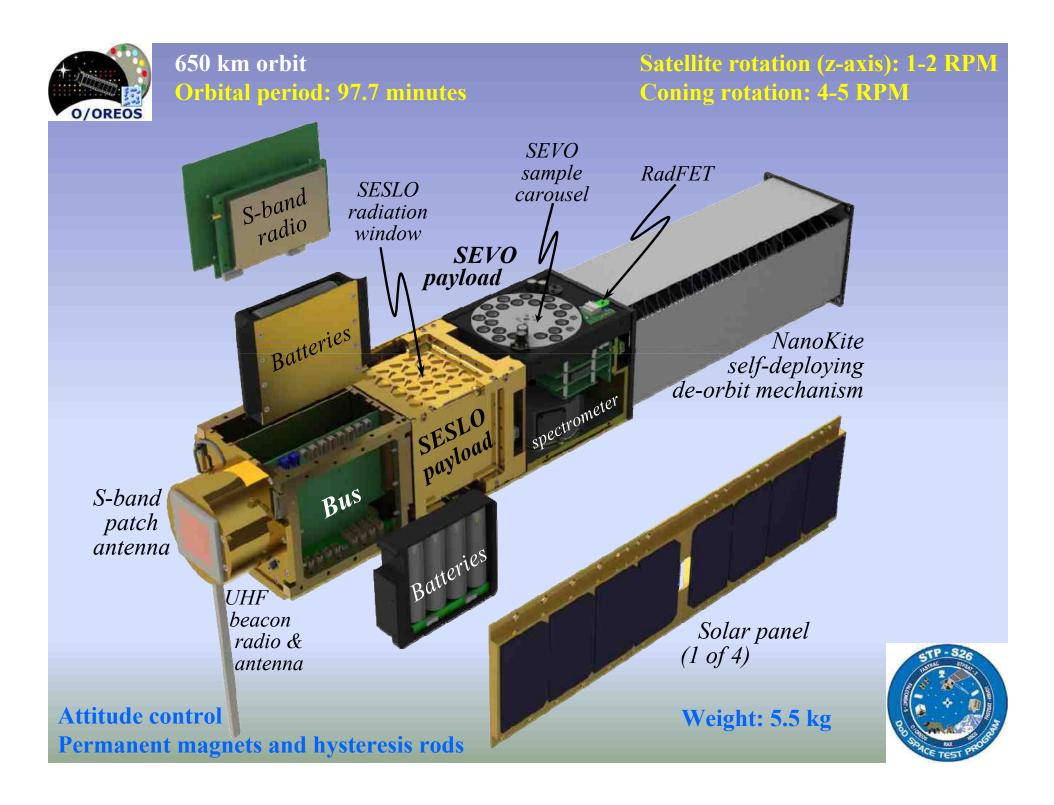


THE O/OREOS MISSION: ASTROBIOLOGY IN LOW EARTH ORBIT

P. Ehrenfreund¹, A.J. Ricco², D. Squires², C. Kitts³, E. Agasid², N. Bramall²,
K. Bryson⁴, J. Chittenden², C. Conley⁵, A. Cook², R. Mancinelli⁴, A. Mattioda²,
W. Nicholson⁶, R. Quinn⁷, O. Santos², G. Tahu⁵, M. Voytek⁵, C. Beasley²,
L. Bica³, M. Diaz-Aguado², C. Friedericks², M. Henschke², J.W. Hines²,
D. Landis⁸, E. Luzzi², D. Ly², N. Mai², G. Minelli², M. McIntyre²,
M. Neumann³, M. Parra², M. Piccini², R. Rasay³, R. Ricks², A. Schooley²,
E. Stackpole², L. Timucin², B. Yost², A. Young³

¹Space Policy Institute, Washington, DC, USA, ²NASA Ames Research Center, Moffett Field, CA, USA, ³Robotic Systems Laboratory, Santa Clara University, Santa Clara, CA, USA, ⁴Bay Area Environmental Research Institute, Sonoma, CA, USA, ⁵NASA Headquarters, Washington DC, USA, ⁶University of Florida, Gainesville, FL, USA, ⁷SETI Institute, Mountain View, CA, USA, ⁸Draper Laboratory, Cambridge, MA, USA

NASA Astrobiology Small Payloads (ASP)


Develop and fly small astrobiology payloads, from single-cube free flyers to suitcase-sized payloads, to address fundamental astrobiology objectives, using a variety of launch opportunities

O/OREOS (Organism/Organics Exposure to Orbital Stresses) is the first technology demonstration mission for ASP

Launched: November 19, 2010 Nominal performance in orbit, 6 months <u>http://ooreos.engr.scu.edu/dashboard.htm</u>

Kodiak lift off

Launch: 19 November 2010 Launch Vehicle: Minotaur IV Launch Site: Kodiak, Alaska Mission duration: 6-12 months Risk Class D, Category III (\$2.5M)

Minotaur IV

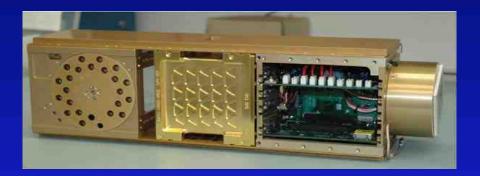
Spacecraft Operations

O/OREOS beacon sends an AX.25 packet every 5 seconds; the packet contains data about the spacecraft systems operation

Single 3-meter Dish Operations:


- Useful Contacts per day: 2 good contact
- Average time per contact: ~ 2 min
 Data downlink: 6 MB

EPO: Beacon signal \longrightarrow public operators **S-Band station:** standard command and telemetry operations for O/OREOS


<image>

Santa Clara University

Mission science goals

O/OREOS Dual payload: Monitor how exposure to space radiation and weightlessness changes biology and organic molecules

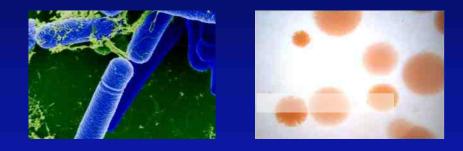
<u>Goal 1:</u> Measure the survival, growth and metabolism of two different microorganisms using in-situ colorimetry

<u>Goal 2:</u> Measure the changes induced in molecules and biomarkers using ultraviolet and visible spectroscopy

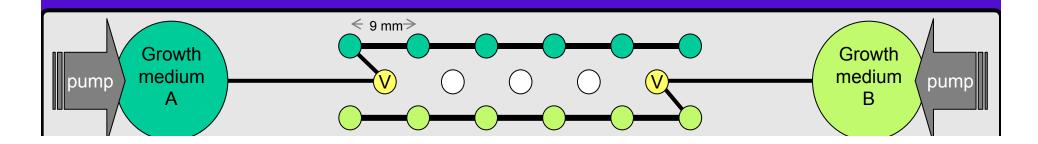
O/OREOS Dual-Payload Technology **Architecture**

Each payload experiment-plus-instrument contained in a single 10-cm cube

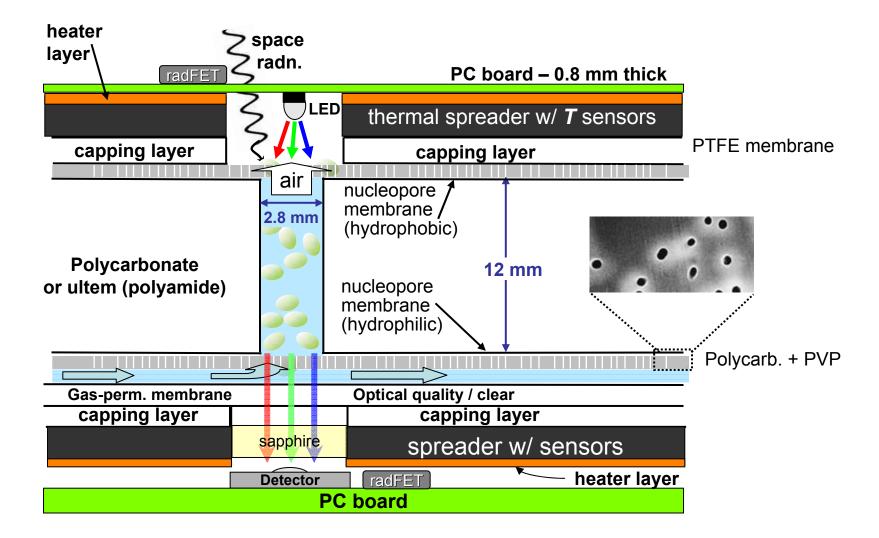
Organics payload (SEVO)


- 4 different organic molecules as thin films
- 4 reaction-cell-supported environments
- UV-visible spectroscopic characterization

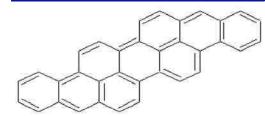
Biology payload (SESLO)


- 2 different biological specimens
- **3** growth initiation times (test periods) —
- optical measurement of growth, metabolic activity

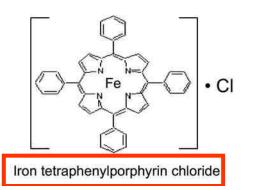
Space Environment Survivability of Live Organisms (SESLO)

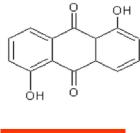

SESLO collected 3 datasets on the survival and metabolic activity for two micro-organisms during the 6-month mission

- *Bacillus subtilis spores & Halorubrum chaoviatoris* (each as wild-type and mutant) were launched in a dry state
- **Rehydration in orbit:** fluids were added to micro-organisms containing microwells at 2 weeks after launch, at 3 and 6 months

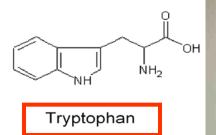


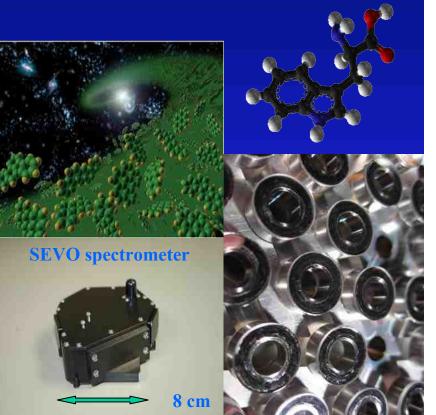
SESLO (bio) Fluidic/Thermal/Optical Architecture *Fluidic / optical / thermal cross-section*

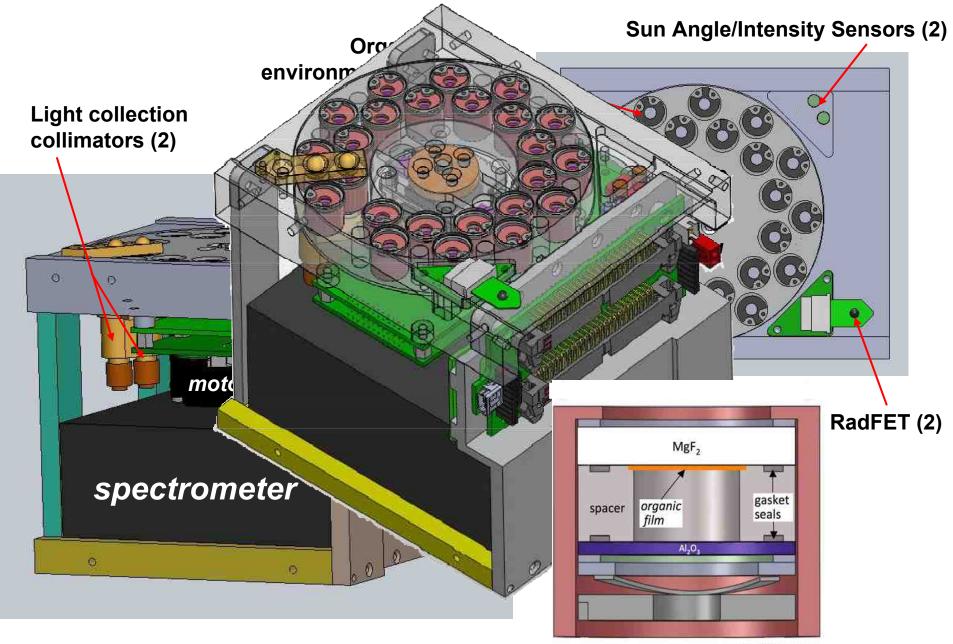



Space Environment Viability of Organics (SEVO) SEVO provides a real-time analysis of the photostability of four classes of organic molecule to the space environment

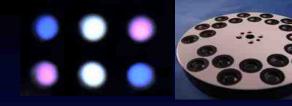
SEVO houses the organic samples in "planetary micro-environments" (gas, humidity and mineral substrates are sealed into the individual sample cells)




Isoviolanthrene



Anthrarufin



SEVO: Integrated Instrument & Sample Disk

Cell housing

O/OREOS Science Return

- SESLO data contribute to our understanding of the environmental limits of life and will address many aspects of space biology and planetary protection
- SEVO data allow us to better understand the carbon chemistry in space environments, extraterrestrial delivery processes and prebiotic chemistry on the early Earth

<u>Medium Success</u> (TRL 7) includes minimum success outcomes plus *completion of ground experiments for establishing pre-flight experimental data baselines.*

Organics Experiment Demonstration Medium Success Details:

Measure the degradation of (bio) organic molecules in at least one of the relevant space environments.

Organisms Experiment Demonstration Medium Success Details:

Demonstrate the ability for biology to survive in a 3-month mission, *maintaining stasis for up to 4.5 months*.

Full Success (TRL8) includes minimum and medium success outcomes plus *launch*, *successful* operation of the O/OREOS-Sat payload, and delivery of collected mission data to program management.

Organics Experiment Demonstration Extended Success Details:

Measure the degradation of (bio) organic molecules in all 4 selected space environments.

Organisms Experiment Demonstration Medium Success Details:

Demonstrate a third time series organism growth test that will be executable after 6 months on orbit. In this demonstration some of the organisms will have to be maintained in *stasis for up to* 7.5 months (1.5 months pre-launch, 6 months in space).

O/OREOS Nanosatellite Mission Update

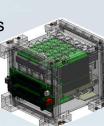
25 May 2011

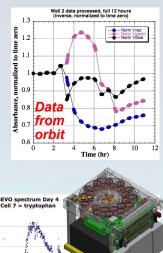
- Launch: Nov. 19, 2010, Minotaur IV, Kodiak Launch Complex, Alaska
 - 5.5 kg nanosat deployed from PPOD @ 650 km, 72°, 98-min orbit
 - 1st science nanosatellite above the thermosphere

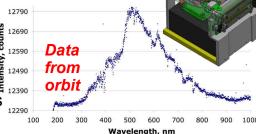
Overall Status: Nominal

- Full mission success criteria satisfied
- Rotation rate has slowed from ~ 7 to ~ 1 RPM
- Autonomous system resets ~ Dec. 27, Feb. 12, May 24

Communications Summary

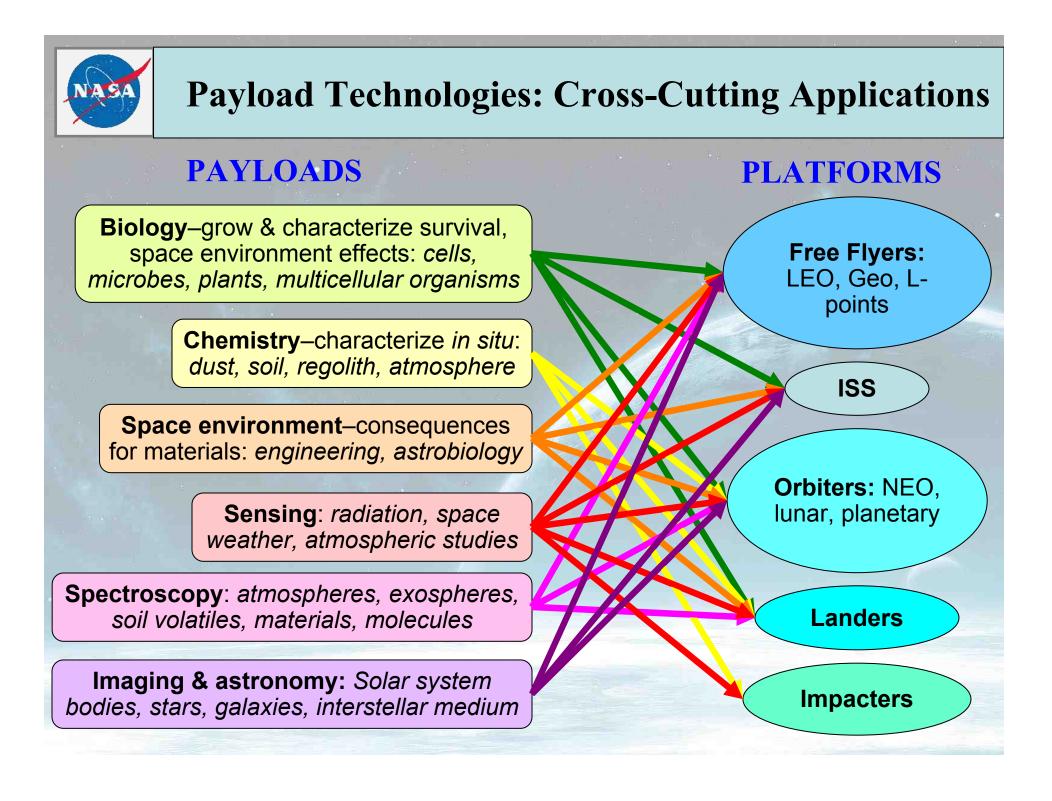

- Beacon (EPO): ~ 100,000 packets submitted by amateurs in 22 countries
- S-band (WiFi): ~6 MB downlinked by Santa Clara University team
- Radiation dose, rotation data, temperatures, health, downlinked from bus
- Multiple command uplinks successful to tune operational parameters


• P/L 1: Space Environment Survival of Living Organisms


- t = 2 wk, 3 mo, 6 mo Biomodule exp'ts.: Dec. 3, Feb. 18, May 19
- Asynchronous ground controls: Jan. 11, Apr. 5, July 5
- Germination/growth of *B. subtilis* spores in all biowells; stable temp.

• P/L 2: Space Environment Viability of Organics

- Nominal spectrometer function: 22 sets of 24 UV-vis spectra recorded
- > 500 spectra from 4 organics in 4 microenvironments downlinked to date
- Acquisition parameters tuned: best [signal background] now > 7500 counts


	Mission heritage			
	GeneBet-1	PharmaSat		Space Environment Viability of Organics (SEVO)
Mission type	Fund. biology / Tech. demo.	Fund. biology / Science	Astrobiology / Tech. demo. / 6-month experiment duration	
Configuration	2U payload, 1U bus (4.4 kg)	2U payload, 1U bus (5.1 kg)	2 x 1U independent payloads, 1U bus (5.5 kg)	
Experiment	Gene expression	Antifungal dose response	Microbe survival & activity	Solar UV-induced organic degradation
Specimen	E. coli	S. cerevisiae	B. Subtilis H. Chaoviatoris	PAH, amino acid, porphyrin, quinone
Measurement	OD; green fluorescence	RGB absorbance, metabolic indicator	RGB absorbance, metabolic indicator	UV-vis spectroscopy 4 μenvironments
Sample n	10 wells	48 wells (3 conc's.)	3 x 12 wells	24 sample cells
Sensors	<i>T, p, RH,</i> accel., radiation flux	<i>T, p, RH,</i> radiation flux	<i>T, p, RH,</i> radiation dose	<i>T,</i> radiation dose, intensity/sun angle
Launch (Orbit)	Dec. 2006 Minotaur I	May 2009 Minotaur I (430 km)	Nov. 2010, Minotaur IV (72° inclination, 650 km)	
Outcome	Mission success Re-entry 2010	Mission success De-orbit ~ 2013	Mission success; subsystems operational Anticipated deorbit ~ 2032	

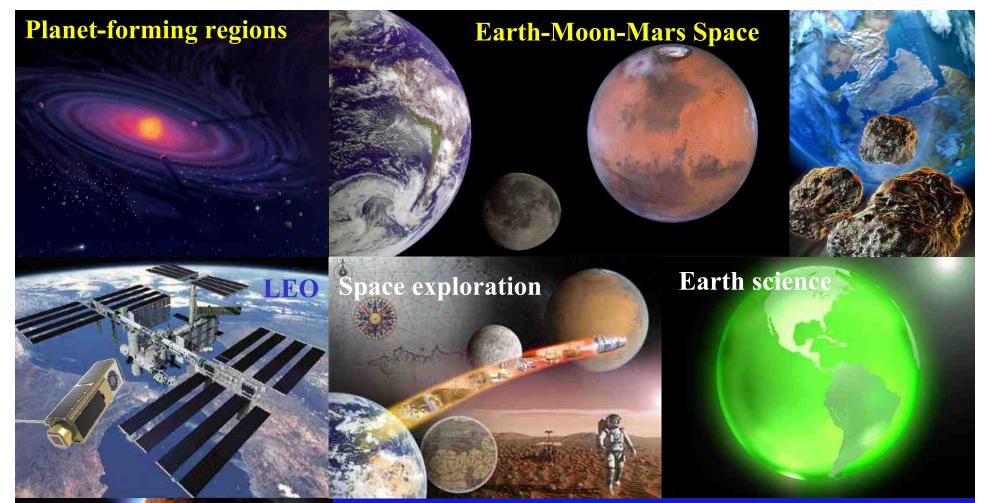
CubeSat "Demographics"

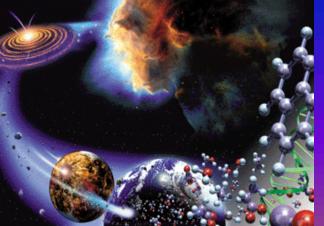
- Total 55 of cubesats launched since 2003
 - Most are university satellites
 - Many launched for nominal fee < \$100k, some launched "free" on government launch vehicles
- Since 2000, ~ 100 universities have developed or are active in the field of cubesats
- Since 2000, twelve new businesses/startups
- UN Basic Space Technology Initiative

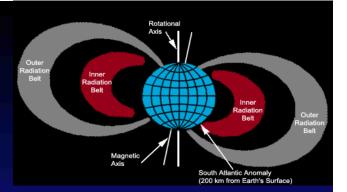
Mission concept to space science results in 18-24 months

- Frequent access to space
- Ability to execute rapid response missions
- Ability to perform all aspects of a NASA mission
- Comparatively low-cost missions
 - ✓ Small core team with heritage knowledge
 - Y Parallel mission architecture (design and cost leveraging)
- Adaptable, modular payload designs

Multi-platform compatibility: Suborbital, ISS, Free Flyers, Planetary Landers/Impacters/Orbiters







O/OREOS data will address several research avenues: Organic chemistry in space Extraterrestrial delivery processes Adaptation of life to space environment Planetary protection Space exploration In situ monitoring technology

Space conditions

- **<u>Biology</u>**: Particle radiation and microgravity
 - < 10⁻³ g
 - 1.3 Gy total dose over 6 mo
 - 0.1 Gy is GCR, 1 Gy is trapped protons

• **Organics**: Particle and UV radiation, microgravity

- $< 10^{-3} \text{ g}$
- ~ 15 Gy = 1.5 krad
- 6-month exposure of organics to space
- Solar exposure ~ 35% of total time = 1500 h
 - 120 2800 nm