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An instability is described which arises in computational fluid dynamic (CFD) simulations 
of semi-idealized rotating detonation engines (RDE) configured with a throat at the exit.  Its 
existence is verified by examining output from two independently developed CFD codes 
simulating the same configuration and producing solutions that agree well.  The instability is 
shown to be thermo-acoustic in that a spatial integral of the product of pressure and heat 
release fluctuations develops a regular oscillation which grows in time.  The instability can 
become severe enough to cause detonation failure.  Its onset is shown to be closely linked to 
the size of the exit throat and the size of the inlet restriction; both parameters that strongly 
influence RDE performance.  It is shown that the instability places a cap on ideal RDE 
performance, but that an optimized exhaust throat and inlet restriction combination still 
yields substantial pressure gain.  Other parametric sensitivities are also examined in terms of 
instability growth.  These include axial length, inlet manifold pressure, and air-fuel ratio.   

Nomenclature 
Ach = channel (annulus) cross sectional area 
Ath = exit throat cross sectional area  
Ai = inlet restriction cross sectional area  
a* = reference speed of sound 
EAPi = Equivalent Available Pressure (ideal) 
ER = Equivalence Ratio 
hf = fuel heating value  
L = circumference  
l = axial length  
N = maximum grid point index  
Pm = manifold pressure 
Pa = ambient pressure 
p = non-dimensional pressure  
p* = reference pressure 
pʹ = non-dimensional pressure fluctuation 
q = non-dimensional heat release rate  
qʹ = non-dimensional heat release rate fluctuation 
Rg = real gas constant 
Rc = Rayleigh integral 
T = non-dimensional temperature  
Tm = manifold temperature 
T* = reference temperature 
t = non-dimensional time  
trev = non-dimensional time for one detonation revolution  
                                                           
*Aerospace Research Engineer, Research and Engineering Directorate, 21000 Brookpark Road/MS 77-1, AIAA 
Associate Fellow 
† Mechanical Engineer, Laboratories for Computational Physics and Fluid Dynamics. Senior Member AIAA 

https://ntrs.nasa.gov/search.jsp?R=20190002795 2019-08-30T20:07:14+00:00Z



 
 

 

2 

u = non-dimensional circumferential velocity 
udet = non-dimensional detonation velocity 
v = non-dimensional axial velocity 
x = non-dimensional circumferential dimension 
Yʹ = fluctuating quantity to be summed  
y = non-dimensional axial dimension 
z = non-dimensional radial dimension 
 
Greek 
 = numerical spatial difference 
 = ratio of specific heats 
 = generic quantity 
  = mass flux-averaged generic quantity 

 = non-dimensional density 
* = reference density 
 
Subscripts 
i = circumferential grid index 
j = axial grid index 

I. Introduction 
he rotating detonation engine (RDE) is currently under investigation as an approach to achieving pressure gain 
combustion (PGC) for propulsion and power systems.  The RDE essentially consists of an annulus with one end 

open (or having a throat and/or nozzle) and the other end valved (typically using non-mechanical, fluidic means).  Fuel 
and oxidizer enter axially through the valved end.  The detonation travels circumferentially.  Combustion products 
exit predominantly axially through the open end.  The majority of the fluid entering the device is passed over by the 
rotating detonation wave which, as a form of confined heat release, substantially raises the pressure and temperature.  
The fluid is then expanded and accelerated as it travels down the annulus.  In principle, the flow exiting the device has 
a higher average total pressure than the flow that enters. The pressure gain of an RDE can be utilized to produce thrust 
directly, or it can be expanded through a turbine to produce additional useful work when compared to that from a 
conventional combustor which incurs a pressure loss when operating at the same inlet conditions and fuel flow rate. 

The performance of RDE’s is strongly affected by the inlet design.  During the fill portion of the cycle, minimal 
restriction is sought between the supply manifold and the annulus.  During the high pressure portion of the cycle (i.e. 
behind the detonation), the inlet is ideally closed.  This prevents all backflow of hot gas into the supply manifold and 
also provides a thrust wall from which the post-detonative fluid can expand.  Real-world RDE’s typically have non-
mechanical inlets that present a fixed restriction between the manifold and the annulus.  The goal of their design is to 
minimize aerodynamic losses during inflow, and minimize backflow behind the rotating detonation.  These are 
obviously competing objectives, and as such, real-world RDE inlet designs are a compromise between them. 

Another factor that strongly affects RDE performance is the size of the throat that is provided at the exhaust end 
[1].  An exhaust throat reduces the fill Mach number, which in turn raises the pre-detonation pressure, and reduces 
inlet aerodynamic losses.  As a result, performance can rise significantly when compared to the RDE with no exit 
throat.  On its face, this result suggests that the exhaust throat should be as small as possible with the proviso that a 
reduced fill Mach number also implies the need for a physically larger device to accommodate the same amount of 
through-flow.  However, RDE’s complicate this suggestion.  As will be shown, the presence of an exhaust throat gives 
rise to reflected waves that travel upstream to the inlet and affect the filling process.  As such, there is more to consider 
with an RDE than average fill Mach number. 

The Ref. [1] results exhibited an unexpected phenomenon that is related to the above complication and which is 
the major focus of the present work.  Starting with an ideal inlet as described above (i.e. lossless to forward flow, 
closed to backflow) the Ref. [1] computational fluid dynamic (CFD) investigation found that with an exhaust 
restriction a mere 15% smaller than the RDE channel area, a major instability developed which grew in time to the 
point of causing detonation failure.  The result was so unusual that it called into question whether it was a physical 
solution to the governing equations, or a manifestation of the numerical method used in the study.  If it was the former, 
it would warrant further investigation into its mechanism of onset, and its sensitivities.  Exploration of mitigation 
strategies would also be warranted since otherwise, a severe limitation would exist on the degree of exhaust throat 
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restriction allowed and by extension the maximum RDE performance possible.  The present effort represents a 
preliminary step in the direction of such an investigation.   

Basic CFD simulation descriptions, simplifying assumptions, and RDE configuration details will be provided first.  
The instability development and analysis will then be presented in detail using primarily the Ref. [1] simulation; 
hereinafter called the NASA code.  It is then verified using an independently developed, and more highly resolved 
simulation4; hereinafter called the NRL code.  Examination of output from the simulations will show that the instability 
has thermo-acoustic characteristics, but with a complex coupling pathway.  Some relevant configuration and/or 
operational parameters are then examined in terms of their effect on the instability.  These are the size of the inlet 
restriction, the inlet manifold pressure, the axial length, and the reactant equivalence ratio.  It is shown that the RDE 
inlet restriction has the largest effect and that it is one of stabilization.  An inlet restriction causes unavoidable 
aerodynamic loss.  However, it is demonstrated that this loss is more than compensated for by the stabilizing effect, 
and that a high performance RDE configuration can be obtained. 

II. Simulation Details 
Both codes have been described in detail in the literature [1-4].  As such, only basic descriptions are provided here.  

They both assume that the RDE annulus has a high inner-to-outer diameter ratio allowing it to be ‘unwrapped’ and 
treated as a quasi-two-dimensional (Q2D) space (aka, channel).  Within this channel, both codes solve the single-
species, reactive Euler equations for a premixed, inviscid, adiabatic, calorically perfect gas using formally high-
resolution schemes. The NASA code models only one gas, assumed to have properties that are an average of the 
reactants and products of combustion.  The NRL code models two gases.  Relevant parameter values for each code 
are shown in Table 1. The NASA code uses a very simple on-off, single constant finite rate reaction model.  The NRL 
code uses an Arrhenius-type reaction rate model with an induction time sub-model to capture classical detonation 
features.  The grid spacing of the NASA code is relatively coarse, while that of NRL is nearly an order of magnitude 
more refined (see Table 1).  The rationales behind the code grid spacing choices are detailed in the literature [1-4]. 

Both codes impose boundary 
conditions which may be described as 
follows.  Considering an RDE where the 
non-dimensional circumferential direction 
is x, and the axial direction is y, at x=0.0 
and x=1.0, periodic (aka symmetric) 
conditions are used.  These ensure that the 
x-dimension of the computational space 

faithfully represents an annulus (which is continuous and has no boundary).  At y=ymax, constant ambient pressure 
outflow is imposed along with characteristic equations to obtain the density and axial velocity,  and v for the image 
cells.  If the resulting flow is sonic, or supersonic, then the imposed pressure is disregarded.  If, in addition, the 
upstream flow is supersonic, then p, , and v are extrapolated from the interior.  The possibility for a normal shock 
solution whereby supersonic outflow jumps to subsonic is also accommodated.  The x-velocity component u is 
extrapolated from the interior at each boundary location.  At y=0.0 (the inflow face), partially open boundary 
conditions are applied.  This face is presumably fed by a large manifold at a fixed total pressure, and total temperature.  
The manifold terminates at the face and is separated from it via an orifice.  The ratio of inlet orifice flow area to RDE 
annulus area, Ai/Ach, is generally less than 1.  If the interior pressure is less than the manifold pressure, Pm, then inflow 
occurs. The boundary condition routine determines p, , and v for the inflow face image cells subject to a momentum 
(total pressure) loss model which depends on the mass flow rate and the value of Ai/Ach.  The routine is capable of 
accommodating a scenario where the inflow becomes choked.  If Ai/Ach is assigned a value of 1, a lossless inlet is 
ensured.  The x-velocity component, u, is prescribed.  Prescribing the negative of the detonation speed, udet, yields 
solutions that are in the detonation frame of reference.  Prescribing a value of zero yields solutions in the laboratory 
frame.  If the interior pressure along the inlet face is greater than Pm, as might be found just behind the detonation, 
then the boundary condition routine implements a notional check-valve (i.e. a solid wall) which prevents backflow.  
In this work the detonation is traveling from right to left.  As such, all computed u components in the detonation frame 
of reference are left to right. 

Unless otherwise stated, both codes simulate a stoichiometric hydrogen/air mixture using the common parameters 
shown in Table 2, and channel area variation shown in Fig. 1.  For clarity, the exit throat geometry may be described 
as a smooth, continuous area decrease over the last 15% of the axial length, which terminates with zero gradient. 

Table 1  Dissimilar code parameters 
Parameter Value 

 NASA NRL 
Real gas constant, Rg (ft-lbf/lbmR) 73.92 73.92-R/64.64-P 
Ratio of specific heats,  1.264 1.403-R/1.243-P 
Grid dimensions, cells 200 X 80 1413 X 565 
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Unless otherwise stated as 
well, all quantities are presented 
in non-dimensional form.  The 
pressure, p, density, ρ, 
temperature, T, and velocity 
components, u and v are non-
dimensionalized using 
dimensional reference states 
p*=1.0 Atm., ρ*=0.055 lbm/ft3, 
T*=520 R, and the 
corresponding sound speed a*=1250 ft/s, respectively.  The distances, x and y are non-
dimensionalized by the circumference, L.  The time, t is non-dimensionalized using the 
reference wave transit time, L/a*.  The mixture specific heat of reaction is non-
dimensionalized by the square of the reference speed of sound. 

A. Performance Measurement 
In this paper the performance metric of merit will be the ideal exhaust Equivalent 

Available Pressure (EAPi) [5, 6].  EAP is essentially the pressure required to produce the 
specific thrust or work provided by the RDE, assuming that the flow is steady and 
homogeneous.  It is thus a kind of average.  EAPi focuses on the RDE only to the point 
of the exit throat and disregards the expanding nozzle or whatever else exists 
downstream.  It isolates the performance of the device itself, and is appropriate for 
numerical studies of the type provided here. 

To compute the EAPi, the exit plane of a converged RDE solution is examined and the following procedure is 
applied: 

a) The ideal stream thrust for each numerical cell is computed. This is the thrust that would be produced if the 
fluid in the cell was isentropically expanded to ambient pressure. 

b) The stream thrusts of all the numerical cells in the plane are summed to obtain a total flow ideal stream thrust. 
c) This value is divided by the total mass flow rate to obtain an ideal specific thrust. 
d) EAPi is then obtained by computing the total pressure that provides the same total ideal specific thrust given 

a uniform flow at the mass flux-averaged exit total temperature of the RDE. 
For reference, the mass flux-average of any quantity  is defined as follows. 
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Here, the subscript i refers to each circumferential grid point in the exit plane (i.e. at the RDE throat).   

III. Instability Development and Analysis 
Consider an RDE operating with the Table 2 parameters, an ideal inlet (Ai/Ach=1.0), and no exit throat (Ath/Ach=1.0). 

The simulation is stable and, in the detonation frame of reference, the NASA code yields a solution which is invariant 
in time.  When Ath/Ach is reduced to 0.9, the pressure gain, EAPi/Pm-1, increases from 50% to 63%.  The solution 
remains stable and nearly steady.  Reducing Ae/Ach further from 0.9 to 0.85 initially results in an increase in pressure 
gain to 74%.  Here, the word ‘initially’ means immediately after the weak shock wave caused by an instantaneous 
reduction in exit throat area has propagated upstream to the inlet and reduced the flow rate.  In this case however, the 
solution does not remain stable.  Figure 2 shows computed contours of temperature at successive times in the 
simulation beginning immediately after the initial transient just described.  Initially, the contour plot looks as expected.  
The only notable feature is a reflection of the oblique wave from the exit contraction, upstream to the inlet.  This 
occurs in any RDE configuration with an exhaust throat.  As time progresses however, a certain ‘waviness’ or 
distortion begins to appear.  The distortion is particularly evident in the fill boundary between post-detonation gas and 
incoming fresh charge (sometimes referred to as the deflagration zone since some reaction is actually occurring here).  

Table 2  Common code parameters 
Parameter Value 

Manifold pressure, Pm, (Atm) 4.0 
Manifold temperature, Tm, (R) 540 
Ambient pressure, Pa, (Atm) 1.0 
Axial length-to-circumference ratio 0.4 
Stoichiometric fuel/air ratio 34.3 
Fuel heating value, hf, (BTU/lbm) 51,571 

Fig. 1  RDE axial profile. 
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The distortion continues to grow until it is profoundly affecting the flow field in general, and the detonation height in 
particular.  Though not shown in Fig. 2, the distortion continues to grow in this simulation until the detonation 
eventually fails. 

 Figure 3 shows two temperature contours from a similar configuration to Fig. 2, but using the NRL code.  Here, 
the instability onset occurred when Ae/Ach was reduced from 0.95 to 0.9; a slightly higher ratio than that for the NASA 
code.  This is likely due to the coarse grid of the NASA code which makes it more dissipative.  Nevertheless, it is 
clear that the same instability is developing and growing in both simulations. 

The duel observations that this instability requires the presence of internal shock reflections (propagating upstream 
toward the detonation front) in order to occur, and that contour plots such as those in Figs. 2 and 3 necessarily indicate 
large variations in the heat release rate, suggest that it is thermo-acoustic in nature. By this it is meant that a kind of 
in-phase coupling may be occurring between pressure fluctuations and heat release fluctuations.  In order to test this 
notion, Rayleigh’s criteria may be applied to the entire computing space (in the detonation frame of reference) and 
interrogated over time [7]. Rayleigh’s criteria is a spatial integral which may be written in discrete form as follows. 

 , ,
1 1
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Fig. 2  NASA code computed contours of non-dimensional temperature at successive times in an idealized 
RDE with Ath/Ach=0.85 and  Ai/Ach=1.0.  The simulation is in the detonation frame of reference.  
Circumferential flow is left to right.  Time is shown as the number of detonation revolutions. 
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Here, the subscripts i and j refer to the circumferential and axial grid indices.  The fluctuating pressure and heat 
release rate quantities pʹ and qʹ are obtained at each point (i.e. each numerical cell) by first linearly fitting each p and 
q over a relatively long time period of interest (i.e. detrending [8]).  For this work, a period of 4 wave revolutions will 
be used.  Next, the linearly fitted p and q are subtracted from the instantaneous p and q at each discrete time step 
within the period (pʹ=p-pdetrend).  If the time integral of Rc is positive and increasing over the interval, then the global 
pressure and heat release fluctuations are approximately in-phase and coupled, thereby adding destabilizing energy to 
the system.  If Rc is periodic, it suggests that some sort of unstable cycle is developing.  It is noted that positive Rc 
does not guarantee unstable behavior.   Dissipative phenomena may be present which can either completely counteract 
the destabilizing forces, or limit them such that the instability does not grow indefinitely.  

 The Rayleigh criteria for the first four detonation revolutions of the NASA simulation in Fig. 2, are shown in Fig. 
4.  The time is scaled by the period for one detonation revolution around the annulus.  Also shown in the figure are 
the spatial integrals of pʹ and qʹ alone (i.e. Eq. 2 with either pʹ and qʹ alone).  It is evident that their time integrals are 
zero which indicates that the detrending operation described above was performed correctly.  The actual Rayleigh 
integral, Rc is seen to be positive, cyclic, and growing in amplitude indicating that the instability is growing.  It is 
interesting to contrast this clear indicator with the first 3 frames of Fig. 2 where the instability seems barely evident.  
Figure 5 shows the same integrals as Fig. 4 corresponding to the next four detonation revolutions of the Fig. 2 
simulation (i.e. frames 3-5).  Here the oscillations become more regular, and grow more rapidly (note the scale change 
between Figs. 4 and 5).  Also shown in Fig. 5 is the Rayleigh criteria for the Fig. 3 NRL simulation.  These results 
have been shifted in time by 6 detonation revolutions and thus correspond to revolutions 10 to 14.  The overall trends 
of the two simulations are similar, including a regular instability period of 1/3 of a wave revolution.  The rates of 
instability growth differ, but this is expected due to the facts that they are simulating slightly different configurations, 
and they differ in their grid resolution.  The double peaked nature of the NASA code oscillations are evident in the 
last several oscillations of the NRL code.  Regardless of the differences however, it is clear that both codes are 
simulating the same phenomena.   

The exact mechanism by which the coupling demonstrated in Figs. 4 and 5 occurs is not completely understood at 
the time of this publication.  There is partial 
understanding however, which may 
provide insight through its presentation.     

Contour plots of the fluctuating 
quantities pʹ, qʹ, and pʹqʹ at t/trev=7.7 of Fig. 
5 are shown in Fig. 6.  The contour levels 
are truncated in order to highlight even 
small changes. It is evident from the central 
and lower contour plots that the vast 
majority of the energy input to the global 
Rayleigh criteria integral is occurring very 
locally, at the top of the detonation.  It is 
also evident from the upper contour plot 
that no standing or resonant pressure wave 
pattern is developing, as would be 
evidenced by regular node and anti-node 
regions [7].   This is noted in order to point 
out that the instability, though clearly 

Fig. 4  Rayleigh criteria for the Fig. 2 NASA code simulation over
the first four detonation revolutions. 
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satisfying Rayeigh’s positive area criteria, 
is not classically thermo-acoustic.  Finally, 
it is observed that the fill boundary is not 
monotonic.  Instead it contains at least one 
‘ripple’ which, in the detonation frame of 
reference is convected toward the 
detonation front.  

These observations suggest the 
following informal pathway for the 
instability development.  The reflected 
oblique wave propagates upstream until it 
interacts with the inflow and perturbs it.  
This perturbation (a momentary dip in the 
inflow velocity) is convected to the 
detonation and lowers the detonation 
height.  The changing of the detonation 
height changes the position and strength of 
the oblique wave and its reflection.  It also 
changes the circumferential position where 
fill inflow begins behind the detonation.  These effects all serve to further distort the inflow, boundary and the 
subsequent detonation height; sometimes raising it, sometimes lowering it.  A reexamination of Fig. 2 in light of this 
explanation clearly shows that the detonation height is varying with time.  

That such a process is taking place is further evidenced by examining the mass flow rate information of Figs. 7 
and 8.  Figure 7 shows the mass flux in the inlet plane of the Fig. 2 simulation at t/trev=7.86.  Two perturbations caused 
by reflected wave impingement are clearly evident in what is normally a smooth profile.  Figure 8 shows average mass 
flow rate (across the entire inlet plane) during the same period as Fig. 5. The exit plane average mass flow rate is also 
shown.  It is clear that the average inlet mass flow rate is oscillating, thereby implying an oscillation in the detonation 
height, and that the oscillation amplitude is growing. 

This explanation for the instability pathway seems reasonable.  However, it does not explain why the detonation 
height variation/inflow perturbation process is 
reinforcing, or why the particular period of the 
oscillations is observed.  Furthermore, it cannot provide 
a predictive capability for when the throat area ratio will 
transition the flow field from stable to unstable.  It is 
hoped that more insight will be gained at a later date.  For 
the purposes of this paper, it is enough to reiterate that 
interactions between the inlet flow and the reflected 
waves are critical.  

IV. Instability Sensitivity 
Given that the instability has now been demonstrated 

as a genuine one (albeit in an idealized environment), it 
is worthwhile to examine several relevant configuration 
or operational parameters to see which, if any, affect the 
instability onset.  There are a number of such parameters 
to consider.  In this work, the focus is on: the size of the 
inlet restriction, the axial length, the inlet manifold 
pressure, and the reactant equivalence ratio.  All of the 
results provided in this section are from the NRL code.  
Select results have been verified with the NASA code to 
insure that trends are similar. 

 
 
 

Fig. 5  Rayleigh criteria for the Fig. 2 NASA code simulation over
the second four detonation revolutions.  Also shown is the Rayleigh
criterion for the Fig. 3 NRL code simulation. 
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A. Inlet Restriction 
Given the instability development 

pathway described in Section III, it is 
expected that introducing an inlet 
restriction would lead to stable operation at 
smaller values of Ath/Ach.  A simple 
restriction at the RDE inlet is a common 
laboratory approach to achieving non-
mechanical valving (i.e. fluidically 
promoting forward flow, while minimizing 
backflow behind the detonation and 
providing a thrust surface).  An inlet 
restriction makes the incoming flow less 
sensitive to perturbations from reflected 
waves because at least part of the inflow is 
choked, or nearly so.   As such, it is likely 
to interfere with the instability 

development described earlier.  Of course, 
the stabilization which may result from the 
inlet restriction cannot come without a 
cost.  There is a sizeable aerodynamic loss 
associated with such a geometry 
(essentially a dump diffuser, or sudden 
expansion).  The loss is modeled in both 
the NASA and NRL codes by boundary 
condition algorithms which impose a total 
pressure loss that increases as Ai/Ach, 
decreases or as the mass flow rate 
increases.  The algorithms are not the same 
for the two codes; however, they have been 
verified to produce the same levels of loss.  
Details of the loss models are not discussed 
here since the exact degree of inlet total 
pressure loss is less important in this 
simplified RDE simulation than the trends 
the loss reveals.  More information on them 

can be found in Refs. [1-4].  As mentioned earlier, both codes also idealize the inlet restriction by preventing all 
backflow.  

Figure 9 summarizes the results of varying the inlet restriction.  Here are shown curves of average EAPi based 
pressure gain as functions of Ath/Ach, for several families of Ai/Ach.  Also shown with each data point is the standard 
deviation. Both the average and the standard deviation are computed over the last 5 revolutions of a typically 20+ 
detonation wave revolution simulation.  If the simulation is stable, the standard deviation is small (i.e. <5% on the 
scale shown).  If the simulation is unstable, the standard deviation is large (i.e. >12%).  It is noted that several of the 
simulation points yielded intermediate level standard deviation values.  Interrogation of the flow field indicated that a 
kind of limit cycle is achieved where large fluctuations are occurring but not growing.  These are still classified as 
unstable since they would not be considered practically reliable; at least until further investigation is conducted.  An 
illustration of such a scenario is shown in Fig. 10. Contours of temperature are shown at two times after the limit cycle 
is established.  The results were obtained with Ai/Ach=0.6, and Ath/Ach=0.55; a point which is not shown on Fig. 9 
because it simply continued the downward trend shown.  A clear wave-like pattern is evident, and the fill boundary is 
clearly distorted (or at least rippled).  It appears that with the detonation height significantly reduced by the small exit 
throat, the possible variation in detonation height is limited as well.  It is postulated that this gives rise to a limit cycle 
instead of a catastrophic instability.  

The Fig. 9 results demonstrate that an inlet restriction does indeed stabilize the flow field, thereby allowing greater 
restrictions to be placed at the exit.  They further demonstrate that for a particular combination of inlet and exit 

Fig. 8  Average mass flow rate (across the entire inlet plane) during 
the same period as Fig. 5. 
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restriction, the performance benefits from 
restricting the exit outweigh the 
aerodynamic losses imposed by the inlet.  
With the NRL code, this occurs when 
Ai/Ach=0.6 and Ath/Ach=0.7.  At this point 
the RDE is indicating an impressive 
pressure gain of 62.1% which is nearly 6% 
above what can be achieved with a lossless 
inlet (Ai/Ach=1.0) operating with acceptable 
stability (Ath/Ach=0.95).  This optimized 
performance is even more impressive when 
it is noted that the inlet loss model 
employed by the code predicts a 12% loss 
in total pressure due to the restriction.  
Here, the total pressure in the inlet plane is 
computed using an entropy averaging 
method described in Ref. [1].  Evidently, 
the stable detonation propagating through a 
low axial Mach number flow is more than 
compensating for the inlet loss in terms of 
producing useful pressure gain.  Further exit restriction leads to unstable flow (and lower performance for this 
particular curve).  Further inlet restriction leads to more stable flow, allowing for further exit restriction. However, 
inlet losses dominate and performance is reduced.  

B. Axial Length    
 After analyzing the nature of the observed instability, the effect of the RDE axial length is hard to predict.  On the 

one hand, there is no mechanism in the flow field to dissipate the reflected shock which appears to initiate the 
instability.  Thus the only effect of changing the length would be to change where the reflection hit the inlet relative 
to the detonation position, and there is no indication that this position is consequential.  On the other hand, it has 
already been noted that the phase relationship between inlet flow perturbation, detonation height variation, and 
instability reinforcement is not well understood.  It does seem possible that axial length could have an impact here, 
yet the results shown in Fig. 11 suggest that it does not.   Here the pressure gain of the RDE with the optimal inlet and 
exit restrictions from Fig. 9 is shown as a function of axial length.  The standard deviation is unchanged by length, 
suggesting that stability is unaffected.  The gradual improvement as the length is made shorter is likely the result of 
factors highlighted in Ref. [1].  The oblique wave and the high shear zone behind it (shown in Fig. 2) are both sources 
of entropy.  The longer they are, the more entropy is generated, and the less ideal available pressure is produced at the 
exit.  The cause of the large variation in pressure gain as the length gets shorter is unclear at this time. 

C. Inlet Manifold Pressure     
The instability is insensitive to changes in inlet manifold pressure as shown in Fig. 12.  This is an expected result 

since, as indicated in Ref. [2], semi-idealized RDE CFD solutions such as those used here are largely invariant with 
manifold pressure once the exit flow is choked. 

Fig. 9  EAPi pressure gain for the RDE described by Table 2 as a
function of Ath/Ach area for several families of Ai/Ach. 
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Fig. 10  Computed contours of non-dimensional temperature at two successive times during a limit cycle in an 
idealized RDE with Ath/Ach=0.60 and  Ai/Ach=0.55.  The simulation is in the detonation frame of reference.  
Circumferential flow is left to right.  Time is shown as the number of detonation revolutions. 
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D.   Reactant Equivalence Ratio 
Since the instability under investigation 

depends on heat release fluctuations, which 
in turn depend on the available chemical 
energy per unit of mass, it stands to reason 
that reducing the equivalence ratio, ER, 
may enhance stability.  Of course, the 
pressure gain attainable in any pressure 
gain combustion process depends on the 
total chemical energy added [5].  As such, 
any stabilization observed with reduced ER 
must be considered in this light.  

Figure 13 illustrates these expected 
trends.  The plot shows EAPi pressure gain 
as a function of Ath/Ach for two values of 
Ai/Ach and ER.  For the case with 
Ai/Ach=0.60, it is evident that the 
fluctuation levels are reduced (i.e. standard 
deviation is smaller), particularly at the 
lower values of Ai/Ach.  Unfortunately, this 

does not offer any benefit because the point at which instability is most reduced is already past the point of peak 
performance. 

The results for Ai/Ach=0.80 are quite different.  Here the stability enhancement from the lower ER allows the exit 
throat to be reduced to Ath/Ach=0.85 while still maintaining standard deviation levels below 5%.  This is better 
performance than the best stable result attainable at the higher value of ER (Ai/Ach>0.95).  It implies increased pressure 
gain for less energy addition; an encouraging result.  

V. Conclusion 
 An instability appearing in computational fluid dynamic (CFD) simulations of semi-idealized rotating detonation 

engines (RDE) configured with exit throats was described and verified.  Verification was provided by demonstrating 
its existence in two independently developed CFD codes simulating the same configuration.  The instability was 
shown to be thermo-acoustic in that pressure and heat release fluctuations are coupled and reinforcing.  The exact 
mechanism of reinforcement is unclear, but appears to involve perturbations in the detonation height brought on by 
interactions between the inlet flow and waves that are reflected upstream from the exit throat.  Its onset was shown to 
be closely linked to the sizes of the exit throat and the inlet restriction; both parameters that strongly influence RDE 
performance.  Restricting the exit throat was shown to enhance performance, but promote instability growth.  
Restricting the inlet was shown to reduce 
performance, but provide stability.  It was 
further shown that these competing effects 
can be optimized to yield a configuration 
with substantial pressure gain.  Several 
other parametric sensitivities were also 
examined in terms of instability growth.  It 
was found that axial length, and inlet 
manifold pressure had no effect.  The 
equivalence ratio was shown to reduce 
instabilities as it was lowered.  For some 
configurations, this was shown to allow for 
a smaller exit throat and thus enhanced 
stable performance.  This study provided 
increased understanding of a largely 
unknown instability phenomenon that, 
while not yet observed in laboratory 
RDE’s, may appear as their performance 
begins to approach these semi-idealized 

Fig. 11  EAPi pressure gain for the RDE described by Table 2 as a
function of axial length. 
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Fig. 12  EAPi pressure gain for the RDE described by Table 2 as a
function of Ath/Ach area for two families of manifold pressure. 
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simulations.  It also provided thought-
provoking input to the pressure gain 
combustion (PGC) community’s ongoing 
discussion of realistic upper bounds on 
RDE performance. 
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