

NASA's Science and Exploration Directorates are Involved

- Science Mission Directorate (SMD)
 - Planetary Science Division supports "classical" astrobiology, i.e. studying the origin, evolution, distribution, & future of life in the universe
 - The basic plan: offer Gateway as a platform for doing science, as SMD does for ISS
 - Up to individual researchers to decide what SMD science they want to propose for Gateway within the framework of existing SMD funding channels; peer review determines what is considered

• Human Exploration and Operations Mission Directorate (HEOMD or HEO)

- Division of Space Life and Physical Sciences Research and Applications (SLPSRA) supports life science research in the context of human space exploration
- Their mission includes microbiological studies with links to human mission operations, health, and performance
- HEO is developing a "crosscutting" plan / prioritization via their Life Science Research Capabilities Team (LSRCT) …

)

NASA

Life Science Research Capabilities Team (LSRCT) at NASA

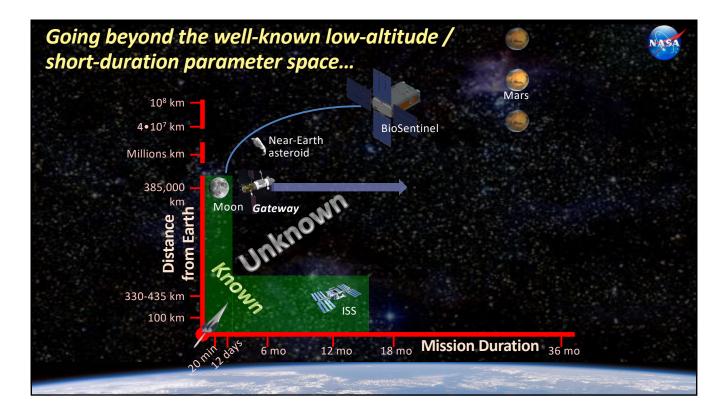
- Formed by SLPSRA/Space Biology Office at Ames
 - Cross-cutting team responds to interests of Space Biology (HEOMD) along with Astrobiology and Planetary Protection (Planetary Science/SMD)
- Consolidated Space Biology/LSRCT top level requirements submitted to NASA's Gateway Utilization Office:

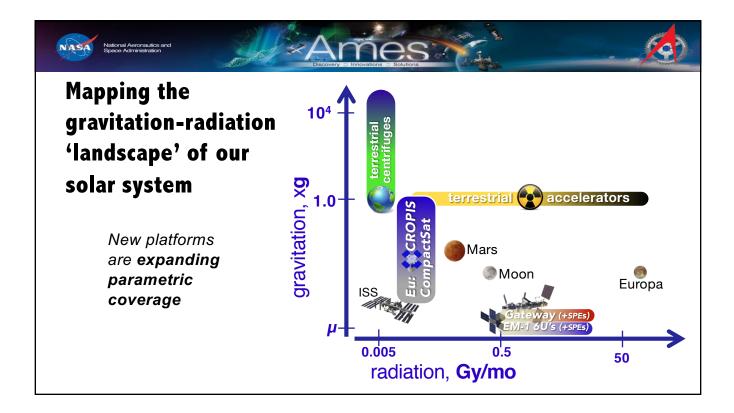
Science Need	Science Goals / Objectives	Model Organisms: Main Processes Studied	Hardware	
Science Neeu	Science doas / Objectives	Model Organishis. Main Processes Studied	(All components can be in a single BioBox for shared use)	
Understand the Deep-Space Radiation Environment	Understand acute and long-term effects on biological organisms of deep-space radiation INSIDE the habitation module	Microbes bacteria & yeast : DNA damage/repair, evolutionary adaptation, microbiome, biofilms Plants arabidopsis et al .: Genetics microgreens: Micronutrient production, greens validation	1) Glovebox 2) Incubator 3) Cold Stowage 4) Microbiology Habitat	5) <i>In-situ</i> analyses (e.g. PCR, MinION, Spectrum) 6) Plant habitat
	Understand acute and long-term effects on biological organisms of deep-space radiation OUTSIDE the habitation module	Microbes bacteria & yeast : DNA damage/repair, evolutionary adaptation, microbiome, biofilms Plants: Effects on seeds of exposure	1) Glovebox (pre/post exposure) 2) Incubator (pre/post exposure) 3) Cold Stowage (pre/post exposure) 4) Microbiology habitat	 5) In-situ analyses (e.g. PCR, MinION, Spectrum) 6) Exposure Platform 7) Seed habitat
	Characterize the physical radiation environment & its effects, including shielding effects, INSIDE the habitation module	None	State-of-the-art sensor suite	
	Characterize the physical radiation environment & its effects, including shielding effects, OUTSIDE the habitation module	None	State-of-the-art sensor suite	

NASA LSRCT Requirements(continued)

Science Need	Science Goals / Objectives	Model Organisms: Main Processes Studied	Hardware (All components can be in a s	single BioBox for shared
Understand Deep- Space-Radiation + Altered-Gravity effects	Examine the combined effects of deep-space radiation and reduced gravity on biological organisms	Microbes bacteria & yeast : DNA damage/repair, evolutionary adaptation, microbiome, biofilms	1) Glovebox 2) Incubator with centrifuge 3) Cold Stowage	4) Microbiology habitat 5) In-situ analyses (e.g. PCR, minion, Spectrum) 6) Plant habitat
Understand Absence- of-Magnetic-Field effects	Investigate acute & long-term effects on biological organisms of the absence of Earth's g eomagnetic field	General physiological & molecular effects	1) Glovebox 2) Incubator 3) Cold Stowage	4) Microbiology habitat 5) In-situ analyses (e.g. PCR, minion, Spectrum) 6) Plant habitat
Understand Absence- of-Magnetic-Field + Altered-Gravity effects	Examine the combined effects on biological organisms of absence of magnetic field and reduced gravity	Plants arabidonsis et al · Genetics	1) Glovebox 2) Incubator with centrifuge 3) Cold Stowage	 4) Microbiology habitat 5) In-situ analyses (e.g. PCR, minion, Spectrum) 6) Plant habitat

Assumptions:

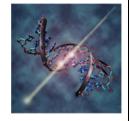

All experiments utilize in situ analysis of only Priority 1 organisms: Microbiology & Plant (more complex organisms available if feasible for Gateway)

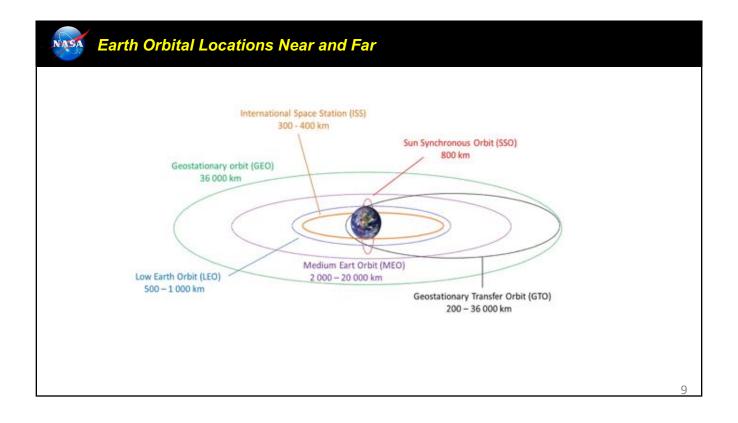

Sample return requested, but feasible Science even if unavailable

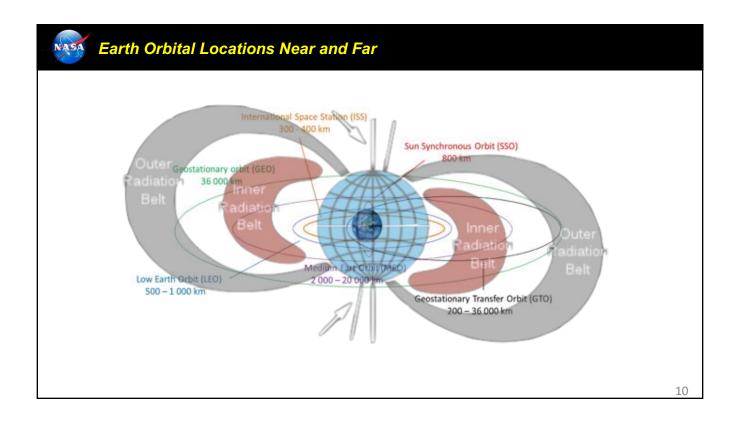
Compatible with broad temperature and gas mixture range

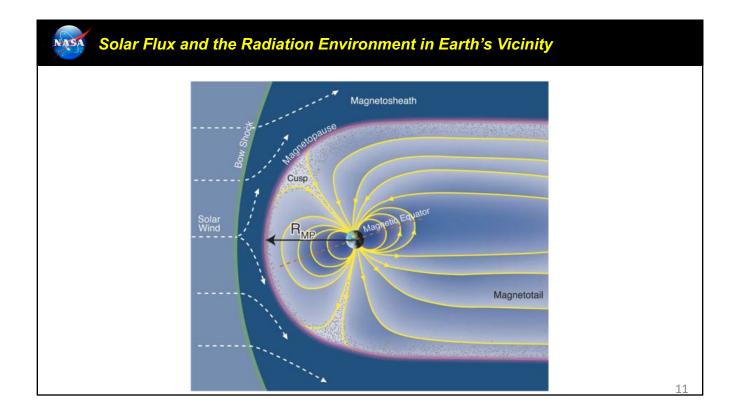
Compatible with Gateway ConOps & safety constraints

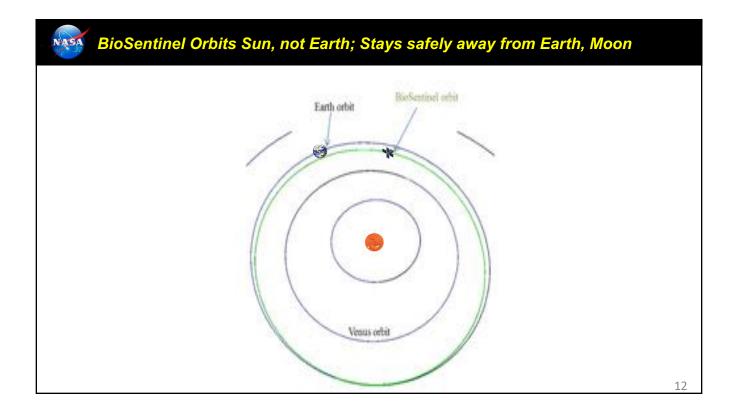
Compatible with TeleRobotics

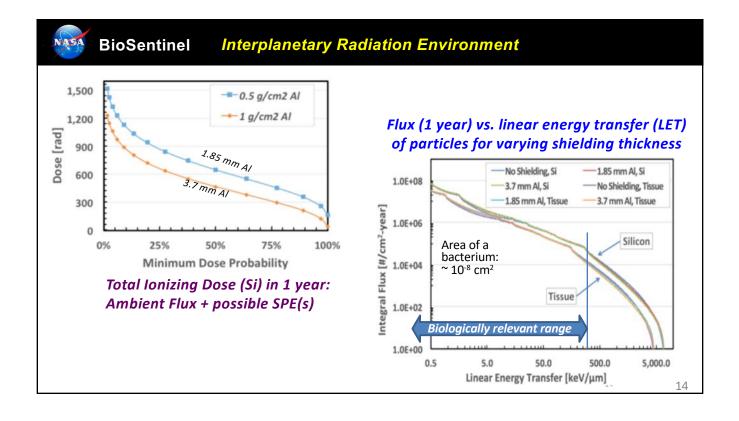


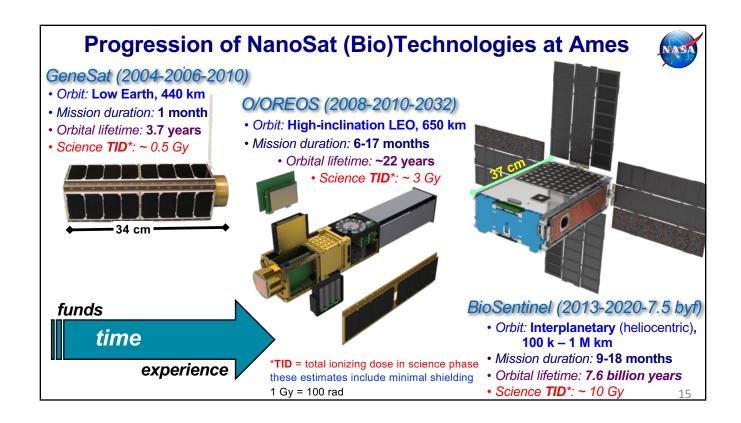

Why Study (Astro)Biology in Deep Space?


Low Earth Orbit provides perfectly adequate µ-gravity *Answer*: Radiation.

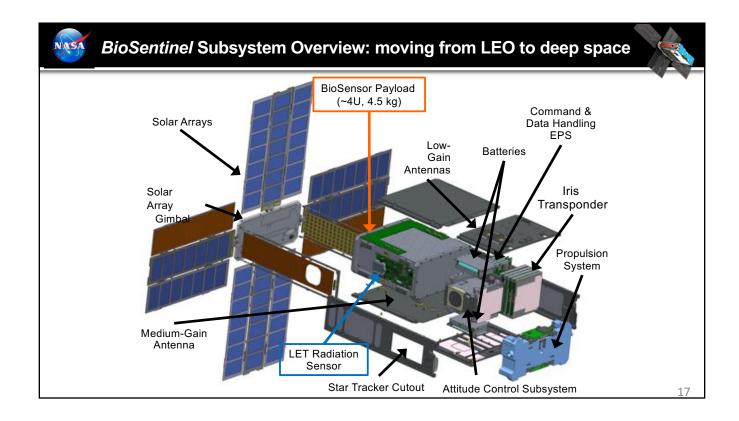

Answer: Radiation.

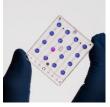

- $\circ~$ Space beyond Earth's magnetosphere hosts a complex mixture of particle types
 - each particle type has its own energy spectrum
 - also: electromagnetic radiation extending into vacuum UV
- For some biological processes, effects of chronic low dosage of multiple particle types and energies ≠ acute dose of 1 - 2 particle types, 1 energy
 - Biology can self-repair. (Solid-state devices can too, but very differently)
 - Repair (and mutation) can profoundly impact long-term radiation effects in biological organisms that are not simulated by non-living materials
 - Cells communicate. Damage of a few cells may indirectly affect many others.
 - > Cell lethality is typically not the main concern. The problem is those that survive a hit.
- High-radiation environments available in "special" cases of LEO
 - > polar orbits, dense regions of Van Allen belts, So. Atlantic Anomaly
 - BUT these are not the same as deep space: GCR is shielded/modified by magnetosphere and SPEs are highly attenuated








Orbit	Altitude (from sea level, km)	Orbital Inclination ^a	Orbital Period around Earth	Predominant Particle Radiation Sources	Shielding-Dependent Monthly Radiation Dose ^b (Gy)	
					1 mm ^c	5 mm ^c
Low Earth Orbit (LEO)	300 - 2000	0 – 55°	90 – 127 min	electrons, protons	0.0061 - 660	0.0041 - 36
ISS in LEO	330 – 435	51.6°	91 – 93 min	electrons, protons	5 - 30	0.34 - 0.020
High-inclination LEO ^d	400 - 2000	65° – 115°	92 – 127 min	electrons, protons, GCRs, SEPs ^h	40 - 1500	0.69 - 140
Sun Synchronous LEO, including (near-) polar	400 – 1000 (typical)	~98° & others	92 – 105 min	electrons, protons, GCRs, SEPs	40 - 180	0.86 - 10
Medium Earth Orbit (MEO)	2000 – 35 750	Various	2 – 23.9 hr	electrons, protons (Van Allen Belts)	40 - 9700	0.69 – 190
Geosynchronous Equatorial Orbit (GEO)	35 786	0°	23.93 hr	electrons (Outer Van Allen Belt)	3300	32
Highly Elliptical Orbit (HEO) ^e	perigee < 1000 apogee > 35 800	Various	10.6 – 26 hr	electrons, protons (Van Allen Belt(s))	4.7 - 11000	1.3 - 190
Lunar libration points ^f	L1: 326 400 L2: 444 400	5°	27 – 29 d	GCRs, SEPs	11 - 140	0.55 – 21
Lunar orbit ^j	perigee: 363 104 apogee: 405 700	5°	27 d	GCRs, SEPs, neutrons	7.7 – 96	0.38 – 15
Interplanetary space ^g	>~100 000		N/A	GCRs, SEPs	11 - 140	0.55 – 21



8

Integrated Microfluidics Advances:

Deep-space autonomous microbiology experiments enabled by new microfluidics capabilities

- Large n: Eighteen independently activated 16-microwell fluidic cards
- Manifold Integration: fluidic, optical, thermal components in monolithic manifolds
- Long-duration biological specimen stabilization:
 - > Dormant fluidic cards "refrigerated" (only active cards held at growth temperature)
 - Low-moisture-permeability optical cover layers + desiccant improve dried cell longevity
 - Stasis tested to > 24 months for S. cerevisiae
- All microbes measured: optical paths include entire cell-containing volume
- · High-accuracy optical measurements:
 - Integrated optical calibration cell per manifold enables *in-situ* calibration of 3-wavelength optical density/absorbance measurements at every microwell
 - > Wavelengths custom selected for each experiment from 10's of LED options
- Ease of sterilization: Fluidic cards autoclavable; integrated manifolds rad. sterilized
 Wide range of fluidic functions: Active pumps, 3-way/2-way valves; passive check valves; bubble traps; moisture traps (desiccant); defined-pore-size membranes

Biosentinel Advances in Biological & Radiation Science Capabilities-2 Radiation Sensing Advances Low-power miniaturized linear energy transfer (LET) spectrometer: Hourly 256-bin LET spectrum: 0.2 – 300 keV/µm Enables correlation of local "space weather" w/ biological effects ٠ Wilkinson-type ADC, direct energy measurement per pixel ٠ Categorizes each event by particle type / energy • Calculates / reports TID (total ionizing dose) • JSC Radworks single-PC-board implementation uses Timepix (CERN-developed) sensor Automatic integration time adjustment Single-board LET spectrometer mounted SPE "auto-trigger" designed by Ames. on BioSentinel payload enclosure Pixelated 300 µm thick Si detector chip (256 x 256 ixels, 55 µm pitch) TimePix Typical TimePix frame: 256 x 256 x 14 bits Chip Read-out ASIC chip TimePix oltage (~100V) 10

Biosentinel Advances in Biological & Radiation Science Capabilities-3 Thermal Management Advances 23.0 23 °C biology temp. for "active growth" fluidic card "Passive Refrigeration" ~ 8 °C for non-active cards to maintain biological viability "Keep-alive" 4 °C minimum at all times, cards & reagents 23 °C As-modeled, < 0.5 W to heat one card • 46,000 Nodes, 6 heat loads, 18 heaters, 206 contactors; FD & FE objects • Fluidics card components meshed separately (2200 nodes) at high resolution: capture thermal gradients, measure uniformity 20

"Adapting" Conventional Electronics to Space Flight

- Integrated circuits (ICs) are becoming inherently more radiation tolerant
 - Smaller feature sizes, thinner dielectrics: lower probability of trapped charge
- ICs for challenging environments e.g. automobiles are often quite radiation tolerant
 - E.g., TI MSP430 microcontroller (*BioSentinel*), available with F-RAM
- Use multiple "watchdog timers", both software and hardware to recover from latch-ups
 - > Write "self-recovering" software
- Use redundant / error-checking storage of both data and experiment state
 - > And keep humans out of the loop as much as possible
- Design circuits that include sensitive components be to dosetolerant
 - MOSFET power switches

