Atmospheric Chemistry Modeling using Machine Learning

Christoph A. Keller

NASA Global Modeling and Assimilation Office (GMAO) Universities Space Research Association (USRA)

Mat J. Evans

Wolfson Atmospheric Chemistry Laboratories, University of York National Centre for Atmospheric Sciences, University of York

EGU Annual Meeting

11 April 2019

Numerical simulation of atmospheric chemistry

> 0.25° resolution (~ 25km), 72 levels, 250 chemical species

Numerical simulation of atmospheric chemistry

Transport process: Move chemicals across grid boxes

Chemistry process: In each grid box, solve chemical reactions, i.e. solve stiff ordinary differential equations (ODEs)

 $A + B \rightarrow C + D$

its rate is calculated as

$$-\frac{d}{dt}[A] = -\frac{d}{dt}[B] = \frac{d}{dt}[C] = \frac{d}{dt}[D] = k[A][B]$$

The current solution: wait, wait, wait

Courtesy of W. Putman, NASA GMAO

- High-resolution chemistry simulation requires 3416 CPU's
- > Can simulate approx. 20 days in 24 hours

Global Modeling and Assimilation Office

mao.asfc.nasa.aov

GMA

Outputting the full chemical state is 1.5 TB / simulation day

Replace chemical integrator with machine learning model

Machine learning for atmospheric chemistry modeling

Separate model for each species

- 143 chemical species
- 91 photolysis rates
- Temperature
- Pressure
- Rel. humidity
- Solar zenith angle

Concentrations after chemistry

- Training data set has 2.7 billion data points (44 GB)
- Tested: (neural network), random forest and XGBoost

GMAC

Impose chemical constraints on ML model to improve (long-term) accuracy

1. Distinguish between short-term vs. long-term species

Long-lived (tendencies): $[X_i]_{T+\Delta T} = [X_i]_T + f(\mathbf{k}, \mathbf{J}, [\mathbf{X}])$ Short-lived (steady state): $[X_i]_{T+\Delta T} = f(\mathbf{k}, \mathbf{J}, [\mathbf{X}])$

2. Predict NO + NO₂ combined (NOx family approach)

VOC / HO_x
$$\leftrightarrow$$
 $(NO_1)_1 \rightarrow O_x$ (Ozone)

gmao.gsfc.nasa.gov

Random forest / XGBoost can reproduce target concentrations almost perfectly (single-step prediction)

Random forest / XGBoost solutions reflect known features of chemical kinetics

GIObal Modeling and Assimilation Office gmao.gsfc.nasa.gov

christoph.a.keller@nasa.gov

1-month simulation with random forest emulator

Surface concentrations over polluted regions are well reproduced by ML model

Machine learning model remains stable over the long-term (but only if NOx is predicted as a family)

Model without NOx family prediction

Speedup potential

> Offline evaluation of one forest is 1000x faster than numerical integration

- > Current implementation is very inefficient (2x slower than full chemistry)
- Currently working on seamless integration of XGBoost

GMAC

Summary

- > Tree models do a good job at simulating atmospheric chemistry
- Adding constraints (e.g., chemical families) to the machine learning model is critical
- Potential applications:
 - Chemical data assimilation
 - Air quality forecasting
- Issues:
 - Train on very large data sets (>1 TB)
 - Dynamics for >200 chemical species is still slow

Keller and Evans: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, GMD, 2019.

National Aeronautics and Space Administration

Prediction of NOx

GIObal Modeling and Assimilation Office gmao.gsfc.nasa.gov

christoph.a.keller@nasa.gov

Surface concentrations over polluted regions are well reproduced by ML model

