon shapes were considered in this study. Shape 1 is defined by Equation 

(1). Shape 2 is defined by Equation (14) below: 

             (14)      

where a, b, and c are the semimajor axis 

of the ellipsoid. Equation (13) is used to 

determine the balloon mass, where  𝜌𝑏 

is 0.127 kg/m2. 

Figure 36 shows the range of stable 

balloon volumes that result from this 

analysis. For a given payload mass, the 

balloon volume must be between the 

upper and lower lines to maintain 

stability during testing. The two balloon 

shapes show very similar results, 

indicating that these results are not very 

sensitive to balloon shapes near the 

ones analyzed. For a proposed payload 

mass of 2 kg, the balloon volume would 

need to be near 10 m3.  

5. Locomotion 

The approach chosen for BALLET to locomote in rugged terrain is described in this section. 

BALLET is a novel robotic surface mobility system. An investigation into how it locomotes 

is an important element of the development of the concept. A survey of prior related 

research was conducted to help inform the development of BALLET’s locomotion 

algorithms. BALLET is a legged robotic system and mobility for legged robotic systems 

have been investigated for many decades. The approach we propose is to leverage the 

algorithms developed in prior research performed for mobility for legged robots [Waldron, 

1986; Kajita & Espiau, 2008]. As a conservative, simple and low-energy approach, statically 

stable walking is chosen. There are several levels of software control needed to implement 

locomotion on BALLET. At the top level is the generation of a path to the desired destination 

Figure 36 Stable balloon volume at varying payload 

mass for an Earth proof-of-concept. As foot mass 

increases, maximum and minimum balloon volumes 

increase. Maximum balloon volume increases at a faster 

rate, making the range of stable volume increase with 

foot mass. Both balloon shapes show nearly identical 

results. 
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while negotiating around or stepping over the obstacles and hazards. This element is 

described in Section 5.1. The output from this element is a set of waypoints that define the 

path to the destination. The curved paths between waypoints and foot trajectories are 

calculated to execute the locomotion along the curved segments is described in Section 

5.2. Section 5.3 describes the software developed to model BALLET, demonstrate the 

algorithms for its locomotion and its 3D visualization. 

5.1. Obstacle Avoidance Motion Planning 

The first step in motion planning is to construct a map of the environment, identify the 

destination and the obstacles in the field. For BALLET, the maximum step size determines 

size of obstacle that can be stepped over. Larger obstacles are designated as hazards that 

have to be avoided. This process is used to identify hazards in the field – if obstacles are 

smaller than the step size, they do not pose a problem for motion planning but need to be 

considered in foot placement. The motion planning problem is decoupled into two parts. 

The first is vehicle motion planning with hazards designated as no-go regions. Sample-

based algorithms are widely used in the literature and they can be used to determine a 

route to the desired destination to generate a motion plan for BALLET. For example the 

review paper by Karaman & Frazzoli [2011] describe the RRT (left) and RRT* (right) 

algorithms for optimal motion planning around obstacles. 

Given an optimal route defined by a set of waypoints from the motion planner, a foot 

placement optimizer is then used to plan the steps to be taken to step over or around the 

obstacles within constraints of placement area available for each foot. Given the waypoints, 

destination position and map of field designated safe-step regions, based on grade, 

roughness, terramechanics, etc, a path is constructed to allow stepping through the 

waypoints to the destination. 

5.2. Path Planning and Foot Trajectory Control 

A path-planning algorithm was developed to sequence the motion of each foot to traverse 

along paths generated by the motion planning algorithm. From the overall motion plan 

generated using the approach described in the previous sub-section, path segments are 

generated. Each path segment to a local destination will consist of arc motions over the 

planetary surface. For any local locomotion from an initial position to a destination, an arc 

of a circle can be constructed, as is illustrated on Figure 37, with a corresponding radius 

and arc angle. The arc is sub-divided into step-sized segments. 
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To demonstrate locomotion with BALLET, a simple statically stable gait was identified and 

implemented on a geometric model. In this procedure, to locomote to a new desired 

position, a circular arc projected on to a horizontal plane from the current balloon centroid 

to the new position is constructed (see Figure 37). This arc defines the path the balloon 

must take. Similarly, arcs are constructed for each foot defining the path each foot takes 

while maintaining its relative position with respect to the balloon. For any locomotion 

destination, the foot that has the longest path determines the number of steps to be taken 

to complete the path using a predetermined maximum step length. The remaining paths 

are then discretized to have the same number of steps. 

Following this initialization procedure, the first foot is lifted vertically a set height, moved 

horizontally to the same height position above its next step position then lowered down until 

the foot is on the surface. Foot motion is accomplished by varying the three cable lengths 

that suspend the foot from the balloon as is illustrated on Figure 38. The foot is also rotated 

during the step to appropriately match the curvature of the path.  The balloon is then moved 

one-sixth of its step and rotated appropriately by varying all the cables that attach it to the 

ground to follow the curvature of the path and to follow the slope of the ground beneath. 

The second foot is then moved, followed again by the balloon and so on until all six feet 

have taken a step and the balloon has moved a full step. 

 

Figure 37 Paths are generated by constructing arcs of circles between the start and destination positions to 
locomote to a desired destination. For the arc, the length of the path and the rate of turn is determined.  
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Figure 38 Top and side views of the cables of a foot are shown on this figure. The space that a foot can 
occupy is shaded in yellow. The foot is positioned a location in that space by differentially controlling the 

lengths of the foot cables.. 

This procedure is repeated until the balloon reaches the desired position and orientation. 

The algorithm accommodates undulating terrain by always positioning the foot a set height 

above the target step position before being lowered to the ground. A finite-state-machine 

(FSM) shown on Figure 39 was implemented to control the locomotion algorithm. Having 

demonstrated lifting one foot at a time, the algorithm was modified to lift two feet at a time 

as recommended by the force and moment analysis in the previous section. This 

accomplished by modifying the FSM to move two feet at a time and moving the balloon 

one-third of a step between the feet motion. 
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Figure 39 Software control of the locomotion process is achieved by transitioning between functions in the 
locomotion software algorithm. The transitions are orchestrated by a Finite-state-machine that specifies the 

conditions for transition and the states to transition to. 

A more sophisticated stepping algorithm is possible to optimize the foot placement to step 

over local and small hazards for example, using the algorithm by Chen, Kumar & Luo 

[1999]. The foot placement is chosen to maintain stability and step size is adaptively chosen 

to approach close to then step over hazards that are smaller than the maximum step 

possible. 

5.3. BALLET Model and 3D Visualization 

3D computer graphic model and visualization of BALLET and its locomotion was 

implemented to illustrate its mobility using the open-source Blender visualization engine. 

The model and visualization software were developed using the Python programming 

language. The complete source-code for the implementation is listed in Appendix B of this 

report. The object-oriented software implementation consisted of two parts. 

The first part is a parametric kinematic model Ballet consisting of a Balloon, 6 Limbs, each 

with 3 LimbCables and 1 Foot, and a model of the Terrain. The BALLET object also contains 

the finite state machine mobility algorithms for locomoting over the surface. The unified 
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modeling language (UML) object diagram of this part of the software is illustrated on Figure 

40. The second part is the BalletVisualization software to display Ballet and its environment 

in 3D and orchestrate locomotion, lighting and camera motion to render images in order to 

create animations of the locomotion. The ModalTimerOperator object assists with triggering 

the refreshing of the 3D rendering of all the objects in the scene during the creation of 

animation sequences. 

 

Figure 40 The Unified Modeling Language (UML) diagram for the software implementing the modeling and 
visualization of the BALLET simulation. Each block in the diagram represents a software object in the 

object-oriented architecture of the software package. 

An example of the 3D visualization for single-step locomotion is shown on Figure 41. The 

sequence of feet taking steps is front-right, front-left, middle-right, middle-left, back-right 

and finally back-left. 
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Figure 41 Screenshot from animation of BALLET of single-step locomotion with front-right foot taking a step. 

Figure 42 shows a visualization of two-step locomotion. The sequence of feet taking steps 

is front-right and back-left, middle-right and middle-left, and finally back-right and front-left. 

 

Figure 42 Screenshot from animation of two-step locomotion with front-right and back-left feet taking a step 
simultaneously. 

6. Conclusions 

The accomplishments from the Phase I investigation of BALLET are: 
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• Identification of target planetary bodies, potential science objectives and the 

instrument suites needed to accomplish the objectives 

• Development of the BALLET mission context including the entry, descent and 

landing on the target planetary bodies and the balloon deployment scenario for 

getting BALLET into an operational state. 

• Analysis of the performance of BALLET under a range of atmospheric and terrain 

conditions on Mars, Titan and Earth (where testing would occur). 

• Development of locomotion algorithms using coordinated limb motions to enable 

traverse over a range of terrain types. 

• Visualization of the operation of BALLET in three dimensions. 

• Documentation of the work performed in reports and presentations and publication 

of a paper to be presented at the 2019 IEEE Aerospace Conference. 

The summary results are: 

• Compelling science targets for a BALLET mission are RSLs on Mars, lake-shores 

on Titan and cryo-volcanos on Titan. Instrument suites tailored for these respective 

science targets have been identified and are feasible for deployment on a BALLET-

based mission. 

• An entry, descent and landing architecture was developed for BALLET on Mars and 

Titan. The design of a deployment system for BALLET from the lander was also 

developed. Power and communications for operations have also been investigated 

showing a feasible mission architecture for these bodies. 

• Of the planetary bodies studied, Titan has the most favorable conditions for BALLET. 

The combination of a dense atmosphere, low gravity and low surface wind speeds 

allow use of a RTG power system combined with a science instrument package with 

a total mass up to 15kg. 

• Conditions on Mars are less favorable. With the thin atmosphere, a larger balloon is 

needed and, with nominal wind speeds of 5 to 10 m/s, drag forces on the balloon are 

less than the weight of the payloads. However, special precautions to actively anchor 

BALLET have to be taken under high-wind conditions where wind speeds can reach 

26 m/s. Furthermore, the power system for a Mars mission relies on thin-film 

photovoltaics on the top surface of the balloon. This is currently low-TRL technology 

that will have to be sufficiently matured for the expected 2030s timeframe of a 

BALLET mission. 
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• A two legged locomotion technique is more stable than single legged locomotion. 

When lifting one payload at a time, a moment is imparted on the balloon that 

becomes the limiting factor for stability. Lifting opposing legs results in zero moment 

applied to the balloon. In this case, stability is only limited by the balance of vertical 

forces due to buoyancy and payload weight. The range of stable payload mass is 

greater for two-legged locomotion because of this affect. 

• When traversing a slope, tilting the balloon with the slope will result in a narrower 

stable payload mass range. At very high slopes, two-legged locomotion loses its 

stability benefit over single-legged locomotion. 

• Buoyancy will change significantly with atmospheric conditions on Mars. This 

narrows the range of stable payload mass when compared to a steady climate but 

does not prohibit a long-term mission. 

• Aerodynamic forces will be a major factor in balloon stability. Due to the wind speeds 

of Mars, this planet may not be feasible for BALLET, with lift and drag forces possibly 

exceeding the weight of the system. Titan’s low wind speed and high atmospheric 

density make it the most favorable option in dealing with aerodynamic forces. In all 

cases, facing BALLET such that its smallest cross sectional area is perpendicular to 

the flow will result in the smallest lift and drag forces possible for the proposed 

balloon shape. 

• A proof-of-concept BALLET on Earth is possible with a moderately sized balloon. 

For payload masses of 2kg an approximate stable balloon size of 10m3 would be 

necessary. 

• Algorithms for motion planning and navigation over rough terrain from prior research 

of legged robotics systems can be leveraged for BALLET. Coordinated control of the 

cable system and feet placement for locomotion, a problem unique to BALLET, has 

been shown to be algorithmically feasible. 

Contact science on targets in rugged terrain with BALLET enables direct measurement of 

water and salt content, enables local temporal and spatial coverage, provides options for 

multiple measurements with alternative instruments, and potentially enables shallow 

subsurface sampling. BALLET provides an alternative means to access these sites, 

expands the range of surface mobility and favorably expands the trade between mobility 

and science. Cameras placed at multiple locations on the balloon and on the feet, for video 

logging of BALLET’s operations to stream in outreach efforts, will provide a fascinating 

display for public engagement. Our Phase I investigation showed that this concept has 

compelling advantages for science exploration at lake-shore and cryo-volcano sites on 

Titan that remain inaccessible to other surface mobility approaches. 
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This effort has verified basic principles and formulated the BALLET mission concept and it 

has led to a new set of critical questions to address in the progression of this concept into 

a mission. A NASA NIAC Phase II proposal is being submitted to address these questions. 
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Appendix A: BALLET Stability Analysis On Titan
The method used here to determine the feasibility and stability of the BALLET balloon is to quantify the upper and lower bounds of the mass of the feet. 
If the foot mass is too low, the balloon is at risk of sliding or being lifted off the ground with gusts of wind. With a foot mass that is too great, the balloon 
may tilt or become unstable when lifting a leg. Finding the acceptable range of the mass of the foot will help maintain mission safety while providing 
requirements for the scientific instruments that can be chosen.

Initialize Analysis
Here an additional notebook is loaded. This additional notebook contains the implementation of the functions used in this analysis, as well as initializing 
constants.

Some of the constants initialized are shown in the table below:

Property Earth Mars Titan

Gravitational accel ( ) 9.807 3.71 1.352

Surface atm density ( ) 1.217 0.020 5.280

Helium surface density ( ) 0.178 0.002 0.728

Nominal wind speed ( ) 7.000 10.000 1.000

Drag coeff 0.500 0.500 0.500

Foot mass (kg) 1.0 1.0 1.0

Added mass on balloon (kg) 0.5 0.1 45.000

Needed balloon buoyancy force (N) 19.614 5.936 70.980

Balloon volume ( ) 1.925 88.134 11.534

Balloon diameter (m) 1.543 5.521 2.803

Balloon x-section area ( ) 1.871 23.943 6.172

Nominal wind drag force (N) 27.891 11.972 8.147

Gravity anchoring force (N) 44.132 16.695 30.420

Earth Mars Titan He

Atmospheric Molecular Weight 28.97 43.34 29.0 4.0

In [1]: %run BALLET_Functions.ipynb 

Choose Balloon Geometry
Here we define the balloon geometry that will be used for this analysis. We do this based on the desired volume, and assumed ratios of semimajor axis.
In this case a=2b=4c

In [2]: temp = (vol_titan*(3/4)/np.pi) 

a = (temp*8.0) ** (1.0/3.0) 

b = temp ** (1.0/3.0) 

c = (temp/8.0) ** (1.0/3.0) 

balloon_height = 7.0 

print("a = "+str(a)+" m") 

print("b = "+str(b)+" m") 

print("c = "+str(c)+" m") 

a = 2.803241032880424 m 

b = 1.4016205164402122 m 

c = 0.7008102582201061 m 



Find Connection Points and Foot Locations
Here we find the cable connection points on the balloon, based on the given diagram of their placement:

This analysis finds 3 of the connection points and then uses symetry to find the others



In [3]: # Find balloon connection points based on geometry 

p1 = find_position_on_ellipsoid_z_0(15, a, b, c) 

p0 = p1[:] 

p0[1] *= -1.0 

p9 = p0[:] 

p9[0] *= -1.0 

p10 = p1[:] 

p10[0] *= -1.0 

 

p4 = find_position_on_ellipsoid_z_0(45, a, b, c) 

p3 = p4[:] 

p3[1] *= -1.0 

p6 = p3[:] 

p6[0] *= -1.0 

p7 = p4[:] 

p7[0] *= -1.0 

 

# p2 & p8 

p2 = find_position_on_ellipsoid_y_0(45, a, b, c) 

p2[2] *= -1.0 

p8 = p2[:] 

p8[0] *= -1.0 

 

# p5 is on the bottom center 

p5 = [0.0, 0.0, -c] 

 

# Assemble the points into groups by leg 

points = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10] 

legs = [[p0, p2, p3], [p1, p4, p2], [p3, p5, p6], [p4, p7, p5], [p6, p8, p9], [p7, p10, p8]] 

 

# Find the foot location as the average of point locations 

feet = [get_foot_x_y(x) for x in legs] 
 

# Plot the geometry 

plot_balloon_geometry(points, feet, legs, a, b, c) 

plt.xlabel("m") 

plt.ylabel("m"); 

Finding Buoyant Force
The buoyant force of the balloon is assumed to be at the center of the ellipsoid. The force is equal to the weight of the air displaced by the balloon. In
this analysis, the boyant force is considered to be the total upward force after subtracting the weight of mass added to the balloon

 is the atmospheric density,  is the density of helium at the planet's surface,  is the gravitational acceleration,  is mass added to the
balloon,  is the volume of the balloon, and , , and  are the semimajor axis lengths of the ellipsoid.

In [4]: F_b = (rho_titan-rho_helium_titan)*vol_titan*g_titan - added_mass_titan*g_titan # Boyant force (on tit

an) 

 

print("Volume = "+str(vol_titan)+" m^3") 

print("Boyant Force = "+str(F_b)+" N") 

Bounding The Foot Mass
In order to find the bounds of the foot mass, force and moment balance equations must be used. To simplify the process, each 'leg' is treated as a
single cable, rather than three. The single cable location is taken to be the average position of the three connection points of that leg.

Volume = 11.534 m^3 

Boyant Force = 10.143742336000017 N 



In [5]: # Assume legs have one connection at the center of all 3 cables 

# Find the leg connection points 

L1 = (np.array(points[0])+np.array(points[2])+np.array(points[3]))/3 

L2 = (np.array(points[1])+np.array(points[4])+np.array(points[2]))/3 

L3 = (np.array(points[3])+np.array(points[5])+np.array(points[6]))/3 

L4 = (np.array(points[4])+np.array(points[7])+np.array(points[5]))/3 

L5 = (np.array(points[6])+np.array(points[8])+np.array(points[9]))/3 

L6 = (np.array(points[7])+np.array(points[10])+np.array(points[8]))/3 

connection_points = [L1, L2, L3, L4, L5, L6] 

The foot is assumed to be directly below this position, such that all force vectors along the cables are parallel to the z-axis. The boyant force of the
balloon is assumed to be at the center of the ellipsoid pointing along the z-axis. The weight of mass added to the balloon is assumed to be at the
center of the ellipsoid, directly counteracting the boyant force.

Minimum Foot Mass

The minimum mass of the feet can be found through performing a force balance in the z direction. The boyant force must be completely counteracted
by the weight of the feet. As such, the sum of the weight of all feet must be equal or greater to the boyant force. This analysis assumes all feet will be
the same mass, so the following equation defines the minimum mass of a single foot.

In [6]: m_min = F_b/(6*g_titan) 

print("Minimum Foot Mass = "+ str(m_min)+" kg") 

Maximum Foot Mass

The maximum mass of an individual foot is limited by the balance of moments when lifting one or two feet. At the maximum mass, one or more cables
will go to 0 N tension. If any additional mass was added, the cable would buckle due to its inability to resist compressive loads, and the balloon would
tilt. As such, in order to solve for the maximum mass an optimization techinique is used, with the constraints that all cables remain in tension, and the
tension in the cables remains less than or equal to the weight of a single foot.

Before optimizing for maximum mass, force and moment balance equations are used to find the force required at the connection points to remain
balloon stability. Given the geometry of the problem, the sum of forces in the x and y directions do not provide any information. Similarly, the sum of
moment about the z-axis is redundant. This leaves three equations:

If one foot is lifted, this leaves 3 equations, and 5 unknowns. Similarly, if two feet are lifted, there are 3 equations and 4 unknowns. This defines an
underdetermined system with infinite solutions, requiring linear programming techniques to find a solution. Given the nature of the problem, a least
squares solution is chosen. This method finds the solution where the sum of forces at the connection points is at a minimum, while still satisfying the
constraints. For details on this implementation, see the accompanying notebook.

Lifting One Foot

Due to symetry, two cases must be tested. First, lifting leg 1:

In [7]: lift_leg_1_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0]) 

lift_leg_1_forces = lift_legs(connection_points, F_b, lift_leg_1_max_mass*g_titan, [0]) 

plot_forces_bar_graph( 

    connection_points,  

    lift_leg_1_forces, 

    [0], 

    lift_leg_1_max_mass, 

    a, b, c, g_titan, 

    "Forces On Balloon With Leg 1 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_leg_1_max_mass[0],2))+" kg" 

) 

Minimum Foot Mass = 1.2504613333333354 kg 



Now lifting leg 3:

In [8]: lift_leg_3_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2]) 

lift_leg_3_forces = lift_legs(connection_points, F_b, lift_leg_3_max_mass*g_titan, [2]) 

plot_forces_bar_graph( 

    connection_points,  

    lift_leg_3_forces, 

    [2], 

    lift_leg_3_max_mass, 

    a, b, c, g_titan, 

    "Forces On Balloon With Leg 3 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_leg_3_max_mass[0],2))+" kg" 

) 

Now that the two cases have been solved, the maximum allowable foot mass is the minimum of the two found maximums

In [9]: lift_one_leg_maximum_mass = min([lift_leg_3_max_mass, lift_leg_1_max_mass])[0] 

print("Foot Mass Bounds - 1 Leg Lifted at a Time") 

print("Minimum Mass = "+str(m_min)+" kg") 

print("Maximum Mass = "+str(lift_one_leg_maximum_mass)+" kg") 

Lifting Two Feet

Due to symetry, two cases must be tested. First, lifting legs 1 and 6:

In [10]: lift_legs_1_6_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0,5]) 

lift_legs_1_6_forces = lift_legs(connection_points, F_b, lift_legs_1_6_max_mass*g_titan, [0,5]) 

plot_forces_bar_graph( 

    connection_points,  

    lift_legs_1_6_forces, 

    [0,5], 

    lift_legs_1_6_max_mass, 

    a, b, c, g_titan, 

    "Forces On Balloon With Legs 1 & 6 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_legs_1_6_max_mass[0],2))+" kg" 

) 

Now lifting legs 3 and 4:

In [11]: lift_legs_3_4_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2,3]) 

lift_legs_3_4_forces = lift_legs(connection_points, F_b, lift_legs_3_4_max_mass*g_titan, [2,3]) 

 

plot_forces_bar_graph( 

    connection_points,  

    lift_legs_3_4_forces, 

    [2,3], 

    lift_legs_3_4_max_mass, 

    a, b, c, g_titan, 

    "Forces On Balloon With Legs 3 & 4 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_legs_3_4_max_mass[0],2))+" kg", 

    1.0 

) 

Now that the two cases have been solved, the maximum allowable foot mass is the minimum of the two found maximums

Foot Mass Bounds - 1 Leg Lifted at a Time 

Minimum Mass = 1.2504613333333354 kg 

Maximum Mass = 2.886571822296406 kg 



In [12]: lift_two_legs_maximum_mass = min([lift_legs_1_6_max_mass, lift_legs_3_4_max_mass])[0] 

print("Foot Mass Bounds - 2 Legs Lifted at a Time") 

print("Minimum Mass = "+str(m_min)+" kg") 

print("Maximum Mass = "+str(lift_two_legs_maximum_mass)+" kg") 

As seen in the above results, when opposite legs are lifted, they completely cancel out the moment acting on the balloon. This means that for this case,
only the vertical force balance equations come into play. When using a foot mass equivalent to that of the maximum allowable foot mass when lifting a
single leg, it can be seen that the balloon is actually more stable. This is becauses none of the cables go slack, despite twice the mass being lifted
simultaneously.

In [13]: lift_two_legs_with_one_leg_mass_forces = lift_legs(connection_points, F_b, [lift_one_leg_maximum_mass*

g_titan], [0,5]) 

plot_forces_bar_graph( 

    connection_points,  

    lift_two_legs_with_one_leg_mass_forces, 

    [0,5], 

    [lift_one_leg_maximum_mass], 

    a, b, c, g_titan, 

    "Forces On Balloon With Legs 1 & 6 Lifted", 

    "Foot Mass = "+str(round(lift_one_leg_maximum_mass,2))+" kg" 

) 

Lifting Feet on a slope

When moving on a slope it is possible that the pitch of the balloon will change with the slope of the ground it is climbing. First, it is demonstrated that a
change in the pitch of the balloon does not effect its center of bouyancy, bouyant force, or create a moment on the balloon. This is done in 2D due to
the symmetry of the ellipsoid.

Foot Mass Bounds - 2 Legs Lifted at a Time 

Minimum Mass = 1.2504613333333354 kg 

Maximum Mass = 3.7513840000000047 kg 



In [14]: #Choose a pitch of 30 degrees 

pitch = np.pi/6.0 

 

#Choose a number of points to outline the ellipse 

samples = 1000 

 

#Create a set of points outlining an ellipse rotated by the chosen pitch 

t = np.linspace(0, 2*np.pi, samples) 

Ell = np.array([a*np.cos(t) , c*np.sin(t)])   

nCk = np.array([[np.cos(pitch) , -np.sin(pitch)],[np.sin(pitch) , np.cos(pitch)]])   

Ell_rot = np.zeros((2,Ell.shape[1])) 

for i in range(Ell.shape[1]): 
    Ell_rot[:,i] = np.dot(nCk,Ell[:,i]) 

 

#Loop through all sets of two points 

#Find the force and moment about the center of the ellipse due to the area between the two points 

#Sum these forces and moments to find total boyant force and moment 

max_height = np.max(Ell_rot[1,:]) 

Fb2 = np.array([0.0,0.0]) 

Moment = 0.0 

for i in range(Ell_rot.shape[1]): 
 

    #Get vector from point 0 to point 1 

    #Overflow to the first point when the last point is reached 

    p1 = np.array([Ell_rot[0][i], Ell_rot[1][i]]) 

    if(i == Ell_rot.shape[1]-1): 
        p2 = np.array([Ell_rot[0][0], Ell_rot[1][0]]) 

    else: 
        p2 = np.array([Ell_rot[0][i+1], Ell_rot[1][i+1]]) 

 

    #Vector between points 

    p1_p2 = p2-p1 

 

    #Point between p1 and p2 

    center = p1+(p1_p2/2.0) 

 

    #Distance between points 

    dist = np.linalg.norm(p1_p2) 

 

    #Perpendicular unit vector 

    perp = np.array([-1.0*p1_p2[1], p1_p2[0]])/dist 

 

    #Force magnitude 

    Fmag = np.abs(rho_titan*g_titan*(center[1]-max_height)*dist) 

 

    #Force vector 

    Fvec = perp*Fmag 

 

    #Add to Force tally 

    Fb2 = Fb2+Fvec 

 

    #Now find moment due to this force 

    center3d = np.array([center[0], 0.0, center[1]]) 

    F3d = np.array([Fvec[0], 0.0, Fvec[1]]) 

    Torque = np.cross(center3d, F3d) 

    Moment = Moment+Torque[1] 

 

#Find the area of the ellipse 

A = a*c*np.pi 

 

#Subtract the mass of the air in the balloon 

Fb2 = Fb2-np.array([0.0, rho_helium_titan*A*g_titan]) 

 

#Find bouyant force per meter for 2d ellipse 

Fb1 = (rho_titan-rho_helium_titan)*A*g_titan 

 

#Print out the total force and moment 

print("Integrated Bouyant Force With Pitch = ["+str(Fb2[0])+", 0.0,"+str(Fb2[1])+"] N/m") 

print("Bouyant Force From Archimedes Principle = "+str(Fb1)+" N/m") 

print("Integrated Bouyant Torque With Pitch = "+str(Moment)+" Nm/m") 

print("Bouyant Torque From Archimemdes Principle = 0.0 Nm/m") 



As shown above, a change in pitch does not produce any forces out of line with the z-axis. The force in the z-axis is identical to that found with
Archimedes principle. Also, there is no additional moment to be accounted for in the analysis.

Although this change in pitch does not effect the bouyant force, it will effect both the maximum stable foot mass and which cables go slack at this
maximum mass. If all cable connection points were on the x-y plane, the change in pitch would not effect which cables go slack. Due to an offset of the
connection points in the z-direction, the change in pitch biases the moment arm lengths, changing the cables that go slack. Below are plots of each of
the previous lifted-foot analyses with a pitch of 30 degrees.

In [15]: pitch = 30.0*np.pi/180.0 

 

lift_leg_1_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0], p

itch) 

lift_leg_1_forces_pitch = lift_legs(connection_points, F_b, lift_leg_1_max_mass_pitch*g_titan, [0], pi

tch) 

plot_forces_bar_graph( 

    connection_points,  

    lift_leg_1_forces_pitch, 

    [0], 

    lift_leg_1_max_mass_pitch, 

    a, b, c, g_titan, 

    "Forces On Balloon With Leg 1 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_leg_1_max_mass_pitch[0],2))+" kg, 30 degree pitch" 

) 

 

lift_leg_3_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2], p

itch) 

lift_leg_3_forces_pitch = lift_legs(connection_points, F_b, lift_leg_3_max_mass_pitch*g_titan, [2], pi

tch) 

plot_forces_bar_graph( 

    connection_points,  

    lift_leg_3_forces_pitch, 

    [2], 

    lift_leg_3_max_mass_pitch, 

    a, b, c, g_titan, 

    "Forces On Balloon With Leg 3 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_leg_3_max_mass_pitch[0],2))+" kg, 30 degree pitch" 

) 

 

lift_legs_1_6_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0,

5], pitch) 

lift_legs_1_6_forces_pitch = lift_legs(connection_points, F_b, lift_legs_1_6_max_mass_pitch*g_titan, [

0,5], pitch) 

plot_forces_bar_graph( 

    connection_points,  

    lift_legs_1_6_forces_pitch, 

    [0,5], 

    lift_legs_1_6_max_mass_pitch, 

    a, b, c, g_titan, 

    "Forces On Balloon With Legs 1 & 6 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_legs_1_6_max_mass_pitch[0],2))+" kg, 30 degree pitch" 

) 

 

lift_legs_3_4_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2,

3], pitch) 

lift_legs_3_4_forces_pitch = lift_legs(connection_points, F_b, lift_legs_3_4_max_mass_pitch*g_titan, [

2,3], pitch) 

plot_forces_bar_graph( 

    connection_points,  

    lift_legs_3_4_forces_pitch, 

    [2,3], 

    lift_legs_3_4_max_mass_pitch, 

    a, b, c, g_titan, 

    "Forces On Balloon With Legs 3 & 4 Lifted", 

    "Maximum Stable Foot Mass = "+str(round(lift_legs_3_4_max_mass_pitch[0],2))+" kg, 30 degree pitch"

, 

) 

Integrated Bouyant Force With Pitch = [2.6344531755729293e-14, 0.0,37.98274854134601] N/m 

Bouyant Force From Archimedes Principle = 37.983039009168884 N/m 

Integrated Bouyant Torque With Pitch = -2.8325540147513044e-14 Nm/m 

Bouyant Torque From Archimemdes Principle = 0.0 Nm/m 



Below are graphs of the maximum stable foot mass over pitch angles ranging from 0 to 50 degrees for locomotion with both one and two feet

In [16]: #Number of pitches to plot 

samples = 10 

 

#Pitches 

pitches = np.linspace(0,50.0*np.pi/180.0, samples) 

 

#Loop through all pitches, finding max stable mass at each pitch and configuration 

leg_1_max_mass_lifted_pitch = [] 

leg_3_max_mass_lifted_pitch = [] 

legs_1_6_max_mass_lifted_pitch = [] 

legs_3_4_max_mass_lifted_pitch = [] 

for ii in range(10): 
    leg_1_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_ti

tan, [0], pitches[ii])) 

    leg_3_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_ti

tan, [2], pitches[ii])) 

    legs_1_6_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g

_titan, [0,5], pitches[ii])) 

    legs_3_4_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g

_titan, [2,3], pitches[ii])) 

 

plot_max_mass_versus_pitch( 

    pitches, 

    leg_1_max_mass_lifted_pitch,  

    leg_3_max_mass_lifted_pitch, 

    "Leg 1", 

    "Leg 3", 

    "Maximum Stable Foot Mass", 

    "Single Leg Locomotion", 

    2.0, 

    3.8 

) 

 

plot_max_mass_versus_pitch( 

    pitches, 

    legs_1_6_max_mass_lifted_pitch,  

    legs_3_4_max_mass_lifted_pitch, 

    "Legs 1 & 6", 

    "Legs 3 & 4", 

    "Maximum Stable Foot Mass", 

    "Dual Leg Locomotion", 

    2.0, 

    3.8 

) 

As seen in the above graphs, for both mobility modes as the slope of the balloon increases, the maximum stable foot mass decreases. At very high
angles, the dual leg gait gives very little advantage over the single leg gait in terms of stability.

Drag Force Analysis

Finding Reynolds Number

This will tell us if there will be turbulent or laminar flow over the ellipsoid. A Reynolds number less than 2000 is laminar flow. Reynolds number greater
than 4000 is turbulent flow. Between 2000 and 4000 is transition flow.

Where  is the density of the fluid,  is the velocity of the fluid,  is the characterstic length of the flow, and  is the dynamic viscosity of the fluid.

Dynamic viscosity is the most difficult parameter to obtain. To find this parameter, Sutherland's Law is used with two coefficients. Sutherland's Law
requires only temperture to estimate dynamic viscosity, which is 94.15 K on Titan on average.



In [17]: wind_speed_titan = 1.0 

mu = dynamic_viscosity(94.15) 

Re = (rho_titan * wind_speed_titan * max([a, b, c])*2.0)/mu 

print("Re = "+str(Re)) 

Given the large reynolds number, turbulent flow is expected.

Estimating Drag Force

Drag force is given as

Where  is the drag coefficient,  is the cross-sectional aread,  is the density of the fluid, and  the fluid velocity. A nominal coefficient of drag for an
ellipsoid is given as 0.5.

In [18]: Cd = 0.5 

 

#Frontal area 

A_x = np.pi*b*c 

 

#Side area 

A_y = np.pi*a*c 

 

Fd_x = (1.0/2.0)*Cd*rho_titan*A_x*wind_speed_titan**2 

Fd_y = (1.0/2.0)*Cd*rho_titan*A_y*wind_speed_titan**2 

 

print("Nominal Drag coefficient:") 

print("Fd_x = "+str(Fd_x)+" N") 

print("Fd_y = "+str(Fd_y)+" N") 

Estimating Aerodynamic Forces in OpenFoam

The open source computational fluid dynamics program OpenFoam was used to estimate lift and drag forces on the BALLET balloon. OpenFoam's
PisoFoam solver was used, which finds the transient behavior of incompressible turbulent flow. To simplify this analysis, no turbulence models were
considered. It is likely that this simplification also results in the worst case aerodynamic effects due to pressure drag dominating skin friction drag for
bluff body shapes like the BALLET balloon. For flow on titan, the following initial conditions were used: Freestream Velocity = 1 m/s, rho = 5.28 kg/m^3,
and kinematic viscocity = 0.000001246212121 m^2/s. Kinematic viscosity was estimated as that of nitrogen at titan surface temperatures. This
assumption is made due to titan's atmosphere which is predicted to be 95-97% nitrogen.

OpenFoam's blockMesh and snappyHexMesh tools were used with an STL model of the balloon to create a mesh for the simulation. For simulations
measuring drag, symmetry was used on two planes to reduce the problem's complexity. Simulations measuring lift used symmetry on one plane,
allowing for the balloon to tilt. Simulation flow inlets were given freestream velocity and zero gradient pressure boundary conditions. Flow outlets were
given zero gradient velocity and zero pressure boundary conditions. Note that for incompressible flow, the pressure differential drives flow, not the
pressure value. These boundary conditions result in a steady flow at the desired velocity. The boundary conditions of the balloon are no-slip velocity
and zero gradient pressure, allowing for a boundary layer to form on the balloons surface. The results are below:

In [19]: # Drag facing wind 

dragFrontFile = "data/titan_drag_front.dat" 

dragSideFile = "data/titan_drag_side.dat" 

liftFrontFile = "data/titan_lift_front.dat" 

liftSideFile = "data/titan_lift_side.dat" 

 

plot_openfoam_drag(dragFrontFile, "1m/s wind in the x direction", "Drag Force", 0, 15) 

plot_openfoam_drag(dragSideFile, "1m/s wind in the y direction", "Drag Force", 0, 15) 

plot_openfoam_lift(liftFrontFile, "1m/s wind in the x direction, 10deg angle of attack", "Aerodynamic

 Forces", 0, 15) 

plot_openfoam_lift(liftSideFile, "1m/s wind in the y direction, 10deg angle of attack", "Aerodynamic F

orces", 0, 15) 

Re = 4546067.0108338045 

Nominal Drag coefficient: 

Fd_x = 4.0733778744195055 N 

Fd_y = 8.14675574883901 N 



BALLET Analysis Functions
This notebook houses the functions used in the BALLET Analysis notebook. It is meant to separate the technical details from the results of the analysis.

Geometry
The functions in this section concern the geometry of the balloon and its legs/feet.

Find Position On Ellipsoid Z = 0

This function finds the location of a point on an ellipsoid at z=0 given an angle from the x axis as in the diagram

In [12]: def find_position_on_ellipsoid_z_0(angle, a, b, c): 
    y = np.sqrt(1.0 / ((1.0/((np.tan(np.radians(angle))**2)*(a**2))) + 1.0/b**2)) 

    return [y/np.tan(np.radians(angle)), y, 0.0] 

Find Position On Ellipsoid Y = 0

This function finds the location of a point on an ellipsoid at y=0 given an angle from the x axis as in the diagram

In [13]: def find_position_on_ellipsoid_y_0(angle, a, b, c): 
    z = np.sqrt(1.0 / ((1.0/((np.tan(np.radians(angle))**2)*(a**2))) + 1.0/c**2)) 

    return [z/np.tan(np.radians(angle)), 0.0, z] 

Get Foot X Y

Gets the x,y location of a foot given the three cable connection points. This always assumes the foot is at the center of this triangle by averaging the x,y
locations of the cable connections.

In [14]: def get_foot_x_y(points): 
    return [ np.mean(x) for x in [ [points[0][y], points[1][y], points[2][y]] for y in range(0,2)]] 

Static Analysis
Functions used for force and moment balancing.

Get Foot Mass Bounds

Find bounds of the foot mass based purely on a sum of moments in the z-axis. This informs the initial guess of the optimization technique.



In [15]: #Bounds the mass of a foot based on forces in z direction only 

#No torque is taken into account 

#This is to get initial guesses and bounds for maximum weight of a foot 

def get_foot_mass_bounds(boyant_force, g, num_lifted_feet): 
     

    #Divide it evenly by the number of feet to get min weight 

    FFootMin = boyant_force/6.0 

     

    #Calculate minimum mass from Weight of foot 

    FMassMin = FFootMin/g 

     

    #Divide by number of lifted feet for max weight 

    FFootMax = boyant_force/num_lifted_feet 

     

    #Calculate maximum mass from Weight of foot 

    FMassMax = FFootMax/g 

     

    #Return the foot mass 

    return [FFootMin, FFootMax] 

Lift Legs

This is the least squares solution of the forces on the cables when at least one foot is lifted



In [27]: def lift_legs(positions, boyant_force, footWeight, legs_lifted, pitch = 0.0): 
     

    #footWeight must be given as an array for the optimizer 

    foot_weight = footWeight[0] 

 

    #Create rotation matrix from pitch (pitch is about y axis) 

    nCk = np.array([ 

           [np.cos(pitch) , 0.0, -1.0*np.sin(pitch)], 

           [0.0           , 1.0, 0.0          ], 

           [np.sin(pitch), 0.0, np.cos(pitch)]]) 

     

    #Rotate the positions 

    rotated_positions = [] 

    for ii in range(len(positions)): 
        rotated_positions.append(np.dot(nCk, positions[ii])) 

 

    #Define A from Sum of forces and Sum of torques = 0 

    #Row 1 is sum of forces 

    #Row 2 and 3 are sum of torques in x and y respectively 

    row1 = [] 

    row2 = [] 

    row3 = [] 

    for ii in range(0,6): 
        if ii in legs_lifted: 
            continue 
 

        row1.append(1.0) 

        row2.append(rotated_positions[ii][1]) 

        row3.append(rotated_positions[ii][0]) 

     

    #Create the A matrix 

    A = np.matrix([row1, row2, row3], dtype=float) 

     

    #Define b 

    b = [boyant_force-len(legs_lifted)*foot_weight, 0.0, 0.0] 

    for leg_lifted in legs_lifted: 
        b[1] += -1.0*foot_weight*rotated_positions[leg_lifted][1] 

        b[2] += -1.0*foot_weight*rotated_positions[leg_lifted][0] 

 

    b = np.matrix(b, dtype=float).transpose() 

 

    #Find A*A^T 

    AAt = A.dot(A.transpose()) 

 

    #Invert it 

    AAt_inv = np.linalg.inv(np.matrix(AAt)) 

     

    #Find At*AAt_inv 

    AtAAt_inv = A.transpose()*AAt_inv 

     

    #Find the solution x = A((A*A^T)^-1)*b 

    solution = AtAAt_inv*b 

 

    #Check that solution meets constraints 

    sum_forces = len(legs_lifted)*foot_weight + np.sum(solution) - boyant_force 

    sum_torque_x = 0 

    sum_torque_y = 0 

    for leg_lifted in legs_lifted: 
        sum_torque_x += foot_weight*rotated_positions[leg_lifted][1] 

        sum_torque_y += foot_weight*rotated_positions[leg_lifted][0] 

 

    index_offset = 0 

    for ii in range(0,6): 
        if ii in legs_lifted: 
            index_offset += 1 

            continue 
        sum_torque_x += solution[ii-index_offset]*rotated_positions[ii][1] 

        sum_torque_y += solution[ii-index_offset]*rotated_positions[ii][0] 

         

    constraint_error = abs(np.sum([sum_forces, sum_torque_x, sum_torque_y])) 

 

    if constraint_error > 1e-10: 
        print("Warning! Sum of constraint violations = "+str(constraint_error)) 

     

    #Return the solution 

    return solution 



Find Maximum Foot Mass Legs Lifted

Find the maximum mass of a single foot when particular legs are lifted

In [19]: def find_maximum_foot_mass_legs_lifted(positions, boyant_force, gravity, legs_lifted, pitch = 0.0): 
 

    # Get max and min foot mass values for this size balloon (based only on vertical force balance) 

    # Use this to bound the maximum foot weight and make initial guesses 

    foot_bounds = get_foot_mass_bounds(boyant_force, gravity, len(legs_lifted)) 

 

    # Setup constraint functions 

    # This constraint says the force on a cable must be greater than 0 

    def constraint_function_1(x, index): 
        output = lift_legs(positions, boyant_force, x, legs_lifted, pitch) 

        return output.tolist()[index] 
 

    # This constraint says the force on a cable must be less than the weight of a foot 

    def constraint_function_2(x, index): 
        output = lift_legs(positions, boyant_force, x, legs_lifted, pitch) 

        return x-output.tolist()[index] 
 

    # Setup constraints 

    # Constraint states that the resulting forces must be positive 

    # and that the forces must be less than the weight of the foot 

    cons = [] 

    for ii in range(0,6-len(legs_lifted)): 
        cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_1(x, ii)}) 
        cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_2(x, ii)}) 
 

 

    # Setup function to minimize 

    # In this case we are maximizing foot weight 

    fun = lambda x: x*-1.0 
 

    # Run optimization to find greatest foot mass that still balances the balloon 

    bounds = [foot_bounds] 

    result = minimize(fun, [np.mean(foot_bounds)], method='SLSQP', bounds=bounds, constraints=cons) 

    return result['x']/gravity 

Find Min and Max Volume when legs are lifted with a particular foot mass

Find the maximum mass of a single foot when particular legs are lifted



In [ ]: def find_volume_range_legs_lifted(area_density, additional_mass_percentage, foot_mass, gravity, legs_l
ifted, pitch = 0.0): 

 

    # Get max and min Volume for the analysis 

    volume_bounds = [0, 10000] 

 

    # Setup constraint functions 

    # This constraint says the force on a cable must be greater than 0 

    def constraint_function_1(x, index): 
        axes = get_axis_lengths(x[0]) 

        Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage) 

        output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch) 

        return output.tolist()[index][0] 
 

    # This constraint says the force on a cable must be less than the weight of a foot 

    def constraint_function_2(x, index): 
        axes = get_axis_lengths(x[0]) 

        Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage) 

        output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch) 

        return foot_mass*gravity-output.tolist()[index][0] 
 

    # Setup constraints 

    # Constraint states that the resulting forces must be positive 

    # and that the forces must be less than the weight of the foot 

    cons = [] 

    for ii in range(0,6-len(legs_lifted)): 
        cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_1(x, ii)}) 
        cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_2(x, ii)}) 
 

 

    # Setup function to minimize 

    # In this case we are minimizing volume 

    fun_min = lambda x: x 
    fun_max = lambda x: -x 
 

    # Run optimization to find greatest foot mass that still balances the balloon 

    bounds = [volume_bounds] 

    result_min = minimize(fun_min, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons) 

    result_max = minimize(fun_max, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons) 

    return [result_min['x'][0], result_max['x'][0]] 

Find Min and Max Volume when legs are lifted with a particular foot mass

Same as above but with the second axis ratio



In [ ]: def find_volume_range_legs_lifted2(area_density, additional_mass_percentage, foot_mass, gravity, legs_
lifted, pitch = 0.0): 

 

    # Get max and min Volume for the analysis 

    volume_bounds = [0, 10000] 

 

    # Setup constraint functions 

    # This constraint says the force on a cable must be greater than 0 

    def constraint_function_1(x, index): 
        axes = get_axis_lengths2(x[0]) 

        Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage) 

        output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch) 

        return output.tolist()[index][0] 
 

    # This constraint says the force on a cable must be less than the weight of a foot 

    def constraint_function_2(x, index): 
        axes = get_axis_lengths2(x[0]) 

        Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage) 

        output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch) 

        return foot_mass*gravity-output.tolist()[index][0] 
 

    # Setup constraints 

    # Constraint states that the resulting forces must be positive 

    # and that the forces must be less than the weight of the foot 

    cons = [] 

    for ii in range(0,6-len(legs_lifted)): 
        cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_1(x, ii)}) 
        cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_2(x, ii)}) 
 

 

    # Setup function to minimize 

    # In this case we are minimizing volume 

    fun_min = lambda x: x 
    fun_max = lambda x: -x 
 

    # Run optimization to find greatest foot mass that still balances the balloon 

    bounds = [volume_bounds] 

    result_min = minimize(fun_min, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons) 

    result_max = minimize(fun_max, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons) 

    return [result_min['x'][0], result_max['x'][0]] 

Helper functions to deal with balloon geometry



In [ ]: def get_connection_points(a,b,c): 
    # Find balloon connection points based on geometry 

    p1 = find_position_on_ellipsoid_z_0(15, a, b, c) 

    p0 = p1[:] 

    p0[1] *= -1.0 

    p9 = p0[:] 

    p9[0] *= -1.0 

    p10 = p1[:] 

    p10[0] *= -1.0 

 

    p4 = find_position_on_ellipsoid_z_0(45, a, b, c) 

    p3 = p4[:] 

    p3[1] *= -1.0 

    p6 = p3[:] 

    p6[0] *= -1.0 

    p7 = p4[:] 

    p7[0] *= -1.0 

 

    # p2 & p8 

    p2 = find_position_on_ellipsoid_y_0(45, a, b, c) 

    p2[2] *= -1.0 

    p8 = p2[:] 

    p8[0] *= -1.0 

 

    # p5 is on the bottom center 

    p5 = [0.0, 0.0, -c] 

 

    # Assemble the points into groups by leg 

    return [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10] 
 

#get the connection points for the current volume 

def get_ave_connection_points(a,b,c): 
    points = get_connection_points(a,b,c) 

    L1 = (np.array(points[0])+np.array(points[2])+np.array(points[3]))/3 

    L2 = (np.array(points[1])+np.array(points[4])+np.array(points[2]))/3 

    L3 = (np.array(points[3])+np.array(points[5])+np.array(points[6]))/3 

    L4 = (np.array(points[4])+np.array(points[7])+np.array(points[5]))/3 

    L5 = (np.array(points[6])+np.array(points[8])+np.array(points[9]))/3 

    L6 = (np.array(points[7])+np.array(points[10])+np.array(points[8]))/3 

    return [L1, L2, L3, L4, L5, L6] 
 

def get_legs(cp): 
    return [[cp[0], cp[2], cp[3]], [cp[1], cp[4], cp[2]], [cp[3], cp[5], cp[6]], [cp[4], cp[7], cp[5
]], [cp[6], cp[8], cp[9]], [cp[7], cp[10], cp[8]]] 

 

def get_feet(legs): 
    return [get_foot_x_y(x) for x in legs] 

In [ ]: # approximate surface area of ellipsoid 

def surface_area_ellipsoid(a,b,c): 
    return 4*np.pi*((((a*b)**1.6)+((a*c)**1.6)+((b*c)**1.6))/3.0)**(1/1.6) 

In [ ]: # balloon mass with extra mass added 

def balloon_mass(a,b,c, rho, added_mass): 
    return surface_area_ellipsoid(a,b,c)*rho*(1.0 + added_mass) 

In [2]: # Get the buoyant force of the proof of concept with  

def get_buoyant_force(a, b, c, rho, gravity, added_mass): 
    weight = balloon_mass(a,b,c,rho,added_mass)*gravity 

    V = (4/3)*np.pi *a*b*c 

    Lift = (rho_earth-rho_helium_earth)*V*gravity 

    return Lift - weight 



In [3]: #a=2b=4c 

def get_axis_lengths(V): 
    temp = (V*(3/4)/np.pi) 

    a = (temp*8.0) ** (1.0/3.0) 

    b = temp ** (1.0/3.0) 

    c = (temp/8.0) ** (1.0/3.0) 

    return [a,b,c] 
 

#a*0.3=b, a*0.2=c 

def get_axis_lengths2(V): 
    temp = (V*(3/4)/np.pi)/(0.2*0.3) 

    a = (temp) ** (1.0/3.0) 

    b = a*0.3 

    c = a*0.2 

    return [a,b,c] 

Utility
Utility functions to accomplish simple mathematic operations

Normalized

Returns a normalized vector

In [20]: def normalized(vector): 
    x = np.linalg.norm(vector) 

    if x==0: 
        return vector 
     

    return vector/x 

Plotting
Simple functions for various plots

Plot Balloon Geometry

Plot the ballon, its cables, and feet



In [21]: def plot_balloon_geometry(points, feet, legs, a, b, c): 
     

    # Create Figure 

    fig = plt.figure() 

    ax = Axes3D(fig) 

    ax.set_aspect('equal') 

 

    # Plot connection points to balloon 

    for point in points: 
        ax.scatter(point[0], point[1], point[2], c='r', marker='o') 

 

    # Plot feet 

    for foot in feet: 
        ax.scatter(foot[0], foot[1], -1.0*balloon_height, c='b', marker='^') 

 

    # Plot cables 

    for idx, leg in enumerate(legs): 
        ax.plot([feet[idx][0], leg[0][0]], [feet[idx][1], leg[0][1]], [-1.0*balloon_height, leg[0][2

]], c='g') 

        ax.plot([feet[idx][0], leg[1][0]], [feet[idx][1], leg[1][1]], [-1.0*balloon_height, leg[1][2

]], c='g') 

        ax.plot([feet[idx][0], leg[2][0]], [feet[idx][1], leg[2][1]], [-1.0*balloon_height, leg[2][2

]], c='g') 

 

    # Create ellipsoid 

    phi = np.linspace(0,2*np.pi, 100).reshape(100, 1) # the angle of the projection in the xy-plane 

    theta = np.linspace(0, np.pi, 100).reshape(-1, 100) # the angle from the polar axis, ie the polar

 angle 

 

    # Transformation formulae for a spherical coordinate system. 

    X = a*np.sin(theta)*np.cos(phi) 

    Y = b*np.sin(theta)*np.sin(phi) 

    Z = c*np.cos(theta) 

    ax.plot_surface(X, Y, Z, color='c', alpha=0.5) 

 

    # Create cubic bounding box to simulate equal aspect ratio 

    # Matplotlib can't do axis equal properly in 3d 

    max_range = points[0][0] 

    Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() 

    Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() 

    Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten() 

    for xb, yb, zb in zip(Xb, Yb, Zb): 
       ax.plot([xb], [yb], [zb], 'w') 

Plot Forces Bar Graph

Function to plot the forces on each cable as a 3d bar graph



In [1]: def plot_forces_bar_graph(positions, forces, legs_lifted, max_mass, a, b, c, g, suptitle, title, pitch 
= 0.0): 

     

    # Now plot the results 

    fig = plt.figure() 

    ax = Axes3D(fig) 

    ax.set_aspect('equal') 

 

    #normalize length of force vectors 

    norm_force = normalized(forces) 

 

    #colors 

    colors = ['b', 'g','r','m','c','orange'] 

 

    lifted_force = max_mass[0]*g 

    legend = [] 

    #legend.append('Balloon Footprint') 

    index_offset = 0 

    for idx in range(0,6): 
        legend_string = 'Leg '+str(idx+1)+': ' 

        if idx in legs_lifted: 
            legend_string += 'Lifted: '+str(round(lifted_force, 2))+" N" 

            index_offset += 1 

        else: 
            legend_string+=str(round(forces.tolist()[idx-index_offset][0], 2))+" N" 

        legend.append(legend_string) 

 

     

 

    index_offset = 0 

    for idx, position in enumerate(positions): 
        if idx in legs_lifted: 
            index_offset += 1 

            ax.bar([position[0]], lifted_force, zs=[position[1]], zdir='y', width=0.1, alpha=1.0, zord

er=200, color=colors[idx], edgecolor='k') 

            continue 
        ax.bar([position[0]], [forces[idx-index_offset].tolist()[0][0]], zs=[position[1]], zdir='y', w

idth=0.1, alpha=1.0, zorder=200, color=colors[idx], edgecolor='k') 

 

    plt.legend(legend, loc=3, fontsize=8) 

    # Create ellipsoid 

    phi = np.linspace(0,2*np.pi, 100).reshape(100, 1) # the angle of the projection in the xy-plane 

    theta = np.linspace(0, np.pi, 100).reshape(-1, 100) # the angle from the polar axis, ie the polar

 angle 

    theta2 = np.linspace(0, 2*np.pi, 100).reshape(100,1) # the angle from the polar axis, ie the polar 

angle 

 

    # Transformation formulae for a spherical coordinate system. 

     

     

    x, y = np.mgrid[-3:3:150j,-3:3:150j] 

    z =  3*(1 - x)**2 * np.exp(-x**2 - (y + 1)**2) \ 

   - 10*(x/5 - x**3 - y**5)*np.exp(-x**2 - y**2) \ 

   - 1./3*np.exp(-(x + 1)**2 - y**2)  

    Xe = a*np.sin(theta)*np.cos(phi) 

    Ye = b*np.sin(theta)*np.sin(phi) 

    Ze = 0.1*np.cos(theta) 

    ax.plot_surface(Xe, Ye, Ze, color='c', alpha=0.3, antialiased=False) 
 

 

    #phi = np.linspace(0,2*np.pi, 256).reshape(256, 1) 

    X1 = a*np.cos(phi) 

    Y1 = b*np.sin(phi) 

    Z1 = [0.0]*100 

    ax.plot(X1, Y1, Z1, zorder=-1, color='k', linestyle='dashed') 

     

    plt.suptitle(suptitle, fontsize=12, y=.90) 

    plt.title(title, fontsize=8, y=1.05) 

    ax.set_xlabel('X', fontsize=7) 

    ax.set_ylabel('Y', fontsize=7) 

    ax.set_zlabel('Force [N]', fontsize=7) 

 

     

    # Create cubic bounding box to simulate equal aspect ratio 

    # Matplotlib can't do axis equal properly in 3d 

    max_range = points[0][0] 



    Xb = 0.5*(b+0.1)*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() 

    Yb = 0.5*(b+0.1)*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten() 

    Zb = 0.5*(b+0.1)*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten()+(b+0.1) 

    for xb, yb, zb in zip(Xb, Yb, Zb): 
       ax.plot([xb], [yb], [zb], 'w') 

     

    ax.tick_params(axis = 'both', which = 'major', labelsize = 7) 

    ax.view_init(170,255) 

Plot Max Mass Versus Pitch

Function to plot the maximum stable foot mass vs pitch data

In [2]: def plot_max_mass_versus_pitch(pitches, set1, set2, legend1, legend2, suptitle, title, ymin, ymax): 
    fig = plt.figure() 

    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    minimum_set = [np.min([v1,v2]) for v1,v2 in zip(set1,set2)] 
    plot_pitches = [pitch*180.0/np.pi for pitch in pitches] 
    axes.plot(plot_pitches, set1, plot_pitches, set2) 

    axes.set_xlabel('Pitch [degress]') 

    axes.set_ylabel('Maximum Stable Foot Mass [kg]') 

    plt.suptitle(suptitle) 

    plt.title(title) 

    plt.legend([legend1, legend2], loc=3, fontsize=8) 

    plt.ylim([ymin, ymax]) 

Plot OpenFoam Drag

Function to plot the drag force

In [ ]: def plot_openfoam_drag(fileName, title, suptitle, yMin, yMax):  
    time = [] 

    xForce = [] 

     

    #Open the file 

    with open(fileName, 'r') as infile: 
         

        #Skip the header 

        for _ in range(3): 
            next(infile) 

             

        #Loop through every line 

        for line in infile: 
             

            #Remove non-numerical characters for easier parsing 

            strippedLine = line.replace('(', ' ').replace(')', ' ') 

            splitList = strippedLine.split() 

            time.append(float(splitList[0])) 

             

            #Multiply by 4 because only 1/4 of the ellipsoid is in the simulation 

            xForce.append((float(splitList[1])+float(splitList[4]))*4) 

 

    fig = plt.figure() 

    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    axes.plot(time, xForce) 

    axes.set_xlabel('time [s]') 

    axes.set_ylabel('Drag Force [N]') 

    plt.suptitle(suptitle) 

    plt.title(title) 

    plt.ylim(yMin, yMax) 

Plot OpenFoam Lift

Function to plot the lift and drag forces



In [ ]: def plot_openfoam_lift(fileName, title, suptitle, yMin, yMax):  
    time = [] 

    xForce = [] 

    zForce = [] 

     

    #Open the file 

    with open(fileName, 'r') as infile: 
         

        #skip header 

        for _ in range(3): 
            next(infile) 

             

        #Loop through every line 

        for line in infile: 
             

            #replace non-number characters to spaces for easier parsing 

            strippedLine = line.replace('(', ' ').replace(')', ' ') 

            splitList = strippedLine.split() 

            time.append(float(splitList[0])) 

             

            #Multiply by two because only half of the ellipsoid was in the simulation 

            zForce.append((float(splitList[3])+float(splitList[6]))*2) 

            xForce.append((float(splitList[1])+float(splitList[4]))*2)  

             

    #Plot 

    fig = plt.figure() 

    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    axes.plot(time, xForce, time, zForce) 

    plt.legend(['Drag', 'Lift'], loc=1, fontsize=8) 

    axes.set_xlabel('time [s]') 

    axes.set_ylabel('Aerodynamic Force [N]') 

    plt.suptitle(suptitle) 

    plt.title(title) 

    plt.ylim(yMin, yMax) 

Atmosphere Analysis

Viking Lander Data Parsing

Functions to parse and filter viking lander data



In [ ]: #Apply a simple filter that averages surrounding temperatures to smooth data 

def filter_data(data): 
    filter_size = 100 

    molarMassMarsAtm = 0.04334 

    molarMassHelium = 0.004002602 

    size = len(data['temp']) 

    data['temp_filt'] = [] 

    for ii in range(size): 
        if(ii < filter_size/2.0): 
            numSamples = int(ii+filter_size/2) 

            temp_sum = sum(data['temp'][0:numSamples]) 

            data['temp_filt'].append(float(temp_sum/numSamples)) 

        elif(ii > size-(filter_size/2.0)): 
            numSamples = int((filter_size/2)+(size-ii)) 

            temp_sum = sum(data['temp'][ii-int(filter_size/2):-1]) 

            data['temp_filt'].append(float(temp_sum/numSamples)) 

        else: 
            temp_sum = sum(data['temp'][int(ii-filter_size/2) : int(ii+filter_size/2)]) 

            data['temp_filt'].append(float(temp_sum/filter_size)) 

             

        data['rho_atm'].append(GasDensity(molarMassMarsAtm, data['temp_filt'][-1], data['pressure'][ii

])) 

        data['rho_helium'].append(GasDensity(molarMassHelium, data['temp_filt'][-1], data['pressure'][

ii])) 

             

# Remove empty points in the data 

def remove_zeros(data): 
    data['rho_atm_pruned'] = [] 

    data['rho_he_pruned'] = [] 

    data['sol_pruned'] = [] 

    data['temp_pruned'] = [] 

    data['sol_time_pruned'] = [] 

    for ii in range(len(data['temp_filt'])): 
        if(not(data['rho_atm'][ii] == 0)): 
            data['sol_pruned'].append(data['sol'][ii]) 

            data['rho_atm_pruned'].append(data['rho_atm'][ii]) 

            data['rho_he_pruned'].append(data['rho_helium'][ii]) 

            data['temp_pruned'].append(data['temp_filt'][ii]) 

            data['sol_time_pruned'].append(data['sol_time'][ii]) 

 

#Calculate gas density based on molar mass, temperature, and pressure 

def GasDensity(MolarMass, Temperature, Pressure): 
    R = 8.314 

    if(Temperature > 0): 
        return (Pressure*MolarMass)/(R*Temperature) 
    return 0 
 

#Load and parse viking lander data file 

def load_viking_lander_file(filename): 
    data = dict() 

    data['year'] = [] 

    data['solar_long'] = [] 

    data['sol'] = [] 

    data['wind_speed'] = [] 

    data['wind_dir'] = [] 

    data['pressure'] = [] 

    data['temp'] = [] 

    data['rho_atm'] = [] 

    data['rho_helium'] = [] 

    data['ave_temp_offset'] = [] 

    data['sol_time'] = [] 

    with open(filename, 'r') as infile: 
        line = '' 

        for line in infile: 
            line = line.split() 

            data['year'].append(float(line[0])) 

            data['solar_long'].append(float(line[1])) 

            data['sol'].append(float(line[2])) 

            data['wind_speed'].append(float(line[3])) 

            data['wind_dir'].append(float(line[4])) 

            data['pressure'].append(float(line[5])*100) 

            data['temp'].append(float(line[7])+ 273.15) 

            data['sol_time'].append(data['sol'][-1] % 1) 

     

    filter_data(data) 

    remove_zeros(data) 



    data['ave_temp_offset'] = data['temp_pruned'][:] 

    data['ave_density_offset'] = data['rho_atm_pruned'][:] 

    data['ave_he_offset'] = data['rho_he_pruned'][:] 

    oldNum = -1 

    solCount = 1 

    aveTemp = 0 

    aveDensity = 0 

    aveHe = 0 

    for ii,sol in enumerate(data['sol_pruned']): 
        newNum = int(data['sol_pruned'][ii]//1) 

        if(newNum > oldNum): 
            oldNum = newNum 

            aveTemp/=solCount 

            aveDensity/=solCount 

            aveHe/=solCount 

            for jj in range(ii-solCount, ii): 
                data['ave_temp_offset'][jj]-=aveTemp 

                data['ave_density_offset'][jj]-=aveDensity 

                data['ave_he_offset'][jj]-=aveHe 

            solCount = 0 

            aveTemp=0 

            aveDensity = 0 

            aveHe = 0 

        solCount+=1 

        aveTemp+=data['temp_pruned'][ii] 

        aveDensity+=data['rho_atm_pruned'][ii] 

        aveHe+=data['rho_he_pruned'][ii] 

    return data 
 

#Plot atmospheric and helium densities based on viking lander data 

def plot_viking_lander_data(data, title): 
    fig = plt.figure() 

    axes = fig.add_axes([0.15, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    axes.plot(data['sol_pruned'], data['rho_atm_pruned'],'r') 

    axes.set_xlabel('Sol') 

    axes.set_ylabel('Atmospheric Density [kg/m^3]') 

    plt.suptitle('Atmospheric Density on Mars') 

    plt.title(title) 

    fig = plt.figure() 

    axes = fig.add_axes([0.15, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    axes.plot(data['sol_pruned'], data['rho_he_pruned'],'r') 

    axes.set_xlabel('Sol') 

    axes.set_ylabel('Helium Density [kg/m^3]') 

    plt.suptitle('Helium Density on Mars') 

    plt.title(title) 

     

#Plot buoyant force based on viking lander data 

def plot_buoyant_force(data, volume, added_mass, gravity, title): 
    data['Fb'] = [(rho_mars-rho_he)*volume*gravity - added_mass*gravity for rho_mars, rho_he in zip(da
ta['rho_atm_pruned'], data['rho_he_pruned'])] 

    fig = plt.figure() 

    axes = fig.add_axes([0.15, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    axes.plot(data['sol_pruned'], data['Fb'],'r') 

    axes.set_xlabel('Sol') 

    axes.set_ylabel('Buoyant Force [N]') 

    plt.suptitle('          Buoyant Force on Mars') 

    plt.title(title)    

     

#Plot stable foot masses over a martian year based on viking lander data 

def plot_foot_masses(data,connection_points,g,volume, title): 
    #Number of points to plot 

    samples = 1000 

    molarMassMarsAtm = 0.04334 

    molarMassHelium = 0.004002602 

 

    #indices 

    indices = list(map(int, np.linspace(0, len(data['Fb'])-1, samples))) 

    leg_1_max_mass_lifted_temp = [] 

    leg_3_max_mass_lifted_temp = [] 

    legs_1_6_max_mass_lifted_temp = [] 

    legs_3_4_max_mass_lifted_temp = [] 

    min_mass = [] 

    for index in indices: 
        #index = int(indexx) 

        leg_1_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, data[

'Fb'][index], g, [0], 0)) 



        leg_3_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, data[

'Fb'][index], g, [2], 0)) 

        legs_1_6_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, dat

a['Fb'][index], g, [0,5], 0)) 

        legs_3_4_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, dat

a['Fb'][index], g, [2,3], 0)) 

        min_mass.append(data['Fb'][index]/(6.0*g)) 

     

    min_one_leg = min(leg_1_max_mass_lifted_temp+leg_3_max_mass_lifted_temp) 

    min_two_leg = min(legs_1_6_max_mass_lifted_temp+legs_3_4_max_mass_lifted_temp) 

    max_min_mass = max(min_mass) 

     

    aveDensity_atm = sum(data['rho_atm_pruned'])/len(data['rho_atm_pruned']) 

    aveDensity_he = sum(data['rho_he_pruned'])/len(data['rho_he_pruned']) 

    maxDensityOffset_he = max(data['ave_he_offset']) 

    minDensityOffset_he = min(data['ave_he_offset']) 

    maxDensityOffset_atm = max(data['ave_density_offset']) 

    minDensityOffset_atm = min(data['ave_density_offset']) 

    maxFb = ((aveDensity_atm+maxDensityOffset_atm)-(aveDensity_he+maxDensityOffset_he))*volume*g 

    minFb = ((aveDensity_atm+minDensityOffset_atm)-(aveDensity_he+minDensityOffset_he))*volume*g 

    FbOffset = (maxFb-minFb)/2.0 

    fig = plt.figure() 

    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    minimum_set = [np.min([v1,v2]) for v1,v2 in zip(leg_1_max_mass_lifted_temp,leg_3_max_mass_lifted_t
emp)] 

    plot_sols = [data['sol_pruned'][ii] for ii in indices] 
    axes.plot(plot_sols, leg_1_max_mass_lifted_temp, plot_sols, leg_3_max_mass_lifted_temp, plot_sols, 

min_mass) 

    axes.set_xlabel('sol') 

    axes.set_ylabel('Stable Foot Mass [kg]') 

    plt.suptitle('Stable Foot Mass over a Martian Year') 

    plt.title(title) 

    plt.legend(['Max leg 1 lifted', 'Max leg 3 lifted', 'Minimum'], loc=3, fontsize=8) 

     

    fig = plt.figure() 

    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) 

    minimum_set = [np.min([v1,v2]) for v1,v2 in zip(leg_1_max_mass_lifted_temp,leg_3_max_mass_lifted_t
emp)] 

    plot_sols = [data['sol_pruned'][ii] for ii in indices] 
    axes.plot(plot_sols, legs_1_6_max_mass_lifted_temp, plot_sols, legs_3_4_max_mass_lifted_temp, plot

_sols, min_mass) 

    axes.set_xlabel('sol') 

    axes.set_ylabel('Stable Foot Mass [kg]') 

    plt.suptitle('Stable Foot Mass over a Martian Year') 

    plt.title(title) 

    plt.legend(['Max legs 1 & 6 lifted', 'Max legs 3 & 4 lifted', 'Minimum'], loc=3, fontsize=8) 

    return([max_min_mass, min_one_leg, max_min_mass, min_two_leg, FbOffset]) 

Finding Dynamic Viscosity

In [24]: def dynamic_viscosity(temp): 
    #Sutherland Coefficients 

    C1 = 1.458e-6 

    C2 = 110.4 

    return (C1*(temp**(3/2)))/(temp+C2) 

Initialization of Analysis
This includes importing useful libraries, as well as defining constants like gravity



In [1]: #Imports and symbol initialization 

#%matplotlib notebook  

%matplotlib qt 
import sympy 
from IPython.display import display 
from mpl_toolkits.mplot3d import Axes3D 
import mpmath as mp 
import matplotlib 
import numpy as np 
import matplotlib.pyplot as plt 
from scipy.optimize import minimize 
from sklearn.preprocessing import normalize 
sympy.init_printing(use_latex='mathjax') 

from matplotlib.colors import LightSource 
from matplotlib.patches import Ellipse 
 

 

rho_titan = 5.280 

rho_earth = 1.217 

rho_mars = 0.020 

rho_helium_titan = 0.728 

rho_helium_earth = 0.178 

rho_helium_mars = 0.002 

added_mass_titan = 45.0 

added_mass_earth = 0.5 

added_mass_mars = 0.1 

g_titan = 1.352 

g_earth = 9.81 

g_mars = 3.71 

vol_titan = 11.534 

vol_earth = 1.925 

vol_mars = 88.134 



/*--------------------------------*- C++ -
*----------------------------------*\
| ========= |
|
| \\      /  F ield | OpenFOAM: The Open Source CFD Toolbox    
|
|  \\    /   O peration     | Version:  4.1
|
|   \\  /    A nd | Web:      www.OpenFOAM.org
|
|    \\/     M anipulation  |
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class dictionary;
    location    "system";
    object      controlDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

application     pisoFoam;

startFrom startTime;

startTime 7.2;

stopAt endTime;

endTime 50000;

deltaT 0.0002;

writeControl    timeStep;

writeInterval   1000;

purgeWrite      1;

writeFormat     ascii;

writePrecision  6;

writeCompression off;

timeFormat      general;

Appendix B: BALLET Aerodynamics Analysis 



timePrecision   6;

runTimeModifiable true;

functions
{
    #include "forces"
}

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "system";
    object      fvSchemes;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

ddtSchemes
{
    default         Euler;
}

gradSchemes
{
    default         Gauss linear;
}

divSchemes
{
    default         none;
    div(phi,U)      Gauss LUST grad(U);
    div((nuEff*dev2(T(grad(U))))) Gauss linear;
}

laplacianSchemes
{
    default         Gauss linear corrected;
}

interpolationSchemes
{



    default         linear;
}

snGradSchemes
{
    default         corrected;
}

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "system";
    object      fvSolution;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

solvers
{
    p
    {
        solver          GAMG;
        tolerance       1e-06;
        relTol          0.1;
        smoother        GaussSeidel;
    }

    pFinal
    {
        $p;
        tolerance       1e-06;
        relTol          0;
    }

    "(U|k|epsilon|omega|R|nuTilda)"
    {
        solver          smoothSolver;
        smoother        GaussSeidel;
        tolerance       1e-05;
        relTol          0;
    }
}



PISO
{
    nCorrectors     2;
    nNonOrthogonalCorrectors 0;
    pRefCell        0;
    pRefValue       0;
}

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    object      blockMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

convertToMeters 1;

vertices
(
    (-4 0 0)
    (-4 0  3)
    (-4 5 3)
    (-4 5 0)
    (8 0 0)
    (8 0 3)
    (8 5 3)
    (8 5 0)
);

blocks
(
    hex (0 4 7 3 1 5 6 2) (36 15 9) simpleGrading (1 1 1)
);

edges
(
);

boundary
(
    inletWall



    {
        type patch;
        faces
        (
            (0 1 2 3)
            (5 6 2 1)
            (7 3 2 6)
        );
    }
    sym
    {
        type symmetry;
        faces
        (
            (7 4 0 3)
            (4 5 1 0)
        );
    }
    outletWalls
    {
        type patch;
        faces
        (
            (7 6 5 4)
        );
    }
);

mergePatchPairs
(
);

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    object      snappyHexMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

// Which of the steps to run
castellatedMesh true;
snap            true;
addLayers       true;

// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{
    titan_balloon.stl
    {
        type triSurfaceMesh;
        scale 0.01;
        name titan_balloon;
    }

    refinementBox
    {
        type searchableBox;
        min (-1.5 -0.5 -0.5);
        max (8 3.0 2.0);



    }
};

// Settings for the castellatedMesh generation.
castellatedMeshControls
{

    // Refinement parameters
    // ~~~~~~~~~~~~~~~~~~~~~

    // If local number of cells is >= maxLocalCells on any processor
    // switches from from refinement followed by balancing
    // (current method) to (weighted) balancing before refinement.
    maxLocalCells 100000;

    // Overall cell limit (approximately). Refinement will stop 
immediately
    // upon reaching this number so a refinement level might not 
complete.
    // Note that this is the number of cells before removing the part 
which
    // is not 'visible' from the keepPoint. The final number of cells 
might
    // actually be a lot less.
    maxGlobalCells 2000000000;

    // The surface refinement loop might spend lots of iterations 
refining just a
    // few cells. This setting will cause refinement to stop if <= 
minimumRefine
    // are selected for refinement. Note: it will at least do one 
iteration
    // (unless the number of cells to refine is 0)
    minRefinementCells 10;

    // Allow a certain level of imbalance during refining
    // (since balancing is quite expensive)
    // Expressed as fraction of perfect balance (= overall number of 
cells /
    // nProcs). 0=balance always.
    maxLoadUnbalance 0.10;

    // Number of buffer layers between different levels.
    // 1 means normal 2:1 refinement restriction, larger means slower
    // refinement.
    nCellsBetweenLevels 4;



    // Explicit feature edge refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies a level for any cell intersected by its edges.
    // This is a featureEdgeMesh, read from constant/triSurface for 
now.
    features
    (
    );

    // Surface based refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies two levels for every surface. The first is the 
minimum level,
    // every cell intersecting a surface gets refined up to the 
minimum level.
    // The second level is the maximum level. Cells that 'see' 
multiple
    // intersections where the intersections make an
    // angle > resolveFeatureAngle get refined up to the maximum 
level.

    refinementSurfaces
    {
        titan_balloon
        {
            // Surface-wise min and max refinement level
            level (4 4);
        }
    }

    // Resolve sharp angles
    resolveFeatureAngle 30;

    // Region-wise refinement
    // ~~~~~~~~~~~~~~~~~~~~~~

    // Specifies refinement level for cells in relation to a surface. 
One of
    // three modes
    // - distance. 'levels' specifies per distance to the surface the
    //   wanted refinement level. The distances need to be specified 
in
    //   descending order.



    // - inside. 'levels' is only one entry and only the level is 
used. All
    //   cells inside the surface get refined up to the level. The 
surface
    //   needs to be closed for this to be possible.
    // - outside. Same but cells outside.

    refinementRegions
    {
        refinementBox
        {
            mode inside;
            levels ((1.0 2));
        }
    }

    // Mesh selection
    // ~~~~~~~~~~~~~~

    // After refinement patches get added for all refinementSurfaces 
and
    // all cells intersecting the surfaces get put into these patches. 
The
    // section reachable from the locationInMesh is kept.
    // NOTE: This point should never be on a face, always inside a 
cell, even
    // after refinement.
    locationInMesh (4.9 2.9 1.9);

    // Whether any faceZones (as specified in the refinementSurfaces)
    // are only on the boundary of corresponding cellZones or also 
allow
    // free-standing zone faces. Not used if there are no faceZones.
    allowFreeStandingZoneFaces true;
}

// Settings for the snapping.
snapControls
{
    //- Number of patch smoothing iterations before finding 
correspondence
    //  to surface
    nSmoothPatch 5;

    //- Relative distance for points to be attracted by surface 
feature point



    //  or edge. True distance is this factor times local
    //  maximum edge length.
    tolerance 4.0;

    //- Number of mesh displacement relaxation iterations.
    nSolveIter 0;

    //- Maximum number of snapping relaxation iterations. Should stop
    //  before upon reaching a correct mesh.
    nRelaxIter 5;

    // Feature snapping

        //- Number of feature edge snapping iterations.
        //  Leave out altogether to disable.
        //nFeatureSnapIter 10;

        //- Detect (geometric only) features by sampling the surface
        //  (default=false).
        //implicitFeatureSnap false;

        //- Use castellatedMeshControls::features (default = true)
        //explicitFeatureSnap true;

        //- Detect points on multiple surfaces (only for 
explicitFeatureSnap)
        //multiRegionFeatureSnap false;
}

// Settings for the layer addition.
addLayersControls
{
    // Are the thickness parameters below relative to the undistorted
    // size of the refined cell outside layer (true) or absolute sizes 
(false).
    relativeSizes false;

    // Per final patch (so not geometry!) the layer information
    layers
    {
        "titan_balloon.*"
        {
            nSurfaceLayers 10;
        }
    }

    // Expansion factor for layer mesh
    expansionRatio 1.2;



    // Wanted thickness of final added cell layer. If multiple layers
    // is the thickness of the layer furthest away from the wall.
    // Relative to undistorted size of cell outside layer.
    // See relativeSizes parameter.
    finalLayerThickness 0.01;

    // Minimum thickness of cell layer. If for any reason layer
    // cannot be above minThickness do not add layer.
    // Relative to undistorted size of cell outside layer.
    minThickness 0.0001;

    // If points get not extruded do nGrow layers of connected faces 
that are
    // also not grown. This helps convergence of the layer addition 
process
    // close to features.
    // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x)
    nGrow 0;

    // Advanced settings

    // When not to extrude surface. 0 is flat surface, 90 is when two 
faces
    // are perpendicular
    featureAngle 30;

    // At non-patched sides allow mesh to slip if extrusion direction 
makes
    // angle larger than slipFeatureAngle.
    slipFeatureAngle 30;

    // Maximum number of snapping relaxation iterations. Should stop
    // before upon reaching a correct mesh.
    nRelaxIter 3;

    // Number of smoothing iterations of surface normals
    nSmoothSurfaceNormals 3;

    // Number of smoothing iterations of interior mesh movement 
direction
    nSmoothNormals 3;

    // Smooth layer thickness over surface patches
    nSmoothThickness 10;

    // Stop layer growth on highly warped cells
    maxFaceThicknessRatio 0.5;

    // Reduce layer growth where ratio thickness to medial



    // distance is large
    maxThicknessToMedialRatio 0.3;

    // Angle used to pick up medial axis points
    // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 
130 in 17x.
    minMedianAxisAngle 90;

    // Create buffer region for new layer terminations
    nBufferCellsNoExtrude 0;

    // Overall max number of layer addition iterations. The mesher 
will exit
    // if it reaches this number of iterations; possibly with an 
illegal
    // mesh.
    nLayerIter 5000;
}

// Generic mesh quality settings. At any undoable phase these 
determine
// where to undo.
meshQualityControls
{
    #include "meshQualityDict"

    // Advanced

    //- Number of error distribution iterations
    nSmoothScale 4;
    //- Amount to scale back displacement at error points
    errorReduction 0.75;
}

// Advanced

// Write flags
writeFlags
(
    scalarLevels
    layerSets
    layerFields     // write volScalarField for layer coverage
);



// Merge tolerance. Is fraction of overall bounding box of initial 
mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1e-6;

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "constant";
    object      transportProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

transportModel  Newtonian;

nu              [0 2 -1 0 0 0 0] 0.000001246212121;

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "constant";
    object      turbulenceProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

simulationType laminar;

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       volVectorField;
    object      U;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

dimensions      [0 1 -1 0 0 0 0];

internalField   uniform (1 0 0);

boundaryField
{
    inletWall
    {
        type            freestream;
        freestreamValue $internalField;
    }

    outletWalls
    {
        type            zeroGradient;
    }

    "titan_balloon*"
    {
        type            noSlip;
    }

    sym
    {
        type            symmetry;
    }



}

// 
**********************************************************************
*** //



/*--------------------------------*- C++ -
*----------------------------------*\
| =========                 |                                                 
|
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           
|
|  \\    /   O peration     | Version:  4.1                                   
|
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      
|
|    \\/     M anipulation  |                                                 
|
\*--------------------------------------------------------------------
-------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       volScalarField;
    object      p;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * //

dimensions      [0 2 -2 0 0 0 0];

internalField   uniform 0;

boundaryField
{
    inletWall
    {
        type            zeroGradient;
    }

    outletWalls
    {
        type            fixedValue;
        value           $internalField;
    }

    "titan_balloon*"
    {
        type            zeroGradient;
    }

    sym
    {
        type            symmetry;
    }



}

// 
**********************************************************************
*** //



Appendix C: Locomotion and Visualization Software 

The following is the listing of the Ballet.py file for creating the Ballet model and the algorithms for 

its mobility 
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The following is the listing of the BalletVisualization.py file for generating the 3D display and 

animation of BALLET 
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