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 0.25° resolution (~ 25km), 72 levels, 250 chemical species

Numerical simulation of atmospheric chemistry
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Numerical simulation of atmospheric chemistry
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The current solution: wait, wait, wait
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www.nccs.nasa.gov

Courtesy of W. Putman, NASA GMAO

 High-resolution chemistry simulation requires 3416 CPU’s
 Can simulate approx. 20 days in 24 hours
 Outputting the full chemical state is 1.5 TB / simulation day

4x



Global Modeling and Assimilation Office
gmao.gsfc.nasa.govGMAO

National Aeronautics and Space Administration

Replace chemical integrator with machine learning model
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Machine learning for atmospheric chemistry modeling

 Training data set has 2.7 billion data points (44 GB)
 Tested: (neural network), random forest and XGBoost

• 143 chemical species
• 91 photolysis rates
• Temperature
• Pressure
• Rel. humidity
• Solar zenith angle

Concentrations 
after chemistry

christoph.a.keller@nasa.gov

Separate model 
for each species

Ozone

Nitrogen oxides

etc.
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Impose chemical constraints on ML model to 
improve (long-term) accuracy
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1. Distinguish between short-term vs. long-term species

2. Predict NO + NO2 combined (NOx family approach)

Long-lived (tendencies):    [Xi]T+△T = [Xi]T + f( k, J, [X] )
Short-lived (steady state): [Xi]T+△T = f( k, J, [X] )

NO

NO2

VOC / HOx Ox (Ozone)
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Random forest / XGBoost training benchmarks
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Random forest / XGBoost training benchmarks
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Random forest / XGBoost training benchmarks
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Random forest / XGBoost can reproduce target 
concentrations almost perfectly (single-step prediction)
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Random forest / XGBoost solutions 
reflect known features of chemical kinetics
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NOx chemistry

VOC chemistry

Photolysis
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1-month simulation with random forest emulator
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Surface concentrations over polluted regions are well 
reproduced by ML model
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Machine learning model remains stable over the long-term 
(but only if NOx is predicted as a family)

christoph.a.keller@nasa.gov

Model with NOx family prediction

Model without NOx family prediction
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Speedup potential
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 Offline evaluation of one forest is 1000x faster than numerical integration
 Current implementation is very inefficient (2x slower than full chemistry)
 Currently working on seamless integration of XGBoost
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Summary

 Tree models do a good job at simulating atmospheric chemistry
 Adding constraints (e.g., chemical families) to the machine 

learning model is critical
 Potential applications:

• Chemical data assimilation
• Air quality forecasting

 Issues:
• Train on very large data sets (>1 TB)
• Dynamics for >200 chemical species is still slow

Keller and Evans: Application of random forest regression to the calculation of gas-phase chemistry within the 
GEOS-Chem chemistry model v10, GMD, 2019.
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Prediction of NOx
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Surface concentrations over polluted regions are well 
reproduced by ML model
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