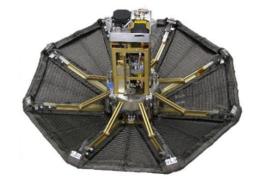
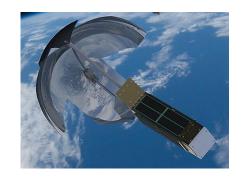


Aeroassist Technologies for Small Satellite Missions

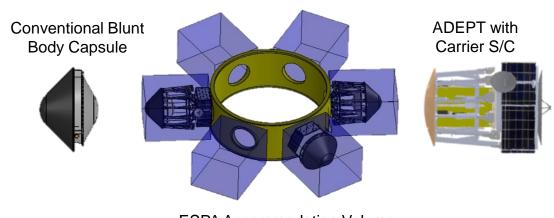
Outline


- Aeroassist Overview
- Small Sat Class Entry Vehicle Technologies
 - Rigid Aeroshells
 - Deployable Entry Vehicles
 - New Entry System Technologies
- Summary


Rigid Aeroshells- HEEET

Inflatable DEVs- HIAD

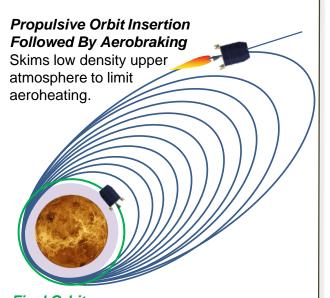
Mechanical DEVs-ADEPT



Drag Devices-ExoBrake

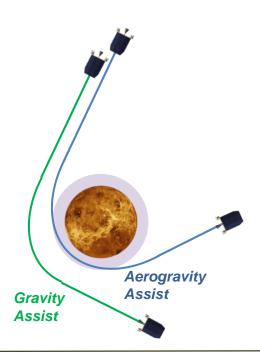
Aeroassist Overview

- Aeroassist refers to the use of an atmosphere to accomplish a transportation system function
 using techniques such as aerobraking, aerocapture, aeroentry, and aerogravity assist.
- Aeroentry and Aerocapture offer an alternative approach for large ΔV maneuvers and could revolutionize the use of SmallSats for exploration missions and increase the science return while reducing costs for orbital or entry missions to Mars, Venus and return to Earth.
- Aeroassist technologies are power efficient and tolerant to the radiation and thermal
 environment encountered in deep space, can be integrated around or within SmallSat geometries, and
 can be packaged in secondary payload accommodation volumes.



ESPA Accommodation Volume

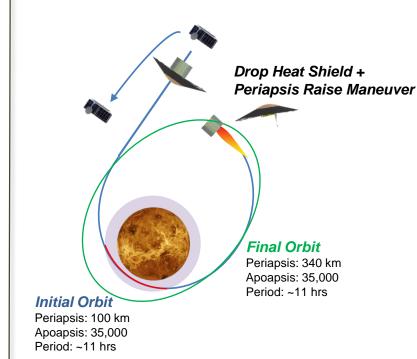
Aeroassist Overview


Aerobraking

Final Orbit
Achieved after many skims through atmosphere along with circularization.

- Substantial Propulsion Required
- Does Not Need High Performance Entry System Technologies
- Example- Mars Orbiters

Aerogravity

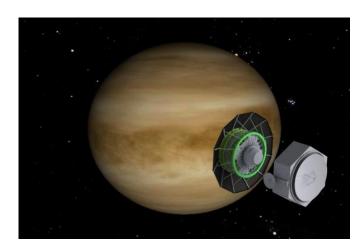


Aeroentry

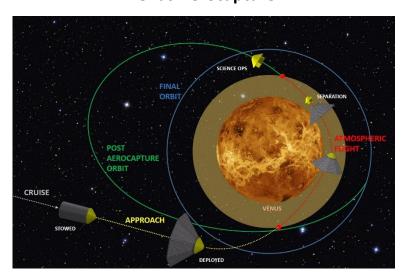
- Targeting Burn
- Entry Vehicle Release
 - S/C Bus Divert

Delivery of lander or in-situ aerial platform

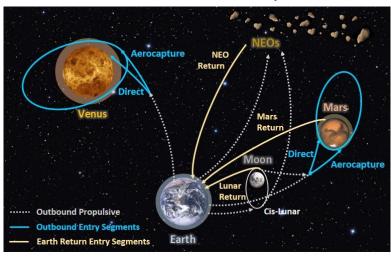
Aerocapture

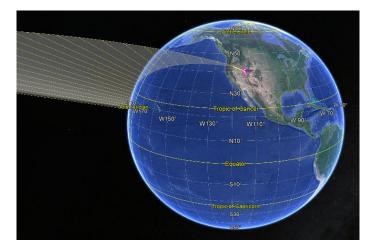


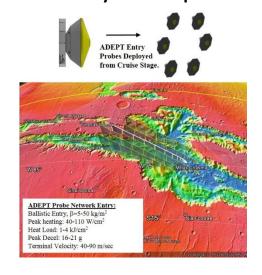
- Aerogravity Assist requires entry system technologies
- Can reduce required launch energy and propulsion requirements
- Aerogravity assist has not been demonstrated
- Entry can be ballistic or guided depending upon the mission requirements
- All landers and aerial platforms require high performance entry systems
- Aerocapture saves substantial propellant for orbit insertion
- Entry system can utilize lifting entry vehicle or drag-modulated vehicle for orbit insertion.
- Human Mars landers are baselining aerocapture followed by entry.

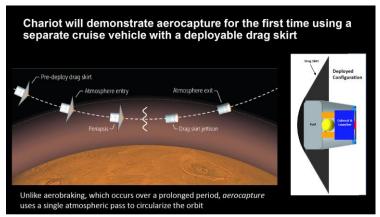


Mission Concepts with Aerocapture & Entry Segments


Venus AeroEntry


Venus Aerocapture


Inner Planet Aeroassist Options


Sample Return Missions

Mars Aeroentry network probe mission

Mars Aerocapture for SmallSat Constellations

Small Sat Class Rigid Aeroshell Entry Vehicles

	EARTH	EARTH	MARS	VENUS	EARTH
ENTRY PROBES	~0.4 m	0.4 m R=0.2 m	0.35 m 45° R=0.09 m	0.78 m R=0.19 m	0.81 m R=0.22 m
	LUNA 16 LUNA 20 LUNA 24	HAYABUSA HAYABUSA-2 (2020 Return)	Deep Space 2	Pioneer Venus Small Probe	STARDUST OSIRIS-REX (2023 Return)
HEATSHIELD MATERIAL	?	CARBON PHENOLIC	SIRCA	CARBON PHENOLIC*	PICA
ENTRY MASS	?	16.2 kg	3.7 kg	91 kg	43 kg
BALLISTIC COEFFICIENT	?	27 kg/m²	36 kg/m²	190 kg/m²	60 kg/m²
ENTRY VELOCITY inertial	~11 km/s	12.0 km/s	6.9 km/s	11.5 km/s	12.8 km/s
EFPA	?	-12 deg	-13.5 deg	- 68 deg	- 8 deg
EDL	BALLISTIC PARACHUTE SURFACE RECOVERY	BALLISTIC PARACHUTE SURFACE RECOVERY	BALLISTIC SURFACE IMPACT	BALLISTIC NO PARACHUTE	BALLISTIC PARACHUTE SURFACE RECOVERY
PAYLOAD VOLUME	~2U	~1U	~1U	~12U	~12U

Small Sat Class Deployable Entry Vehicles

	TechEdSat	Deorbit and Recovery System	HIAD w/in 6U	JAXA-EGG	ADEPT CubeSat Class
	M. Murbach, SmallSat 2016	J. Andrews, SmallSat 2011	S. Hughes, et al, IPPW 2016	Diameter: 80cm	ADEPT 12U ADEPT 3U
CubeSat Configuration	3.5U	3U	6U	3U	3U+ (could package around dispensers)
Entry System Volume	1.5U ExoBrake de-orbit system	10	3U	10	Integrates around CubeSat or CubeSat Dispenser
TPS Material	N/A	Ablative Coating on Flexible Fabric	Woven SiC on C-Felt	Woven Ceramics?	High Temperature Capable 3D Woven Carbon Fabric
Flex TPS Temp Limit	N/A	?	~1600 °C	?	Test Capability Demonstrated to 2100 °C
Flight Heritage	TechEdSat 1-8	N/A	N/A	Sub-Orbital Demonstration	ADEPT 3U Sub-Orbital Demo September 2018
Comments	Does not survive entrySPQR concept in development	Designed for LEO entries3 U EDU Developed	Concept DesignBased on HIAD & IRVE heritage	 Low Ballistic Coefficient < 5 kg/m² More details needed to determine feasibility for high speed entries 	 Capable of high speed entries (~11 km/s) Technology also useful for Aerocapture

ISSC 2019- Interplanetary Small Satellite Conference

Heatshield for Extreme Entry Environments Technology (HEEET)

- Leverages advanced 3-D weaving and resin infusion.
- A dual layer system robust and mass efficient across a range of extreme entry environments.
- TRL 6 and ready for mission infusion.
- Development includes:
 - Requirements and verification
 - Testing Aerothermal and Thermo-structural
 - Manufacturing specifications from raw materials to weaving, tile fabrication (forming/resin infusion) and integration
 - Technology transfer to industry (BRM and FMI)
 - Heatshield (1m dia.) Prototype designed, built and tested
 - Material Thermal Response Model and Margins Policy
 - Validated thermo-structural tools to support design
 - Design Data Book

NASA ARC POC- Don Ellerby

Prototype in Thermal Vac Chamber

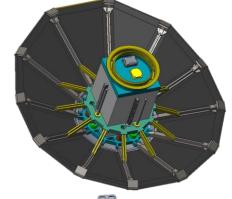
3d Weaving of Pre-form

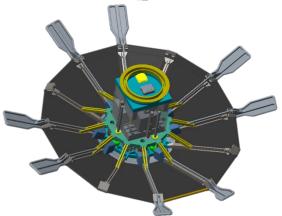
Approx. 150 deep 48.000 Heddles

Arc Jet Tested Specimen

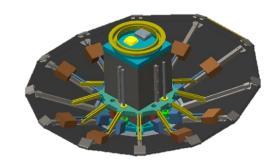
IHF 3" Stag Model 3600 W/cm²; 5.3 atm

Woven Pre-form




Pterodactyl- Guidance & Control System Integration onto Deployable Entry Vehicles

- Utilizes **ADEPT 1 m Class** design for development.
- Leverages the ability to mount control system hardware on deployed structural elements.
- Project is assessing 3 control system approaches for challenging Lunar Sample Return Design Reference Mission.
- Developing Analysis Framework to Explore Design Feasibility
 & Entry Environments
- Development includes:
 - Aerodynamics & Aerothermodynamics Analysis
 - 3-DOF & 6-DOF Trajectory Analysis
 - Guidance & Control Algorithm Development
 - Control System Integration onto Technology Demonstrator
 - Ground Testing of Technology Demonstrator
 - Control System Software Testing on 6-DOF Simulation Testbed


REACTION CONTROL THRUSTERS

MASS MOVEMENT

NASA ARC POC- Sarah D'Souza

ISSC 2019- Interplanetary Small Satellite Conference

Summary

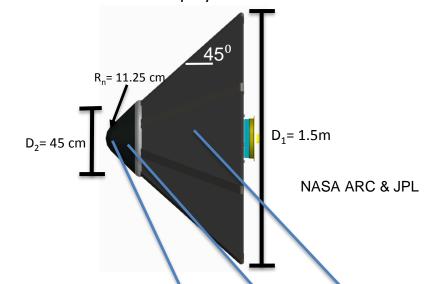
- Aerocapture and Aeroentry are mission enablers for Small Satellite missions.
- Aerocapture and Aeroentry mission segments show promise for Small Satellite mission concepts:
 - PSDS3 Mission Concept Study Awards FY18 (3 of 9 Mars & Venus concepts utilized Aeroassist)
- NASA ARC and JPL are exploring Drag Modulated Aerocapture mission concepts to advance capabilities for exploration and science objectives.
- Cis-Lunar Sample Return is another promising mission class for the Small Satellite community.
- New technologies are being developed to enable Small Satellite missions.
 - HEEET
 - ADEPT & Pterodactyl
 - HIAD
 - Drag Assist Devices
- We encourage the Small Satellite community to contact us for concept studies and partnering to help further innovate Small Satellite technology.

Alan.M.Cassell@nasa.gov AliciaMDwyerCianciolo@nasa.gov

Back-Up Charts

ISSC 2019- Interplanetary Small Satellite Conference

Drag Modulated Aerocapture at Venus

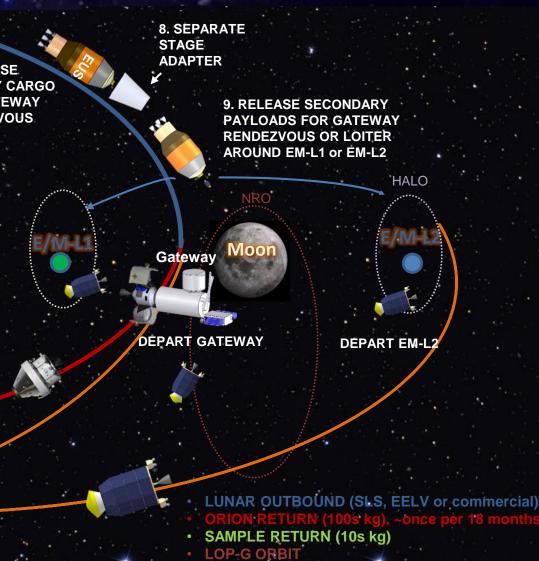

Trajectory Assumptions

- Pre-jettison Mass = 72 kg
- Post-jettison Mass = 34.7 kg, P-V aero database
- Basic mission, conditions at 150 km
 - V = 11 km/s, EFPA = -5.5°
- Jettison at time to reach 2000km apoapsis

Entry System Thermal Protection System Sizing

Determine environments and assign materials

- C-PICA chosen for rigid aeroshell
- Carbon Fabric for deployable aeroshell



	Nose	Flank (est)	Skirt (est)
Peak Heatflux (W/cm2)	383.3	191.65	191.65
Peak Heatload (J/cm2)	45179	22590	3840
Peak Pressure (Pa)	8800	4400	3650
C-PICA thickness (cm)	2.58	1.88	0.72
PICA thickness (cm)	4.125	3.51	1.11
C-PICA mass (kg)	0.13	0.80	4.56
PICA mass (kg)	0.20	1.45	6.83

Cis-Lunar Sample Return 6. TLI 3. FAIRING JETTISON 4. CORE BURNOUT 7. RELEASE 5. EUS SEPARATION **PRIMARY CARGO** 2. BOOSTER **FOR GATEWAY JETTISON RENDEZVOUS EXPLORATION UPPER STAGE** SECONDARY PAYLOAD ACCOMMODATIONS* 1. LIFTOFF PRIMARY PAYLOAD UNIVERSAL STAGE ADAPTER PAYLOAD ADAPTER **CO-MANIFESTED PAYLOAD ADAPTER (ESPA)** SAMPLE RETURN CAPSULE w/ SPACECRAFT BUS SLS MISSION PLANNER'S GUIDE REENTRY ~ 11 km/s

SOME OPTIONS FOR CIS LUNAR SAMPLE RETURN

- **Operations through Gateway (Lunar Sample Return)**
 - CLPS could bring samples to Gateway for transport back to Earth. Infrequent Orion missions
 combined with tasking priorities suggests we should consider augmenting with a robotic sample
 return capability
- Free-flyer for Deep Space Investigations (e.g.-Bio Sample Return)
- Lunar Surface Robotic Return (e.g.- Moonrise)

EM-L1 ORBIT

EM-L2 HALO ORBIT