

Theoretical study of production of light and intermediate mass fragments from interaction of GCR-LIKE particles

Mohammad S Sabra USRA STI / NASA-MSFC

msabra@usra.edu

APS April Meeting April 13-16, 2019, Denver, CO

APS April Meeting 2019 M.S Sabra

Introduction

- Galactic cosmic rays are high-energy radiation, originated outside the solar system, composed of 90% protons, 9% α -particles, and a small percentage of heavy ions (\sim 1%)
- Because of high charge \rightarrow heavy ions contribute to dose and dose equivalent received in spaceflight ($dE/dX \sim MZ^2$)
- As NASA's future plans include extended human mission in deep space, these exposures take priority
- Detailed understanding of transport of these heavy ions through matter is needed, as crew will be inside shielded spacecraft, or in habitats.

Introduction (cont.)

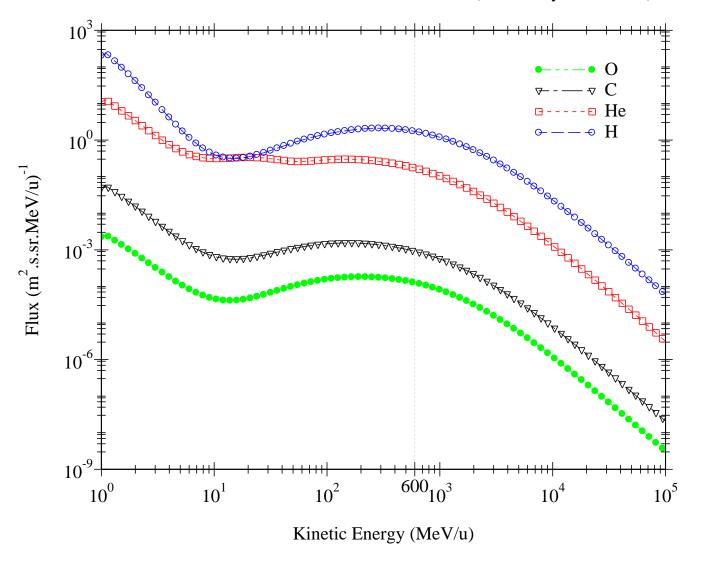
- Fragmentation cross sections play a key role in:
 - transport calculations
 - Estimates of dose and dose equivalent
- Accurate and precise database of nuclear reaction cross sections is needed to modelers for both code development and validation purposes
- The purpose of this work is to validate nuclear physics models, used in shielding design and dose calculations, against available experimental data and other models.

Experimental data

• Zeitlin *et al.* reported fragmentation cross sections measured for ¹⁶O beam at 600MeV/u incident on targets of H, C, and Al, and other targets [*Physical Review C 83, 34909 (2011)*]

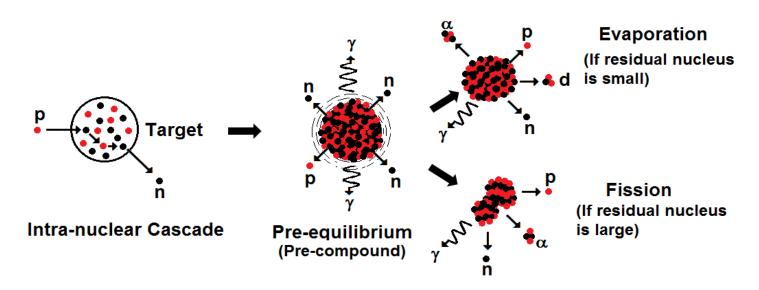
- We investigated the fragmentation cross sections for H, C and Al targets. Why?
 - H and C → Soft Tissue
 - Al → Spacecraft walls

Schematic of space radiation protection problem



From Wilson et al., NASA Reference Publications 1257 (1991)

GCR Flux for selected nuclei at Solar Minimum (Created by CREME96)



Nuclear Interaction Mechanism

- Interaction of projectile with target nucleus is divided into:
 - Dynamical stage → highly excited fragments are formed through direct reactions and pre-equilibrium reactions
 - 2. Statistical stage \rightarrow highly excited fragments lose their excitation energies by emission of light particles and γ -rays and finally reach their ground states

Nuclear Models

- 1. <u>SAPTON</u>: <u>S</u>cattering <u>A</u>nd <u>P</u>roduction <u>T</u>heory of <u>N</u>uclei : modified statistical model with final state interaction
- 2. <u>Geant4</u>: <u>Geometry and tracking 4</u>: is a toolkit for simulations of the passage of particles through matter:
 - a) G4-INCLXX: Updated version of the intranuclear cascade model (INCL++) that can handle heavy-ion collisions.
 - b) G4-Shielding: Based on Bertini model, and Quantum-Molecular-Dynamics (QMD) model.

SAPTON

- SAPTON is a modified version of the standard statistical model.
- It has a final-state interaction between the emitted fragments
- It distinguishes itself from other models in at least one important aspect:

It includes the possibility that the fragments are being emitted in the ground states, excited states, as well as in the continuum.

• Double differential cross-section for the production of a pair of fragments ${\bf A}_1$ and ${\bf A}_2$ is given by

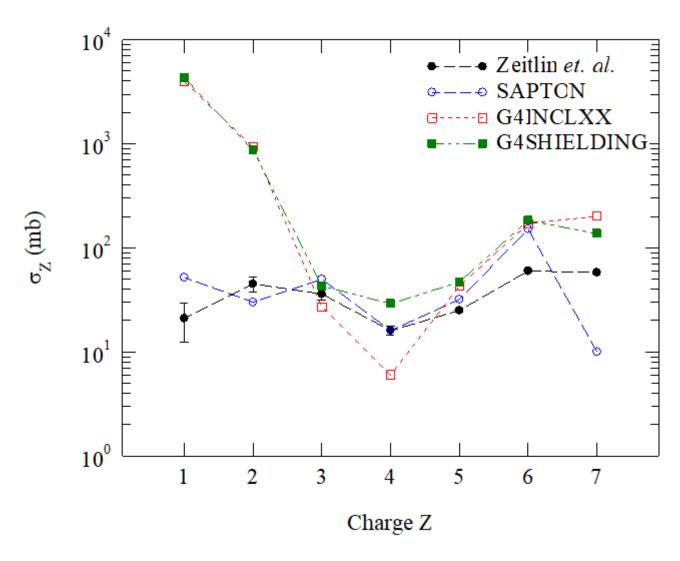
$$\frac{d^2\sigma}{d\Omega dE} \propto \int \frac{T_l(\varepsilon)\rho_1(U_1)\rho_2(U_2)}{\rho_c(U_c)} dU_1 dU_2$$

where

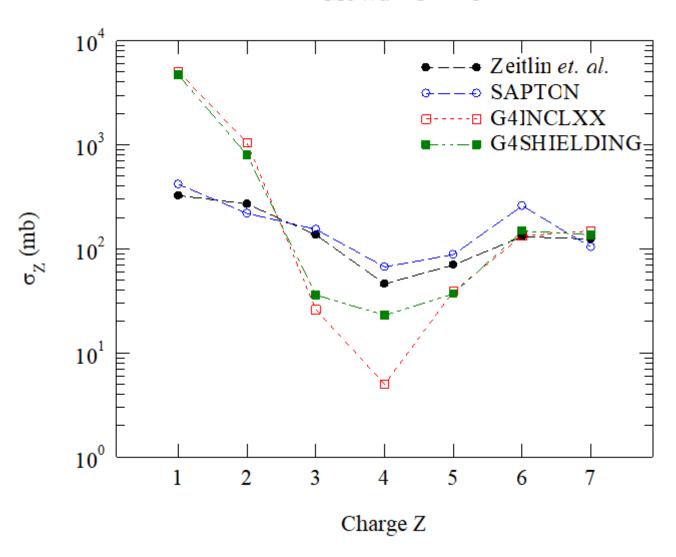
- $\succ T_l(\varepsilon)$ is the transmission Coefficient between the pair with relative energy ε
- $\triangleright \rho_1$, ρ_2 are their level densities
- $\triangleright U_1$, U_2 are their excitation energies
- $\triangleright \rho_c$, U_c are the level density and excitation energy of the composite system

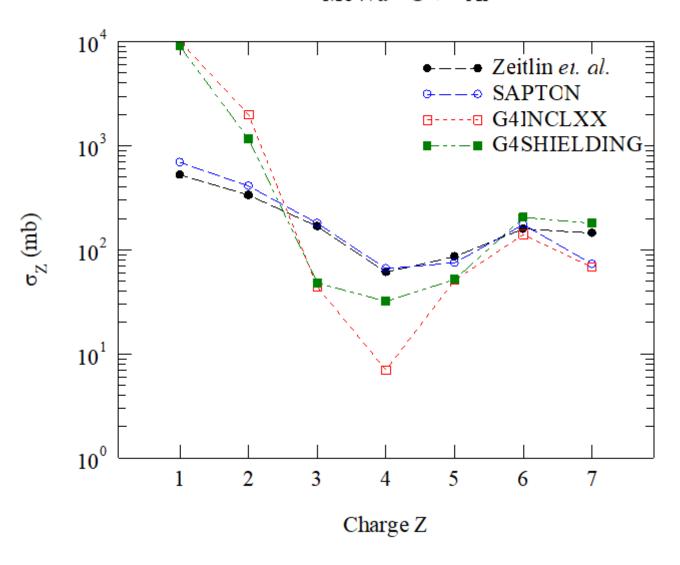
SAPTON

- $T_l(\varepsilon)$ represents the final-state interaction between the fragments in the exit channel
- It is calculated from a realistic complex optical potential


$$T_l(\varepsilon) = 1 - |S_l|^2$$

- The existence of such potential governs the dynamics of the fragmentation process entirely by dividing it into various reaction channels according to various relative angular momentum *I*-values (which are related to the impact parameter)
- This allows fragments to be emitted in ground, excited states, as well as in the continuum → fragments might be unstable while detected (similar to fission-like process)


$600 \text{ MeV/u}^{16} \text{O} + {}^{1}\text{H}$


$600 \text{ MeV/u}^{16} \text{O} + {}^{12} \text{C}$

$600 \text{ MeV/u}^{16}\text{O} + {}^{27}\text{Al}$

Conclusions

- SAPTON shows better agreement with data
 statistical stage dominates
- Both G4-INCLXX and G4-Shielding overestimate production cross sections of $Z \le 2$, while underestimate that of $Z = 4 \rightarrow$ dynamical stage dominates.
- Fragments cross sections increase with target mass for SAPTON (consistent to data), but not for Geant4 models → dynamical stage vs. statistical stage

Thank You! Questions?