
Space Technology Mission Directorate Game Changing Development Program

National Aeronautics and **Space Administration**

Boeing: Arc Jet Exposure of Ablative Non-Oxide CMC TPS for Planetary Probe and Sample Return Applications

NASA making its unique testing facilities available to promote commercial space.

Several heritage TPS materials have limitations of high fabrication and installation costs as well as raw material obsolescence issues (closed factories, environmental protection rules)

Lack of sufficient TPS options can be mission limiting therefore this work offers a risk mitigation in demonstrating an alternative to aging and potentially obsolete heritage TPS materials such at SLA. Avcoat and C/SiC New technologies utilize

advances in TPS fabrication

techniques and resin systems

and sustainable approaches

that are not dependent on

NASA to maintain

PROBLEM / NEED BEING ADDRESSED

Development of new TPS materials that can replace old heritage systems which suffer from high fabrication and installation costs as well as raw material obsolescence issues

DESCRIPTION/APPROACH

- NASA provided arc jet sample design & CFD support and arc jet test time of stagnation and shear models
- Boeing provided 3 commercial TPS materials for NASA testing:
- BLA: medium density ablator for low heat flux applications BPA: medium density ablator for moderate to high heat flux applications

Non-oxide high temperature ceramic

composite for structurally integrated

TPS (SITPS) NASA oversaw arc jet model testing and data transfer to Boeing

Technology Infusion Plan:

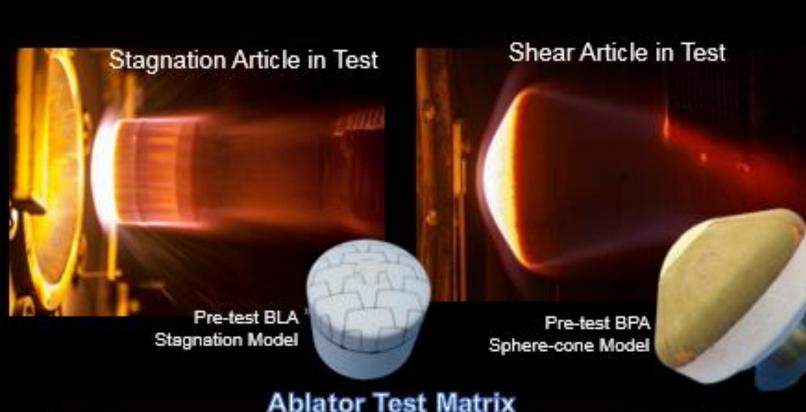
BLA №18 baselined on CST-100 under Commercial Crew Program. Potential applications for BLA and BPA for planetary exploration: Mars, Venus, Earth Return

- Developing and certifying new TPS materials is costly and requires access
- to unique facilities Expanded commercial TPS material options allowing NASA and industry to improve
- understanding of TPS performance for planetary probe and sample return applications

 Verify the performance of commercially made TPS materials in a relevant entry environment via arc jet testing and thereby increase the TRL of

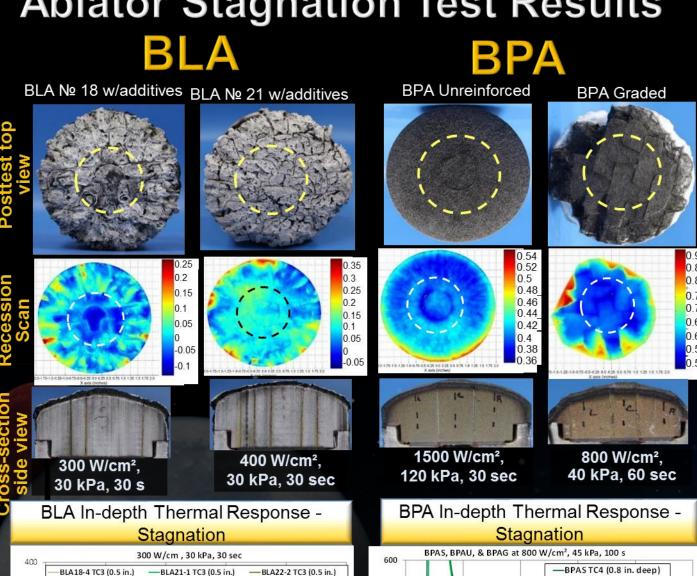
3 to 4.

these new systems from


Boeing Families of Ablators

Boeing Lightweight Ablator (BLA)

- BLA № 18
- Medium density w/thermal additives
- Baselined on CST-100
- BLA № 21
- Higher density w/thermal additives
- BLA № 22


Higher density (no additives)

- **Boeing Phenolic Ablator (BPA)**
- Standard (BPA-S)
- Medium density in reinforcement core
- Graded Density (BPA-G)
- Low bulk density in reinforcement core
- Unreinforced (BPA-U)
- Medium density (no core)

		Ablator	1650	watr	^				
		Pressure (kPa)	BLA Nº18		BLA №21		BPA-S	BPA-U	9
	Heat Flux (W/cm²)		1" core 3/8" core		1" core 3/8" core				BPA-G
Stagnation	130	30	х						
	200	30	×						×
	300	30	х		х				
	400	30			х				
	450	50						x	х
	600	40						х	×
	800	40					х	х	х
	1000	50						x	х
	1500	120					х	x	х
Shear	150	20	x	x					
	400	30			х	x	x	х	x

Ablator Stagnation Test Results

 Higher density formula with additives shown to result in lowest bondline temperature

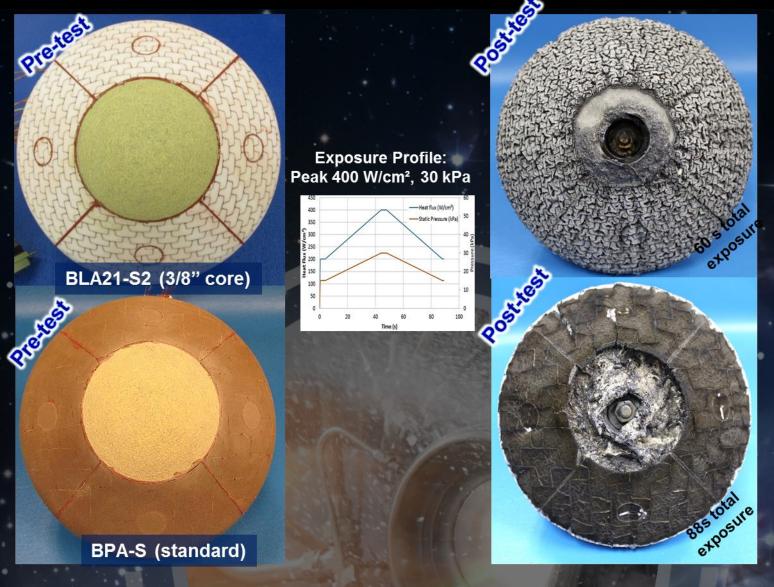
BLA18-4 TC4 (0.8 in.) BLA21-1 TC4 (0.8 in.) BLA22-2 TC4 (0.8 in.)

BLA18-4 TC5 (1.1 in.) —BLA21-1 TC5 (1.1 in.) —BLA22-2 TC5 (1.1 in.)

-BLA18-4 TC6 (bondline) -BLA21-1 TC6 (bondline) -BLA22-2 TC6 (bondline)

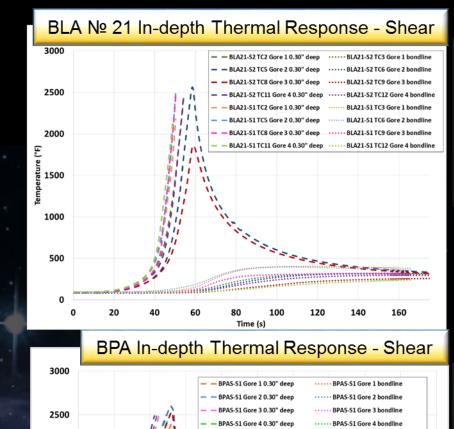
-BPAS TC4 (0.8 in. deep -BPAU TC4 (0.8 in. deep BPAG TC4 (0.8 in. deep) -BPAS TC5 (1.1 in. deep) BPAU TC5 (1.1 in. deep BPAG TC5 (1.1 in. deep)

-BPAS TC6 (bondline)


BPAU TC6 (bondline)

Graded density configuration offers better insulation as well as weight

Ablator Shear Test Results



Ablator Sphere-cone Articles - Pre-test

Shear In-depth Temperature Response

- · Risk of configuration-induced flow anomalies in wedge holder retired by changing test article geometry
 - · Sphere-cone configuration eliminated cooled holders and adjacent dissimilar materials · Ablator recession was more uniform without unexpected channeling on all materials
- PICA nose cap receded due to long ramp to temperature
 - · CFD showed little effect on conditions on ablator flank · Useful data collected on most test articles despite PICA recession

- BPAG-S1 TC2 Gore 1 0.30" deep

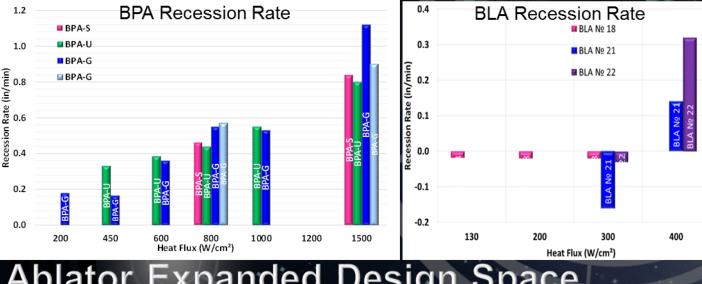
BPAG-S1 TC8 Gore 3 0.30" deep BPAG-S1 TC9 Gore 3 bondline BPAG-S1 TC11 Gore 4 0.30" deep ······ BPAG-S1 TC12 Gore 4 bondline

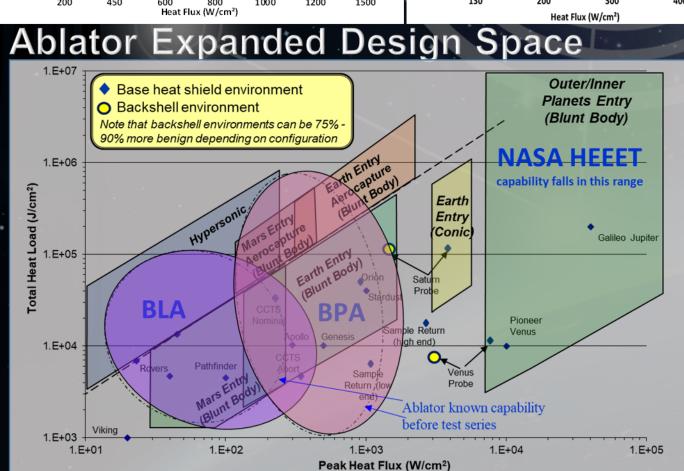
····· BPAG-S1 TC3 Gore 1 bondline

Graded density and unreinforced BPA withstood shear as well as standard configuration Lower in-depth temperatures observed for graded density configuration

Smoother char surface

Minimal difference in in-


depth temperatures for

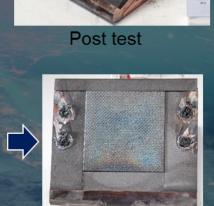

2 core sizes

with 3/8" core in BLA

Ablator Recession

- BPA Recession rate has expected dependence on heat flux Unreinforced BPA material recesses same amount as reinforced configurations - unexpected. BLA material swell prior to charring is equal to or greater than char layer recession under 400 W/cm² = no recession
- At 400 W/cm²BLA char layer recession exceeds material swell Thermal performance additives reduce the recession rate

Carbon/SiC Laminate Shear Tests


	C-SiC Test Matrix						19-1: 2600°		
	Sample ID	Pyrometer	Exposure Duration	Avg Heat Flux (W/cm²)	Avg Press	** ,	300 sec 74 W/cm², 2.8		
		Temp (°F)	(s)		(kPa)				
	19-1	2596	300	74	2.8	2000 PM			
	19-2	2690 2845	60 60	93 111	4.1 4.8				
	20-1	2845	415	-	-				
	20-2	2505	167	93	4.1				
	20-3	2728	135	93	4.1		Pre test		
	20-4	2711	90	111	4.8		\Box		
		C/SiC T	h a rma al Da		Cheer				
		C/SIC TI	hermal Re	esponse -	- Snear				
3000									
2500									
2000									
erature (F)			—20-2 TC 1 —20-2 TC 2				In-test		

-20-1 TC 1 -20-1 TC 2 -20-1 TC 3 -M668L_e085_E1 -M190H e085 E -M190R2_E1

Post test

Capabilities Expanded

Boeing TPS

Successful arc jet testing to planetary probe and sample return mission relevant conditions completed

• The design space for the BLA family of materials has been expanded to heat flux up to 500 W/cm² and heat loads up to 12 kJ/cm²

- Capability to withstand shear loads up to 370 Pa
- Density and reinforcement core size can be tailored to mission applications
- The scalable BPA 2017 formulation has been verified for heat flux up to 1500 W/cm² and heat loads up to 80 kJ/cm²
- Capability to withstand shear loads up to 250 Pa has been demonstrated Advanced TRL of new formulation
- Graded density configuration reduces bulk density by 26% while maintaining similar thermal capabilities
- Reinforcement configuration can be selected based on application requirements
- Advanced the TRL of Boeing fabricated C/SiC laminate materials through successful testing at conditions representative of hypersonic flight for approximately 7 minutes
 - Longer duration testing suggested for future efforts
- Alternative material to graphite edge closeouts will need to be used due to erosion during long durations