
BALLET

Balloon Locomotion for Extreme Terrain

NASA Innovative Advanced Concepts (NIAC) Phase I Final Report

Principal Investigator:
Co-Investigators:

Research Technologist:

Date:

Hari Nayar
Michael Pauken
Morgan Cable
Michael Hans

March 4, 2019

https://ntrs.nasa.gov/search.jsp?R=20190002499 2019-08-30T21:29:21+00:00Z

©2017 California Institute of Technology. Government sponsorship acknowledged. 2

Table of Contents
1. Introduction ... 3

1.1. Concept Description .. 3

1.2. Motivation .. 4

1.3. Phase 1 Study Overview ... 4

2. Science Objectives ... 5

2.1. Mars Recurring Slope Lineae ... 5

2.2. Titan Shorelines .. 6

2.3. Titan Dunes ... 7

2.4. Titan Cryovolcanic regions .. 8

3. Mission Formulation.. 11

3.1. Spacecraft and Deployment .. 11

3.2. Mechanical Design and Materials ... 17

4. Concept Evaluation... 18

4.1. Analyses .. 18

4.2. Results ... 23

4.2.1. Titan.. 23

4.2.2. Mars.. 29

4.2.3. Earth ... 34

5. Locomotion ... 38

5.1. Obstacle Avoidance Motion Planning ... 39

5.2. Path Planning and Foot Trajectory Control .. 39

5.3. BALLET Model and 3D Visualization .. 42

6. Conclusions .. 44

Acknowledgements .. 47

References ... 47

Appendix A: Analysis Software Listing……………………………………………………… A.1

Appendix B: OpenFOAM Aerodynamics Software Listing……………………………… B.1

Appendix C: Locomotion and Visualization Software Listing…………………………… C.1

©2017 California Institute of Technology. Government sponsorship acknowledged. 3

1. Introduction

1.1. Concept Description

BALLET is a limbed robot that uses a balloon for its structure and has its payload in its feet.

Science and engineering sub-systems on BALLET including instruments, electronics,

power and control systems, and energy storage are evenly distributed into six modular feet.

Each foot is connected to the balloon using three cables (Figure 1) -- the minimum needed

to control the foot position in 3-D. Cable lengths are controlled using three winches within

each foot. Coordinated control of cable lengths places each foot at desired locations on the

ground.

To locomote BALLET lifts one foot at a time, places it at a new location on the ground, then

re-positions the balloon with respect to the new feet positions by re-adjusting all cable

lengths. This procedure is repeated in sequence for the other feet. The balloon is small

relative to the total payload mass because the buoyancy required is only needed to lift one

foot, i.e. one-sixth of the total payload. BALLET is stable because it is effectively anchored

to the ground with its CG close to ground level. An additional advantage BALLET offers is

Figure 1 Visualization of the BALLET concept with balloon and 6 suspended payloads serving as feet. Each
payload is connected to the balloon by 3 cables that allow positioning of the payload with respect to the
balloon.

©2017 California Institute of Technology. Government sponsorship acknowledged. 4

the potential to add a secondary mission by jettisoning five of its payloads and performing

atmospheric exploration as a conventional balloon. While the physics of BALLET will apply

on Venus, the environmental conditions and available component technology limit our

consideration to Mars and Titan.

A thorough review of prior published research on surface mobility systems and on balloons

for Earth and planetary exploration applications was performed to gather background

information on BALLET. Survey papers, for example, on mobility [Seeni 2010] and balloons

[Cutts 1995, Elfes 2003, Elfes 2008] do not describe this new hybrid concept. A range of

options have been considered [Backes 2008, Nesnas 2012, Seeni 2010, Wilcox 2007] for

access to rugged terrain on planetary surfaces. Some unusual surface mobility concepts

with light-weight or buoyant components have been reported. For example, rovers with

inflatable wheels and wind-driven tumbleweed rovers [Hajos 2005]. Underwater walking

robots [Schue 1993] have been proposed and developed that use the physics principals of

BALLET although none put their payload in their feet.

1.2. Motivation

Safe and stable in-situ access to steep and rugged terrain has the potential for enormous

science value in understanding geology, surface and subsurface chemistry, hydrology and

potentially prebiotic processes on Titan and Mars. Exploration of these destinations are

prioritized in the 2013 Decadal Survey [Space Studies Board, 2013].

Wheeled vehicles are used for surface exploration missions because they are relatively

simple and highly efficient in traversing over benign terrain. Operational constraints for Mars

(and likely for other planetary surfaces) limit their traverse over obstacles to less than the

wheel height and slopes less than 20o. As a consequence, sites chosen for Mars’ missions

trade-off science against mobility. Conventional legged vehicles handle more difficult terrain

but with greater mass and complexity, and reduced stability and safety.

1.3. Phase 1 Study Overview

This report documents the work performed in our investigation into the BALLET concept.

We focused on four areas in this Phase I effort. They were 1) identifying the science targets

and objectives with the corresponding requisite instrumentation and operational capabilities

that could be achieved with a BALLET mission, 2) developing an architecture for the

deployment and operation of this concept for a future mission to a planetary body, 3)

analyzing a parametric physical model of BALLET under the environmental conditions of

Mars, Titan and Earth to determine its feasibility, and 4) developing and demonstrating

©2017 California Institute of Technology. Government sponsorship acknowledged. 5

coordinated control of the BALLET mobility system to enable locomotion over rugged

terrain. The results of our investigations in these focus areas are documented in the

following sections. A paper summarizing the preliminary results from this study has been

accepted for publication and presentation at the 2019 IEEE Aerospace Conference [Nayar,

2019].

2. Science Objectives

2.1. Mars Recurring Slope Lineae

Recurring slope lineae (RSL) are one of the primary targets for understanding the

hydrologic cycle and possibility of extant life on Mars. These features are narrow, dark

markings on steep slopes that appear and incrementally lengthen during warm seasons

(Figure 2). RSL fade in cooler seasons and recur over multiple Mars years. They are

associated with hydrated salts (Ojha et al. 2015) and are believed to be formed by

intermittent flow of briny water (McEwen et al. 2014). These briny environments could be

host to life such as halophilic microorganisms (Oren et al. 2014). However, access to these

tantalizing features is a challenge as they only occur on slopes of 25-40°.

Unambiguous life detection in RSL would be significantly challenging without in situ

sampling. Several techniques exist that can discern biosignatures (amino acids, fatty acids,

Figure 2 Recurring slope lineae (RSL) on the steep slopes of ancient bedrock in Coprates Chasma.

©2017 California Institute of Technology. Government sponsorship acknowledged. 6

nucleobases, etc.) in situ, even in the presence of significant salt concentrations, and

techniques such as sublimation or supercritical water extraction can be used to separate

biomolecules from salty matrices for analysis downstream. Sampling a transect and/or a

depth profile would strengthen the credibility of any positive biosignature detection. A

payload suite containing biosignature detection instrumentation and probes to monitor soil

properties (Table 1) would provide life detection capability placed in context important for

interpretation of those measurements.

2.2. Titan Shorelines

Titan, the largest moon of Saturn, has many challenging regions that could be

accessed via the BALLET platform. Titan is the only other body aside from Earth with

standing liquid on its surface. However, due to its low surface temperature (94 K), this liquid

is not water but hydrocarbons – primarily methane and ethane, which pool in lakes at the

Figure 3 (Left) Bathymetric profile of Ontario Lacus, a lake in the south polar region of Titan, from Hayes et

al. 2010. (Right) Cassini radar altimeter data for Vid Flumina, a methane-filled canyon in the northern

hemisphere flowing into Ligeia Mare, Titan’s second-largest sea, from Poggiali et al. 2016. Both have edges

too steep for a traditional rover to access.

©2017 California Institute of Technology. Government sponsorship acknowledged. 7

poles (Stofan et al. 2007). Due to the absorption and scattering of methane and haze

particles in Titan’s atmosphere, respectively, determination of surface composition by

remote sensing is extremely challenging. Observations through the methane windows in

the NIR only allows rough slopes to be estimated; no spectral assignments can be made to

identify species. In situ sampling, or spectroscopy at the surface, avoids these issues.

Further, in situ missions have much greater spatial resolution, and are able to discern trends

invisible to orbit or flyby missions.

Recent work provides fairly rigorous constraints on the composition of the lake liquid

(Mitchell et al. 2015); however, the composition of the evaporite region around existing

lakes and of dry lakebeds (Cordier et al. 2013 and references therein) is still a mystery.

Though many lake landers and submersibles have been proposed (Stofan et al. 2010,

Oleson et al. 2015), it is questionable whether such a platform could navigate to safely

sample the edge of the lake where the evaporite resides, especially considering that most

of these depressions either have steep walls (Hayes et al. 2010, Poggiali et al. 2016) or are

surrounded by topographically high areas on the order of 1 km over distances of 50-100

km (Lopes et al. 2007a) (see Figure 3). Any platform would certainly benefit from being able

to move along the evaporite, as the composition likely changes with radial distance (less

soluble species will precipitate first, and should reside in an outer ring around the lake, while

more soluble species will precipitate last and be concentrated closer to the center). Several

instruments (Table 1) would help with identification of key molecules and their chemical

environments (co-crystal, clathrate, etc.).

2.3. Titan Dunes

The dunes in the equatorial region of Titan (Figure 4) are another primary target of

exploration. These are found mainly within ±30° of the equator in dark regions (in the visible,

NIR and radar), and cover approximately 20% of Titan's surface (Radebaugh et al. 2008,

Lorenz and Radebaugh 2009). Though the fact that they are dark in most wavelengths

suggests they are comprised of a significant proportion of organics, we still do not know the

composition of these dunes, or how they formed or may be changing. The dunes appear to

be approximately 100 m in height, with slopes ranging from steep (20:1 to 50:1) to shallow

(200:1), though higher slopes could be present below the resolution of Cassini radar. We

note that the steepest slope attempted by any rover on Mars to date is 32°, and slippage

was so great in this case that the course was abandoned (Webster et al. 2016). Slopes

greater than 20° are considered steep for rover traversal; this becomes significantly more

challenging on terrains with loose material, as unconsolidated dune inclines most likely

would have.

©2017 California Institute of Technology. Government sponsorship acknowledged. 8

2.4. Titan Cryovolcanic regions

Several areas of Titan’s surface, such as Sotra Patera and Hotei Regio (Figure 5), have

features that have been identified as putative cryovolcanoes (Lopes et al. 2013).

Cryovolcanism may be an important resurfacing process on Titan, and may also be a major

contributor to atmospheric methane (Lopes et al. 2007b). Importantly, these regions may

be the only places on Titan where material from the global, subsurface water ocean is being

expressed on the surface. Any mission seeking to understand the habitability of this

subsurface ocean would find areas of cryovolcanism very attractive sampling sites. As

these regions exhibit some of the greatest elevation change on Titan’s surface, only a

mission architecture capable of traversing/sampling steep slopes can reach these areas to

confirm their composition and origin.

Figure 4 Cassini SAR image of dunes in Shangri-La, Titan. Image credit: NASA/JPL-Caltech/ASI.

©2017 California Institute of Technology. Government sponsorship acknowledged. 9

Figure 5 Digital elevation model (DEM) of Hotei Regio, an area of putative cryovolcanism on Titan. From

Lopes et al. 2013.

©2017 California Institute of Technology. Government sponsorship acknowledged. 10

Table 1 Baseline instrument payload for a BALLET mission. *These instruments exceed the payload limit for

a foot on Mars but future lighter-weight versions will likely be available in the timeframe for a BALLET mission.

Instrument Description Body Mass Power

High-resolution
mass spec
(Orbitrap)

Non-pyrolysis front end (liquid chromatography, MALDI,
etc.) – prototypes are under development that may fit within
the required mass envelope for BALLET.

Titan 10 kg 50 W

Microfluidics
package

Labeling of key functional groups and biochemistry and
cold separation with ethanol or a similar solvent.
Prototypes at JPL and UC Berkeley/SSL fit well within
mass/power/volume requirements.

Mars/Titan 4.0
kg

20 W

Raman
microscope
(SHERLOC)

Key molecular species on Titan form co-crystals and other
structures which are uniquely identified with Raman
spectroscopy. The microscope enables mapping of small
images to determine grain composition (as opposed to bulk
composition) and context. SHERLOC is being designed to
fit on the arm of Mars2020, so this instrument should fit
within mass/volume constraints.

Titan 4.5
kg

80 W

Seismic package Geophone or seismometer with 3-axis arrival information.
This could help detect cryovolcanic events or ‘booming’ of
dunes.

Titan 1.2
kg

0.05
W

Gas
chromatograph
mass
spectrometer

Needed to separate biomarkers (i.e., chiral amino acids,
peptides, lipids) and enable identification of structural
isomers (i.e., glycine and methyl carbamate) or branching
in long carbon chains.

Mars 2.0
kg

16 W

Vis/NIR imaging
spectrometer

To identify hydrated salts and areas where water is
concentrated for in situ sampling.

Mars/Titan 3.7
kg

46 W

Environmental
sensing (REMS)

Rover Environmental Monitoring Station instrument
measures the thermal environment, ultraviolet irradiation
and water cycling.

Mars/Titan 1.2
kg*

17 W

Activity/context
camera
(Mastcam)

Multi-spectral imaging local area for contextual setting. Mars/Titan 1.3
kg*

13 W

Microscopic
camera (RMI)

Remote microscopic imaging of selected site. The foot
placement system would be used select site.

Mars/Titan 0.3
kg

<10 W

Near IR
Spectrometer
(MicrOmega)

Ultra-miniaturized spectral microscope for in situ analysis
of samples.

Mars/Titan 1 kg 7 W

Di-electric & soil
properties probe
(SPARTTA)

Soil shear Properties Assessment, Resistance, Thermal,
and Triboelectric Analysis multiTool for shallow subsurface
measurements.

Mars/Titan 1 kg 5 W

Digital
holographic
microscope

Capable of distinguishing between particles and cells via
density and motility.

Mars/Titan 10 kg 15 W

Wet Chemistry
Laboratory
(WCL)

Measurement of soil pH, eH and conductivity, along with
ion-selective electrodes for key ions of interest (calcium,
magnesium, etc.)

Mars <10
kg

<15 W

©2017 California Institute of Technology. Government sponsorship acknowledged. 11

3. Mission Formulation

3.1. Spacecraft and Deployment

The BALLET robotic exploration platform could be adapted to investigate either Titan or

Mars by making appropriate adaptions for each unique atmospheric environment. At Titan,

BALLET could carry 5 kg in each of its six feet and a 45 kg radioisotope thermoelectric

power generator (RTG). The Titan balloon envelope would be made from a laminate of

polyester fabric and film and would have a volume of approximately 12 m3. For Mars,

BALLET could carry 1 kg in each foot and use solar power. An illustration of the BALLET

vehicle concept on Mars is shown in Figure 6. The Mars balloon would be fabricated from

a bi-laminate Mylar film and the envelope volume would be about 88 m3. Laminated film

materials are less susceptible to pin hole leaks than single layer films. The science payload

and supporting systems for power, telecom, command and data handling would be divided

among the feet that anchor the balloon to the surface.

Figure 6 The BALLET vehicle floats above the Martian surface while the payload

instruments anchor the balloon to the ground. (Background image courtesy NASA).

The BALLET vehicle would be packaged inside a nested flight system for delivery to Titan

or Mars. The major flight system components include a carrier vehicle, atmospheric entry

system, lander platform and the BALLET vehicle. The carrier vehicle depicted in Figure 7

would be powered with its own RTG system for Titan and would also serve as an orbiting

©2017 California Institute of Technology. Government sponsorship acknowledged. 12

communication relay. As an orbiter, it could have its own science mission that could

compliment the BALLET mission. For a Mars mission the carrier vehicle would use solar

arrays for power and it is assumed communications can be accommodated with existing

orbiting assets. Therefore, the Mars carrier vehicle would not serve any other purpose than

to deliver BALLET to Mars. This is similar to a cruise stage used to deliver Mars rovers and

landers.

Figure 7. The BALLET vehicle is packaged within a Cruise Vehicle transport to Mars or

Titan.

After launch, the cruise vehicle would separate from the launch vehicle and provide for all

thermal, power and communication needs for BALLET. Health checks and software

uploads would be typical interaction with the vehicle during cruise to either Mars or Titan.

The cruise vehicle would have propulsion needed to provide trajectory correction

maneuvers and spin capabilities for inertial guidance. The Titan cruise vehicle would also

need to reject RTG waste heat from both the cruise and the BALLET vehicles. The Mars

cruise vehicle does not need this capability.

As the spacecraft approaches Mars or Titan the atmospheric entry vehicle, as illustrated in

Figure 8, would separate from the cruise vehicle. For a Mars mission, the cruise vehicle

©2017 California Institute of Technology. Government sponsorship acknowledged. 13

would stop spinning and separate from the entry vehicle about 20 minutes prior to

atmospheric entry. The cruise vehicle would then be diverted to a separate trajectory into

the atmosphere to avoid collision with the entry vehicle. Ultimately the cruise vehicle would

impact the Mars surface. For a Titan mission, the cruise vehicle would enter into an orbit

around Titan and become an orbiter. The entry vehicle would be kicked off the orbiter which

would track the progress of the entry into the atmosphere. The orbiter continues to circle

Titan and perform relay functions for the BALLET vehicle during entry, deployment and

mission operations.

Figure 8 The BALLET vehicle is protected from atmospheric entry by an aeroshell.
(Background image credit NASA Solar Systems Directorate).

The sequence of events between atmospheric entry and landing the BALLET vehicle is

shown in Figure 9. Upon atmospheric entry, shown in panel A, the heat shield removes a

significant amount of energy from vehicle slowing it down until a parachute can be deployed.

The shape of the aeroshell and location of the center of gravity could be designed such that

©2017 California Institute of Technology. Government sponsorship acknowledged. 14

it could be used as a lifting body and provide guided entry (panel B) to reduce landing ellipse

error for the target destination. Backshell thrusters would be used to provide navigational

guidance during entry. Deployment of the parachute uses a drogue chute first to pull out

the main parachute (panel C). Once the parachute deployment has stabilized, the heat

shield would be jettisoned (panel D) and fall to the ground and out of the way of the vehicle.

As the BALLET lander approaches the surface (panel E), the lander legs would be deployed

and it would be dropped from the backshell. Then descent thrusters and guidance

navigation would slow the lander until touchdown on the surface. Lander rocket thrusters

would also perform a lateral maneuver to avoid collision between the falling

backshell/parachute and the lander vehicle during descent.

Figure 9 Atmospheric entry sequence for landing the BALLET vehicle. Panel A shows entry into

the atmosphere and heating. Panel B shows the guided entry phase. Panel C shows the deployment
of the parachute to slow the spacecraft down. Panel D shows the ejection of the heat shield and the
descent of the spacecraft. Panel E shows the parachute jettisoned and the use of thrusters for
power landing on the surface.

©2017 California Institute of Technology. Government sponsorship acknowledged. 15

After the lander pallet has reached the surface as shown in Figure 10, the BALLET balloon

would be inflated as shown in Figure 11. The balloon sits on the top of the lander pallet and

is released from a constraint envelop which holds the folded balloon in place until ready for

inflation. Compressed helium gas would be stored on board the lander for balloon inflation.

The science payload would be packaged on the top surface of the lander but underneath

the balloon. An inflation hose connected to the balloon would be cut after the inflation is

completed and a valve on the balloon would be closed to seal the balloon. After the inflation

hose is cut, the balloon would be raised up from the lander by extending the instrument

tethers. Once the balloon is stable, the BALLET vehicle would move the feet using the

tethers to walk off the lander and move to a target destination and begin its science mission

as shown in Figure 12.

Figure 10 The BALLET Lander pallet configuration deployed on the surface of Mars or

Titan.

©2017 California Institute of Technology. Government sponsorship acknowledged. 16

Figure 11 The BALLET balloon is inflated from the top of the lander pallet while the

science payload remains in place.

©2017 California Institute of Technology. Government sponsorship acknowledged. 17

Figure 12 The BALLET vehicle walks off the Lander Pallet to begin the mobile science

mission.

3.2. Mechanical Design and Materials

The balloon envelop would be constructed from gores that are connected together using

pressure and heat sealed overlapping seams. JPL technology development programs in

the 2000s for Mars and Titan balloons used these kinds of seals on envelope gores. The

end fitting there the inflation tube is connected has a circular doubler layer to reduce stress

since this region is a stress concentration point. Anchor points for the tethers would also be

attached using a pressure and heat sealed patch which incorporate a loop for securing a

tether line to the balloon envelope. The patches would be sized to accommodate the tensile

stresses induced by the loads on the tethers during motion and wind drag. The ends of the

balloon are oval or circular caps that are sealed to each of the longitudinal gores. The gores

and end caps are evident in the illustrations shown in Figures 6, 11 and 12.

©2017 California Institute of Technology. Government sponsorship acknowledged. 18

Packaging the balloon for stowage on the lander pallet involves folding the balloon along

the length of the gores and laying the folded gores on top of each other. Thin sheets of

packing material would be placed between the gores. The packing material falls away from

the balloon during inflation. This method provides sufficient curvature radius in the center

of each gore to prevent pinholes from being formed in the envelope. After the balloon is

folded by gores, it is carefully rolled up from each end towards the center. During inflation,

the balloon would simultaneously unroll and unfold. The folded balloon is not tightly packed

like parachutes normally are. The packing density of the balloon needs to be comparatively

low to prevent folding pinholes into double folded corners that often arise in packing

balloons. A restraint cover is placed over the balloon to secure it to the lander pallet during

transit. The restraint cover is removed prior to inflation on the planetary surface.

4. Concept Evaluation

4.1. Analyses

Analyses were performed with the goal of characterizing the stability of the BALLET balloon

in the environments of Earth, Mars, and Titan. A representative balloon size was chosen

for these analyses as defined by Equation (1).

 (1)

Where a, b, and c are the lengths of the semi-major axes in the x, y, and z directions

respectively.

Due to symmetry, the buoyant force of the balloon is assumed to act at the center of the

ellipsoid. According the Archimedes' principle, the buoyant force is equal to the weight of

the air displaced by the balloon. In this analysis, the buoyant force is considered to be the

total upward force after subtracting the weight of mass added to the balloon. Added mass

includes the mass of the balloon material, as well as the RTG proposed for a mission to

Titan. The buoyant force 𝐹𝑏 and balloon volume V are given by:

 (2)

 (3)

𝜌𝑎𝑡𝑚 is the atmospheric density, 𝜌𝐻𝑒 is the density of helium at the planet's surface, 𝑔 is the

gravitational acceleration, 𝑚𝑎𝑑𝑑 is mass added to the balloon, and a, b, and c are the

semimajor axis given in Equation (1). Note that the density of the atmosphere and helium

can vary cyclically with days and seasons on Earth, Mars, and Titan causing the buoyant

©2017 California Institute of Technology. Government sponsorship acknowledged. 19

force to fluctuate according to Equation (2). Initial estimates of required balloon volume for

testing on Earth and proposed missions to Titan and Mars are shown in Table 2 with added

mass and buoyant force. Table 2 also shows the semi-major axis lengths resulting from the

defined balloon volumes, following the relationship defined in Equation (1).

Each limb of BALLET is made up of three cables connecting the balloon and a payload. In

this analysis each limb is simplified as a single cable connecting the payload center to the

average position of the three connection points on the balloon.

Stability Analysis

The method used here to determine the

stability of the BALLET balloon is to quantify

the upper and lower bounds of the mass of

the feet. If the foot mass is too low, the

balloon is at risk of sliding or being lifted off

the ground with gusts of wind. With a foot

mass that is too great, the balloon may tilt

or become unstable when lifting a leg.

Finding the acceptable range of the mass

of the foot will help maintain mission safety

while providing requirements for the

scientific instruments that can be chosen.

Figure 13 depicts the static force and

moment balance analysis that is performed

in this paper. The simplification of the limbs

as single, vertical cables reduces the

number of static balance equations to

three:

Table 2 Balloon sizes and shapes on Earth, Titan, and Mars. The table

considers the three proposed locations (rows) and four parameters of

interest (columns) and provides information for each of the parameters

specific to the location that the balloon would be deployed.

Figure 13 Top (top) and side (bottom) views of free

body diagram of BALLET. The simplified model,

where each payload is treated as a single vertical

force at the average cable connection position is

depicted. Given this configuration, only forces in the

z axis and moments about the x and y axes are

relevant. The buoyant force is treated as a single

vertical force acting at the geometric center of the

balloon.

©2017 California Institute of Technology. Government sponsorship acknowledged. 20

 (4)

 (5)

 (6)

where Mx are moments about the x axis, My are moments about the y axis, and Fz are forces

in the z axis.

Minimum Foot Mass

The minimum mass of the feet can be found with Equation (6). The buoyant force must be

completely counteracted by the weight of the feet. As such, the sum of the weight of all feet

must be equal to or greater than the buoyant force. Assuming all feet will have the same

mass, Equation (7) defines the minimum mass of a single foot mmin as:

 (7)

Where Fb is the buoyant force and g is the acceleration due to gravity. Equation (7) remains

true for both the single and dual limb locomotion techniques.

Maximum Foot Mass

The maximum mass of an individual foot is limited by the moment imparted on the balloon

when lifting feet. At the maximum mass, one or more cables will go to zero tension. If any

additional mass was added, the cable would buckle due to its inability to resist compressive

loads, and the balloon would tilt. In order to solve for the maximum mass, SciPy’s

Sequential Least SQuares Programming (SLSQP) minimization capability was used in

Python. The details of this implementation can be seen in Appendix A. The minimization

problem is defined by Equations (8) and (9) below:

 (8)

 (9)

where x is the mass of a foot, g is the acceleration due to gravity, and T(x,n) is the tension

in the nth cable when the foot mass is x.

The function T(x,n) can be obtained through the static force and moment analysis of

Equations (4), (5), and (6). A diagram of this analysis can be seen in Figure 4.1.1. When

©2017 California Institute of Technology. Government sponsorship acknowledged. 21

lifting one or two feet, the analysis yields an underdetermined system with infinite solutions.

In each case this system has three static balance equations. When lifting one foot, there

are five unknown cable tensions. When lifting two feet, there are four unknown cable

tensions. In order to find a solution to this system, a least squares method was used. This

method finds the solution where the magnitude of the solution vector is a minimum, while

still satisfying the system of equations.

Aerodynamic Force Analysis

Aerodynamic forces will affect BALLET on Earth, Mars, and Titan. Drag will introduce

transverse forces on the balloon which can cause the feet to slide or otherwise effect the

balloon’s stability. Lift can also be a concern if the balloon begins to tilt relative to the wind

direction. Two methods were used to quantify the effects of wind on BALLET. The first

method estimates drag force FD as:

 (10)

where u is the flow velocity, 𝐶𝐷 is the drag coefficient, ρ is the air density, and A is the

reference area. For these estimates, a 𝐶𝐷 of 0.5 is used.

The second method uses OpenFOAM, an open source software for computational fluid

dynamics. OpenFOAM's PisoFoam solver was used, which finds the transient behavior of

incompressible turbulent flow. To simplify this analysis, no turbulence models were

considered. It is likely that this simplification also results in the worst case aerodynamic

effects due to pressure drag dominating skin friction drag for bluff body shapes like the

BALLET balloon.

OpenFOAM's blockMesh and snappyHexMesh tools were used with an STL model of the

balloon to create a mesh for the simulation. For simulations measuring drag, symmetry was

used on two planes to reduce the problem's complexity. Simulations measuring lift used

symmetry on one plane, allowing for the balloon to tilt. All lift simulations were performed at

an angle of attack of 10 degrees. Simulation flow inlets were given freestream velocity and

zero gradient pressure boundary conditions. Flow outlets were given zero gradient velocity

and zero pressure boundary conditions. Note that for incompressible flow, the pressure

differential drives flow, not the pressure value. These boundary conditions result in a steady

flow at the desired velocity. Flow in both the positive x and positive y axes were simulated

in order to understand how the angle of incoming wind effects BALLET’s stability. The

boundary conditions of the balloon are no-slip velocity and zero gradient pressure, allowing

©2017 California Institute of Technology. Government sponsorship acknowledged. 22

for a boundary layer to form on the balloons surface. Images of typical drag and lift

simulations are depicted in Figure 14.

Earth Proof of Concept Analysis

The final analysis of this report provides a more detailed estimate of a proof-of-concept

BALLET constructed on Earth. The goal of this analysis is to find the range of stable balloon

volumes for the proof-of-concept given the proposed balloon material and payload mass.

Similar to the stable foot mass analysis, SciPy’s SLSQP minimizer was used to solve the

following problem:

 (11)

 (12)

Where V is the balloon volume, 𝑚𝑝is the payload mass, g is the acceleration due to gravity,

and T(V,n) is the tension in cable n at volume V. The buoyant force required when

calculating T(V,n) is obtained through Equation (2), with the additional mass 𝑚𝑎𝑑𝑑

calculated as:

 (13)

Figure 14 Velocity field for drag (left) and lift (right) simulations in OpenFOAM. Flow approaches an

ellipsoid cross section from left to right in both images. The lift simulation uses an angle of attack of

10 degrees. Flow above, below, and in front of the balloon looks very stable. Flow behind the balloon

shows vortices shedding from the rear tip of the ellipsoid. This indicates that a transient simulation is

necessary to find the aerodynamic forces, as these forces will be cyclic rather than approach a steady

state.

©2017 California Institute of Technology. Government sponsorship acknowledged. 23

where 𝜌𝑏 is the area density of the balloon material, and S is the ellipsoid surface area. The

coefficient of
11

10
 is introduced to account for seams and attachment features represented by

a 10% increase in balloon mass.

4.2. Results

4.2.1. Titan

Flat Ground

Figure 15 and Figure 16 depict the maximum stable foot mass on Titan on flat ground for

the balloon size given in Table 4.1.1. These results show the tension in each cable with the

specified leg lifted off the ground. Due to the symmetry of the balloon, there are only four

unique cases.

Figure 15 Titan cable tensions with one payload lifted. The two possible configurations are show with

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding

cable. When leg 1 is lifted, the maximum stable foot mass is 2.89 kg, and the tension in leg 3 goes to

zero. With leg 3 lifted, this mass is 3.45 kg, and the tension in legs 1 and 5 go to zero.

©2017 California Institute of Technology. Government sponsorship acknowledged. 24

As seen in the above figures, at the maximum foot mass one or more tensions go to zero

in all cases. When a single leg is lifted, the moment imparted on the balloon limits the foot

mass. The maximum stable mass in these cases is dependent on balloon shape and

volume. When two opposing legs are lifted as in Figure 16, they cancel out the moment

imparted by a single lifted payload, resulting in no moment on the balloon. The weight of

each payload at the maximum stable mass is equal to half of the buoyant force in this case.

When lifting two opposing payloads simultaneously, only the balloon volume effects the

maximum stable foot mass. This result shows that a two-legged gait provides the most

stable configuration. If maneuvers can be limited to two-legged gaits exclusively, this would

allow more scientific instruments to be stored in the payload or reduce the necessary size

Figure 16 Titan cable tensions with two payloads lifted. The two possible configurations are show with

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding

cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 3.75 kg, and all other tensions go

to zero. With legs 3 and 4 lifted, this mass is also 3.75 kg, and all other tensions go to zero.

©2017 California Institute of Technology. Government sponsorship acknowledged. 25

of the balloon when compared to single-legged gaits. For either case, the minimum stable

foot mass is 1.25kg according to Equation (7).

Figure 17 demonstrates the

benefits of two-legged gaits

more clearly. This figure shows

the tension in the cables while

in a two-legged gait, when the

payload mass is equal to the

maximum stable mass of a

single-legged gait found in

Figure 15 In this case, all cable

tensions are greater than zero,

indicating significantly greater

stability than the single-legged

gait at the same payload mass.

Slope

It may be desirable to pitch the BALLET balloon

when traversing a slope for multiple reasons. On a

steep slope, it is possible that the front or back of the

balloon could come into contact with the slope if a

pitch isn’t applied. Also, if winds are flowing along a

slope, a pitch can be applied to reduce the balloon’s

angle of attack, preventing lift and drag from

overwhelming the balloon. When the BALLET

balloon is pitched, the moment arms that determine

balloon stability are altered as depicted in Figure 18.

Additionally, the moment arms are not equally

affected on opposite sides of the balloon due to the

connection points lying outside of the x-y plane. This

results in the cable tensions shifting toward the front

or back of the balloon in both the single and two-

legged gait patterns. These results are shown in Figure 19 and Figure 20.

Figure 17 Titan cable tensions for a two-legged gait with the maximum

foot mass of single-legged gait of 2.89 kg. Legs 1 and 6 are lifted, and

all other cables have a tension of 0.58 N, showing the greater stability

of two-legged gaits when compared to a single-legged gait with the

same foot mass.

Figure 18 Effect of pitch on the moment

arms created by the cables. Two

ellipsoidal balloons with differing pitch

are superimposed. The pitch causes the

moment arms to differ between the two

cases, such that the greater pitch results

in a smaller moment.

©2017 California Institute of Technology. Government sponsorship acknowledged. 26

All results show at least one cable tension going to zero, indicating a local maximum value

was found. All maximum stable payload masses are also less than their zero pitch

counterparts. Figure 20 also demonstrates the uneven shift in the moment arms. When at

zero pitch, four cable tensions go to zero for two-legged gaits, but at a 30 degree pitch, this

is not the case. This is due to the uneven change in moment arms between the front and

back of the balloon, as described above. For both the zero and 30 degree pitch cases, the

minimum stable payload mass remains at 1.25kg, as defined in Equation (7).

Figure 21 shows the maximum stable payload mass at varying values of pitch, for specific

payloads being lifted. In both of these graphs, the lower line indicates the maximum mass

Figure 19 Titan cable tensions with one payload lifted and a 30 degree pitch. The two possible

configurations are show with a vertical bar at each tension point. The length of these bars is related

to the tension the corresponding cable. When leg 1 is lifted, the maximum stable foot mass is 2.72 kg,

and the tension in leg 3 goes to zero. With leg 3 lifted, this mass is 3.15 kg, and the tension in leg 1

goes to zero.

Figure 20 Titan cable tensions with two payloads lifted and a 30-degree pitch. The two possible

configurations are show with a vertical bar at each tension point. The length of these bars is related to

the tension the corresponding cable. When legs 1 and 6 are lifted, the maximum stable foot mass is

3.08 kg, and the tension in leg 2 goes to zero. With legs 3 and 4 lifted, this mass is 3.41 kg, and the

tension in legs 1 and 2 go to zero.

©2017 California Institute of Technology. Government sponsorship acknowledged. 27

available for the corresponding gait pattern. At low values of pitch the dual leg locomotion

technique shows far more stability than the single legged technique. At high values of pitch,

the advantage of the two-legged gait is greatly minimized, to the point that the single legged

gait is equally stable.

Buoyancy Changes with Atmospheric Conditions

The temperature on Titan’s surface is not known to change drastically over the course of a

day or season (Cottini et al. 2012). This leads to little variation in BALLET’s buoyancy force

over time. Effects of changes in atmospheric conditions were not considered on Titan due

to its fairly stable climate.

Aerodynamic Forces

A first estimate of drag forces on the BALLET balloon using Equation (10) is calculated. A

worst case drag coefficient estimate of 0.5 is used. The resulting drag forces are as follows:

4.073 N drag when flow is in the x direction, and 8.147 N drag when flow in the y direction.

An open-source computational fluid dynamics package, OpenFOAM, was used to simulate

and analyze the aerodynamic forces on BALLET. The simulation parameters used for Titan

are a freestream velocity of 1 m/s, air density of 5.280 kg/m3, and kinematic viscosity of

1.246e-6 m2/s. Kinematic viscosity of Titan’s atmosphere was estimated as that of pure

Nitrogen gas at Titan’s average surface temperature due to the belief that Titan’s

Figure 21 Maximum stable payload mass on Titan at varying pitch for single and dual-legged

locomotion techniques. As pitch increases the maximum stable foot mass decreases in both cases,

with the dual-legged foot mass decreasing at a greater rate. At a pitch value of near 40 degrees the

stability advantages of dual-legged locomotion are lost.

©2017 California Institute of Technology. Government sponsorship acknowledged. 28

atmosphere is greater than 95% Nitrogen. Results of these simulations are presented in

Figure 22

OpenFOAM results show lower drag than the Equation (10) estimate, which is expected

given the large drag coefficient used in that calculation. The simulations also show that it is

preferable to face BALLET into the wind, such that the flow is perpendicular to the balloon’s

smallest cross sectional area. Facing this way will result in the lowest possible drag and lift

forces. The drag forces found in the simulation are significant when compared to the

buoyancy of the proposed titan balloon of 10.14N. In the case that BALLET sees flow from

its y direction, the magnitude of the drag force will about 40% of the buoyant force. The

effect of these forces on stability will need to be analyzed further. In the event that the flow

Figure 22 Aerodynamic forces on Titan at nominal wind speed of 1 m/s. Forces were recorded

with air flowing in the x and y directions. Simulations show initial perturbations in force before

reaching a cyclic steady state. Steady state average values for x direction flow are 0.41 N drag

at zero pitch, 0.65 N drag at 10 degree pitch, and 1.66 N lift at 10 degree pitch. Steady state

average values for y direction flow are 4.05 N drag at zero pitch, 5.55 N drag at 10 degree pitch,

and 9.05 N lift at 10 degree pitch.

©2017 California Institute of Technology. Government sponsorship acknowledged. 29

incidents the balloon at an angle of attack of 10 degrees, the lift forces can be large enough

to carry the balloon away or push it into the ground. Note that the proposed size of the Titan

balloon is large enough to accommodate a 45kg generator. One way to minimize the

expected lift and drag forces is to reconsider the size of this generator, allowing for a

significantly smaller balloon. More analysis can be done to determine the relationship

between lift and angle of attack for this balloon shape, allowing for a maximum acceptable

tilt value to be defined.

4.2.2. Mars

Given the similarities between the Titan, Mars, and Earth analyses, many of the comments

made on the Titan data in the previous section pertain to Mars and Earth as well. These

comments will not be repeated, but the results analysis specific to Mars will be shown.

Flat Ground

The size and shape of the balloon used for this analysis is given in Table 2. The ratio of

semi-major axes remains the same as the Titan analyses, but with increased volume to

create more buoyancy in the thin atmosphere of Mars. The results are displayed on Figures

23 and 24.

Figure 23 Mars cable tensions with one payload lifted. The two possible configurations are show with

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding

cable. When leg 1 is lifted, the maximum stable foot mass is 0.57 kg, and the tension in leg 3 goes to

zero. With leg 3 lifted, this mass is 0.68 kg, and the tension in legs 1 and 5 go to zero.

©2017 California Institute of Technology. Government sponsorship acknowledged. 30

The shape of the resulting force distribution on the balloon is identical to that of the Titan

analysis due to the similar geometry. According to Equation (7) the minimum payload mass

is 0.248 kg.

Slope

The corresponding results for slopes on Earth are shown on Figures 25 and 26. And Figure

27 shows the maximum stable payload mass at varying values of pitch.

Figure 25 Mars cable tensions with one payload lifted and a 30 degree pitch. The two possible

configurations are show with a vertical bar at each tension point. The length of these bars is related to

the tension the corresponding cable. When leg 1 is lifted, the maximum stable foot mass is 0.54 kg,

and the tension in leg 3 goes to zero. With leg 3 lifted, this mass is 0.62 kg, and the tension in leg 1

goes to zero.

Figure 24 Mars cable tensions with two payloads lifted. The two possible configurations are show with

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding

cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 0.74 kg, and all other tensions go

to zero. With legs 3 and 4 lifted, this mass is also 0.74 kg, and all other tensions go to zero.

©2017 California Institute of Technology. Government sponsorship acknowledged. 31

Buoyancy changes with Atmospheric Conditions

Unlike Titan, the temperature of Mars fluctuates greatly on a daily and seasonal basis. This

temperature change will have an impact on the buoyancy of the balloon. The payload mass

must be such that BALLET remains stable for all possible buoyancy values that will be

encountered on Mars. Data from the Viking landers is used to quantify what conditions can

be expected at two different latitudes on Mars.

Figure 26 Mars cable tensions with two payloads lifted and a 30 degree pitch. The two possible

configurations are show with a vertical bar at each tension point. The length of these bars is related

to the tension the corresponding cable. When legs 1 and 6 are lifted, the maximum stable foot mass

is 0.61 kg, and the tension in leg 2 goes to zero. With legs 3 and 4 lifted, this mass is 0.68 kg, and the

tension in legs 1 and 2 go to zero.

Figure 27 Maximum stable payload mass on Mars at varying pitch for single and dual-legged

locomotion techniques. As pitch increases the maximum stable foot mass decreases in both cases,

with the dual-legged foot mass decreasing at a greater rate. At a pitch value of near 40 degrees the

stability advantages of dual-legged locomotion are lost.

©2017 California Institute of Technology. Government sponsorship acknowledged. 32

Figure 28 shows the magnitude of oscillations in buoyancy on a seasonal scale at 22.7 and

47.64 degrees North latitude. Based on this data, Table 3 shows the range of stable payload

masses for dual and single-legged gaits for a long term mission to Mars with a balloon of

the defined volume and shape. These values are at zero pitch and would vary similarly to

Figure 4.2.13 with changes in pitch. At both latitudes the stable minimum mass for a long

term mission is larger than the 0.248 kg estimated at nominal conditions. Similarly, the

maximum mass has decreased in all cases.

 Single-Legged Gait Two-Legged Gait

Latitude [deg N] Minimum Mass [kg] Maximum Mass [kg] Minimum Mass [kg] Maximum Mass [kg]

22.27 0.32308 0.44518345 0.32308 0.57855969

47.64 0.42383 0.50727619 0.42383 0.65925532

Aerodynamic Forces

A first estimate of drag forces on the BALLET balloon using Equation (10) is calculated. A

worst case drag coefficient estimate of 0.5 is used. The resulting drag forces are as follows:

6.501 N drag when flow is in the x direction, and 13.001 N drag when flow in the y direction.

OpenFOAM simulations were performed as previously described. The simulation

parameters used for Mars are a freestream velocity of 10 m/s, air density of 0.020 kg/m3,

and kinematic viscosity of 6.54e-4 m2/s. Kinematic viscosity was estimated as that of pure

Figure 28 Change in buoyancy over time based on Viking lander data. At 22.7 degrees N latitude

the buoyancy of the proposed balloon can vary between about 4.5 and 7.0 N. At 47.64 degrees N

latitude, the buoyancy can vary between about 5 and 9.5 N.

Table 3 Stable payload mass range at Viking lander locations. The table consists of two latitudes

(rows) and four columns of minimum and maximum masses for both gait types.

©2017 California Institute of Technology. Government sponsorship acknowledged. 33

carbon dioxide due to it making up about 95% of Mars’ atmosphere. Results of these

simulations are presented in Figure 29.

Simulation results are larger than expected based on the initial estimate of Equation (10).

This could indicate a need to better tune the expected kinematic viscosity on Mars or to

attempt more simulations with varying viscosity values. Mars’ atmosphere changes

significantly throughout a day and year, which would affect kinematic viscosity and thus the

drag and lift forces. Similar to the Titan results, these show that facing BALLET such that

the wind flows along its x-axis is preferable. Both the Equation (10) estimate and the

OpenFOAM simulations show that aerodynamic forces will be a large problem on Mars.

The required size of the balloon is much larger than on Titan due to the thin atmosphere,

Figure 29 Aerodynamic forces on Mars at nominal wind speed of 10 m/s. Forces were recorded

with air flowing in the x and y directions. Simulations show initial perturbations in force before

reaching a cyclic steady state. Steady state average values for x direction flow are 3.16 N drag

at zero pitch, 3.28 N drag at 10 degree pitch, and 8.31 N lift at 10 degree pitch. Steady state

average values for y direction flow are 11.41 N drag at zero pitch, 15.43 N drag at 10 degree

pitch, and 22.41 N lift at 10 degree pitch.

©2017 California Institute of Technology. Government sponsorship acknowledged. 34

causing these forces to be significant. Additionally, average windspeed on Mars is much

greater than on Titan, exacerbating the issue. These results show that without serious

consideration on how to mitigate these aerodynamic effects, a BALLET balloon on Mars

may not be possible.

4.2.3. Earth

Flat Ground

The corresponding results for flat ground on Earth are shown on Figures 30 and 31.

Slope

Figure 30 Earth cable tensions with one payload lifted. The two possible configurations are show with a

vertical bar at each tension point. The length of these bars is related to the tension the corresponding

cable. When leg 1 is lifted, the maximum stable foot mass is 0.58 kg, and the tension in leg 3 goes to

zero. With leg 3 lifted, this mass is 0.69 kg, and the tension in legs 1 and 5 go to zero.

Figure 31 Earth cable tensions with two payloads lifted. The two possible configurations are show with

a vertical bar at each tension point. The length of these bars is related to the tension the corresponding

cable. When legs 1 and 6 are lifted, the maximum stable foot mass is 0.75 kg, and all other tensions go

to zero. With legs 3 and 4 lifted, this mass is also 0.75 kg, and all other tensions go to zero.

©2017 California Institute of Technology. Government sponsorship acknowledged. 35

On slopes, the results on Earth are shown on Figures 32 and 33. Figure 34 shows the

maximum stable payload mass at varying values of pitch.

Figure 32 Earth cable tensions with one payload lifted and a 30 degree pitch. The two possible

configurations are show with a vertical bar at each tension point. The length of these bars is related to

the tension the corresponding cable. When leg 1 is lifted, the maximum stable foot mass is 0.54 kg, and

the tension in leg 3 goes to zero. With leg 3 lifted, this mass is 0.63 kg, and the tension in leg 1 goes to

zero.

Figure 33 Earth cable tensions with two payloads lifted and a 30 degree pitch. The two possible

configurations are show with a vertical bar at each tension point. The length of these bars is related to

the tension the corresponding cable. When legs 1 and 6 are lifted, the maximum stable foot mass is

0.62 kg, and the tension in leg 2 goes to zero. With legs 3 and 4 lifted, this mass is 0.68 kg, and the

tension in legs 1 and 2 go to zero.

©2017 California Institute of Technology. Government sponsorship acknowledged. 36

Buoyancy changes with Atmospheric Conditions

While the atmospheric conditions on Earth vary greatly with latitude, time of day, and

season, an Earth balloon would be built as a proof-of-concept. As such, it would be tested

largely indoors where atmospheric conditions like temperature and wind can be controlled

to avoid large differences in buoyancy and stability as might be seen on Mars. This study

assumes average conditions that would be found indoors, and does not attempt to define

the stability of BALLET for all climates expected on Earth.

Aerodynamic Forces

A first estimate of drag forces on the BALLET balloon using Equation (10) is calculated. A

worst case drag coefficient estimate of 0.5 is used. The resulting drag forces are as follows:

13.946 N drag when flow is in the x direction, and 27.891 N drag when flow in the y direction.

OpenFOAM simulations were performed as previously described. The simulation

parameters used for Earth are a freestream velocity of 7 m/s, air density of 1.217 kg/m3,

and kinematic viscosity of 1.5e-5 m2/s. Results of these simulations are presented in Figure

35.

Figure 34 Maximum stable payload mass on Earth at varying pitch for single and dual-legged locomotion

techniques. As pitch increases the maximum stable foot mass decreases in both cases, with the dual-legged

foot mass decreasing at a greater rate. At a pitch value of near 40 degrees the stability advantages of dual-

legged locomotion are lost.

©2017 California Institute of Technology. Government sponsorship acknowledged. 37

These results are very similar to that of Titan and Mars. While the magnitudes of

aerodynamic forces on Earth, Mars, and Titan vary greatly, the general trend remains the

same. Lift and drag are significantly smaller when wind is flowing along the balloon’s x-axis.

In the event that the balloon tilts, and/or wind flows along the balloon’s y-axis, there is a

much greater chance of instability occurring. The forces found by this analysis show that

winds on Earth would be an issue. As stated earlier, an Earth balloon would be largely used

indoors, where stability issues due to wind will be minimized. Given the similarity of these

results to the other planets, it would be beneficial to test a physical proof-of-concept balloon

on Earth under these simulated conditions. This could lend confidence to the simulations

and allow for extrapolation to behavior on other planets.

Figure 35 Aerodynamic forces on Earth at nominal wind speed of 7 m/s. Forces were recorded

with air flowing in the x and y directions. Simulations show initial perturbations in force before

reaching a cyclic steady state. Steady state average values for x direction flow are 1.34 N drag at

zero pitch, 2.34 N drag at 10 degree pitch, and 7.94 N lift at 10 degree pitch. Steady state average

values for y direction flow are 9.38 N drag at zero pitch, 13.93 N drag at 10 degree pitch, and 36.85

N lift at 10 degree pitch.

©2017 California Institute of Technology. Government sponsorship acknowledged. 38

Earth Proof of Concept

Finally, a proof-of-concept design is considered. The purpose of this analysis is to properly

size the balloon for this proof-of-concept so that it will maintain stability through a range of

testing. Two balloon shapes were considered in this study. Shape 1 is defined by Equation

(1). Shape 2 is defined by Equation (14) below:

 (14)

where a, b, and c are the semimajor axis

of the ellipsoid. Equation (13) is used to

determine the balloon mass, where 𝜌𝑏

is 0.127 kg/m2.

Figure 36 shows the range of stable

balloon volumes that result from this

analysis. For a given payload mass, the

balloon volume must be between the

upper and lower lines to maintain

stability during testing. The two balloon

shapes show very similar results,

indicating that these results are not very

sensitive to balloon shapes near the

ones analyzed. For a proposed payload

mass of 2 kg, the balloon volume would

need to be near 10 m3.

5. Locomotion

The approach chosen for BALLET to locomote in rugged terrain is described in this section.

BALLET is a novel robotic surface mobility system. An investigation into how it locomotes

is an important element of the development of the concept. A survey of prior related

research was conducted to help inform the development of BALLET’s locomotion

algorithms. BALLET is a legged robotic system and mobility for legged robotic systems

have been investigated for many decades. The approach we propose is to leverage the

algorithms developed in prior research performed for mobility for legged robots [Waldron,

1986; Kajita & Espiau, 2008]. As a conservative, simple and low-energy approach, statically

stable walking is chosen. There are several levels of software control needed to implement

locomotion on BALLET. At the top level is the generation of a path to the desired destination

Figure 36 Stable balloon volume at varying payload

mass for an Earth proof-of-concept. As foot mass

increases, maximum and minimum balloon volumes

increase. Maximum balloon volume increases at a faster

rate, making the range of stable volume increase with

foot mass. Both balloon shapes show nearly identical

results.

©2017 California Institute of Technology. Government sponsorship acknowledged. 39

while negotiating around or stepping over the obstacles and hazards. This element is

described in Section 5.1. The output from this element is a set of waypoints that define the

path to the destination. The curved paths between waypoints and foot trajectories are

calculated to execute the locomotion along the curved segments is described in Section

5.2. Section 5.3 describes the software developed to model BALLET, demonstrate the

algorithms for its locomotion and its 3D visualization.

5.1. Obstacle Avoidance Motion Planning

The first step in motion planning is to construct a map of the environment, identify the

destination and the obstacles in the field. For BALLET, the maximum step size determines

size of obstacle that can be stepped over. Larger obstacles are designated as hazards that

have to be avoided. This process is used to identify hazards in the field – if obstacles are

smaller than the step size, they do not pose a problem for motion planning but need to be

considered in foot placement. The motion planning problem is decoupled into two parts.

The first is vehicle motion planning with hazards designated as no-go regions. Sample-

based algorithms are widely used in the literature and they can be used to determine a

route to the desired destination to generate a motion plan for BALLET. For example the

review paper by Karaman & Frazzoli [2011] describe the RRT (left) and RRT* (right)

algorithms for optimal motion planning around obstacles.

Given an optimal route defined by a set of waypoints from the motion planner, a foot

placement optimizer is then used to plan the steps to be taken to step over or around the

obstacles within constraints of placement area available for each foot. Given the waypoints,

destination position and map of field designated safe-step regions, based on grade,

roughness, terramechanics, etc, a path is constructed to allow stepping through the

waypoints to the destination.

5.2. Path Planning and Foot Trajectory Control

A path-planning algorithm was developed to sequence the motion of each foot to traverse

along paths generated by the motion planning algorithm. From the overall motion plan

generated using the approach described in the previous sub-section, path segments are

generated. Each path segment to a local destination will consist of arc motions over the

planetary surface. For any local locomotion from an initial position to a destination, an arc

of a circle can be constructed, as is illustrated on Figure 37, with a corresponding radius

and arc angle. The arc is sub-divided into step-sized segments.

©2017 California Institute of Technology. Government sponsorship acknowledged. 40

To demonstrate locomotion with BALLET, a simple statically stable gait was identified and

implemented on a geometric model. In this procedure, to locomote to a new desired

position, a circular arc projected on to a horizontal plane from the current balloon centroid

to the new position is constructed (see Figure 37). This arc defines the path the balloon

must take. Similarly, arcs are constructed for each foot defining the path each foot takes

while maintaining its relative position with respect to the balloon. For any locomotion

destination, the foot that has the longest path determines the number of steps to be taken

to complete the path using a predetermined maximum step length. The remaining paths

are then discretized to have the same number of steps.

Following this initialization procedure, the first foot is lifted vertically a set height, moved

horizontally to the same height position above its next step position then lowered down until

the foot is on the surface. Foot motion is accomplished by varying the three cable lengths

that suspend the foot from the balloon as is illustrated on Figure 38. The foot is also rotated

during the step to appropriately match the curvature of the path. The balloon is then moved

one-sixth of its step and rotated appropriately by varying all the cables that attach it to the

ground to follow the curvature of the path and to follow the slope of the ground beneath.

The second foot is then moved, followed again by the balloon and so on until all six feet

have taken a step and the balloon has moved a full step.

Figure 37 Paths are generated by constructing arcs of circles between the start and destination positions to
locomote to a desired destination. For the arc, the length of the path and the rate of turn is determined.

©2017 California Institute of Technology. Government sponsorship acknowledged. 41

Figure 38 Top and side views of the cables of a foot are shown on this figure. The space that a foot can
occupy is shaded in yellow. The foot is positioned a location in that space by differentially controlling the

lengths of the foot cables..

This procedure is repeated until the balloon reaches the desired position and orientation.

The algorithm accommodates undulating terrain by always positioning the foot a set height

above the target step position before being lowered to the ground. A finite-state-machine

(FSM) shown on Figure 39 was implemented to control the locomotion algorithm. Having

demonstrated lifting one foot at a time, the algorithm was modified to lift two feet at a time

as recommended by the force and moment analysis in the previous section. This

accomplished by modifying the FSM to move two feet at a time and moving the balloon

one-third of a step between the feet motion.

©2017 California Institute of Technology. Government sponsorship acknowledged. 42

Figure 39 Software control of the locomotion process is achieved by transitioning between functions in the
locomotion software algorithm. The transitions are orchestrated by a Finite-state-machine that specifies the

conditions for transition and the states to transition to.

A more sophisticated stepping algorithm is possible to optimize the foot placement to step

over local and small hazards for example, using the algorithm by Chen, Kumar & Luo

[1999]. The foot placement is chosen to maintain stability and step size is adaptively chosen

to approach close to then step over hazards that are smaller than the maximum step

possible.

5.3. BALLET Model and 3D Visualization

3D computer graphic model and visualization of BALLET and its locomotion was

implemented to illustrate its mobility using the open-source Blender visualization engine.

The model and visualization software were developed using the Python programming

language. The complete source-code for the implementation is listed in Appendix B of this

report. The object-oriented software implementation consisted of two parts.

The first part is a parametric kinematic model Ballet consisting of a Balloon, 6 Limbs, each

with 3 LimbCables and 1 Foot, and a model of the Terrain. The BALLET object also contains

the finite state machine mobility algorithms for locomoting over the surface. The unified

©2017 California Institute of Technology. Government sponsorship acknowledged. 43

modeling language (UML) object diagram of this part of the software is illustrated on Figure

40. The second part is the BalletVisualization software to display Ballet and its environment

in 3D and orchestrate locomotion, lighting and camera motion to render images in order to

create animations of the locomotion. The ModalTimerOperator object assists with triggering

the refreshing of the 3D rendering of all the objects in the scene during the creation of

animation sequences.

Figure 40 The Unified Modeling Language (UML) diagram for the software implementing the modeling and
visualization of the BALLET simulation. Each block in the diagram represents a software object in the

object-oriented architecture of the software package.

An example of the 3D visualization for single-step locomotion is shown on Figure 41. The

sequence of feet taking steps is front-right, front-left, middle-right, middle-left, back-right

and finally back-left.

©2017 California Institute of Technology. Government sponsorship acknowledged. 44

Figure 41 Screenshot from animation of BALLET of single-step locomotion with front-right foot taking a step.

Figure 42 shows a visualization of two-step locomotion. The sequence of feet taking steps

is front-right and back-left, middle-right and middle-left, and finally back-right and front-left.

Figure 42 Screenshot from animation of two-step locomotion with front-right and back-left feet taking a step
simultaneously.

6. Conclusions

The accomplishments from the Phase I investigation of BALLET are:

©2017 California Institute of Technology. Government sponsorship acknowledged. 45

• Identification of target planetary bodies, potential science objectives and the

instrument suites needed to accomplish the objectives

• Development of the BALLET mission context including the entry, descent and

landing on the target planetary bodies and the balloon deployment scenario for

getting BALLET into an operational state.

• Analysis of the performance of BALLET under a range of atmospheric and terrain

conditions on Mars, Titan and Earth (where testing would occur).

• Development of locomotion algorithms using coordinated limb motions to enable

traverse over a range of terrain types.

• Visualization of the operation of BALLET in three dimensions.

• Documentation of the work performed in reports and presentations and publication

of a paper to be presented at the 2019 IEEE Aerospace Conference.

The summary results are:

• Compelling science targets for a BALLET mission are RSLs on Mars, lake-shores

on Titan and cryo-volcanos on Titan. Instrument suites tailored for these respective

science targets have been identified and are feasible for deployment on a BALLET-

based mission.

• An entry, descent and landing architecture was developed for BALLET on Mars and

Titan. The design of a deployment system for BALLET from the lander was also

developed. Power and communications for operations have also been investigated

showing a feasible mission architecture for these bodies.

• Of the planetary bodies studied, Titan has the most favorable conditions for BALLET.

The combination of a dense atmosphere, low gravity and low surface wind speeds

allow use of a RTG power system combined with a science instrument package with

a total mass up to 15kg.

• Conditions on Mars are less favorable. With the thin atmosphere, a larger balloon is

needed and, with nominal wind speeds of 5 to 10 m/s, drag forces on the balloon are

less than the weight of the payloads. However, special precautions to actively anchor

BALLET have to be taken under high-wind conditions where wind speeds can reach

26 m/s. Furthermore, the power system for a Mars mission relies on thin-film

photovoltaics on the top surface of the balloon. This is currently low-TRL technology

that will have to be sufficiently matured for the expected 2030s timeframe of a

BALLET mission.

©2017 California Institute of Technology. Government sponsorship acknowledged. 46

• A two legged locomotion technique is more stable than single legged locomotion.

When lifting one payload at a time, a moment is imparted on the balloon that

becomes the limiting factor for stability. Lifting opposing legs results in zero moment

applied to the balloon. In this case, stability is only limited by the balance of vertical

forces due to buoyancy and payload weight. The range of stable payload mass is

greater for two-legged locomotion because of this affect.

• When traversing a slope, tilting the balloon with the slope will result in a narrower

stable payload mass range. At very high slopes, two-legged locomotion loses its

stability benefit over single-legged locomotion.

• Buoyancy will change significantly with atmospheric conditions on Mars. This

narrows the range of stable payload mass when compared to a steady climate but

does not prohibit a long-term mission.

• Aerodynamic forces will be a major factor in balloon stability. Due to the wind speeds

of Mars, this planet may not be feasible for BALLET, with lift and drag forces possibly

exceeding the weight of the system. Titan’s low wind speed and high atmospheric

density make it the most favorable option in dealing with aerodynamic forces. In all

cases, facing BALLET such that its smallest cross sectional area is perpendicular to

the flow will result in the smallest lift and drag forces possible for the proposed

balloon shape.

• A proof-of-concept BALLET on Earth is possible with a moderately sized balloon.

For payload masses of 2kg an approximate stable balloon size of 10m3 would be

necessary.

• Algorithms for motion planning and navigation over rough terrain from prior research

of legged robotics systems can be leveraged for BALLET. Coordinated control of the

cable system and feet placement for locomotion, a problem unique to BALLET, has

been shown to be algorithmically feasible.

Contact science on targets in rugged terrain with BALLET enables direct measurement of

water and salt content, enables local temporal and spatial coverage, provides options for

multiple measurements with alternative instruments, and potentially enables shallow

subsurface sampling. BALLET provides an alternative means to access these sites,

expands the range of surface mobility and favorably expands the trade between mobility

and science. Cameras placed at multiple locations on the balloon and on the feet, for video

logging of BALLET’s operations to stream in outreach efforts, will provide a fascinating

display for public engagement. Our Phase I investigation showed that this concept has

compelling advantages for science exploration at lake-shore and cryo-volcano sites on

Titan that remain inaccessible to other surface mobility approaches.

©2017 California Institute of Technology. Government sponsorship acknowledged. 47

This effort has verified basic principles and formulated the BALLET mission concept and it

has led to a new set of critical questions to address in the progression of this concept into

a mission. A NASA NIAC Phase II proposal is being submitted to address these questions.

Acknowledgements

The research described in this publication was carried out at the Jet Propulsion Laboratory

of California Institute of Technology under contract from the National Aeronautics and

Space Administration. This work was supported by the NASA Innovative Advanced

Concepts (NIAC) Program.

References

Backes, P., Zimmerman, W., Jones, J., & Gritters, C. (2008, March). Harpoon-based sampling for

planetary applications. In Aerospace Conference, 2008 IEEE (pp. 1-10). IEEE.

Chen, C. H., Kumar, V., & Luo, Y. C. (1999). Motion planning of walking robots in environments

with uncertainty. Journal of Robotic Systems, 16(10), 527-545.

Cordier, D., Barnes, J. W. and Ferriera, A. G. (2013) On the chemical composition of Titan’s dry

lakebed evaporites. Icarus, 226 (2), 1431-1437.

Cottini, V., Nixon, C. A., Jennings, D. E., de Kok, R., Teanby, N. A., Irwin, P. G., & Flasar, F. M.

(2012). Spatial and temporal variations in Titan's surface temperatures from Cassini CIRS

observations.Planetary and Space Science, 60(1), 62-71.

Cutts, J. A., Nock, K. T., Jones, J. A., Rodriguez, G., Balaram, J., Powell, G. E., & Synott, S. P.

(1995). Aerovehicles for planetary exploration.

Elfes, A., Bueno, S. S., Bergerman, M., De Paiva, E. C., Ramos, J. G., & Azinheira, J. R. (2003).

Robotic airships for exploration of planetary bodies with an atmosphere: Autonomy challenges.

Autonomous Robots, 14(2), 147-164.

Elfes, Alberto, Jeffery L. Hall, Eric A. Kulczycki, Daniel S. Clouse, Ami C. Morfopoulos, James F.

Montgomery, Jonathan M. Cameron, Adnan Ansar, and Richard J. Machuzak. "Autonomy

architecture for aerobot exploration of Saturnian moon Titan." IEEE Aerospace and Electronic

Systems Magazine 23, no. 7 (2008).

Hajos, Gregory A., et al. "An overview of wind-driven rovers for planetary exploration."

Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2005.

Hayes, A. G., Wolf, A. S., Aharonson, O., Zebker, H., Lorenz, R., Kirk, R. L., Paillou, P. et al. (2010)

Bathymetry and absorptivity of Titan's Ontario Lacus. J. Geophys Res. Planets, 115 (E9), 1-11.

Kajita, S., and B. Espiau. "Legged robots." Springer handbook of robotics. Springer, Berlin,

Heidelberg, 2008. 361-389.

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The

international journal of robotics research, 30(7), 846-894.

©2017 California Institute of Technology. Government sponsorship acknowledged. 48

Lopes, R. M .C., Kirk. R. L., Mitchell, K. L., LeGall, A., Barnes, J. W. et al. (2013) Cryovolcanism

on Titan: New results from Cassini RADAR and VIMS. J. Geophys. Res. Planets, 118(3), 416-

435.

Lopes, R. M .C., Mitchell, K. L., Stofan, E. R., Lunine, J. I., Lorenz, R. et al. (2007b) Cryovolcanic

features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus, 186(2), 395-

412.

Lopes, R. M .C., Mitchell, K. L., Wall. S. D., Mitri, G., Janssen, M. et al. (2007a) The lakes and seas

of Titan. EOS Trans. AGU, 88 (51), 569-570.

Lorenz R. D. and Zimbelman J. R. (2014) Booming or Singing Dunes. In: Dune Worlds. Springer

Praxis Books. Springer, Berlin, Heidelberg.

Lorenz, R. D. and Radebaugh, J. (2009) Global pattern of Titan’s dunes: Radar survey from the

Cassiniprime mission. Geophys. Res. Lett., 36, L03202, 1-4.

McEwen, A. S., Dundas, C. M., Mattson, S. S., Toigo, A. D. et al. (2014) Recurring slope lineae in

equatorial regions of Mars. Nature Geoscience, 7, 53-58.

Mitchell, K. L., Barmatz, M. B., Jamieson, C. S., Lorenz, R. D. and Lunine, J. I. (2015) Laboratory

measurements of cryogenic liquid alkane microwave absorptivity and implications for the

composition of Ligeia Mare, Titan. Geophys. Res. Lett., 42 (5), 1340-1345.

Nayar, H., M. Pauken, M. Cable, M. Hans, “Balloon-based concept vehicle for extreme terrain

mobility”, IEEE Aerospace Conf., Big Sky, MT, 2019

Nesnas, I. A., Matthews, J. B., Abad‐Manterola, P., Burdick, J. W., Edlund, J. A., Morrison, J. C., ...

& Anderson, R. C. (2012). Axel and DuAxel rovers for the sustainable exploration of extreme

terrains. Journal of Field Robotics, 29(4), 663-685.

Ojha, L., Wilhelm, M. B., Murchie, S. L., McEwen, A. F. et al. (2015) Spectral evidence for hydrated

salts in recurring slope lineae on Mars. Nature Geoscience, 8, 829-832.

Oleson, S. R., Lorenz, R. D. and Paul, M. V. (2015) Titan Submarine: Exploring The Depths of

Kraken Mare. AIAA SPACE Forum, 31 Aug-2 Sep 2015, Pasadena, California. DOI:

10.2514/6.2015-4445.

Oren, A., Bardavid, R. E. and Mana, L. (2014) Perchlorate and halophilic prokaryotes: Implications

for possible halophilic life on Mars. Extremophiles, 18(1), 75-80.

Poggiali, V., Mastrogiuseppe, M., Hayes, A. G., Seu, R., Birch, S. P. D., Lorenz, R., Grima, C. and

Hofgartner, J. D. (2016) Liquid-filled canyons on Titan. Geophys. Res. Lett., 43 (15), 7887-7894.

Radebaugh, J., Lorenz, R. D., Lunine, J. I., Wall, S. D., Boubin, G., Reffet, E., et al. (2008) Dunes

on Titan observed by Cassini RADAR. Icarus, 194(2), 690-703.

Seeni, Aravind, Bernd Schäfer, and Gerd Hirzinger. (2010). "Robot mobility systems for planetary

surface exploration–state-of-the-art and future outlook: a literature survey." Aerospace

Technologies Advancements. InTech, 2010.

©2017 California Institute of Technology. Government sponsorship acknowledged. 49

Space Studies Board, Vision and Voyages for Planetary Science in the Decade 2013-2022. National

Academies Press, 2012.

Stofan, E. R., Elachi, C., Lunine, J. I., Lorenze, R. D. et al. (2007) The lakes of Titan. Nature, 445,

61-64.

Stofan, E. R., Lorenz, R. D., Lunine, J. I., Aharonson, O., Bierhaus, B. et al. (2010) Titan Mare

Explorer (TiME): First In Situ Exploration of an Extraterrestrial Sea. Astrobiology Science

Conference, abstract no. 5270.

Waldron KE. Force and motion management in legged locomotion. IEEE Journal on Robotics and

Automation. 1986 Dec;2(4):214-20.

Webster, G., Brown, D., and Cantillo, L. (2016) “Rover Takes on Steepest Slope Ever Tried on

Mars” URL: https://www.nasa.gov/feature/jpl/rover-takes-on-steepest-slope-ever-tried-on-mars

Wilcox, Brian H., Todd Litwin, Jeff Biesiadecki, Jaret Matthews, Matt Heverly, Jack Morrison, Julie

Townsend, Norman Ahmad, Allen Sirota, and Brian Cooper. "ATHLETE: A cargo handling and

manipulation robot for the moon." Journal of Field Robotics 24, no. 5 (2007): 421-434.

Appendix A: BALLET Stability Analysis On Titan
The method used here to determine the feasibility and stability of the BALLET balloon is to quantify the upper and lower bounds of the mass of the feet.
If the foot mass is too low, the balloon is at risk of sliding or being lifted off the ground with gusts of wind. With a foot mass that is too great, the balloon
may tilt or become unstable when lifting a leg. Finding the acceptable range of the mass of the foot will help maintain mission safety while providing
requirements for the scientific instruments that can be chosen.

Initialize Analysis
Here an additional notebook is loaded. This additional notebook contains the implementation of the functions used in this analysis, as well as initializing
constants.

Some of the constants initialized are shown in the table below:

Property Earth Mars Titan

Gravitational accel () 9.807 3.71 1.352

Surface atm density () 1.217 0.020 5.280

Helium surface density () 0.178 0.002 0.728

Nominal wind speed () 7.000 10.000 1.000

Drag coeff 0.500 0.500 0.500

Foot mass (kg) 1.0 1.0 1.0

Added mass on balloon (kg) 0.5 0.1 45.000

Needed balloon buoyancy force (N) 19.614 5.936 70.980

Balloon volume () 1.925 88.134 11.534

Balloon diameter (m) 1.543 5.521 2.803

Balloon x-section area () 1.871 23.943 6.172

Nominal wind drag force (N) 27.891 11.972 8.147

Gravity anchoring force (N) 44.132 16.695 30.420

Earth Mars Titan He

Atmospheric Molecular Weight 28.97 43.34 29.0 4.0

In [1]: %run BALLET_Functions.ipynb

Choose Balloon Geometry
Here we define the balloon geometry that will be used for this analysis. We do this based on the desired volume, and assumed ratios of semimajor axis.
In this case a=2b=4c

In [2]: temp = (vol_titan*(3/4)/np.pi)

a = (temp*8.0) ** (1.0/3.0)

b = temp ** (1.0/3.0)

c = (temp/8.0) ** (1.0/3.0)

balloon_height = 7.0

print("a = "+str(a)+" m")

print("b = "+str(b)+" m")

print("c = "+str(c)+" m")

a = 2.803241032880424 m

b = 1.4016205164402122 m

c = 0.7008102582201061 m

Find Connection Points and Foot Locations
Here we find the cable connection points on the balloon, based on the given diagram of their placement:

This analysis finds 3 of the connection points and then uses symetry to find the others

In [3]: # Find balloon connection points based on geometry

p1 = find_position_on_ellipsoid_z_0(15, a, b, c)

p0 = p1[:]

p0[1] *= -1.0

p9 = p0[:]

p9[0] *= -1.0

p10 = p1[:]

p10[0] *= -1.0

p4 = find_position_on_ellipsoid_z_0(45, a, b, c)

p3 = p4[:]

p3[1] *= -1.0

p6 = p3[:]

p6[0] *= -1.0

p7 = p4[:]

p7[0] *= -1.0

p2 & p8

p2 = find_position_on_ellipsoid_y_0(45, a, b, c)

p2[2] *= -1.0

p8 = p2[:]

p8[0] *= -1.0

p5 is on the bottom center

p5 = [0.0, 0.0, -c]

Assemble the points into groups by leg

points = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10]

legs = [[p0, p2, p3], [p1, p4, p2], [p3, p5, p6], [p4, p7, p5], [p6, p8, p9], [p7, p10, p8]]

Find the foot location as the average of point locations

feet = [get_foot_x_y(x) for x in legs]

Plot the geometry

plot_balloon_geometry(points, feet, legs, a, b, c)

plt.xlabel("m")

plt.ylabel("m");

Finding Buoyant Force
The buoyant force of the balloon is assumed to be at the center of the ellipsoid. The force is equal to the weight of the air displaced by the balloon. In
this analysis, the boyant force is considered to be the total upward force after subtracting the weight of mass added to the balloon

 is the atmospheric density, is the density of helium at the planet's surface, is the gravitational acceleration, is mass added to the
balloon, is the volume of the balloon, and , , and are the semimajor axis lengths of the ellipsoid.

In [4]: F_b = (rho_titan-rho_helium_titan)*vol_titan*g_titan - added_mass_titan*g_titan # Boyant force (on tit

an)

print("Volume = "+str(vol_titan)+" m^3")

print("Boyant Force = "+str(F_b)+" N")

Bounding The Foot Mass
In order to find the bounds of the foot mass, force and moment balance equations must be used. To simplify the process, each 'leg' is treated as a
single cable, rather than three. The single cable location is taken to be the average position of the three connection points of that leg.

Volume = 11.534 m^3

Boyant Force = 10.143742336000017 N

In [5]: # Assume legs have one connection at the center of all 3 cables

Find the leg connection points

L1 = (np.array(points[0])+np.array(points[2])+np.array(points[3]))/3

L2 = (np.array(points[1])+np.array(points[4])+np.array(points[2]))/3

L3 = (np.array(points[3])+np.array(points[5])+np.array(points[6]))/3

L4 = (np.array(points[4])+np.array(points[7])+np.array(points[5]))/3

L5 = (np.array(points[6])+np.array(points[8])+np.array(points[9]))/3

L6 = (np.array(points[7])+np.array(points[10])+np.array(points[8]))/3

connection_points = [L1, L2, L3, L4, L5, L6]

The foot is assumed to be directly below this position, such that all force vectors along the cables are parallel to the z-axis. The boyant force of the
balloon is assumed to be at the center of the ellipsoid pointing along the z-axis. The weight of mass added to the balloon is assumed to be at the
center of the ellipsoid, directly counteracting the boyant force.

Minimum Foot Mass

The minimum mass of the feet can be found through performing a force balance in the z direction. The boyant force must be completely counteracted
by the weight of the feet. As such, the sum of the weight of all feet must be equal or greater to the boyant force. This analysis assumes all feet will be
the same mass, so the following equation defines the minimum mass of a single foot.

In [6]: m_min = F_b/(6*g_titan)

print("Minimum Foot Mass = "+ str(m_min)+" kg")

Maximum Foot Mass

The maximum mass of an individual foot is limited by the balance of moments when lifting one or two feet. At the maximum mass, one or more cables
will go to 0 N tension. If any additional mass was added, the cable would buckle due to its inability to resist compressive loads, and the balloon would
tilt. As such, in order to solve for the maximum mass an optimization techinique is used, with the constraints that all cables remain in tension, and the
tension in the cables remains less than or equal to the weight of a single foot.

Before optimizing for maximum mass, force and moment balance equations are used to find the force required at the connection points to remain
balloon stability. Given the geometry of the problem, the sum of forces in the x and y directions do not provide any information. Similarly, the sum of
moment about the z-axis is redundant. This leaves three equations:

If one foot is lifted, this leaves 3 equations, and 5 unknowns. Similarly, if two feet are lifted, there are 3 equations and 4 unknowns. This defines an
underdetermined system with infinite solutions, requiring linear programming techniques to find a solution. Given the nature of the problem, a least
squares solution is chosen. This method finds the solution where the sum of forces at the connection points is at a minimum, while still satisfying the
constraints. For details on this implementation, see the accompanying notebook.

Lifting One Foot

Due to symetry, two cases must be tested. First, lifting leg 1:

In [7]: lift_leg_1_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0])

lift_leg_1_forces = lift_legs(connection_points, F_b, lift_leg_1_max_mass*g_titan, [0])

plot_forces_bar_graph(

 connection_points,

 lift_leg_1_forces,

 [0],

 lift_leg_1_max_mass,

 a, b, c, g_titan,

 "Forces On Balloon With Leg 1 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_leg_1_max_mass[0],2))+" kg"

)

Minimum Foot Mass = 1.2504613333333354 kg

Now lifting leg 3:

In [8]: lift_leg_3_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2])

lift_leg_3_forces = lift_legs(connection_points, F_b, lift_leg_3_max_mass*g_titan, [2])

plot_forces_bar_graph(

 connection_points,

 lift_leg_3_forces,

 [2],

 lift_leg_3_max_mass,

 a, b, c, g_titan,

 "Forces On Balloon With Leg 3 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_leg_3_max_mass[0],2))+" kg"

)

Now that the two cases have been solved, the maximum allowable foot mass is the minimum of the two found maximums

In [9]: lift_one_leg_maximum_mass = min([lift_leg_3_max_mass, lift_leg_1_max_mass])[0]

print("Foot Mass Bounds - 1 Leg Lifted at a Time")

print("Minimum Mass = "+str(m_min)+" kg")

print("Maximum Mass = "+str(lift_one_leg_maximum_mass)+" kg")

Lifting Two Feet

Due to symetry, two cases must be tested. First, lifting legs 1 and 6:

In [10]: lift_legs_1_6_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0,5])

lift_legs_1_6_forces = lift_legs(connection_points, F_b, lift_legs_1_6_max_mass*g_titan, [0,5])

plot_forces_bar_graph(

 connection_points,

 lift_legs_1_6_forces,

 [0,5],

 lift_legs_1_6_max_mass,

 a, b, c, g_titan,

 "Forces On Balloon With Legs 1 & 6 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_legs_1_6_max_mass[0],2))+" kg"

)

Now lifting legs 3 and 4:

In [11]: lift_legs_3_4_max_mass = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2,3])

lift_legs_3_4_forces = lift_legs(connection_points, F_b, lift_legs_3_4_max_mass*g_titan, [2,3])

plot_forces_bar_graph(

 connection_points,

 lift_legs_3_4_forces,

 [2,3],

 lift_legs_3_4_max_mass,

 a, b, c, g_titan,

 "Forces On Balloon With Legs 3 & 4 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_legs_3_4_max_mass[0],2))+" kg",

 1.0

)

Now that the two cases have been solved, the maximum allowable foot mass is the minimum of the two found maximums

Foot Mass Bounds - 1 Leg Lifted at a Time

Minimum Mass = 1.2504613333333354 kg

Maximum Mass = 2.886571822296406 kg

In [12]: lift_two_legs_maximum_mass = min([lift_legs_1_6_max_mass, lift_legs_3_4_max_mass])[0]

print("Foot Mass Bounds - 2 Legs Lifted at a Time")

print("Minimum Mass = "+str(m_min)+" kg")

print("Maximum Mass = "+str(lift_two_legs_maximum_mass)+" kg")

As seen in the above results, when opposite legs are lifted, they completely cancel out the moment acting on the balloon. This means that for this case,
only the vertical force balance equations come into play. When using a foot mass equivalent to that of the maximum allowable foot mass when lifting a
single leg, it can be seen that the balloon is actually more stable. This is becauses none of the cables go slack, despite twice the mass being lifted
simultaneously.

In [13]: lift_two_legs_with_one_leg_mass_forces = lift_legs(connection_points, F_b, [lift_one_leg_maximum_mass*

g_titan], [0,5])

plot_forces_bar_graph(

 connection_points,

 lift_two_legs_with_one_leg_mass_forces,

 [0,5],

 [lift_one_leg_maximum_mass],

 a, b, c, g_titan,

 "Forces On Balloon With Legs 1 & 6 Lifted",

 "Foot Mass = "+str(round(lift_one_leg_maximum_mass,2))+" kg"

)

Lifting Feet on a slope

When moving on a slope it is possible that the pitch of the balloon will change with the slope of the ground it is climbing. First, it is demonstrated that a
change in the pitch of the balloon does not effect its center of bouyancy, bouyant force, or create a moment on the balloon. This is done in 2D due to
the symmetry of the ellipsoid.

Foot Mass Bounds - 2 Legs Lifted at a Time

Minimum Mass = 1.2504613333333354 kg

Maximum Mass = 3.7513840000000047 kg

In [14]: #Choose a pitch of 30 degrees

pitch = np.pi/6.0

#Choose a number of points to outline the ellipse

samples = 1000

#Create a set of points outlining an ellipse rotated by the chosen pitch

t = np.linspace(0, 2*np.pi, samples)

Ell = np.array([a*np.cos(t) , c*np.sin(t)])

nCk = np.array([[np.cos(pitch) , -np.sin(pitch)],[np.sin(pitch) , np.cos(pitch)]])

Ell_rot = np.zeros((2,Ell.shape[1]))

for i in range(Ell.shape[1]):
 Ell_rot[:,i] = np.dot(nCk,Ell[:,i])

#Loop through all sets of two points

#Find the force and moment about the center of the ellipse due to the area between the two points

#Sum these forces and moments to find total boyant force and moment

max_height = np.max(Ell_rot[1,:])

Fb2 = np.array([0.0,0.0])

Moment = 0.0

for i in range(Ell_rot.shape[1]):

 #Get vector from point 0 to point 1

 #Overflow to the first point when the last point is reached

 p1 = np.array([Ell_rot[0][i], Ell_rot[1][i]])

 if(i == Ell_rot.shape[1]-1):
 p2 = np.array([Ell_rot[0][0], Ell_rot[1][0]])

 else:
 p2 = np.array([Ell_rot[0][i+1], Ell_rot[1][i+1]])

 #Vector between points

 p1_p2 = p2-p1

 #Point between p1 and p2

 center = p1+(p1_p2/2.0)

 #Distance between points

 dist = np.linalg.norm(p1_p2)

 #Perpendicular unit vector

 perp = np.array([-1.0*p1_p2[1], p1_p2[0]])/dist

 #Force magnitude

 Fmag = np.abs(rho_titan*g_titan*(center[1]-max_height)*dist)

 #Force vector

 Fvec = perp*Fmag

 #Add to Force tally

 Fb2 = Fb2+Fvec

 #Now find moment due to this force

 center3d = np.array([center[0], 0.0, center[1]])

 F3d = np.array([Fvec[0], 0.0, Fvec[1]])

 Torque = np.cross(center3d, F3d)

 Moment = Moment+Torque[1]

#Find the area of the ellipse

A = a*c*np.pi

#Subtract the mass of the air in the balloon

Fb2 = Fb2-np.array([0.0, rho_helium_titan*A*g_titan])

#Find bouyant force per meter for 2d ellipse

Fb1 = (rho_titan-rho_helium_titan)*A*g_titan

#Print out the total force and moment

print("Integrated Bouyant Force With Pitch = ["+str(Fb2[0])+", 0.0,"+str(Fb2[1])+"] N/m")

print("Bouyant Force From Archimedes Principle = "+str(Fb1)+" N/m")

print("Integrated Bouyant Torque With Pitch = "+str(Moment)+" Nm/m")

print("Bouyant Torque From Archimemdes Principle = 0.0 Nm/m")

As shown above, a change in pitch does not produce any forces out of line with the z-axis. The force in the z-axis is identical to that found with
Archimedes principle. Also, there is no additional moment to be accounted for in the analysis.

Although this change in pitch does not effect the bouyant force, it will effect both the maximum stable foot mass and which cables go slack at this
maximum mass. If all cable connection points were on the x-y plane, the change in pitch would not effect which cables go slack. Due to an offset of the
connection points in the z-direction, the change in pitch biases the moment arm lengths, changing the cables that go slack. Below are plots of each of
the previous lifted-foot analyses with a pitch of 30 degrees.

In [15]: pitch = 30.0*np.pi/180.0

lift_leg_1_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0], p

itch)

lift_leg_1_forces_pitch = lift_legs(connection_points, F_b, lift_leg_1_max_mass_pitch*g_titan, [0], pi

tch)

plot_forces_bar_graph(

 connection_points,

 lift_leg_1_forces_pitch,

 [0],

 lift_leg_1_max_mass_pitch,

 a, b, c, g_titan,

 "Forces On Balloon With Leg 1 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_leg_1_max_mass_pitch[0],2))+" kg, 30 degree pitch"

)

lift_leg_3_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2], p

itch)

lift_leg_3_forces_pitch = lift_legs(connection_points, F_b, lift_leg_3_max_mass_pitch*g_titan, [2], pi

tch)

plot_forces_bar_graph(

 connection_points,

 lift_leg_3_forces_pitch,

 [2],

 lift_leg_3_max_mass_pitch,

 a, b, c, g_titan,

 "Forces On Balloon With Leg 3 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_leg_3_max_mass_pitch[0],2))+" kg, 30 degree pitch"

)

lift_legs_1_6_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [0,

5], pitch)

lift_legs_1_6_forces_pitch = lift_legs(connection_points, F_b, lift_legs_1_6_max_mass_pitch*g_titan, [

0,5], pitch)

plot_forces_bar_graph(

 connection_points,

 lift_legs_1_6_forces_pitch,

 [0,5],

 lift_legs_1_6_max_mass_pitch,

 a, b, c, g_titan,

 "Forces On Balloon With Legs 1 & 6 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_legs_1_6_max_mass_pitch[0],2))+" kg, 30 degree pitch"

)

lift_legs_3_4_max_mass_pitch = find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_titan, [2,

3], pitch)

lift_legs_3_4_forces_pitch = lift_legs(connection_points, F_b, lift_legs_3_4_max_mass_pitch*g_titan, [

2,3], pitch)

plot_forces_bar_graph(

 connection_points,

 lift_legs_3_4_forces_pitch,

 [2,3],

 lift_legs_3_4_max_mass_pitch,

 a, b, c, g_titan,

 "Forces On Balloon With Legs 3 & 4 Lifted",

 "Maximum Stable Foot Mass = "+str(round(lift_legs_3_4_max_mass_pitch[0],2))+" kg, 30 degree pitch"

,

)

Integrated Bouyant Force With Pitch = [2.6344531755729293e-14, 0.0,37.98274854134601] N/m

Bouyant Force From Archimedes Principle = 37.983039009168884 N/m

Integrated Bouyant Torque With Pitch = -2.8325540147513044e-14 Nm/m

Bouyant Torque From Archimemdes Principle = 0.0 Nm/m

Below are graphs of the maximum stable foot mass over pitch angles ranging from 0 to 50 degrees for locomotion with both one and two feet

In [16]: #Number of pitches to plot

samples = 10

#Pitches

pitches = np.linspace(0,50.0*np.pi/180.0, samples)

#Loop through all pitches, finding max stable mass at each pitch and configuration

leg_1_max_mass_lifted_pitch = []

leg_3_max_mass_lifted_pitch = []

legs_1_6_max_mass_lifted_pitch = []

legs_3_4_max_mass_lifted_pitch = []

for ii in range(10):
 leg_1_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_ti

tan, [0], pitches[ii]))

 leg_3_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g_ti

tan, [2], pitches[ii]))

 legs_1_6_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g

_titan, [0,5], pitches[ii]))

 legs_3_4_max_mass_lifted_pitch.append(find_maximum_foot_mass_legs_lifted(connection_points, F_b, g

_titan, [2,3], pitches[ii]))

plot_max_mass_versus_pitch(

 pitches,

 leg_1_max_mass_lifted_pitch,

 leg_3_max_mass_lifted_pitch,

 "Leg 1",

 "Leg 3",

 "Maximum Stable Foot Mass",

 "Single Leg Locomotion",

 2.0,

 3.8

)

plot_max_mass_versus_pitch(

 pitches,

 legs_1_6_max_mass_lifted_pitch,

 legs_3_4_max_mass_lifted_pitch,

 "Legs 1 & 6",

 "Legs 3 & 4",

 "Maximum Stable Foot Mass",

 "Dual Leg Locomotion",

 2.0,

 3.8

)

As seen in the above graphs, for both mobility modes as the slope of the balloon increases, the maximum stable foot mass decreases. At very high
angles, the dual leg gait gives very little advantage over the single leg gait in terms of stability.

Drag Force Analysis

Finding Reynolds Number

This will tell us if there will be turbulent or laminar flow over the ellipsoid. A Reynolds number less than 2000 is laminar flow. Reynolds number greater
than 4000 is turbulent flow. Between 2000 and 4000 is transition flow.

Where is the density of the fluid, is the velocity of the fluid, is the characterstic length of the flow, and is the dynamic viscosity of the fluid.

Dynamic viscosity is the most difficult parameter to obtain. To find this parameter, Sutherland's Law is used with two coefficients. Sutherland's Law
requires only temperture to estimate dynamic viscosity, which is 94.15 K on Titan on average.

In [17]: wind_speed_titan = 1.0

mu = dynamic_viscosity(94.15)

Re = (rho_titan * wind_speed_titan * max([a, b, c])*2.0)/mu

print("Re = "+str(Re))

Given the large reynolds number, turbulent flow is expected.

Estimating Drag Force

Drag force is given as

Where is the drag coefficient, is the cross-sectional aread, is the density of the fluid, and the fluid velocity. A nominal coefficient of drag for an
ellipsoid is given as 0.5.

In [18]: Cd = 0.5

#Frontal area

A_x = np.pi*b*c

#Side area

A_y = np.pi*a*c

Fd_x = (1.0/2.0)*Cd*rho_titan*A_x*wind_speed_titan**2

Fd_y = (1.0/2.0)*Cd*rho_titan*A_y*wind_speed_titan**2

print("Nominal Drag coefficient:")

print("Fd_x = "+str(Fd_x)+" N")

print("Fd_y = "+str(Fd_y)+" N")

Estimating Aerodynamic Forces in OpenFoam

The open source computational fluid dynamics program OpenFoam was used to estimate lift and drag forces on the BALLET balloon. OpenFoam's
PisoFoam solver was used, which finds the transient behavior of incompressible turbulent flow. To simplify this analysis, no turbulence models were
considered. It is likely that this simplification also results in the worst case aerodynamic effects due to pressure drag dominating skin friction drag for
bluff body shapes like the BALLET balloon. For flow on titan, the following initial conditions were used: Freestream Velocity = 1 m/s, rho = 5.28 kg/m^3,
and kinematic viscocity = 0.000001246212121 m^2/s. Kinematic viscosity was estimated as that of nitrogen at titan surface temperatures. This
assumption is made due to titan's atmosphere which is predicted to be 95-97% nitrogen.

OpenFoam's blockMesh and snappyHexMesh tools were used with an STL model of the balloon to create a mesh for the simulation. For simulations
measuring drag, symmetry was used on two planes to reduce the problem's complexity. Simulations measuring lift used symmetry on one plane,
allowing for the balloon to tilt. Simulation flow inlets were given freestream velocity and zero gradient pressure boundary conditions. Flow outlets were
given zero gradient velocity and zero pressure boundary conditions. Note that for incompressible flow, the pressure differential drives flow, not the
pressure value. These boundary conditions result in a steady flow at the desired velocity. The boundary conditions of the balloon are no-slip velocity
and zero gradient pressure, allowing for a boundary layer to form on the balloons surface. The results are below:

In [19]: # Drag facing wind

dragFrontFile = "data/titan_drag_front.dat"

dragSideFile = "data/titan_drag_side.dat"

liftFrontFile = "data/titan_lift_front.dat"

liftSideFile = "data/titan_lift_side.dat"

plot_openfoam_drag(dragFrontFile, "1m/s wind in the x direction", "Drag Force", 0, 15)

plot_openfoam_drag(dragSideFile, "1m/s wind in the y direction", "Drag Force", 0, 15)

plot_openfoam_lift(liftFrontFile, "1m/s wind in the x direction, 10deg angle of attack", "Aerodynamic

 Forces", 0, 15)

plot_openfoam_lift(liftSideFile, "1m/s wind in the y direction, 10deg angle of attack", "Aerodynamic F

orces", 0, 15)

Re = 4546067.0108338045

Nominal Drag coefficient:

Fd_x = 4.0733778744195055 N

Fd_y = 8.14675574883901 N

BALLET Analysis Functions
This notebook houses the functions used in the BALLET Analysis notebook. It is meant to separate the technical details from the results of the analysis.

Geometry
The functions in this section concern the geometry of the balloon and its legs/feet.

Find Position On Ellipsoid Z = 0

This function finds the location of a point on an ellipsoid at z=0 given an angle from the x axis as in the diagram

In [12]: def find_position_on_ellipsoid_z_0(angle, a, b, c):
 y = np.sqrt(1.0 / ((1.0/((np.tan(np.radians(angle))**2)*(a**2))) + 1.0/b**2))

 return [y/np.tan(np.radians(angle)), y, 0.0]

Find Position On Ellipsoid Y = 0

This function finds the location of a point on an ellipsoid at y=0 given an angle from the x axis as in the diagram

In [13]: def find_position_on_ellipsoid_y_0(angle, a, b, c):
 z = np.sqrt(1.0 / ((1.0/((np.tan(np.radians(angle))**2)*(a**2))) + 1.0/c**2))

 return [z/np.tan(np.radians(angle)), 0.0, z]

Get Foot X Y

Gets the x,y location of a foot given the three cable connection points. This always assumes the foot is at the center of this triangle by averaging the x,y
locations of the cable connections.

In [14]: def get_foot_x_y(points):
 return [np.mean(x) for x in [[points[0][y], points[1][y], points[2][y]] for y in range(0,2)]]

Static Analysis
Functions used for force and moment balancing.

Get Foot Mass Bounds

Find bounds of the foot mass based purely on a sum of moments in the z-axis. This informs the initial guess of the optimization technique.

In [15]: #Bounds the mass of a foot based on forces in z direction only

#No torque is taken into account

#This is to get initial guesses and bounds for maximum weight of a foot

def get_foot_mass_bounds(boyant_force, g, num_lifted_feet):

 #Divide it evenly by the number of feet to get min weight

 FFootMin = boyant_force/6.0

 #Calculate minimum mass from Weight of foot

 FMassMin = FFootMin/g

 #Divide by number of lifted feet for max weight

 FFootMax = boyant_force/num_lifted_feet

 #Calculate maximum mass from Weight of foot

 FMassMax = FFootMax/g

 #Return the foot mass

 return [FFootMin, FFootMax]

Lift Legs

This is the least squares solution of the forces on the cables when at least one foot is lifted

In [27]: def lift_legs(positions, boyant_force, footWeight, legs_lifted, pitch = 0.0):

 #footWeight must be given as an array for the optimizer

 foot_weight = footWeight[0]

 #Create rotation matrix from pitch (pitch is about y axis)

 nCk = np.array([

 [np.cos(pitch) , 0.0, -1.0*np.sin(pitch)],

 [0.0 , 1.0, 0.0],

 [np.sin(pitch), 0.0, np.cos(pitch)]])

 #Rotate the positions

 rotated_positions = []

 for ii in range(len(positions)):
 rotated_positions.append(np.dot(nCk, positions[ii]))

 #Define A from Sum of forces and Sum of torques = 0

 #Row 1 is sum of forces

 #Row 2 and 3 are sum of torques in x and y respectively

 row1 = []

 row2 = []

 row3 = []

 for ii in range(0,6):
 if ii in legs_lifted:
 continue

 row1.append(1.0)

 row2.append(rotated_positions[ii][1])

 row3.append(rotated_positions[ii][0])

 #Create the A matrix

 A = np.matrix([row1, row2, row3], dtype=float)

 #Define b

 b = [boyant_force-len(legs_lifted)*foot_weight, 0.0, 0.0]

 for leg_lifted in legs_lifted:
 b[1] += -1.0*foot_weight*rotated_positions[leg_lifted][1]

 b[2] += -1.0*foot_weight*rotated_positions[leg_lifted][0]

 b = np.matrix(b, dtype=float).transpose()

 #Find A*A^T

 AAt = A.dot(A.transpose())

 #Invert it

 AAt_inv = np.linalg.inv(np.matrix(AAt))

 #Find At*AAt_inv

 AtAAt_inv = A.transpose()*AAt_inv

 #Find the solution x = A((A*A^T)^-1)*b

 solution = AtAAt_inv*b

 #Check that solution meets constraints

 sum_forces = len(legs_lifted)*foot_weight + np.sum(solution) - boyant_force

 sum_torque_x = 0

 sum_torque_y = 0

 for leg_lifted in legs_lifted:
 sum_torque_x += foot_weight*rotated_positions[leg_lifted][1]

 sum_torque_y += foot_weight*rotated_positions[leg_lifted][0]

 index_offset = 0

 for ii in range(0,6):
 if ii in legs_lifted:
 index_offset += 1

 continue
 sum_torque_x += solution[ii-index_offset]*rotated_positions[ii][1]

 sum_torque_y += solution[ii-index_offset]*rotated_positions[ii][0]

 constraint_error = abs(np.sum([sum_forces, sum_torque_x, sum_torque_y]))

 if constraint_error > 1e-10:
 print("Warning! Sum of constraint violations = "+str(constraint_error))

 #Return the solution

 return solution

Find Maximum Foot Mass Legs Lifted

Find the maximum mass of a single foot when particular legs are lifted

In [19]: def find_maximum_foot_mass_legs_lifted(positions, boyant_force, gravity, legs_lifted, pitch = 0.0):

 # Get max and min foot mass values for this size balloon (based only on vertical force balance)

 # Use this to bound the maximum foot weight and make initial guesses

 foot_bounds = get_foot_mass_bounds(boyant_force, gravity, len(legs_lifted))

 # Setup constraint functions

 # This constraint says the force on a cable must be greater than 0

 def constraint_function_1(x, index):
 output = lift_legs(positions, boyant_force, x, legs_lifted, pitch)

 return output.tolist()[index]

 # This constraint says the force on a cable must be less than the weight of a foot

 def constraint_function_2(x, index):
 output = lift_legs(positions, boyant_force, x, legs_lifted, pitch)

 return x-output.tolist()[index]

 # Setup constraints

 # Constraint states that the resulting forces must be positive

 # and that the forces must be less than the weight of the foot

 cons = []

 for ii in range(0,6-len(legs_lifted)):
 cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_1(x, ii)})
 cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_2(x, ii)})

 # Setup function to minimize

 # In this case we are maximizing foot weight

 fun = lambda x: x*-1.0

 # Run optimization to find greatest foot mass that still balances the balloon

 bounds = [foot_bounds]

 result = minimize(fun, [np.mean(foot_bounds)], method='SLSQP', bounds=bounds, constraints=cons)

 return result['x']/gravity

Find Min and Max Volume when legs are lifted with a particular foot mass

Find the maximum mass of a single foot when particular legs are lifted

In []: def find_volume_range_legs_lifted(area_density, additional_mass_percentage, foot_mass, gravity, legs_l
ifted, pitch = 0.0):

 # Get max and min Volume for the analysis

 volume_bounds = [0, 10000]

 # Setup constraint functions

 # This constraint says the force on a cable must be greater than 0

 def constraint_function_1(x, index):
 axes = get_axis_lengths(x[0])

 Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage)

 output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch)

 return output.tolist()[index][0]

 # This constraint says the force on a cable must be less than the weight of a foot

 def constraint_function_2(x, index):
 axes = get_axis_lengths(x[0])

 Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage)

 output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch)

 return foot_mass*gravity-output.tolist()[index][0]

 # Setup constraints

 # Constraint states that the resulting forces must be positive

 # and that the forces must be less than the weight of the foot

 cons = []

 for ii in range(0,6-len(legs_lifted)):
 cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_1(x, ii)})
 cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_2(x, ii)})

 # Setup function to minimize

 # In this case we are minimizing volume

 fun_min = lambda x: x
 fun_max = lambda x: -x

 # Run optimization to find greatest foot mass that still balances the balloon

 bounds = [volume_bounds]

 result_min = minimize(fun_min, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons)

 result_max = minimize(fun_max, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons)

 return [result_min['x'][0], result_max['x'][0]]

Find Min and Max Volume when legs are lifted with a particular foot mass

Same as above but with the second axis ratio

In []: def find_volume_range_legs_lifted2(area_density, additional_mass_percentage, foot_mass, gravity, legs_
lifted, pitch = 0.0):

 # Get max and min Volume for the analysis

 volume_bounds = [0, 10000]

 # Setup constraint functions

 # This constraint says the force on a cable must be greater than 0

 def constraint_function_1(x, index):
 axes = get_axis_lengths2(x[0])

 Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage)

 output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch)

 return output.tolist()[index][0]

 # This constraint says the force on a cable must be less than the weight of a foot

 def constraint_function_2(x, index):
 axes = get_axis_lengths2(x[0])

 Fb = get_buoyant_force(axes[0], axes[1], axes[2], area_density, gravity, additional_mass_perce

ntage)

 output = lift_legs(get_ave_connection_points(axes[0], axes[1], axes[2]), Fb, [foot_mass*gravit

y], legs_lifted, pitch)

 return foot_mass*gravity-output.tolist()[index][0]

 # Setup constraints

 # Constraint states that the resulting forces must be positive

 # and that the forces must be less than the weight of the foot

 cons = []

 for ii in range(0,6-len(legs_lifted)):
 cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_1(x, ii)})
 cons.append({'type': 'ineq', 'fun': lambda x, ii=ii: constraint_function_2(x, ii)})

 # Setup function to minimize

 # In this case we are minimizing volume

 fun_min = lambda x: x
 fun_max = lambda x: -x

 # Run optimization to find greatest foot mass that still balances the balloon

 bounds = [volume_bounds]

 result_min = minimize(fun_min, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons)

 result_max = minimize(fun_max, [np.mean(volume_bounds)], method='SLSQP', bounds=bounds, constraint

s=cons)

 return [result_min['x'][0], result_max['x'][0]]

Helper functions to deal with balloon geometry

In []: def get_connection_points(a,b,c):
 # Find balloon connection points based on geometry

 p1 = find_position_on_ellipsoid_z_0(15, a, b, c)

 p0 = p1[:]

 p0[1] *= -1.0

 p9 = p0[:]

 p9[0] *= -1.0

 p10 = p1[:]

 p10[0] *= -1.0

 p4 = find_position_on_ellipsoid_z_0(45, a, b, c)

 p3 = p4[:]

 p3[1] *= -1.0

 p6 = p3[:]

 p6[0] *= -1.0

 p7 = p4[:]

 p7[0] *= -1.0

 # p2 & p8

 p2 = find_position_on_ellipsoid_y_0(45, a, b, c)

 p2[2] *= -1.0

 p8 = p2[:]

 p8[0] *= -1.0

 # p5 is on the bottom center

 p5 = [0.0, 0.0, -c]

 # Assemble the points into groups by leg

 return [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10]

#get the connection points for the current volume

def get_ave_connection_points(a,b,c):
 points = get_connection_points(a,b,c)

 L1 = (np.array(points[0])+np.array(points[2])+np.array(points[3]))/3

 L2 = (np.array(points[1])+np.array(points[4])+np.array(points[2]))/3

 L3 = (np.array(points[3])+np.array(points[5])+np.array(points[6]))/3

 L4 = (np.array(points[4])+np.array(points[7])+np.array(points[5]))/3

 L5 = (np.array(points[6])+np.array(points[8])+np.array(points[9]))/3

 L6 = (np.array(points[7])+np.array(points[10])+np.array(points[8]))/3

 return [L1, L2, L3, L4, L5, L6]

def get_legs(cp):
 return [[cp[0], cp[2], cp[3]], [cp[1], cp[4], cp[2]], [cp[3], cp[5], cp[6]], [cp[4], cp[7], cp[5
]], [cp[6], cp[8], cp[9]], [cp[7], cp[10], cp[8]]]

def get_feet(legs):
 return [get_foot_x_y(x) for x in legs]

In []: # approximate surface area of ellipsoid

def surface_area_ellipsoid(a,b,c):
 return 4*np.pi*((((a*b)**1.6)+((a*c)**1.6)+((b*c)**1.6))/3.0)**(1/1.6)

In []: # balloon mass with extra mass added

def balloon_mass(a,b,c, rho, added_mass):
 return surface_area_ellipsoid(a,b,c)*rho*(1.0 + added_mass)

In [2]: # Get the buoyant force of the proof of concept with

def get_buoyant_force(a, b, c, rho, gravity, added_mass):
 weight = balloon_mass(a,b,c,rho,added_mass)*gravity

 V = (4/3)*np.pi *a*b*c

 Lift = (rho_earth-rho_helium_earth)*V*gravity

 return Lift - weight

In [3]: #a=2b=4c

def get_axis_lengths(V):
 temp = (V*(3/4)/np.pi)

 a = (temp*8.0) ** (1.0/3.0)

 b = temp ** (1.0/3.0)

 c = (temp/8.0) ** (1.0/3.0)

 return [a,b,c]

#a*0.3=b, a*0.2=c

def get_axis_lengths2(V):
 temp = (V*(3/4)/np.pi)/(0.2*0.3)

 a = (temp) ** (1.0/3.0)

 b = a*0.3

 c = a*0.2

 return [a,b,c]

Utility
Utility functions to accomplish simple mathematic operations

Normalized

Returns a normalized vector

In [20]: def normalized(vector):
 x = np.linalg.norm(vector)

 if x==0:
 return vector

 return vector/x

Plotting
Simple functions for various plots

Plot Balloon Geometry

Plot the ballon, its cables, and feet

In [21]: def plot_balloon_geometry(points, feet, legs, a, b, c):

 # Create Figure

 fig = plt.figure()

 ax = Axes3D(fig)

 ax.set_aspect('equal')

 # Plot connection points to balloon

 for point in points:
 ax.scatter(point[0], point[1], point[2], c='r', marker='o')

 # Plot feet

 for foot in feet:
 ax.scatter(foot[0], foot[1], -1.0*balloon_height, c='b', marker='^')

 # Plot cables

 for idx, leg in enumerate(legs):
 ax.plot([feet[idx][0], leg[0][0]], [feet[idx][1], leg[0][1]], [-1.0*balloon_height, leg[0][2

]], c='g')

 ax.plot([feet[idx][0], leg[1][0]], [feet[idx][1], leg[1][1]], [-1.0*balloon_height, leg[1][2

]], c='g')

 ax.plot([feet[idx][0], leg[2][0]], [feet[idx][1], leg[2][1]], [-1.0*balloon_height, leg[2][2

]], c='g')

 # Create ellipsoid

 phi = np.linspace(0,2*np.pi, 100).reshape(100, 1) # the angle of the projection in the xy-plane

 theta = np.linspace(0, np.pi, 100).reshape(-1, 100) # the angle from the polar axis, ie the polar

 angle

 # Transformation formulae for a spherical coordinate system.

 X = a*np.sin(theta)*np.cos(phi)

 Y = b*np.sin(theta)*np.sin(phi)

 Z = c*np.cos(theta)

 ax.plot_surface(X, Y, Z, color='c', alpha=0.5)

 # Create cubic bounding box to simulate equal aspect ratio

 # Matplotlib can't do axis equal properly in 3d

 max_range = points[0][0]

 Xb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten()

 Yb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten()

 Zb = 0.5*max_range*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten()

 for xb, yb, zb in zip(Xb, Yb, Zb):
 ax.plot([xb], [yb], [zb], 'w')

Plot Forces Bar Graph

Function to plot the forces on each cable as a 3d bar graph

In [1]: def plot_forces_bar_graph(positions, forces, legs_lifted, max_mass, a, b, c, g, suptitle, title, pitch
= 0.0):

 # Now plot the results

 fig = plt.figure()

 ax = Axes3D(fig)

 ax.set_aspect('equal')

 #normalize length of force vectors

 norm_force = normalized(forces)

 #colors

 colors = ['b', 'g','r','m','c','orange']

 lifted_force = max_mass[0]*g

 legend = []

 #legend.append('Balloon Footprint')

 index_offset = 0

 for idx in range(0,6):
 legend_string = 'Leg '+str(idx+1)+': '

 if idx in legs_lifted:
 legend_string += 'Lifted: '+str(round(lifted_force, 2))+" N"

 index_offset += 1

 else:
 legend_string+=str(round(forces.tolist()[idx-index_offset][0], 2))+" N"

 legend.append(legend_string)

 index_offset = 0

 for idx, position in enumerate(positions):
 if idx in legs_lifted:
 index_offset += 1

 ax.bar([position[0]], lifted_force, zs=[position[1]], zdir='y', width=0.1, alpha=1.0, zord

er=200, color=colors[idx], edgecolor='k')

 continue
 ax.bar([position[0]], [forces[idx-index_offset].tolist()[0][0]], zs=[position[1]], zdir='y', w

idth=0.1, alpha=1.0, zorder=200, color=colors[idx], edgecolor='k')

 plt.legend(legend, loc=3, fontsize=8)

 # Create ellipsoid

 phi = np.linspace(0,2*np.pi, 100).reshape(100, 1) # the angle of the projection in the xy-plane

 theta = np.linspace(0, np.pi, 100).reshape(-1, 100) # the angle from the polar axis, ie the polar

 angle

 theta2 = np.linspace(0, 2*np.pi, 100).reshape(100,1) # the angle from the polar axis, ie the polar

angle

 # Transformation formulae for a spherical coordinate system.

 x, y = np.mgrid[-3:3:150j,-3:3:150j]

 z = 3*(1 - x)**2 * np.exp(-x**2 - (y + 1)**2) \

 - 10*(x/5 - x**3 - y**5)*np.exp(-x**2 - y**2) \

 - 1./3*np.exp(-(x + 1)**2 - y**2)

 Xe = a*np.sin(theta)*np.cos(phi)

 Ye = b*np.sin(theta)*np.sin(phi)

 Ze = 0.1*np.cos(theta)

 ax.plot_surface(Xe, Ye, Ze, color='c', alpha=0.3, antialiased=False)

 #phi = np.linspace(0,2*np.pi, 256).reshape(256, 1)

 X1 = a*np.cos(phi)

 Y1 = b*np.sin(phi)

 Z1 = [0.0]*100

 ax.plot(X1, Y1, Z1, zorder=-1, color='k', linestyle='dashed')

 plt.suptitle(suptitle, fontsize=12, y=.90)

 plt.title(title, fontsize=8, y=1.05)

 ax.set_xlabel('X', fontsize=7)

 ax.set_ylabel('Y', fontsize=7)

 ax.set_zlabel('Force [N]', fontsize=7)

 # Create cubic bounding box to simulate equal aspect ratio

 # Matplotlib can't do axis equal properly in 3d

 max_range = points[0][0]

 Xb = 0.5*(b+0.1)*np.mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten()

 Yb = 0.5*(b+0.1)*np.mgrid[-1:2:2,-1:2:2,-1:2:2][1].flatten()

 Zb = 0.5*(b+0.1)*np.mgrid[-1:2:2,-1:2:2,-1:2:2][2].flatten()+(b+0.1)

 for xb, yb, zb in zip(Xb, Yb, Zb):
 ax.plot([xb], [yb], [zb], 'w')

 ax.tick_params(axis = 'both', which = 'major', labelsize = 7)

 ax.view_init(170,255)

Plot Max Mass Versus Pitch

Function to plot the maximum stable foot mass vs pitch data

In [2]: def plot_max_mass_versus_pitch(pitches, set1, set2, legend1, legend2, suptitle, title, ymin, ymax):
 fig = plt.figure()

 axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 minimum_set = [np.min([v1,v2]) for v1,v2 in zip(set1,set2)]
 plot_pitches = [pitch*180.0/np.pi for pitch in pitches]
 axes.plot(plot_pitches, set1, plot_pitches, set2)

 axes.set_xlabel('Pitch [degress]')

 axes.set_ylabel('Maximum Stable Foot Mass [kg]')

 plt.suptitle(suptitle)

 plt.title(title)

 plt.legend([legend1, legend2], loc=3, fontsize=8)

 plt.ylim([ymin, ymax])

Plot OpenFoam Drag

Function to plot the drag force

In []: def plot_openfoam_drag(fileName, title, suptitle, yMin, yMax):
 time = []

 xForce = []

 #Open the file

 with open(fileName, 'r') as infile:

 #Skip the header

 for _ in range(3):
 next(infile)

 #Loop through every line

 for line in infile:

 #Remove non-numerical characters for easier parsing

 strippedLine = line.replace('(', ' ').replace(')', ' ')

 splitList = strippedLine.split()

 time.append(float(splitList[0]))

 #Multiply by 4 because only 1/4 of the ellipsoid is in the simulation

 xForce.append((float(splitList[1])+float(splitList[4]))*4)

 fig = plt.figure()

 axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 axes.plot(time, xForce)

 axes.set_xlabel('time [s]')

 axes.set_ylabel('Drag Force [N]')

 plt.suptitle(suptitle)

 plt.title(title)

 plt.ylim(yMin, yMax)

Plot OpenFoam Lift

Function to plot the lift and drag forces

In []: def plot_openfoam_lift(fileName, title, suptitle, yMin, yMax):
 time = []

 xForce = []

 zForce = []

 #Open the file

 with open(fileName, 'r') as infile:

 #skip header

 for _ in range(3):
 next(infile)

 #Loop through every line

 for line in infile:

 #replace non-number characters to spaces for easier parsing

 strippedLine = line.replace('(', ' ').replace(')', ' ')

 splitList = strippedLine.split()

 time.append(float(splitList[0]))

 #Multiply by two because only half of the ellipsoid was in the simulation

 zForce.append((float(splitList[3])+float(splitList[6]))*2)

 xForce.append((float(splitList[1])+float(splitList[4]))*2)

 #Plot

 fig = plt.figure()

 axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 axes.plot(time, xForce, time, zForce)

 plt.legend(['Drag', 'Lift'], loc=1, fontsize=8)

 axes.set_xlabel('time [s]')

 axes.set_ylabel('Aerodynamic Force [N]')

 plt.suptitle(suptitle)

 plt.title(title)

 plt.ylim(yMin, yMax)

Atmosphere Analysis

Viking Lander Data Parsing

Functions to parse and filter viking lander data

In []: #Apply a simple filter that averages surrounding temperatures to smooth data

def filter_data(data):
 filter_size = 100

 molarMassMarsAtm = 0.04334

 molarMassHelium = 0.004002602

 size = len(data['temp'])

 data['temp_filt'] = []

 for ii in range(size):
 if(ii < filter_size/2.0):
 numSamples = int(ii+filter_size/2)

 temp_sum = sum(data['temp'][0:numSamples])

 data['temp_filt'].append(float(temp_sum/numSamples))

 elif(ii > size-(filter_size/2.0)):
 numSamples = int((filter_size/2)+(size-ii))

 temp_sum = sum(data['temp'][ii-int(filter_size/2):-1])

 data['temp_filt'].append(float(temp_sum/numSamples))

 else:
 temp_sum = sum(data['temp'][int(ii-filter_size/2) : int(ii+filter_size/2)])

 data['temp_filt'].append(float(temp_sum/filter_size))

 data['rho_atm'].append(GasDensity(molarMassMarsAtm, data['temp_filt'][-1], data['pressure'][ii

]))

 data['rho_helium'].append(GasDensity(molarMassHelium, data['temp_filt'][-1], data['pressure'][

ii]))

Remove empty points in the data

def remove_zeros(data):
 data['rho_atm_pruned'] = []

 data['rho_he_pruned'] = []

 data['sol_pruned'] = []

 data['temp_pruned'] = []

 data['sol_time_pruned'] = []

 for ii in range(len(data['temp_filt'])):
 if(not(data['rho_atm'][ii] == 0)):
 data['sol_pruned'].append(data['sol'][ii])

 data['rho_atm_pruned'].append(data['rho_atm'][ii])

 data['rho_he_pruned'].append(data['rho_helium'][ii])

 data['temp_pruned'].append(data['temp_filt'][ii])

 data['sol_time_pruned'].append(data['sol_time'][ii])

#Calculate gas density based on molar mass, temperature, and pressure

def GasDensity(MolarMass, Temperature, Pressure):
 R = 8.314

 if(Temperature > 0):
 return (Pressure*MolarMass)/(R*Temperature)
 return 0

#Load and parse viking lander data file

def load_viking_lander_file(filename):
 data = dict()

 data['year'] = []

 data['solar_long'] = []

 data['sol'] = []

 data['wind_speed'] = []

 data['wind_dir'] = []

 data['pressure'] = []

 data['temp'] = []

 data['rho_atm'] = []

 data['rho_helium'] = []

 data['ave_temp_offset'] = []

 data['sol_time'] = []

 with open(filename, 'r') as infile:
 line = ''

 for line in infile:
 line = line.split()

 data['year'].append(float(line[0]))

 data['solar_long'].append(float(line[1]))

 data['sol'].append(float(line[2]))

 data['wind_speed'].append(float(line[3]))

 data['wind_dir'].append(float(line[4]))

 data['pressure'].append(float(line[5])*100)

 data['temp'].append(float(line[7])+ 273.15)

 data['sol_time'].append(data['sol'][-1] % 1)

 filter_data(data)

 remove_zeros(data)

 data['ave_temp_offset'] = data['temp_pruned'][:]

 data['ave_density_offset'] = data['rho_atm_pruned'][:]

 data['ave_he_offset'] = data['rho_he_pruned'][:]

 oldNum = -1

 solCount = 1

 aveTemp = 0

 aveDensity = 0

 aveHe = 0

 for ii,sol in enumerate(data['sol_pruned']):
 newNum = int(data['sol_pruned'][ii]//1)

 if(newNum > oldNum):
 oldNum = newNum

 aveTemp/=solCount

 aveDensity/=solCount

 aveHe/=solCount

 for jj in range(ii-solCount, ii):
 data['ave_temp_offset'][jj]-=aveTemp

 data['ave_density_offset'][jj]-=aveDensity

 data['ave_he_offset'][jj]-=aveHe

 solCount = 0

 aveTemp=0

 aveDensity = 0

 aveHe = 0

 solCount+=1

 aveTemp+=data['temp_pruned'][ii]

 aveDensity+=data['rho_atm_pruned'][ii]

 aveHe+=data['rho_he_pruned'][ii]

 return data

#Plot atmospheric and helium densities based on viking lander data

def plot_viking_lander_data(data, title):
 fig = plt.figure()

 axes = fig.add_axes([0.15, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 axes.plot(data['sol_pruned'], data['rho_atm_pruned'],'r')

 axes.set_xlabel('Sol')

 axes.set_ylabel('Atmospheric Density [kg/m^3]')

 plt.suptitle('Atmospheric Density on Mars')

 plt.title(title)

 fig = plt.figure()

 axes = fig.add_axes([0.15, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 axes.plot(data['sol_pruned'], data['rho_he_pruned'],'r')

 axes.set_xlabel('Sol')

 axes.set_ylabel('Helium Density [kg/m^3]')

 plt.suptitle('Helium Density on Mars')

 plt.title(title)

#Plot buoyant force based on viking lander data

def plot_buoyant_force(data, volume, added_mass, gravity, title):
 data['Fb'] = [(rho_mars-rho_he)*volume*gravity - added_mass*gravity for rho_mars, rho_he in zip(da
ta['rho_atm_pruned'], data['rho_he_pruned'])]

 fig = plt.figure()

 axes = fig.add_axes([0.15, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 axes.plot(data['sol_pruned'], data['Fb'],'r')

 axes.set_xlabel('Sol')

 axes.set_ylabel('Buoyant Force [N]')

 plt.suptitle(' Buoyant Force on Mars')

 plt.title(title)

#Plot stable foot masses over a martian year based on viking lander data

def plot_foot_masses(data,connection_points,g,volume, title):
 #Number of points to plot

 samples = 1000

 molarMassMarsAtm = 0.04334

 molarMassHelium = 0.004002602

 #indices

 indices = list(map(int, np.linspace(0, len(data['Fb'])-1, samples)))

 leg_1_max_mass_lifted_temp = []

 leg_3_max_mass_lifted_temp = []

 legs_1_6_max_mass_lifted_temp = []

 legs_3_4_max_mass_lifted_temp = []

 min_mass = []

 for index in indices:
 #index = int(indexx)

 leg_1_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, data[

'Fb'][index], g, [0], 0))

 leg_3_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, data[

'Fb'][index], g, [2], 0))

 legs_1_6_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, dat

a['Fb'][index], g, [0,5], 0))

 legs_3_4_max_mass_lifted_temp.append(find_maximum_foot_mass_legs_lifted(connection_points, dat

a['Fb'][index], g, [2,3], 0))

 min_mass.append(data['Fb'][index]/(6.0*g))

 min_one_leg = min(leg_1_max_mass_lifted_temp+leg_3_max_mass_lifted_temp)

 min_two_leg = min(legs_1_6_max_mass_lifted_temp+legs_3_4_max_mass_lifted_temp)

 max_min_mass = max(min_mass)

 aveDensity_atm = sum(data['rho_atm_pruned'])/len(data['rho_atm_pruned'])

 aveDensity_he = sum(data['rho_he_pruned'])/len(data['rho_he_pruned'])

 maxDensityOffset_he = max(data['ave_he_offset'])

 minDensityOffset_he = min(data['ave_he_offset'])

 maxDensityOffset_atm = max(data['ave_density_offset'])

 minDensityOffset_atm = min(data['ave_density_offset'])

 maxFb = ((aveDensity_atm+maxDensityOffset_atm)-(aveDensity_he+maxDensityOffset_he))*volume*g

 minFb = ((aveDensity_atm+minDensityOffset_atm)-(aveDensity_he+minDensityOffset_he))*volume*g

 FbOffset = (maxFb-minFb)/2.0

 fig = plt.figure()

 axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 minimum_set = [np.min([v1,v2]) for v1,v2 in zip(leg_1_max_mass_lifted_temp,leg_3_max_mass_lifted_t
emp)]

 plot_sols = [data['sol_pruned'][ii] for ii in indices]
 axes.plot(plot_sols, leg_1_max_mass_lifted_temp, plot_sols, leg_3_max_mass_lifted_temp, plot_sols,

min_mass)

 axes.set_xlabel('sol')

 axes.set_ylabel('Stable Foot Mass [kg]')

 plt.suptitle('Stable Foot Mass over a Martian Year')

 plt.title(title)

 plt.legend(['Max leg 1 lifted', 'Max leg 3 lifted', 'Minimum'], loc=3, fontsize=8)

 fig = plt.figure()

 axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1)

 minimum_set = [np.min([v1,v2]) for v1,v2 in zip(leg_1_max_mass_lifted_temp,leg_3_max_mass_lifted_t
emp)]

 plot_sols = [data['sol_pruned'][ii] for ii in indices]
 axes.plot(plot_sols, legs_1_6_max_mass_lifted_temp, plot_sols, legs_3_4_max_mass_lifted_temp, plot

_sols, min_mass)

 axes.set_xlabel('sol')

 axes.set_ylabel('Stable Foot Mass [kg]')

 plt.suptitle('Stable Foot Mass over a Martian Year')

 plt.title(title)

 plt.legend(['Max legs 1 & 6 lifted', 'Max legs 3 & 4 lifted', 'Minimum'], loc=3, fontsize=8)

 return([max_min_mass, min_one_leg, max_min_mass, min_two_leg, FbOffset])

Finding Dynamic Viscosity

In [24]: def dynamic_viscosity(temp):
 #Sutherland Coefficients

 C1 = 1.458e-6

 C2 = 110.4

 return (C1*(temp**(3/2)))/(temp+C2)

Initialization of Analysis
This includes importing useful libraries, as well as defining constants like gravity

In [1]: #Imports and symbol initialization

#%matplotlib notebook

%matplotlib qt
import sympy
from IPython.display import display
from mpl_toolkits.mplot3d import Axes3D
import mpmath as mp
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from sklearn.preprocessing import normalize
sympy.init_printing(use_latex='mathjax')

from matplotlib.colors import LightSource
from matplotlib.patches import Ellipse

rho_titan = 5.280

rho_earth = 1.217

rho_mars = 0.020

rho_helium_titan = 0.728

rho_helium_earth = 0.178

rho_helium_mars = 0.002

added_mass_titan = 45.0

added_mass_earth = 0.5

added_mass_mars = 0.1

g_titan = 1.352

g_earth = 9.81

g_mars = 3.71

vol_titan = 11.534

vol_earth = 1.925

vol_mars = 88.134

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "system";
 object controlDict;
}
// *
* * * //

application pisoFoam;

startFrom startTime;

startTime 7.2;

stopAt endTime;

endTime 50000;

deltaT 0.0002;

writeControl timeStep;

writeInterval 1000;

purgeWrite 1;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

Appendix B: BALLET Aerodynamics Analysis

timePrecision 6;

runTimeModifiable true;

functions
{
 #include "forces"
}

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "system";
 object fvSchemes;
}
// *
* * * //

ddtSchemes
{
 default Euler;
}

gradSchemes
{
 default Gauss linear;
}

divSchemes
{
 default none;
 div(phi,U) Gauss LUST grad(U);
 div((nuEff*dev2(T(grad(U))))) Gauss linear;
}

laplacianSchemes
{
 default Gauss linear corrected;
}

interpolationSchemes
{

 default linear;
}

snGradSchemes
{
 default corrected;
}

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "system";
 object fvSolution;
}
// *
* * * //

solvers
{
 p
 {
 solver GAMG;
 tolerance 1e-06;
 relTol 0.1;
 smoother GaussSeidel;
 }

 pFinal
 {
 $p;
 tolerance 1e-06;
 relTol 0;
 }

 "(U|k|epsilon|omega|R|nuTilda)"
 {
 solver smoothSolver;
 smoother GaussSeidel;
 tolerance 1e-05;
 relTol 0;
 }
}

PISO
{
 nCorrectors 2;
 nNonOrthogonalCorrectors 0;
 pRefCell 0;
 pRefValue 0;
}

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object blockMeshDict;
}
// *
* * * //

convertToMeters 1;

vertices
(
 (-4 0 0)
 (-4 0 3)
 (-4 5 3)
 (-4 5 0)
 (8 0 0)
 (8 0 3)
 (8 5 3)
 (8 5 0)
);

blocks
(
 hex (0 4 7 3 1 5 6 2) (36 15 9) simpleGrading (1 1 1)
);

edges
(
);

boundary
(
 inletWall

 {
 type patch;
 faces
 (
 (0 1 2 3)
 (5 6 2 1)
 (7 3 2 6)
);
 }
 sym
 {
 type symmetry;
 faces
 (
 (7 4 0 3)
 (4 5 1 0)
);
 }
 outletWalls
 {
 type patch;
 faces
 (
 (7 6 5 4)
);
 }
);

mergePatchPairs
(
);

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object snappyHexMeshDict;
}
// *
* * * //

// Which of the steps to run
castellatedMesh true;
snap true;
addLayers true;

// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{
 titan_balloon.stl
 {
 type triSurfaceMesh;
 scale 0.01;
 name titan_balloon;
 }

 refinementBox
 {
 type searchableBox;
 min (-1.5 -0.5 -0.5);
 max (8 3.0 2.0);

 }
};

// Settings for the castellatedMesh generation.
castellatedMeshControls
{

 // Refinement parameters
 // ~~~~~~~~~~~~~~~~~~~~~

 // If local number of cells is >= maxLocalCells on any processor
 // switches from from refinement followed by balancing
 // (current method) to (weighted) balancing before refinement.
 maxLocalCells 100000;

 // Overall cell limit (approximately). Refinement will stop
immediately
 // upon reaching this number so a refinement level might not
complete.
 // Note that this is the number of cells before removing the part
which
 // is not 'visible' from the keepPoint. The final number of cells
might
 // actually be a lot less.
 maxGlobalCells 2000000000;

 // The surface refinement loop might spend lots of iterations
refining just a
 // few cells. This setting will cause refinement to stop if <=
minimumRefine
 // are selected for refinement. Note: it will at least do one
iteration
 // (unless the number of cells to refine is 0)
 minRefinementCells 10;

 // Allow a certain level of imbalance during refining
 // (since balancing is quite expensive)
 // Expressed as fraction of perfect balance (= overall number of
cells /
 // nProcs). 0=balance always.
 maxLoadUnbalance 0.10;

 // Number of buffer layers between different levels.
 // 1 means normal 2:1 refinement restriction, larger means slower
 // refinement.
 nCellsBetweenLevels 4;

 // Explicit feature edge refinement
 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 // Specifies a level for any cell intersected by its edges.
 // This is a featureEdgeMesh, read from constant/triSurface for
now.
 features
 (
);

 // Surface based refinement
 // ~~~~~~~~~~~~~~~~~~~~~~~~

 // Specifies two levels for every surface. The first is the
minimum level,
 // every cell intersecting a surface gets refined up to the
minimum level.
 // The second level is the maximum level. Cells that 'see'
multiple
 // intersections where the intersections make an
 // angle > resolveFeatureAngle get refined up to the maximum
level.

 refinementSurfaces
 {
 titan_balloon
 {
 // Surface-wise min and max refinement level
 level (4 4);
 }
 }

 // Resolve sharp angles
 resolveFeatureAngle 30;

 // Region-wise refinement
 // ~~~~~~~~~~~~~~~~~~~~~~

 // Specifies refinement level for cells in relation to a surface.
One of
 // three modes
 // - distance. 'levels' specifies per distance to the surface the
 // wanted refinement level. The distances need to be specified
in
 // descending order.

 // - inside. 'levels' is only one entry and only the level is
used. All
 // cells inside the surface get refined up to the level. The
surface
 // needs to be closed for this to be possible.
 // - outside. Same but cells outside.

 refinementRegions
 {
 refinementBox
 {
 mode inside;
 levels ((1.0 2));
 }
 }

 // Mesh selection
 // ~~~~~~~~~~~~~~

 // After refinement patches get added for all refinementSurfaces
and
 // all cells intersecting the surfaces get put into these patches.
The
 // section reachable from the locationInMesh is kept.
 // NOTE: This point should never be on a face, always inside a
cell, even
 // after refinement.
 locationInMesh (4.9 2.9 1.9);

 // Whether any faceZones (as specified in the refinementSurfaces)
 // are only on the boundary of corresponding cellZones or also
allow
 // free-standing zone faces. Not used if there are no faceZones.
 allowFreeStandingZoneFaces true;
}

// Settings for the snapping.
snapControls
{
 //- Number of patch smoothing iterations before finding
correspondence
 // to surface
 nSmoothPatch 5;

 //- Relative distance for points to be attracted by surface
feature point

 // or edge. True distance is this factor times local
 // maximum edge length.
 tolerance 4.0;

 //- Number of mesh displacement relaxation iterations.
 nSolveIter 0;

 //- Maximum number of snapping relaxation iterations. Should stop
 // before upon reaching a correct mesh.
 nRelaxIter 5;

 // Feature snapping

 //- Number of feature edge snapping iterations.
 // Leave out altogether to disable.
 //nFeatureSnapIter 10;

 //- Detect (geometric only) features by sampling the surface
 // (default=false).
 //implicitFeatureSnap false;

 //- Use castellatedMeshControls::features (default = true)
 //explicitFeatureSnap true;

 //- Detect points on multiple surfaces (only for
explicitFeatureSnap)
 //multiRegionFeatureSnap false;
}

// Settings for the layer addition.
addLayersControls
{
 // Are the thickness parameters below relative to the undistorted
 // size of the refined cell outside layer (true) or absolute sizes
(false).
 relativeSizes false;

 // Per final patch (so not geometry!) the layer information
 layers
 {
 "titan_balloon.*"
 {
 nSurfaceLayers 10;
 }
 }

 // Expansion factor for layer mesh
 expansionRatio 1.2;

 // Wanted thickness of final added cell layer. If multiple layers
 // is the thickness of the layer furthest away from the wall.
 // Relative to undistorted size of cell outside layer.
 // See relativeSizes parameter.
 finalLayerThickness 0.01;

 // Minimum thickness of cell layer. If for any reason layer
 // cannot be above minThickness do not add layer.
 // Relative to undistorted size of cell outside layer.
 minThickness 0.0001;

 // If points get not extruded do nGrow layers of connected faces
that are
 // also not grown. This helps convergence of the layer addition
process
 // close to features.
 // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x)
 nGrow 0;

 // Advanced settings

 // When not to extrude surface. 0 is flat surface, 90 is when two
faces
 // are perpendicular
 featureAngle 30;

 // At non-patched sides allow mesh to slip if extrusion direction
makes
 // angle larger than slipFeatureAngle.
 slipFeatureAngle 30;

 // Maximum number of snapping relaxation iterations. Should stop
 // before upon reaching a correct mesh.
 nRelaxIter 3;

 // Number of smoothing iterations of surface normals
 nSmoothSurfaceNormals 3;

 // Number of smoothing iterations of interior mesh movement
direction
 nSmoothNormals 3;

 // Smooth layer thickness over surface patches
 nSmoothThickness 10;

 // Stop layer growth on highly warped cells
 maxFaceThicknessRatio 0.5;

 // Reduce layer growth where ratio thickness to medial

 // distance is large
 maxThicknessToMedialRatio 0.3;

 // Angle used to pick up medial axis points
 // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to
130 in 17x.
 minMedianAxisAngle 90;

 // Create buffer region for new layer terminations
 nBufferCellsNoExtrude 0;

 // Overall max number of layer addition iterations. The mesher
will exit
 // if it reaches this number of iterations; possibly with an
illegal
 // mesh.
 nLayerIter 5000;
}

// Generic mesh quality settings. At any undoable phase these
determine
// where to undo.
meshQualityControls
{
 #include "meshQualityDict"

 // Advanced

 //- Number of error distribution iterations
 nSmoothScale 4;
 //- Amount to scale back displacement at error points
 errorReduction 0.75;
}

// Advanced

// Write flags
writeFlags
(
 scalarLevels
 layerSets
 layerFields // write volScalarField for layer coverage
);

// Merge tolerance. Is fraction of overall bounding box of initial
mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1e-6;

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "constant";
 object transportProperties;
}
// *
* * * //

transportModel Newtonian;

nu [0 2 -1 0 0 0 0] 0.000001246212121;

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "constant";
 object turbulenceProperties;
}
// *
* * * //

simulationType laminar;

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class volVectorField;
 object U;
}
// *
* * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (1 0 0);

boundaryField
{
 inletWall
 {
 type freestream;
 freestreamValue $internalField;
 }

 outletWalls
 {
 type zeroGradient;
 }

 "titan_balloon*"
 {
 type noSlip;
 }

 sym
 {
 type symmetry;
 }

}

//
**
*** //

/*--------------------------------*- C++ -
----------------------------------\
| ========= |
|
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
| \\ / O peration | Version: 4.1
|
| \\ / A nd | Web: www.OpenFOAM.org
|
| \\/ M anipulation |
|
*--
-------*/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object p;
}
// *
* * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{
 inletWall
 {
 type zeroGradient;
 }

 outletWalls
 {
 type fixedValue;
 value $internalField;
 }

 "titan_balloon*"
 {
 type zeroGradient;
 }

 sym
 {
 type symmetry;
 }

}

//
**
*** //

Appendix C: Locomotion and Visualization Software

The following is the listing of the Ballet.py file for creating the Ballet model and the algorithms for

its mobility

©2017 California Institute of Technology. Government sponsorship acknowledged. 2

©2017 California Institute of Technology. Government sponsorship acknowledged. 3

©2017 California Institute of Technology. Government sponsorship acknowledged. 4

©2017 California Institute of Technology. Government sponsorship acknowledged. 5

©2017 California Institute of Technology. Government sponsorship acknowledged. 6

©2017 California Institute of Technology. Government sponsorship acknowledged. 7

©2017 California Institute of Technology. Government sponsorship acknowledged. 8

©2017 California Institute of Technology. Government sponsorship acknowledged. 9

©2017 California Institute of Technology. Government sponsorship acknowledged. 10

©2017 California Institute of Technology. Government sponsorship acknowledged. 11

©2017 California Institute of Technology. Government sponsorship acknowledged. 12

©2017 California Institute of Technology. Government sponsorship acknowledged. 13

©2017 California Institute of Technology. Government sponsorship acknowledged. 14

©2017 California Institute of Technology. Government sponsorship acknowledged. 15

©2017 California Institute of Technology. Government sponsorship acknowledged. 16

The following is the listing of the BalletVisualization.py file for generating the 3D display and

animation of BALLET

©2017 California Institute of Technology. Government sponsorship acknowledged. 17

©2017 California Institute of Technology. Government sponsorship acknowledged. 18

©2017 California Institute of Technology. Government sponsorship acknowledged. 19

©2017 California Institute of Technology. Government sponsorship acknowledged. 20

©2017 California Institute of Technology. Government sponsorship acknowledged. 21

©2017 California Institute of Technology. Government sponsorship acknowledged. 22

©2017 California Institute of Technology. Government sponsorship acknowledged. 23

©2017 California Institute of Technology. Government sponsorship acknowledged. 24

©2017 California Institute of Technology. Government sponsorship acknowledged. 25

	BALLET_Final_Report_v17
	Appendix C: Locomotion and Visualization Software Listing…………………………… C.1
	1. Introduction
	1.1. Concept Description
	1.2. Motivation
	1.3. Phase 1 Study Overview

	2. Science Objectives
	2.1. Mars Recurring Slope Lineae
	2.2. Titan Shorelines
	2.3. Titan Dunes
	2.4. Titan Cryovolcanic regions

	3. Mission Formulation
	3.1. Spacecraft and Deployment
	3.2. Mechanical Design and Materials

	4. Concept Evaluation
	4.1. Analyses
	4.2. Results
	4.2.1. Titan
	4.2.2. Mars
	4.2.3. Earth

	5. Locomotion
	5.1. Obstacle Avoidance Motion Planning
	5.2. Path Planning and Foot Trajectory Control
	5.3. BALLET Model and 3D Visualization

	6. Conclusions
	Acknowledgements
	References

	AppendixA_JupyterNotebook
	AppendixB_OpenFOAM
	AppendixC_LocomotionVisualizationSoftware
	Appendix C: Locomotion and Visualization Software

