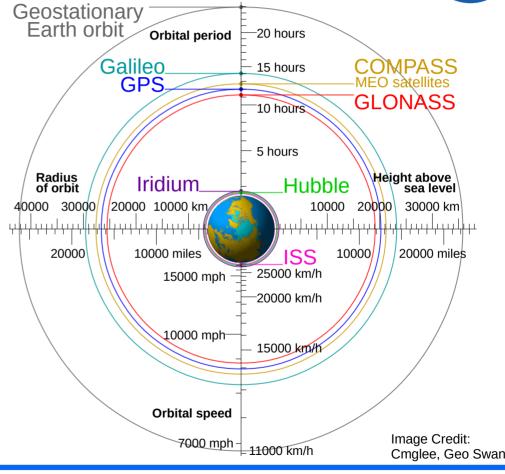


Approaches to Difficult Aerospace Telecommunications Links

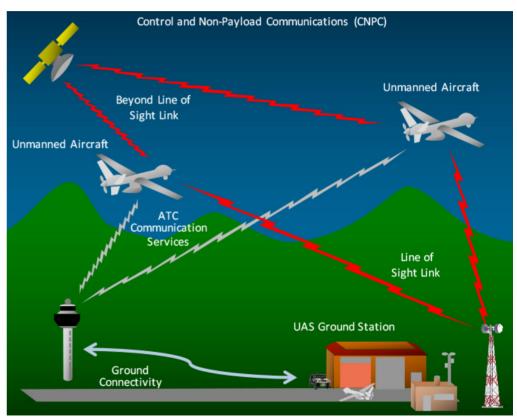

Joseph Ishac jishac@nasa.gov NASA Glenn Research Center

John H. Glenn Research Center at Lewis Field No

www.nasa.gov

2

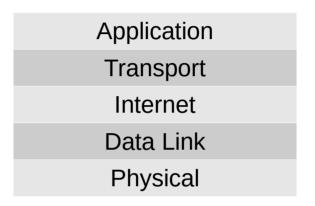
- What qualifies as a "Difficult Link"
- Straightforward issues
 - Low Capacity
 - High Latency
 - High Losses
 - Low Reliability
- More complex situations
 - Multiple links between endpoints
 - Reordering
 - Asymmetric links



Formidable Links and Where to Find Them

- Yes, they do exist!
- Two frequent sources
 - As a result of physical environment
 - As a result of sharing spectrum
 - Highly contentious, sparse resource
 - Number of expected users
 - Licensed vs Unlicensed
- Examples
 - Satellite links, Deep Space Links
 - Command and Control Links

What makes these links so difficult for the network and users?



- Network protocols are designed to provide certain features/functions
 - TCP: Reliable, In-Order Data Stream (and other features)
- These protocols employ different methods to work
 - TCP: Connections, relies on feedback for control
- A protocol can suffer issues with certain link conditions
 - TCP: Does not do well with very high losses or high delay...
- Solutions introduce trade-offs, attempts to re-insert functionality
 - TCP not viable: Use UDP?

Network Layers

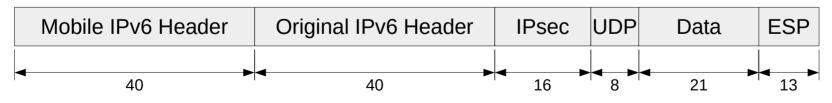
- TCP example shows impacts to the transport layer
- Switching from TCP to UDP impacts the application layer
 - Rewriting code
 - Need to pay attention to best practices – RFC 8085
- Protocols at all layers are impacted by these links

- Layer abstraction?
- How do we keep our links fully utilized and efficient?

Another Issue: Too many solutions

- Smart folks have thought up a lot of different solutions
 - Alphabet Soup of Solutions: DTN, MPTCP, DCCP, SCTP, ROHC, ...
 - Solutions at every layer...
- Some users re-invent functionality
 - Check out my new custom Protocol Z over UDP for ...
- So there are a lot of solutions and that is a problem
 - Usually not a single solution that solves all the users problems
 - May not stack cleanly: Are at odds with each other in some way
 - Actually introduce other issues or complications
 - Almost always end up with security implications

Issue #1: Low Capacity



Media	Capacity	Time to process a <u>single</u> 1500 byte packet	
Gigabit Ethernet	1,000,000,000 bits/s	0.000012 s	
Average Cellular 4G LTE	30,000,000 bits/s	0.000400 s 0.214286 s	
Dial-Up 56K Modem	56,000 bits/s		
UAS Mode D Control	34,400 bits/s	0.348837 s	
UAS Mode A Control	4,680 bits/s	2.564103 s	
Iridium® Modem	2,400 bits/s	5.000000 s	

Network Overhead vs. Capacity

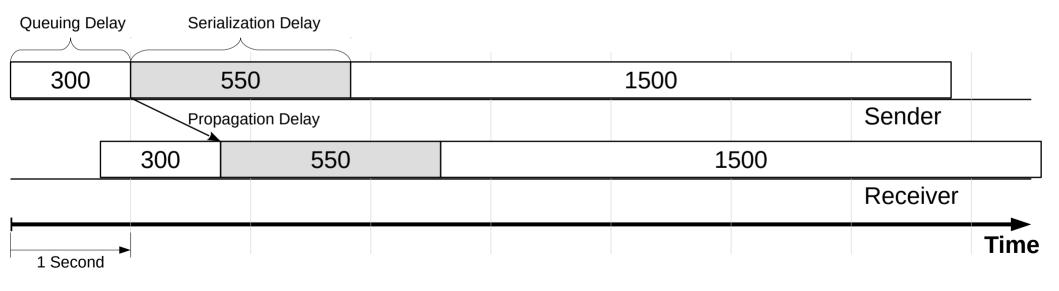
- Brief summary of Unmanned Systems in the National Airspace Goals
 - Design future proof network [IPv6]
 - Ground operators can reach a mobile platform [Mobile IPv6]
 - Communications are secured [IPsec, ESP, AH]
 - Small unidirectional data messages [UDP]

• Network Headers alone total 117 bytes!

Low Capacity Potential Solutions

- Header Compression [ROHC]
 - Can significantly shrink headers. For example, 80 bytes to just 2
 - Impacted by how and when encryption is done
 - Risk of increased loss depending on what you compress
- Shrink TCP Initial Congestion Window
 - RFC 3390 (4K) and RFC 6928 (10 segments) are over sized
 - Troublesome if links have a large range of performance
- Waiting for faster links is not a solution [Moore's Law]
 - Iridium® first available in November 1998 (20 years later!)
 - UAS CNPC links being designed now for 2020 and beyond.

Issue #2: Latency



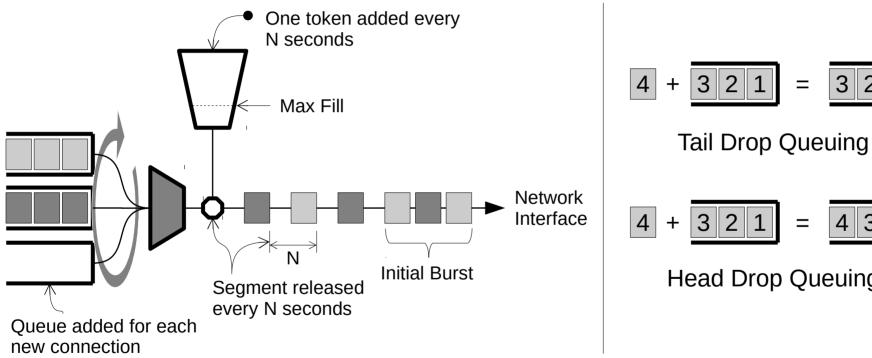
Media	Approximate Distance	One Way Delay
Local Network	100 m	< 0.001 s
Coast-to-Coast	4,000 km	0.030 s
Trans-Atlantic	4,600 km	0.035 s
Low Earth Orbit	781 km	0.003 s
Geosynchronous Orbit	35,786 km	0.120 s
Moon	384,402 km	1.282 s
Mars (Near) [2018-07-27]	57,774,698 km	(> 3 min) 192.716 s
Mars (Far)	401,000,000 km	(> 22 min) 1337.592 s

Latency Factors

- Iridium® One-Way Delay is about 750 ms or larger (not 3 ms)
 - Delay impacted by more than just range or line-of-sight
 - Processing, encoding, satellite-satellite routing, ground station location

Latency Potential Solutions

NASA


- Can change the propagation speed to a point
 - Different mediums propagate faster... doesn't help for space
- Smarter queue management [SFQ, RED, AQM]
 - Gives feedback on congestion to all flows
 - Keep queuing delays to a minimum
- Shrink MTU
 - Increases responsiveness and fairness between flows
 - Oh yeah, it's not just us out there.
 - Risk of fragmentation [PMTUD]
- Rate Limiting

3

Head Drop Queuing

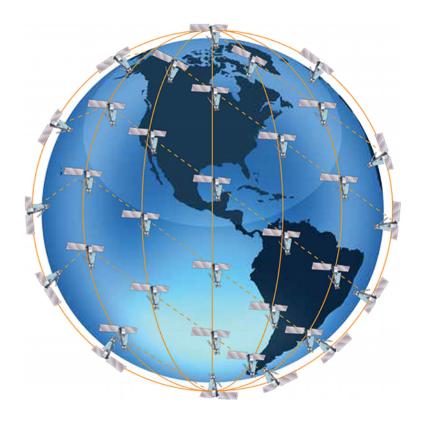
Which is better for TCP?

Fair, Rate-Limited, Head Drop Queues

Issue #3: High Losses

- Wireless data transmission is prone to errors
 - Bit flips, bit insertion, bit loss...
 - Quality can vary depending on conditions (ie: weather) and distance
 - Erred data packets are usually discarded on reception
- Mistaking delays for loss
 - Iridium® one way minimum delay of roughly 750 ms (1.5 s round trip)
 - RFC 6298 (TCP retransmit timer) reduces initial timeout to 1 seconds
 - Unnecessary retransmissions are costly (due to low capacity)
 - Protocols such as TCP suffer, mistaking loss for congestion

High Losses Potential Solutions



- Use of Forward Error Correction (FEC) [Reed-Solomon, LDPC]
 - Usually applied to the link Corrects errors "in-flight"
 - Stronger encoding/decoding usually takes longer
 - Adds latency
- Accurate or longer timers
 - Hard problem to balance responsiveness and accuracy
 - Sometimes changing system defaults are hard
 - RFC 6298 timeout of 1 second is hard coded into the Linux kernel #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))

Issue #4: Low Reliability

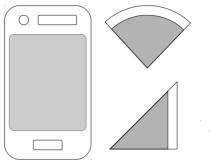
- In addition to losses, links may fail completely
 - Out of range
 - Loss of coverage
 - Lack of resources
- Transitions may be frequent
- What does that mean for:
 - Protocols
 - Connections
 - State

Iridium[®] Link Transitions 4 Number of active links F C 12:00:00 14:00:00 16:00:00 18:00:00 20:00:00 22:00:00 00:00:00 02:00:00 UTC Time (hh:mm:ss) Number of Flight Date: November 18, 2016 **Active Links** Seconds Percent Flight Duration: 13 Hours 35643 76.26% Events that changed the number of active links: 3 8269 17.69% 2 1969 4.21% 325 (25 changes / hour) 235 0.50% Nearly one fourth of the flight is in a degraded state

1.34%

624

n


Low Reliability Potential Solutions

- Adaptive modulation to increase range
 - Capacity decreases
- Use multiple or alternate connections
- Typical Iridium® usage will deploy 4 or more modems
 - Currently 4 channels are used to provide a total of 9.6 Kbit/s
 - Decreases probability of having no links available
 - In the flight example, only 1.34% of the flight had no connection
- Unfortunately multiple links create their own set of issues

- N-times the same type of link or Multiple types of links
 - Often used to increase capacity or used as a fail over
 - Appears at N interfaces
 - Example: Wi-Fi + Cell
 - Example: Iridium®
 - Image shows 4 modems
- <u>Hard</u> managing data over multiple streams

Multiple Links Potential Solutions

- Link Level Bonding
 - Appears as one physical interface
 - Hides issues from other layers
 - TCP reacting to losses isolated on only a single bad link

- Bonding at Upper Layers
 - Identify and isolate link issues
 - More complex state
 - Solution not as universal
 - MPTCP good for TCP only

Application	Web Requests, Internet Relay Chat, etc.		
Transport	ТСР		
Network	IP		
Data Link	MLPPP		
	PPP	PPP	PPP

Web Requests, Internet Relay Chat, etc.						
MPTCP						
ТСР	ТСР	TCP	TCP			
IP	IP	IP	IP			
РРР	PPP	РРР	РРР			

Issue #7: Asymmetric links

- Links are not always the same capacity in each direction
 - Similar to how home internet has different upload and download speeds
- Satellite links can have large down-link to up-link ratios
 - Further exaggerated by long delays
- Really impacts protocols such as TCP
 - May limit the TCP ACK stream and overall rate
 - Feedback constrained on return channel
- Possible Solutions
 - Different types of feedback algorithms or mechanics [NACKs]
 - Unidirectional communication

Issue #6: Reordering

- Reordering does happen
 - Multiple links (Dumping a queue on a failed link)
 - Multiple paths
 - Changing delays
 - Even a single link is not immune
- Possible Solutions
 - Use protocols that have a mechanism to deal with reordering (like TCP)
 - Handle ordering in the application
 - Is order even important? May not be to some applications
 - Request: Please do not assume in-order delivery (even in slides)

Thank you

Questions?

Backup Slides

Glossary of Terms and References (In order of appearance)

- Iridium® https://www.iridium.com/
- GPS Global Positioning System
- ISS International Space Station
- UAS Unmanned Aircraft Systems
- ATC Air Traffic Control
- TCP Transmission Control Protocol
- UDP User Datagram Protocol
- RFC 8085 UDP Usage Guidelines
- DTN Delay/Disruption Tolerant Networking
- MPTCP MultiPath Transmission Control Protocol
- DCCP Datagram Congestion Control Protocol
- SCTP Stream Control Transmission Protocol
- ROHC Robust Header Compression
- IPv6 Internet Protocol Version 6
- IPsec Internet Protocol security

- ESP Encapsulating Security Payload
- AH Authentication Header
- RFC 3390 Increasing TCP's Initial Window
- RFC 6928 Increasing TCP's Initial Window
- SFQ Stochastic Fairness Queuing
- RED Random early detection
- AQM Active Queue Management
- MTU Maximum Transmission Unit
- PMTUD Path MTU Discovery
- RFC 6298 Computing TCP's Retransmission Timer
- FEC Forward Error Correction
- Reed-Solomon
- LDPC Low Density Parity Checks
- NACK Negative Acknowledgments