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Introduction 
 

Lecture notes outlines the sections corresponding to the 
third semester according to the curriculum of the Advanced 
Mathematics course for full-time and part-time students 
education level “bachelor” specialty 192 – Construction and 
civil engineering. It includes lectures on the topics "Multiple 
integrals", "Line integrals" and "Numerical and power series". 

The theoretical material is structured and coordinated 
with classroom lectures, conducted in the study of module 3 in 
the course "Advanced Mathematics".  

An accessible, brief presentation of the theoretical 
material is accompanied by detailed illustrations, a large 
number of examples, and it allows students to acquire the 
course of advanced mathematics on their own. 
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Lecture 1 
Double integral. Properties of double integrals 

 
1.1 Double integral 

 
Let ( , )f x y  be a function of two variables whose do-

main is region D . Let region D  be a rectangle [ , ] [ , ]a b c d , 
i.e. a x b  , c y d  . Let us divide the interval [ , ]a b  into 
small intervals using a set of numbers 0 1{ , ,..., }mx x x  so that 

0 1 2 1... m ma x x x x x b       . Similarly, a set of numbers 

0 1{ , ,..., }ny y y  is said to be a partition of the interval [ , ]c d  
along the y -axis, if 0 1 2 1... n nc y y y y y d       . 

If  * *,i i jM x y  is some point in the rectangle 

1 1[ , ] [ , ]i i j jx x y y   and 1i i ix x x    , 1j j jy y y    , then the 
Riemann sum of a function ( , )f x y  over the partition of 
[ , ] [ , ]a b c d  (fig. 1.1), is 

 * *

1 1

,
m n

i j i j
i j

f x y x y
 

  . 

 
Figure 1.1 

a  1x  2x  1mx   b  x  

y  

c  
1y  
2y  

1ny   
d  

iM  
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The limit of the Riemann sum as the maximum values 
of ix  and jy  approach zero is the double integral of a func-
tion ( , )f x y  in the rectangular region [ , ] [ , ]a b c d : 

   * *

max 0 1 1[ , ] [ , ] max 0

, lim ,
i
j

m n

i j i jx i ja b c d y

f x y dxdy f x y x y
 

   

   . (1.1) 

If the limit in (1.1) exists we say that the function 
( , )f x y  is integrable in the region D . The following theorem 

tells us how to compute a double integral over a rectangle. 
Theorem 1.1. Let the function ( , )f x y  be integrable on 

a rectangle [ , ] [ , ]D a b c d  . Then 

     , , ,
b d d b

D a c c a

f x y dxdy dx f x y dy dy f x y dx      . 

The symbols  ,
b

a

f x y dx  and  ,
d

c

f x y dy  denote par-

tial definite integrals: the first integral, called the partial defi-
nite integral with respect to x , is evaluated by holding y  fixed 
and integrating with respect to x  (i.e., it is a function of y ), 
and the second one, called the partial definite integral with re-
spect to y , is evaluated by holding x  fixed and integrating 
with respect to y  (i.e., it is a function of x ). This two-stage in-
tegration process is called iterated (or repeated) integration. 

Theorem 1.1 says that: Double integrals over rectangles 
can be calculated as iterated integrals. This can be done in two 
ways, both of which produce the value of the double integral. 
Thus, we can evaluate a double integral by integrating with re-
spect to one variable at a time.  

Example 1. Evaluate the double integral 24
D

x y dxdy  
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over the rectangle [2, 4] [1, 2]D   . 
Solution. 
First way. We will integrate with respect to y  firstly. 

Since the dy  is the inner differential, the inner integral needs 
to have y -limits. We treat x  as a constant when doing the first 
integral and we do not do any integration by x  yet: 

24 2 4 2 4 2
2 2 2

2 1 2 1 2 1

4 4 4
2
ydx x y dy x y dy dx x dx

  
           

      

   
4 4 4

22 2 2 2 2 2

1
2 2 2

2 2 2 1 6x y dx x dx x dx          

Now, we have a regular one-variable integral and we 
finish the computation as follows: 

   
44 3 42 3 3 3

2
2 2

6 6 2 2 4 2 2 64 8 112
3
xx dx x             . 

Second way. We will integrate with respect to x  firstly. 
Since the dx  is the inner differential, the inner integral needs to 
have x -limits. We treat y  as a constant when doing the first 
integral and we do not do any integration by y  yet: 

42 4 2 4 2 3
2 2

1 2 1 2 1 2

4 4 4
3
xdy x y dx y x dx dy y dy

  
           

      

   
2 2 2 2

43 3 3

2
1 1 1 1

4 4 4 2244 2 56
3 3 3 3

y x dy y dy y dy ydy             

Now, we have a regular one-variable integral and we 
finish the computation as follows: 
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22 2 22

1
1 1

224 224 224 1
3 3 2 3 2

yydy y
 
        
 
 

  

 2 2112 1122 1 3 112
3 3

      . 

When D  is the rectangle [ , ] [ , ]a b c d , the small pieces 
of region partition fit D  perfectly. For a triangle or a circle, the 
rectangles miss part of D . But they do fit in the limit, and any 
region with a piecewise smooth boundary will be acceptable. 

If ( , ) 0f x y   for every point ( , )x y D , then the dou-
ble integral is equal to the volume of the solid under the surface 

( , )z f x y  and above the xy -plane bounded by the integration 
region D  (fig. 1.2). 

 
Figure 1.2 

 
1.2 Properties of double integrals 

 
1. Homogeneous property.  

x  

y  

z  

D  

V  

( , )z f x y  

O  
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Suppose that the function ( , )f x y  is integrable over a 
closed region D  and k  is an arbitrary constant. Then ( , )kf x y  
is integrable over the region D  and 

   , ,
D D

kf x y dxdy k f x y dxdy  . 

2. Additive property.  
Suppose that the functions ( , )f x y  and ( , )g x y  are in-

tegrable over a closed region D . Then ( , ) ( , )f x y g x y  is in-
tegrable over D  and 

     ( , ) ( , ) , ,
D D D

f x y g x y dxdy f x y dxdy g x y dxdy     . 

3. Additivity. 
Let D  and S  be non-overlapping closed regions and 

assume that a function ( , )f x y  is integrable over the region 
D S . Then 

   ( , ) , ,
D S D S

f x y dxdy f x y dxdy f x y dxdy   
. 

4. Suppose that function ( , )f x y  is integrable over a 
closed region D  and S  is a closed subregion of D . Then 

 ( , ) ,
S D

f x y dxdy f x y dxdy  . 

5. Non-negativity of the double integral. 
Suppose that the function ( , )f x y  is integrable over a 

closed region D  and let ( , ) 0f x y   over D . Then 

( , ) 0
D

f x y dxdy  . 

6. Monotone property of the double integral. 
Suppose that functions ( , )f x y  and ( , )g x y  are inte-

grable over a closed region D  and ( , ) ( , )g x y f x y  for all 
( , )x y D . Then 
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 ( , ) ,
D D

g x y dxdy f x y dxdy  . 

Example 2. Evaluate the double integral  

 
2 3

1 0

1 8dy xy dx  . 

Solution.  
To calculate the inner integral over x , we assume that 

y  is a constant. Using 1 and 2 properties, we get: 

 
2 3 2 3 3

1 0 1 0 0

1 8 8dy xy dx dx y xdx dy
 

     
 

      

 
32 22 33 3 2

0 0 0
1 10

8 4
2
xx y dy x y x dy

 
       
 
 
   

    
2 2

2 2

1 1

3 0 4 3 0 3 36y dy y dy          

Now, we have a regular one-variable integral: 
22 2 2

2

1
1 1 1

3 36 3 36
2
ydy ydy y           

   2 23 2 1 18 2 1 3 18 3 57          . 

 
 

Lecture 2 
Evaluation of double integrals by splitting  

into iterated ones. Reversing the order of integration 
 

Let 1( )y y x  and 2 ( )y y x  be functions whose graphs 
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are continuous curves such as 1 2( ) ( )y x y x  for a x b  . 
Then a planar region D  parallel to the xy -plane is called a 
Y -simple region, if it is bounded below by the graph of 

1( )y y x , above by the graph of 2 ( )y y x  and on the sides by 
vertical lines x a  and x b  ( a b ) (fig. 2.1). 

Let 1( )x x y  and 2 ( )x x y  be functions whose graphs 
are continuous plane curves such as 1 2( ) ( )x y x y  for 
c y d  . Then a planar region D  parallel to the xy -plane is 
called an X -simple region, if it is bounded on the left side by 
the graph of 1( )x x y , on the right side by the graph of 

2 ( )x x y , below and above by horizontal lines y c  and 
y d  ( c d ) (fig. 2.2). 

 
Figure 2.1  

Figure 2.2 

The following theorem will enable us to evaluate dou-
ble integrals over X -simple and Y -simple regions using iter-
ated integrals. 

Theorem 2.1. If D  is a Y -simple region over which 
( , )f x y  is continuous, then 

2

1

( )

( )

( , ) ( , )
y xb

D a y x

f x y dxdy dx f x y dy   . 

D  

L  

c  

d  

x  

y  1( )x y  2 ( )x y  

D  
L  

a  b  x  

y  

1( )y x  

2 ( )y x  
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If D  is an X -simple region over which ( , )f x y  is con-
tinuous, then 

2

1

( )

( )

( , ) ( , )
x yd

D c x y

f x y dxdy dy f x y dx   . 

To find the limits of integration when D  is a Y -simple 
planar region, we should take the following steps. 

Step 1. Sketch the region D  of integration and its 
bounding curves. 

Step 2. Since x  is held fixed for the first integration we 
find the y -limits of integration by drawing a vertical arrow L  
passing through the interior of the region D  at an arbitrary 
fixed value of x . L  intersects the boundary of D  at two 
points. The lower intersection point is on the curve 1( )y x  and 
the higher one is on the curve 2 ( )y x . These are y -limits of in-
tegration. 

Step 3. To find the x -limits of the second integration, 
we imagine that L  can move freely (from left to right and from 
right to left). First move L  to the leftmost part x a  and then 
to the rightmost part x b  of the region. These are x -limits of 
integration. 

To find the limits of integration when D  is an 
X -simple planar region, we should take the following steps. 

Step 1. Sketch the region D  of integration and its 
bounding curves. 

Step 2. Since y  is held fixed for the first integration we 
find the x -limits of integration by drawing a horizontal arrow 
L  passing through the interior of the region D  at an arbitrary 
fixed value of y . L  intersects the boundary of D  at two 
points. The leftmost intersection point is on the curve 1( )x y  
and the rightmost one is on the curve 2 ( )x y . These are 
x -limits of integration. 
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Step 3. To find the y -limits of the second integration, 
imagine that L  can move freely (from top to bottom and from 
bottom to top). First move L  to the bottom y c  and then to 
the top y d  of the region. These are y -limits of integration. 

Regions that are more complicated, and for which this 
procedure fails, can often be split up into pieces on which the 
procedure works. 

Example 1. Evaluate the double integral 
 2

D
x y dxdy  over the region D  enclosed between the 

lines y x , 2y x , 2x  , 3x  . 
Solution. Let us find the limits of integration. 
Step 1. Draw a figure bounded by the following lines 

(fig. 2.3): y x  is straight line which passes through the points 
(0,0) , (1,1) ; 2y x  is straight line which passes through the 
points (0,0) , (1, 2) ; 2x   and 3x   are straight lines that are 
parallel to the y -axis. 

 

Figure 2.3 

2y x  
y x  

L  

D  
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Step 2. D  is a Y -simple planar region, so we shall 
firstly integrate with respect to y  and then with respect to x . 
The lower point of intersection of the arrow L  with the bound-
ary of D  is on the line y x  and the higher point of intersec-
tion is on the line 2y x . 

Step 3. 2x   is the leftmost part of the region and 
3x   is the rightmost one.  

Thus,  

   
3 2

2

2 2
x

D x

x y dxdy dx x y dy     . 

Let us evaluate the double integral. We consider x  as a 
constant when doing the inner integral and we do not do any 
integration by x  yet: 

 
3 2 3 2 2

2 2

2 2
x x x

x x x

dx x y dy x dy ydy dx
 

      
 

      

     
23 32

2 2 2

2 2

2 2 2
2

x
x

x
x

yx y dx x x x x x dx
 
          
 
 
   

    
3 3 3

2 2 2 2 2

2 2 2

4 3 4x x x x dx x x dx x dx           

Now, we have a regular one-variable integral and we 
finish the computation as follows: 

33 3 3

2

3 2 8 27 8 19 764 4 4 9 4 4
3 3 3 3 3 3 3
x                   

  
. 

Example 2. Reverse the order of integration 

 
2 2

0

,
x

x

dx f x y dy  . 
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Solution.  
The given region of integration is  

: 0 2, 2D x x y x     . 

Draw a figure bounded by the following lines (fig. 2.4): 
0x   is the y -axis; 2x   is straight line parallel to the 

y -axis; y x  is straight line which passes through the points 
(0,0) , (1,1) ; 2y x  is straight line which passes through the 
points (0,0) , (1, 2) . 

 
Figure 2.4 

Let us change the order of integration: the inner integral 
will be with respect to x  and the outer one will be with respect 
to y . D  is not an X -simple planar region, so we have to split 
it up into pieces 1D , 2D  with the help of straight line 2y   
(fig. 2.5).  

Let us consider region 1D . It is an X -simple planar re-
gion. The leftmost point of intersection of the arrow with the 

D  

2y x  
y x  
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boundary of 1D  is on the line 
2
yx   and the rightmost one is 

on the line x y , 0y   is the bottom and 2y   is the top of 

the region. So, 1 : 0 2,
2
yD y x y     . 

 
Figure 2.5 

Let us consider region 2D . It is also an X -simple pla-
nar region. The leftmost point of intersection of the arrow with 

the boundary of 2D  is on the line 
2
yx   and the rightmost 

point is on the line 2x  , 2y   is the bottom and 4y   is the 

top of the region. So, 2 : 2 4, 2
2
yD y x     . 

Thus,  

     
2 2 2 4 2

0 0 2
2 2

, , ,
yx

y yx

dx f x y dy dy f x y dx dy f x y dx       . 

x y  

2
yx   

2x   
1D  

2D  
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Lecture 3 
Double integral in polar coordinates 

 
In rectangular coordinates the lines of division consist 

of two systems, for one of which x  is constant and for the oth-
er y  is constant.  

In polar coordinates, we have one system of straight 
lines through the origin, for each of which   is constant, and 
another system of circles about the origin as centre, for each of 
which   is constant (fig. 3.1). 

The evaluation of some double integrals is easier, if the 
region of integration is expressed in polar coordinates. This is 
usually true if the region is bounded by a cardioid, a rose curve, 
a spiral, or, more generally, by any curve whose equation is 
simpler in polar coordinates than in rectangular coordinates. 
Moreover, double integrals whose integrands involve 2 2x y  
also tend to be easier for evaluating in polar coordinates. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 

In a double integral, when passing from rectangular co-
ordinates ( , )x y  to polar coordinates ( , )  , which are con-

x  E  O  

),( M  

φ   
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nected with rectangular coordinates by the relations 

cosx   , siny   , (remember that 2 2 2x y   ), 

we have the formula 

( , ) ( cos , sin )
pD D

f x y dxdy f d d        . 

A  -simple polar region in a polar coordinate system 
is a region which is enclosed between two rays    and 
  , and two continuous polar curves 1( )    and 

2 ( )   , where the equations of the rays and the polar 
curves satisfy the following conditions: 

  ,   2    ,   1 20 ( ) ( )     . 

The ray    can be obtained by rotating the ray 
   counterclockwise through at angle which is at most 2  
radians. Boundary curves 1( )    and 2 ( )    can touch 
but cannot actually cross over one another. Thus, it is appropri-
ate to describe 1( )    as the inner boundary of the region 
and 2 ( )    as the outer boundary. If 1( )   is identically 
zero, then the boundary 1( )    reduces to a point (the 
origin).  

Theorem 3.1. If pD  is a  -simple polar region whose 
boundaries are rays    and    and curves 1( )    
and 2 ( )   , and ( , )F    is continuous on pD , then 

2

1

( )

( )

( , ) ( , )
pD

F d d d F d
 

  

            . 

To find the limits of integration when pD  is a  -simple 
planar region, we should take the following steps. 
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Step 1. Sketch the region pD  of integration and its 
bounding curves. 

Step 2. Find  -limits of integration by drawing an ar-
row L  passing through the region pD  in the direction of   in-
creasing. Mark   values where L  enters and leaves pD . The-
se are  -limits of integration. They usually depend on the an-
gle  , except the case when pD  is a circle (in this case they 
are constants). 

Step 3. Find  -limits of integration by choosing 
 -limits which include all rays passing through pD . 

Regions which are more complicated, and for which 
this procedure fails, can often be split up into pieces on which 
the procedure works. 

Example 1. Use polar coordinates to evaluate the dou-

ble integral  2 2 8
D

x y dxdy   over the region D  given 

by the inequalities 0x  , 0y  , 2 21 4x y   .  
Solution.  
Draw a figure bounded by the following lines (fig. 3.2): 

0x   is the y -axis; 0y   is the x -axis; 2 2 1x y   is a circle 
of radius 1R  with center at the origin; 2 2 4x y   is a circle 
of radius 2R   with center at the origin. 

Let us pass to the polar coordinates: 
1) integrand: 2( cos , sin ) 8 8f          , 
2)  -limits: 2 1  , 1  ;  2 4  , 2  ;  1 2  , 

3)  -limits: 
2
    . 
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Figure 3.2 

Thus, 

     
2

2 2

1
2

8 8 8
pD D

x y dxdy d d d d




                . 

Let us evaluate the double integral. We consider   as a 
constant when doing the inner integral and we do not do any 
integration by   yet: 

   
22 2 3 2

2

1 1 1
2 2 2

8 8 8
3 2

d d d d d
  

  

         
 

       
 

      

23 3 3
2 2 2

1
2 2

2 14 4 2 4 1
3 3 3

d d
 

 

   
    

            
    
   

2 2

8 1 8 116 4 16 4
3 3 3 3

d d
 

 

 
                

    
   

2 2 1x y   

2 2 4x y   

D  L  
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2 2 2

7 7 36 4312
3 3 3

d d d
  

  

  
      

     

Now, we have a regular one-variable integral and we 
finish the computation as follows: 

2

2

43 43 43 43 43
3 3 3 2 3 2 6

d







  
             

  . 

Example 2. Evaluate the double integral 
 

D
x y dxdy  over the region D  given by the inequalities 

2 2 2x y R  , y x . 
Solution.  
Draw a figure bounded by the following lines (fig. 3.3): 

2 2 2x y R   is a circle of radius R  with center at the origin; 
y x  is the bisector of the first and third quarters. 

 
Figure 3.3 

 

y x  D  

L  

2 2 2x y R   
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Let us pass to the polar coordinates:  
1) integrand:  

 ( cos , sin ) cos sin cos sinf               , 

2)  -limits: 2 2R  , R  ; 0 R  , 

3)  -limits: 5
4 4
   . 

Thus, 

   cos sin
pD D

x y dxdy d d           

   
5 5

34 4
2

0 0
4 4

cos sin cos sin
3

RR

d d d

 

 

       
 
       
 
 

    

   
5

53 34
4

4
4

cos sin sin cos
3 3

R Rd







            

3 5 5sin cos sin cos
3 4 4 4 4

R               
 

3 2 2sin cos
3 4 4 2 2

R   
                          

 

3 3 2 2sin cos 0 0
3 4 4 3 2 2
R R                    

. 
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Lecture 4 
Triple integral. Properties of triple integrals.  
Evaluation of triple integrals in rectangular,  

cylindrical and spherical coordinates 
 

4.1 Triple integral. Properties of triple integrals 
 
Double integrals ( , )

D
f x y dxdy  are connected with 

plane domains, i.e. with two-dimensional objects. When we 
compute such integral we always finally come to the computa-
tion of two simple integrals. 

If one substitutes plane domains with domains in the 
three-dimensional space, one gets a more sophisticated notion, 
namely the notion of a triple integral ( , , )

V
f x y z dxdydz . 

Here dxdydz  is called an element of volume and ( , , )f x y z  is 
called the density function. All the theory of such triple inte-
grals is nothing else then a slight generalization of the theory of 
double integrals. 

Triple integral of the function ( , , )f x y z  extended over 
the region V  is the limit of the corresponding triple iterated 
sum: 

max 0
max 0
max 0

( , , ) lim ( , , )
i
j
k

i j k i j kV x i j ky
z

f x y z dxdydz f x y z x y z
 
 
 

    . 

Evaluation of a triple integral reduces to the successive 
computation of three single integrals (if the limits of integra-
tion are constants) or to the computation of one double and one 
single integral. 

Triple integrals have the similar properties as single and 
double integrals. 
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4.2 Evaluation of triple integrals  
in rectangular coordinates 

 
Let the three-dimensional region V  be a Z -simple re-

gion (fig. 4.1), then  
2

1

( , )

( , )

( , , ) ( , , )
xy

z x y

V D z x y

f x y z dxdydz dxdy f x y z dz   . 

First of all we have to compute a simple integral rela-
tive to the variable z  and after that we compute a double inte-
gral over the domain xyD , which is the projection of V  on the 
xy -plane. 

 
Figure 4.1 

It is possible to obtain an iterated integral with another 
order of integration. It all depends both on the form of the inte-
grand ( , , )f x y z  and the region V , and on its location with re-
spect to the coordinate system Oxyz . 

If the domain V  is not simple, then it must be divided 
into simple parts. 
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Example 1. Evaluate the triple integral  

2 2

1 1 2

0 0 x y

dx dy xyz dz


   . 

Solution.  
First of all we compute a simple integral relative to the 

variable z , so we consider x  and y  as constants when doing 
the first integral: 

2 22 2

21 1 2 1 1 2

0 0 0 0 2 x yx y

zdx xy z dz dy dx xy dy


   
      

     
      

 
1 1 2

2 2 2

0 0

1 2
2

dx xy x y dy           
   

  
1 1

2 2

0 0

1 4
2

dx xy x y dy        

Now we compute a simple integral relative to the varia-
ble y , so we consider x  as a constant when doing it: 

 
1 1

2 3

0 0

1 4
2

x y x y y dy dx
 

      
 
   

1 1 11 2 2 4
2

0 0 0 0

1 4
2 2 2 4

y y yx x dx
  
         

    
  

1
2

0

1 1 1 14
2 2 2 4

x x dx             
  

1 1
2 3

0 0

1 1 1 1 7 12
2 2 4 2 4 2

x x dx x x dx                    
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Now we have a regular one-variable integral: 
1 11 1 2 4

3

0 0 0 0

1 7 1 1 7 1
2 4 2 2 4 2 2 4

x xxdx x dx
  
                 

   

1 7 1 1 1 1 7 1 1 6 1 3 3
2 4 2 2 4 2 8 8 2 8 2 4 8
                  
   

. 

 
4.3 Evaluation of triple integrals  

in cylindrical and spherical coordinates 
 

Cylindrical coordinates (fig. 4.2) represent a point M  in 
space by ordered triples ( , , )z   in which   and   are polar 
coordinates for the vertical projection of M  on the xy -plane 
( 0    , 0 2   ), z  is the rectangular vertical coordi-
nate. 

 
Figure 4.2 

Equations relating rectangular ( , , )x y z  and cylindrical 
( , , )z   coordinates: 

cosx   , siny   , z z ,  

2 2 2x y   , tan y
x

  . 
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In cylindrical coordinates, the equation a   describes 
not just a circle in the xy -plane but an entire cylinder about the 
z -axis, which is given by 0  . The equation 0   de-
scribes the plane which contains z -axis and makes an angle 0  
with the positive x -axis. And, just as in rectangular coordi-
nates, the equation 0z z  describes a plane perpendicular to 
the z -axis. 

The transition to cylindrical coordinates is useful for 
applying, if the integration region V  is given in a cylindrical 
system or it is projected into a circle or a part of it, or the inte-
grand ( , , )f x y z  contains the sum of squares of at least two 
Cartesian coordinates. 

The formula for the transition from rectangular to cy-
lindrical coordinates: 

( , , ) ( cos , sin , )
V Vcyl

f x y z dxdydz f z d d dz        . 

Spherical coordinates (fig. 4.3) represent a point M  in 
space by ordered triples ( , , )r    in which r  is the distance 
from the origin O  to the point M  ( 0 r   ),   is the angle 
as measured in cylindrical coordinates ( 0 2   ),   is the 
angle between the vector OM


 and the positive z -axis 

( 0    ). 

 
Figure 4.3 
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Equations relating rectangular ( , , )x y z  and spherical 
( , , )r    coordinates: 

cos sinx r   , sin siny r   , cosz r  ,  
2 2 2 2r x y z   . 

The equation r a  describes the sphere of radius a  
centered at the origin. The equation 0   describes a single 
cone whose vertex lies at the origin and whose axis lies along 
the z -axis (the xy -plane is the cone / 2  ). The equation 

0   describes the half-plane which contains the z -axis and 
makes an angle 0  with the positive x -axis. 

The transition to spherical coordinates is convenient for 
applying, if the integration region V  is given in a spherical 
system or it is a sphere or its part, or the integrand ( , , )f x y z  
contains the sum of squares of all three Cartesian coordinates. 

The formula for the transition to the triple integral in 
cylindrical coordinates: 

( , , )
V

f x y z dxdydz   

2( cos sin , sin sin , cos ) sin
Vsph

f r r r r drd d         . 

Example 2. In triple integral  , ,
V

f x y z dxdydz , 

where V  bounded by the surfaces 2 22z x y   , 0x  , 
0y  , 0 2z  , determine the limits of integration in rectan-

gular, cylindrical and spherical coordinate systems. 
Solution.  
Draw a body bounded by the following surfaces 

(fig. 4.4):  
a) 2 2 2( 2) 0x y z     is a cone with the vertex at the 
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point (0,0, 2) : 

2 22z x y   ,   2 22z x y    , 
2 2 2( 2)z x y   ,   2 2 2( 2) 0x y z    ; 

b) 0x  , 0y  , 0z   are set the first octant; 
c) 2z   is set the region below the plane 2z  . 
The region V  is a Z -simple one. 

 
Figure 4.4 

Draw a projection on the xy -plane (fig. 4.5): 
a) 2 2 4x y   is a circle of the radius 2R   with the 

center at the origin: 
2 20 2 x y   ,   2 2 2x y  ,   2 2 4x y  , 

b) 0x  , 0y   are set the first quarter. 
The region xyD  is a Y -simple one. 

2 22z x y    

0z   
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Figure 4.5 

According to the fig. 4.4, 4.5 we determine the limits of 
integration in rectangular coordinate system: 

0 2x  , 20 4y x   , 2 20 2z x y    , 

   
2 22 22 4

0 0 0

, , , ,
x yx

V

f x y z dxdydz f x y z dz dy dx
 

    . 

Let us pass to the cylindrical coordinates: 
a) z -limits: 0z  ;  

        2 22z x y   : 22z   , 2z   ;  

0 2z    ; 

b)  -limits: 0  ;  

         2 2 4x y  : 2 4  , 2  ;  

0 2  ; 

c)  -limits: 0
2
  , 

0x   

0y   

24y x   
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222

0 0 0

, , cos , sin ,
V

f x y z dxdydz f z dz d d




      


     . 

Let us pass to the spherical coordinates: 
a) r -limits: 0r  ; 

        2 22z x y   : 

2 2cos 2 ( cos sin ) ( sin sin )r r r       , 

2 2 2 2 2 2cos 2 cos sin sin sinr r r       , 

2 2 2 2cos 2 sin (cos sin )r r       , 

2 2cos 2 sinr r   ,   cos 2 sinr r   , 

cos sin 2r r   , 

 cos sin 2r    ,   2
cos sin

r
 




; 

20
cos sin

r
 

 


; 

b)  -limits: 0
2
  ; 

c)  -limits: 0
2
  , 

 , ,
V

f x y z dxdydz   

 
2

cos sin2 2
2

0 0 0

cos sin , sin sin , cos sinf r r r r d dr d

 
 

       


    . 
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Lecture 5 
Applications of multiple integrals: calculation of area, 

mass, static moments, center of gravity, moments of inertia  
of a lamina, surface area and volume 

 
5.1 Applications of double integrals 

 
1. Area of a plane domain: 

in rectangular coordinates 
D

S dxdy  , 

in polar coordinates 
D

S d d    . 

2. Volume of a cylindrical solid bounded above by a 
continuous surface ( , )z z x y , below by the plane 0z  , and 
on the sides by a right cylindrical surface, is equal to: 

( , )
D

V z x y dxdy  . 

3. Mass of a lamina with surface density ( , )x y : 

( , )
D

M x y dxdy  . 

4. Static moments of a lamina: 

about the x -axis ( , )x D
M y x y dxdy  , 

about the y -axis ( , )y D
M x x y dxdy  . 

5. The moments of inertia of a lamina: 

about the x -axis 2 ( , )x D
I y x y dxdy  , 

about the y -axis 2 ( , )y D
I x x y dxdy  , 
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about the origin 
2 2

0 ( ) ( , )x y D
I I I x y x y dxdy     . 

6. Coordinates of the center of gravity of a lamina: 

y
c

M
x

M
 , x

c
My
M

 . 

7. Surface area of surfaces of the form ( , )z z x y : 

2 21 ( ) ( )surf x yD
S z z dxdy    . 

 
5.2 Applications of triple integrals 

 
1. Volume of a solid: 

V
V dxdydz  . 

2. Mass of a solid with the density ( , , )x y z : 

( , , )
V

M x y z dxdydz  . 

3. Static moments of a solid: 

about the xy -plane 

( , , )xy V
M z x y z dxdydz  , 

about the yz -plane 

( , , )yz V
M x x y z dxdydz  , 

about the xz -plane 

( , , )xz V
M y x y z dxdydz  . 
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4. The moments of inertia of a solid: 
about the x -axis  

2 2( ) ( , , )x V
I y z x y z dxdydz   , 

about the y -axis  
2 2( ) ( , , )y V

I x z x y z dxdydz   , 

about the z -axis  
2 2( ) ( , , )z V

I x y x y z dxdydz   , 

about the origin 
2 2 2

0 ( ) ( , , )
V

I x y z x y z dxdydz   , 

about the xy -plane  
2 ( , , )xy V

I z x y z dxdydz  , 

about the yz -plane 
2 ( , , )yz V

I x x y z dxdydz  , 

about the xz -plane  
2 ( , , )xz V

I y x y z dxdydz  . 

5. Coordinates of the center of gravity of a solid: 

yz
с

M
x

M
 , xz

с
My
M

 , xy
с

M
z

M
 . 

Example 1. Using the double integral find the volume 
of the solid bounded by the planes 0z  , 0x  , 4x y   and 
by the parabolic cylinder 4z y . 

Solution.  
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Draw a body bounded by the following surfaces 
(fig. 5.1): 0z   is the xy -plane; 0x   is the yz -plane; 

4z y  is a parabolic cylinder with rulings parallel to the 
x -axis; 4x y   is the plane parallel to the z -axis. 

Draw a projection on the xy -plane (fig. 5.2): 4x y   
is the straight line which passes through points  0, 4 ,  4,0 ; 

0x   is the y -axis; 0y   is the x -axis. 

 
Figure 5.1 

 

Figure 5.2 

4z y  

4x y   

0z   

0x   

4y x   

0x   

0y   

x  

y  
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The volume is calculated by the formula:  

( , ) 4
D D

V z x y dxdy y dxdy   . 

xyD  is a Y -simple planar region, so we shall integrate 
first with respect to y  and then with respect to x . The lower 
point of intersection of the arrow L  with the boundary of D  is 
on the line 0y   and the higher point is on the line 4y x  , 

0x   is the leftmost part of the region and 4x   is the right-
most one.  

Thus, 
4 4

0 0

4 4
x

D

V y dxdy dx y dy


    . 

First of all we compute a simple integral relative to the 
variable y , so we consider x  as a constant when doing the 
first integral: 

4 4 4 4 1
2

0 0 0 0

4 4
x x

V y dy dx y dy dx
    

       
   
     

4 4
1 3 414 4 4 32 2

2

0 0 0 0

0 0

84 41 3 31
2 2

x x

x
y ydx dx y dx

 


   
     
           

         
   

    

 
4 44 33

00 0

8 8 4
3 3

x
y dx x dx

       
    

Now, we have a regular one-variable integral. To eval-
uate it we make a substitution: 
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0

3

4
1 2

4
8
3

4 0 4 4 4 0

t x dt dx
dt dx t dt

t t

   
      

     
  

0 0
3 5 010 3 52 2

2

4 4
4 4

8 8 8 8 2
3 53 3 3 3 51
2 2

t t tt dt


            


  

5 58 2 0 2 4 8 64 8 64 512
3 5 5 3 5 3 5 15

                    
. 

Example 2. Find the mass of a lamina bounded by the 
lines 2 2 16x y  , 2 2 25x y  , ( 0x  , 0y  ), if the surface 

density 2 2

4x y
x y

 



. 

Solution.  
Draw a figure bounded by the following lines (fig. 5.3): 

2 2 16x y   is a circle of the radius 4R   with the center at 
the origin; 2 2 25x y   is a circle of the radius 5R   with the 
center at the origin; 0x  , 0y   are set the first quarter. 

The mass of a lamina is calculated by the formula:  

2 2

4( , )
D D

x yM x y dxdy dxdy
x y

 
 

  . 

Let us pass to the polar coordinates: 

a) integrand: 2

cos 4 sin( cos , sin )f       



   

 
2

cos 4sin cos 4sin    
 
 

  ; 
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b)  -limits: 2 16  , 4  ; 2 25  , 5  ;  

4 5  ; 

c)  -limits: 0
2
   . 

 
 

Figure 5.3 
Thus, 

2 2

4 cos 4sin

D Dp

x yM dxdy d d
x y

    


 
   

   

   
0 5

4
2

cos 4sin cos 4sin
Dp

d d d d


               

   
0 5 0

5

4
4

2 2

cos 4sin cos 4sind d d
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0 0

2 2

cos 4sin 5 4 cos 4sind d
 

              

 
0 0

00

2 2
2 2

cos 4 sin sin 4 cos sin 0d d  
 

                

 sin 4 cos 0 cos 0 1 4 1 0 1 4 3
2 2
               

 
. 

 
 

Lecture 6 
Line integrals of the first kind.  

Properties of line integrals of the first kind 
 

6.1 Line integrals of the first kind 
 
Let ( , )f x y  be a continuous function and ( )y y x  

( a x b  ) be the equation of some smooth curve L . 
Let us construct a system of points ( , )i i iM x y  

( 0,1,2,...,i n ) which break up the curve L  into elementary 
arcs 1i i iM M l    (fig. 6.1), and let us construct the so called 
integral sum  

1
( , )

n

n i i i
i

S f x y l


  . 

The limit of this sum, when n   and max 0il  , 
is called a line integral of the first kind 

1max 0

lim ( , ) ( , )
i

n

i i in i Ll

f x y l f x y dl


 

   . 

The physical meaning of the line integral of the first 
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kind is that it is equal to the mass of the arc: 

( , )
L

M f x y dl  . 

If ( , ) 1f x y  , then it is equal to the length of the arc: 

L
L dl  . 

 
 

 
 
 

Figure 6.1 

If the function  ,f x y  is continuous in some domain 
D  containing a piecewise smooth curve L , then there exists a 
line integral  ,

L

f x y dl  (sufficient condition for the existence 

of a line integral of the first kind). The line integral of the first 
kind does not depend on the direction of motion along the arc. 
Other properties of the line integral of the first kind are similar 
to the properties of the usual single integral. 

The concept of a line integral of the first kind extends 
to the case of an arc of a spatial line L  located in a three-
dimensional scalar field  , ,u f x y z : 

   
1max 0

, , lim , ,
i

n

i i i in iL l

f x y z dl f x y z l


 

  . 

 
6.2 Computation of line integrals of the first kind 

 
1. If a plane curve L  is defined in the form ( )y y x , 

0M  
1M  

2M  1iM   
iM  1nM   nM  il  



41 
 

with [ , ]x a b , then  

2( , ) ( , ( )) 1 ( )
b

L a

f x y dl f x y x y dx   . 

2. If a plane curve L  is defined in the form ( )x x y , 
with [ , ]y c d , then  

2( , ) ( ( ), ) 1 ( )
d

L c

f x y dl f x y x x dy   . 

3. If a plane curve L  is defined in the polar coordinates 
by the equation ( )   , with [ , ]   , then  

2 2( , ) ( cos , sin ) ( )
L

f x y dl f d




         . 

4. If a curve L  is defined in parametric form by equa-
tions ( )x x t , ( )y y t , with 1 2[ , ]t t t , then 

2

1

2 2( , ) ( ( ), ( )) ( ) ( )
t

L t

f x y dl f x t y t x y dt    . 

5. If a curve L  is defined in parametric form by equa-
tions ( )x x t , ( )y y t , ( )z z t , with 1 2[ , ]t t t , then 

2

1

2 2 2( , , ) ( ( ), ( ), ( )) ( ) ( ) ( )
t

L t

f x y z dl f x t y t z t x y z dt      . 

Example 1. Evaluate the line integral of the first kind 

2

(2 )

L

x y dl
z


 , where L  is the line segment from point 

(3, 5,6)A   to point (5, 8,12)B  . 
Solution.  
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Let us write the equation of a straight line passing 
through the points (3, 5,6)A   and (5, 8,12)B  : 

1 1 1

2 1 2 1 2 1

x x y y z z
x x y y z z
  

 
  

, 

3 ( 5) 6
5 3 8 ( 5) 12 6
x y z   

 
    

, 

3 5 6
2 3 6

x y z t  
  


, 

3
2

x t
 ,   5

3
y t




,   6
6

z t
 , 

2 3x t  ,   3 5y t   ,   6 6z t  . 

Find how the parameter t  varies, if [3,5]x : 

3x  : 3 3 0
2

t 
  ,   5x  : 5 3 1

2
t 
  . 

Calculate the derivatives of 2 3x t  , 3 5y t   , 
6 6z t  :  

(2 3) 2x t     ,   ( 3 5) 3y t       ,   (6 6) 6z t     . 

Using the formula of the fifth case and substituting the 
functions 2 3x t  , 3 5y t   , 6 6z t   and their deriva-
tives 2x  , 3y   , 6z   into the integral, we obtain: 

1
2 2 2

2 2
0

(2 ) (2 (2 3) 3 5) 2 ( 3) 6
(6 6)L

x y dl t t dt
z t
    

     
   

1 1

2 2
0 0

(4 6 3 5) ( 1)4 9 36 49
(6 ( 1)) 36 ( 1)
t t tdt dt

t t
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11 1

00 0

7 7 7 ln 1
36 ( 1) 36 1 36

dtdt t
t t

      
     

   7 7 7ln 1 1 ln 0 1 ln 2 0 ln 2
36 36 36

         . 

Example 2. Evaluate the line integral of the first kind 

2 2
L

dl
x y , where L  is defined in parametric form by equations 

cos sinx t t t  , sin cosy t t t  , with [0, 2 ]t  . 
Solution. 
Let us find the derivatives of cos sinx t t t  , 

sin cosy t t t  :  

(cos sin ) (cos ) sin (sin )x t t t t t t t t             
sin sin cos cost t t t t t     , 

(sin cos ) (sin ) ( cos (cos ) ) cosy t t t t t t t t t              
(cos ( sin )) cos (cos sin )t t t t t t t         

cos cos sin sint t t t t t    . 

Using the formula of the forth case and substituting the 
functions cos sinx t t t  , sin cosy t t t   and their deriva-
tives cosx t t  , siny t t   into the integral, we obtain: 

2 2 2

2 2 2 2
0

( cos ) ( sin )
(cos sin ) (sin cos )L

t t t t dtdl
x y t t t t t t

 
 

      

2 2 2 2 2

2 2 2 2 2 2
0

cos sin
cos 2 cos sin sin sin 2 cos sin cos

t t t tdt
t t t t t t t t t t t t

 
 

      

2 22 2 2

2 2 2 2 2 2
0 0

(cos sin )
(cos sin ) 0 (sin cos ) 1

t t t dt tdt
t t t t t t
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To evaluate integral we should make a substitution: 

22 1 4

2 2 2 1
1 2

1 2 22
1 0 1 1 (2 ) 1 4

duduu t du tdt tdt
uu u



 

   
  

      
  

 
2

21 4
1 4 2
1

1

1 1 1ln ln 1 4 ln 1
2 2 2

du u
u








          

 
2

2
ln 1 41 ln 1 4 0

2 2





     . 

 
 

Lecture 7 
Applications of the line integral of the first kind 
 
1. Length of a curve: 

L
L dl  . 

2. Mass of a curve with the linear mass density ( , )x y : 

( , )
L

M x y dl  . 

3. Static moments of a curve: 

about the x -axis  ,x L
M y x y dl  , 

about the y -axis  ,y L
M x x y dl  . 

4. Moments of inertia of a curve: 

about the x -axis 2 ( , )x L
I y x y dl  , 

about the y -axis 2 ( , )y L
I x x y dl  , 
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about the origin 2 2( ) ( , )O L
I x y x y dl   . 

5. Center of the gravity of a curve: 

y
C

M
x

M
 ,   x

C
My
M

 . 

Example 1. Find the mass of the line segment from 
point (0,1)A  to point (8,3)B , if the density is equal to 3 x y . 

Solution. 
The mass of a curve is calculated by formula:  

3( , )
L L

M x y dl x ydl   . 

Let us write the equation of a straight line passing 
through the points (0,1)A  and (8,3)B : 

1 1

2 1 2 1

x x y y
x x y y
 


 

, 

0 1
8 0 3 1
x y 


 

,   1
8 2
x y 
 ,   1

4 1
x y 
 ,    

4( 1)x y  ,   4 4x y  ,   4 4y x  , 

1 1
4

y x  . 

The derivative is:  

1 1 1 11 0 1
4 4 4 4

y x x
           

 
. 

Substituting the function 1 1
4

y x   and its derivative 

1
4

y   into the integral, one obtains: 
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28
3 3

0

1 11 1
4 4L

M x ydl x x dx            
      

8 81 1 1
3 3 3

0 0

1 1 17 11 1
4 16 16 4

x x dx x x x dx
             

   
   

8 8
4 11 18 84 1 3 3

3 3

0 0

0 0

17 1 17 1
4 14 4 4 4 1 1
3 3

x xx dx x dx
 

 
  
          
     
 

   

8 8
7 4 8 8

3 37 43 3

0 0
0 0

17 1 17 1 3 3
7 44 4 4 4 7 4
3 3

x x x x
 

  
          
  
  

 

 

3 37 4 7 417 1 3 8 3 8 17 1 3 2 3 2
4 4 7 4 4 4 7 4

    
               

 

517 3 2 17 963 4 12
4 7 4 7

             
  

 

17 96 84 17 180 45 45 1717
4 7 4 7 7 7


       . 

Example 2. Find the length of an arc of a curve 
5
125e


  , 
2 2
    . 

Solution. 
The length of a curve is calculated by formula:  

L
L dl  . 
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Let us find the derivative of 
5
125e


  :  

5 5 5 5 5
12 12 12 12 125 5 255 5 5 5

12 12 12
e e e e e

    
                    

    
. 

Substituting the function 
5
125e


   and its derivative 
5
1225

12
e



   into the integral, we obtain: 

2 25 52
12 12

2

255
12L

L dl e e d


 






   
      

   
   

10 10 102 2
12 12 12

2 2

625 62525 25
144 144

e e d e d

 
  

 

 
 

       
    

10 102 2
12 12

2 2

3600 625 4225
144 144

e d e d

 
 

 

 
 


       

5 5 52 2 2
12 12 12

22 2

65 65 65 12
12 12 12 5

e d e d e

  
  

 

 
 

         

55 5 522
12 12 24 2413 13e e e e


 

      
 

  
     

  
 

. 
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Lecture 8 
Line integrals of the second kind. 

Properties of line integrals of the second kind.  
Green's formula 

 
8.1 Definition of line integral of the second kind 
 
Let a vector field ( , ) ( , ) ( , )F x y P x y i Q x y j 

  
 and a 

piecewise smooth curve L  be defined in some domain in 2R . 
By dividing the curve by points 0 1 2, , ,..., nM M M M  into n  sub 
curves 1i iM M , 1, 2,...,i n , we obtain a partition (fig. 8.1). 
Let us select on each arc 1i iM M  an arbitrary point ( , )i ix y , 

1, 2,...,i n , and form a sum of dot products 

 1
1 1

( , ) ( , ) ( , )
n n

n i i i i i i i i i i
i i

S F x y M M P x y x Q x y y
 

      


, 

called an integral sum. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1 

0M  
1M  

2M  

iM  1nM   nM  il  

1ix   ix  
ix  

x  

y  

iy  
1iy   
iy  

1iM   
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If there exists a finite limit of the sums nS  as 
max( ) 0il   which depends on neither the partition nor the 
selection of the points ( , )i ix y , then it is called the line integral 
of the second kind of the vector field ( , )F x y


 along the curve 

L  and is denoted 

L
F dr
     or   ( , ) ( , )

L
P x y dx Q x y dy , 

where dr idx jdy 
  . 

The line integral of the second kind depends on the di-
rection of the path: 

( , ) ( , ) ( , ) ( , )
AB BA

P x y dx Q x y dy P x y dx Q x y dy     . 

A line integral over a closed contour L  is called a 
closed path integral (or a circulation) of a vector field F


 

around L  and is denoted 

 
L

rdF 
. 

Physical meaning of line integrals of the second kind: 

AB
F dr
   determines the work done by the vector field ( , )F x y


 

on a particle of unit mass when it moves along the arc AB . 
Other properties are similar to the properties of the line 

integrals of the first kind. 
For a spatial vector field, the integral has the form 

( , , ) ( , , ) ( , , )
L L
F dr P x y z dx Q x y z dy R x y z dz    
  , 

where dr idx jdy kdz  
  . 

 
8.2 Computation of line integrals of the second kind 

 
1. If a plane curve L  is defined in the form ( )y y x , 
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with [ , ]x a b , then  

 ( , ) ( , ) [ , ( )] [ , ( )]
b

x
L a

P x y dx Q x y dy P x y x Q x y x y dx     . 

2. If a plane curve L  is defined in the form ( )x x y , 
with [ , ]y c d , then  

( , ) ( , ) ( [ ( ), ] [ ( ), ])
d

y
L c

P x y dx Q x y dy P x y y x Q x y y dy     . 

3. If a curve L  is defined in parametric form by equa-
tions ( )x x t , ( )y y t , with 1 2[ , ]t t t , then 

( , ) ( , )
L

P x y dx Q x y dy   

 
2

1

[ ( ), ( )] [ ( ), ( )]
t

t t
t

P x t y t x Q x t y t y dt     . 

4. If a curve L  is defined in parametric form by equa-
tions ( )x x t , ( )y y t , ( )z z t , with 1 2[ , ]t t t , then 

( , , ) ( , , ) ( , , )
L

P x y z dx Q x y z dy R x y z dz    


2

1

[ ( ), ( ), ( )] [ ( ), ( ), ( )]
t

t t
t

P x t y t z t x Q x t y t z t y       

[ ( ), ( ), ( )] tR x t y t z t z dt  . 

Example 1. Evaluate the line integral of the second kind 
2 2( )

L

x y dx xydy  , where L  is the line segment from point 

(1,1)A  to point (3, 4)B . 
Solution.  
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Let us write the equation of a straight line passing 
through the points (1,1)A  and (3, 4)B : 

1 1

2 1 2 1

x x y y
x x y y
 


 

, 

1 1
3 1 4 1
x y 


 

,   1 1
2 3

x y 
 ,   3( 1) 2( 1)x y   , 

3 3 2 2x y   ,   2 3 1y x  ,   3 1
2 2

y x  . 

Find the derivative is 3 1 3
2 2 2

y x
     

 
. 

Using the formula of the first case and substituting the 

function 3 1
2 2

y x   and its derivative 3
2

y   into the integral, 

we obtain: 
23

2 2 2

1

3 1 3 1 3( )
2 2 2 2 2L

x y dx xydy x x x x dx
                     

   

3
2 2 2

1

9 3 1 1 3 3 12
4 2 2 4 2 2 2

x x x x x dx                     
  

3 3
2 2 2 2

1 1

9 3 1 9 3 3 1
4 2 4 4 4 4 4

x x x x x dx x x dx               
      

3 33 3 3 3 2
32
1

1 1 1 1 1

3 1 3 1
4 4 3 4 2 4

x xx dx xdx dx x              

 
3 3 2 23 1 3 3 1 1 1 3 9 1 13 1 9 2

3 3 4 2 2 4 3 4 2 2 4
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1 3 8 1 1 1 1 1 72 2 3 679 9 3 12
3 4 2 2 3 2 3 2 6 6

 
              . 

 
8.3 Green's formula 

 
Theorem 8.1. Suppose the region D  is bounded by the 

simple closed piecewise smooth curve L . Then a double inte-
gral over D  equals a line integral around L : 

 















DL

dxdy
y
P

x
QdyyxQdxyxP ),(),( . 

A curve is "simple" if it doesn't cross itself. It is 
"closed" if its endpoint is the same as its starting point. This is 
indicated by the closed circle on the integral sign. The curve is 
"smooth" if its tangent changes continuously, the word "piece-
wise" allows a finite number of corners. 

Theorem 8.2. If region D  in the xy -plane is bounded 
by a piecewise smooth simple closed curve L , then the area S  
of D  is 

 
LLL

ydxxdyydxxdyS
2
1 . 

Region D  could contain holes, provided we integrate over the 
entire boundary and always keep region D  to the left of L . 

Example 2. Use Green’s formula to evaluate the line in-
tegral  

L
dyyxydxxy )13()12( 22 , where L  is the boun-

dary of the region bounded by the lines 1xy  , 2y  , 2x  . 
Solution.  
Draw a figure bounded by the following lines (fig. 8.2): 

1xy   is a hyperbola with the branches in the first and third 
quarters; 2y   is a straight line parallel to the x -axis; 2x   is 
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a straight line parallel to the y -axis. 

 
Figure 8.2 

Find the intersection point of the lines 1xy  , 2y  : 

1;
2,

xy
y


 

   
2 1;

2,
x
y
 

 
   

1 ;
2
2.

x

y

 

 

 

D  is a Y -simple planar region. We will integrate first 
with respect to y  and then with respect to x . The lower point 
of intersection of the arrow L  with the boundary of D  is on 

the line 1y
x

  and the higher one is on the line 2y  , 1
2

x   is 

the leftmost part and 2x   is the rightmost part of the region. 

So, D : 1 2
2

x  , 1 2y
x
  . 

Let us apply the Green’s formula: 

2 1P xy  ,   2 23 1Q y x y   , 

1xy   

2y   
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(2 1) 2 ( ) 0 2 1 2y y
P xy x y x x
y

         


, 

2 2 2( 3 1) 0 3 ( ) 0 3 2 6x x
Q y x y y x y x xy
x

             


. 

Thus, 

  DL
dxdyxxydyyxydxxy )26()13()12( 22  

 
2 2 2 2 2

1 1 1 1 1
2 2

6 2 6 2

x x x

dx xy x dy x ydy x dy dx
 
          
 
 

      

22 22 22 22
1 11

11 1
2 2

6 2 3 2
2 x xx

x

yx x y dx x y x y dx
 

                 
 
   

2

2
1
2

1 13 4 2 2x x dx
x x

               
    

  

2 2

1 1
2 2

1 112 3 4 2 16 3 2x x dx x dx
x x

                 
      

2 22
2 2 2

11
1 22
2

116 3 ln 2 8 2
2 2
x x x

                  
 

1 1 13 ln 2 ln 2 2 8 4
2 2 4

                    
     

 

 1 3 153 ln 2 : 2 8 3 ln 2 2 3
2 4 4

             
 

 

2 15 3 ln 4 3 30 3ln 4 3 27 3ln 4             . 
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Lecture 9 
Independence of line integrals of the second kind  

on the path of integration.  
Solution of differential equations in total differentials 

 
9.1 Independence of line integrals of the second kind 

on the path of integration 
 
Let D  be a space (or plane) domain and let F


 be a 

continuous field. We say that the integral   rdF 
 is independ-

ent on path if for any two points A  and B  of D  and for any 
(piecewise) smooth path D  , which connects A  and B , the 
line integral of the second kind 



 rdF 
 does not depend on the 

curve   itself but only on the endpoints A  and B  of it. This 
means that if   is another path which connects A  and B  one 
has that 



 rdFrdF 
. 

Let us define a class of fields which has the above 
property. ( , ) ( , )F P x y i Q x y j 

  
 is a conservative (potential) 

field if it has the following properties:  
a) F dr

   around every closed path is zero; 

b) 
N

M

F dr
   depends only on M  and N , not on the 

path; 

c) F


 is a gradient field: uP
x





 and uQ
y





 for some 

potential ( , )u x y ; 

d) the components satisfy the condition P Q
y x

 


 
. 
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A field with one of these properties has them all. The 
property d) is the quick test. 

Example 1. Show that integral is independent of path, 
and find its value 

(1,3)
2 3

(0, 3)

(6 ) 2x y x dx x dy


  . 

Solution.  
Let us check that the line integral is independent of in-

tegration path, i.e. let us check the condition d): 
26P x y x  ,   32Q x , 

   2 2 2 26 6 0 6 1 6
yy

P x y x x y x x
y

         


, 

 3 22 6
x

Q x x
x

  


. 

Therefore, the given integral is independent of the inte-
gration path. Let us find its value by integrating along the 
straight line from point (0, 3)  to point (1,3) .  

Find the equation of this straight line: 

1 1

2 1 2 1

x x y y
x x y y
 


 

, 

0 ( 3)
1 0 3 ( 3)
x y  


  

,   3
1 6
x y 
 , 

6 3x y  ,   6 3y x  . 

The derivative is (6 3) 6y x     . 
Substituting the function 6 3y x   and its derivative 

6y   into the integral, we obtain: 
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(1,3) 1
2 3 2 3

(0, 3) 0

(6 ) 2 (6 (6 3) 2 6)x y x dx x dy x x x x dx


          

1 1
3 2 3 3 2

0 0

(36 18 12 ) (48 18 )x x x x dx x x x dx          

1 1 11 1 1 4 3 2
3 2

0 0 0 0 0 0

48 18 48 18
4 3 2
x x xx dx x dx xdx              

4 4 3 3 2 21 0 1 0 1 0 1 1 148 18 48 18
4 4 3 3 2 2 4 3 2

     
                  

     
 

1 1 12 1 1112 6 6
2 2 2 2


       . 

 
9.2 Solution of differential equations in total differentials 

 
The expression ( , ) ( , )P x y dx Q x y dy  is a differential 

form. When it agrees with the differential u udu dx dy
x y
 

 
 

 

of some function, the form is called exact. If the contour of in-
tegration L  is contained entirely within some simply-
connected region S  and the functions ( , )P x y  and ( , )Q x y  to-
gether with their partial derivatives of the first order are con-
tinuous in S , then a necessary and sufficient condition for the 
existence of the function ( , )u x y  is the satisfaction (in S ) of 
the equality 

P Q
y x

 


 
. 

Function ( , )u x y  is called a primitive and is calculated 
by integration from some fixed point 0 0( , )A x y  to the variable 
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point ( , )B x y : 

0 0

0( , ) ( , ) ( , )
yx

x y

u x y P x y dx Q x y dy C         (9.1) 

or 

0 0

0( , ) ( , ) ( , )
yx

x y

u x y P x y dx Q x y dy C    .     (9.2) 

The equation 

( , ) ( , ) 0P x y dx Q x y dy   

is named the differential equation in total differentials, if  

P Q
y x

 


 
. 

Its solution can also be found by integration both sides 
of equation from some fixed point 0 0( , )A x y  to the variable 
point ( , )B x y : 

0 0

0( , ) ( , )
yx

x y

P x y dx Q x y dy C             (9.3) 

or 

0 0

0( , ) ( , )
yx

x y

P x y dx Q x y dy C   .          (9.4) 

Example 2. Find a primitive function ( , )u x y , if  
2 3( , ) (3 1) ( 1)du x y x y dx x dy    . 

Solution. Let us check the condition d): 
23 1P x y  ,   3 1Q x  , 
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 2 2 2 23 1 3 0 3 1 3yy

P x y x y x x
y

         


, 

   3 3 21 0 3
x x

Q x x x
x

      


. 

Thus, ( , )du x y  is the exact differential form. A primi-
tive function ( , )u x y  will be calculated by integration along the 
broken line OAB  from fixed point (0,0)O  to variable point 

( , )B x y  (fig. 9.1) with the help of the formula (9.1). 

 
Figure 9.1 

Therefore, 

   2 3( , ) 3 1 1
OAB

u x y x y dx x dy C       

       
0

2 3 2 33 1 1 3 1 1
M A AM

x y dx x dy x y dx x dy           

  2 3

0

: 0, 0
3 0 1 1 0

: , 0

xOA y y
C x x dx

AB x x x
 

        
    

    2 3 3

0 0 0

3 1 0 1 1
y yx

x y x dy C dx x dy C              

(0,0)O  

( , )B x y  

( ,0)A x  

y  

x  
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3 3
0 0( 1) ( 1)x yx x y C x x y C         . 

Let us make a check: 

3 3( ( 1) ) ( 1) 0x x x
u x x y C x y x
x
           


 

2 21 (3 0) 1 3 ( , )y x x y P x y       , 

3 3( ( 1) ) 0 ( 1) 0y y
u x x y C x y
y
           


 

3 1 ( , )x Q x y   . 
 
 

Lecture 10 
Numerical series 

 
10.1 Basic definitions 

 
Let { }nu  be a numerical sequence. The expression 

1 2
1

... ...n n
n

u u u u




      

is called a numerical series (infinite sum, infinite numerical se-
ries), 1 2 3, , , ...u u u  are terms of the series, nu  is the n th term of 
the series, and 

1 2
1

...
n

n n k
k

s u u u u


      

is the n th partial sum of the series. If there exists a finite limit 
lim nn

s S


 , the series is called convergent, and S  is called the 
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sum of the series. In this case, one writes 
1

n
n

u S




 . If lim nn
s


 

does not exist (or is infinite), the series is called divergent. The 
series 1 2 3 ...n n nu u u      is called the n th remainder of the 
series. 

The geometric series 

2 1

1
... ...n n

n
a aq aq aq aq






       

is convergent when the ratio 1q   (its sum has the form 

1
aS

q



), and is divergent when 1q  . 

The harmonic series 

1

1 1 1 11 ... ...
2 3 nn n





       

is always divergent. 
The generalized harmonic series 

1

1
p

n n




  

is convergent when 1p   and divergent when 1p  . 
A necessary condition for a series to be convergent. If a 

series 
1

n
n

u



  converges, then lim 0nn

u


 .  

Divergence test. If lim 0nn
u


 , then the series 

1
n

n
u




  is 

divergent. 

Example 1. The series 1 1 1 ...
2 4 8
    has the following 
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terms: 

1
1
2

u  ,   2 2

1 1
4 2

u   ,   3 3

1 1
8 2

u   , … , 1
2n nu  , …. 

It has partial sums 

1
1
2

s  ,   2
1 1 2 1 3
2 4 4 4

s 
    ,    

3
1 1 1 4 2 1 7
2 4 8 8 8

s  
     , … , 11

2n ns   . 

The series converges, because it has a finite limit of the 
n th partial sum: 

1 1 1lim lim 1 1 1 1 0 1
2 2n nn n

s S 

             
. 

Let us check a necessary condition for a series to be 
convergent: 

1 1 1lim lim 0
2 2n nn n

u  
   


. 

The sum of this series can also be found as the sum of 

geometric series with the ratio 2

1

1
1 2 14 11 4 1 2

2

uq
u

      : 

1 1
2 2 11 11 1

2 2

aS
q

   
 

. 

Example 2. Determine if the following series converges 
or diverges 
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2 3

3
0

4
10 2n

n n
n






 . 

Solution. 
The first thing which we always should do is checking a 

necessary condition of series convergence: 
2 3

2 3 2 3 3 3

33 3

3 3

4
4 4lim lim lim

10 210 2 10 2nn n n

n n
n n n nu

nn
n n

  

              
 

3 3

4 41 1 0 1 1lim 010 10 0 2 22 2
n

n

n


       
 



. 

The limit of the series terms isn’t zero and so by the di-
vergence test the series diverges. 

 
10.2 Properties of convergent series 

 
1. If a series is convergent, then any of its remainders is 

convergent. Removal or addition of finitely many terms does 
not affect the convergence of a series. 

2. If all terms of a series are multiplied by a nonzero 
constant, the resulting series preserves the property of conver-
gence or divergence (its sum is multiplied by that constant). 

3. If the series 
1

n
n

a



  and 

1
n

n
b




  are convergent and 

their sums are equal to 1S  and 2S , respectively, then the series 

 
1

n n
n

a b




  is convergent and its sum is equal to 1 2S S . 

Example 3. Determine if the following series converge 
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or diverge. If they converge give the value of the series: 

a) 2 1

1
9 4n n

n


  


 ,   b) 2

1

1
3 2n n n



   , 

c) 2 1
2

1

29 4
3 2

n n

n n n


  



    
 . 

Solution. 
a) Notice that both parts of the series term are numbers 

raised to a power. This means that it can be put into the form of 
the geometric series. One of the n ’s in the exponent has a neg-
ative sign in front of it. So, let us first get rid of that: 

 
1

22 1 1
2

1 1 1

49 4 9 4
9

n
nn n n

n
n n n

  
    


  

      

Since the series starts at 1n   we will want the expo-
nents on the numbers to be 1n : 

1 11 2
2

1 1
1 1 1

4 4 4 44 9 144
9 9 9 9

n nn

n
n n n

   

 
  

                
   . 

So, given series is the geometric series with 144a   

and 4 1
9

q   . Therefore, the series converges and has the sum 

144 144 9 12961444 5 5 51
9 9

S     


. 

b) Let us use partial fractions on the series term. The 
first step is to factor the denominator as much as possible and 
get the form of the partial fraction decomposition: 
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2

1 1
3 2 ( 1)( 2)nu

n n n n
  

   
 

( 2) ( 1)
1 2 ( 1)( 2)

A B A n B n
n n n n

  
  

   
. 

Now, it is necessary to choose A  and B  so that the 
numerators will be equal for every n , so the numerators have 
to be set equal: 

( 2) ( 1) 1A n B n    . 

The numerators must be equal for any n  that we would 
choose to use. In particular the numerators must be equal for 

2n    and 1n   : 

2 1;
1 1,

n B
n A
   
  

   
1;

1.
B
A
 

 
 

Substituting the values of A  and B  to the partial frac-
tion decomposition, it will be obtained: 

1 1
1 2nu

n n
 

 
. 

Let us start to write out the terms of the n th partial sum 
for given series using the partial fraction form: 

1
1 1 1 1

1 1 1 2 2 3
u    

 
, 

2
1 1 1 1

2 1 2 2 3 4
u    

 
, 

3
1 1 1 1

3 1 3 2 4 5
u    

 
, 

… 
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2
1 1 1 1
2 1 2 2 1nu

n n n n    
    

, 

1
1 1 1 1
1 1 1 2 1nu

n n n n    
    

, 

1 1
1 2nu

n n
 

 
. 

Thus, the n th partial sum is: 

1 2 3 2 1
1 1...
2 3n n n ns u u u u u u         

1
3


1
4


1
4

   

1
5


1...

1n
 


1
n


1
n


1

1n



1

1n



1 1 1

2 2 2n n
  

 
. 

Let us take the limit of the partial sum: 

1 1 1 1 1 1 1 1lim lim 0
2 2 2 2 2 2 2nn n

s
n 

             
. 

The sequence of partial sums is convergent and so the 

series is convergent and has a value of 1
2

. 

c) To get the value of this series we need to rewrite it 
and use the properties of convergent series and previous re-
sults: 

2 1 2 1
2 2

1 1 1

2 29 4 9 4
3 2 3 2

n n n n

n n nn n n n

  
     

  

         
    

2 1
2

1 1

1 1296 19 4 2 2
3 2 5 2

n n

n n n n

 
  

 

      
    

1296 13011
5 5

   . 
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Lecture 11 
Convergence tests for positive series 

 
11.1 Comparison tests 

 
In practice it is rare to compute the partial sums 

1 2 ...n ns u u u    . Usually a simple formula can not be 
found. But it is possible to define the convergence or diver-
gence of the series, for example, by comparison with another 
series which is convergent or divergent. 

Comparison test. Suppose that we have two series 
nu  and nv  with , 0n nu v   for all n  and n nu v  for all 

n . Then, 
1. If nv  is convergent then nu  converges. 

2. If nu  is divergent then nv  diverges. 

Example 1. Determine if the following series is conver-
gent or divergent 

0

1
3n

n n



  . 

Solution.  
If we drop n  from the denominator it will get smaller 

and hence the whole fraction will get larger. So, 

1 1
3 3n nn




. 

Since the series 
0

1
3n

n




  is a geometric series with 

1 1
3

q   , it converges. Therefore, according to comparison 

test the original series also converges. 
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It may be difficult to select the second series in such a 
way that condition n nu v  is fulfilled, so more frequently the 
following comparison test is used. 

Limit comparison test. Suppose that we have two series 
nu  and nv  with 0nu  , 0nv   for all n .  

Define, 

lim n
n

n

uc
v

 . 

If c  is positive ( 0c  ) and finite ( c   ), then either 
both series converge or both series diverge. 

Example 2. Determine if the following series is conver-
gent or divergent 

2

3
1

1
3 1n

n
n






 . 

Solution.  
Fractions involving only polynomials or polynomials 

under radicals will behave in the same way as the largest power 
of n  will behave in the limit. So, the terms in this series should 
behave as 

2

3

1n
n n

 . 

The series 
1

1
n n




  is a harmonic series and it diverges. 

Let us find the limit: 

 
2

2 33

3 3

1
13 1lim lim lim lim1 3 1 3 1

n
n n n n

n

n
n nu n nnc

v n n
n
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3

3 3 2 2

3

3 33 3

1 11 1 1 0 1lim lim 1 13 1 3 0 33 3
n n

n n
n n n
n

nn n
 

       
 



. 

So, c  is positive and finite. According to the limit 
comparison test either both series converge or both series di-

verge. Since the series 
1

1
n n




  diverges the original series also 

diverges. 
 

11.2 Ratio test (D’Alembert test) 
 
Ratio test (D’Alembert test). Suppose we have the se-

ries nu .  
Define, 

1lim n
n

n

uL
u



 . 

Then, 
1. if 1L  , the series is convergent, 
2. if 1L  , the series is divergent, 
3. if 1L  , it is not known whether the series is conver-

gent or not. 
This test will be especially useful for series which con-

tain factorials: 

       ! 1 2 3 ... 1 1 ! 2 ! 1 ...n n n n n n n n                , 

   2 ! 1 2 3 ... 2 1 2n n n       ,    2 ! 2 1 2 3 ... 1n n n            

or exponential functions: 
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3 32 2 2n n   ,   
2

2 1 5 255
5 5

n n
n   . 

Example 3. Determine if the following series is conver-
gent or divergent 

1

2
2 !n

n

n
n






 . 

Solution. 

The general term of the series is 2
2 !n n

nu
n





. 

To compute 1nu   it is necessary to substitute 1n  for 
all n ’s in nu : 

1 1 1

1 2 3 3
2 ( 1)! 2 ( 1)! 2 2 ! ( 1)n n n n

n n nu
n n n n  

   
  

       
. 

Let us find the limit: 

1

3
3 2 !2 2 ! ( 1)lim lim lim2 2 2 ! ( 1) 2

2 !

nn
n

nn n n
n

n

n
u n nn nL nu n n n

n



  


        

     


 

2

3 1 3lim lim
2 ( 1) ( 2) 2 2 2n n

n n
n n n n n 

 
   

      
 

2 2

22

2 2 2

3
1 3 1lim lim

3 22 3 2 2n n

n
n n n

n nn n
n n n
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2 2

2 2

1 3 1 3
1 1 1 0 0lim 0 13 2 3 22 2 2 1 0 01 1

n
n n

n n


          
    

 

, 

so, by the ratio test the series converges. 
11.3 Root test (Cauchy test) 

 
Root test (Cauchy test). Suppose we have the series 

nu .  
Define, 

lim n
nn

L u


 . 

Then, 
1. if 1L  , the series is convergent, 
2. if 1L  , the series is divergent, 
3. if 1L  , it is not known whether the series is conver-

gent or not. 

Example 4. Determine if the following series is conver-
gent or divergent 

1

3 5
2

n

n

n
n





 
  

 . 

Solution. 

The general term of the series is 3 5
2

n

n
nu
n
    

. 

Let us find the limit: 

3 5 3 5 3 5lim lim lim
2 2 2

n

n n
nn n n

n nL u
n n  
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3 5 5 53 3 3 0lim lim 3 12 2 2 1 01 1
n n

n
n n n
n
n n n

 

        
  



, 

so, by the root test the series diverges. 
 

11.4 Integral test 
 

Integral test. Suppose that ( )f x  is a continuous, posi-
tive and decreasing function on the interval [ , )k   and that 

( ) nf n u  then, 

1. if  
k

f x dx


  is convergent then n
n k

u



  converges, 

2. if  
k

f x dx


  is divergent then n
n k

u



  diverges. 

Example 5. Determine if the following series is conver-
gent or divergent 

4

1

ln
n

n
n




 . 

Solution. 

The general term of the series is 
4ln

n
nu

n
 .  

The function we will use is  
4ln xf x
x

 . This function 

is clearly positive and if we make x  larger the denominator 
will get larger and so the function is decreasing.  

Let us determine the convergence of the following inte-
gral: 
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ln4 4
4

1
1 1 0

2

ln ; ;
ln lnlim ln1 0; lim

ln ;

b b

b b

dxt x dt
xx xdx dx t t dt

x x
t b



 

 

     


    

   
ln5 ln5 5 5 5

0
0

1 1 1lim lim lim ln 0 ln
5 5 5 5

b
b

b b b

t t b
  

 
         
 
 

. 

The integral is divergent and so the series also diverges 
by the integral test. 

 
 

Lecture 12 
Alternating series. Leibniz test. 

Absolute and conditional convergence 
 

An alternating series is any series na , for which the 
series terms can be written in one of the following two forms: 

( 1)n
n na u  ,   0nu  , 

1( 1)n
n na u  ,   0nu  . 

There are many other ways to deal with the alternating 
sign, but they can all be written as one of the two forms above. 
For instance, 

2 2( 1) ( 1) ( 1) ( 1)n n n       , 
1 1 2 1( 1) ( 1) ( 1) ( 1)n n n          . 

Alternating series test (Leibniz test). Suppose that we 
have a series na  and either ( 1)n

n na u   or 1( 1)n
n na u  , 
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where 0nu   for all n . Then if, 

a) lim 0nn
u


  and, 

b)  nu  is a decreasing sequence: 

1 2 3 ... ...nu u u u     , 

then the series na  is convergent. 

An alternating series na  is called absolutely conver-

gent if the series na  of the absolute values of its terms is 

convergent. If na  is convergent and na  is divergent the 

series na  is called conditionally convergent. 

Example 1. Determine if each of the following alternat-
ing series is absolutely convergent, conditionally convergent or 
divergent: 

a) 
4

1

( 1)n

n n





 ,   b) 
1
( 1)

3
n

n

n
n






 ,   c) 2

1
( 1)

1
n

n

n
n






 . 

Solution. 
a) Let us consider a series of the absolute values of the 

given series terms: 

14
4

1 1
nu

n n
  . 

It is a generalized harmonic series with 1 1
4

p   , so it 

diverges. Therefore, if the given series converges it does so 
conditionally, not absolutely. 

Let us apply the alternating series test: 
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1) 
44

1 1 1lim lim 0nn n
u

n 
   


, so the first condition 

is fulfilled; 

2) 14 4

1 1
1n nu u

n n   


 for all n , so the second 

condition is satisfied. 
Thus, the given series converges by the alternating se-

ries test. As it has not absolute convergence, the convergence is 
conditional. 

b) Let us consider a series of the absolute values of the 
given series terms: 

3n
nu

n



 

and check the necessary condition of a series convergency: 

1lim lim lim lim3 33 3 1
nn n n n

n
n nu nn

n n n
   

             
 

1 1 1 03 1 01
   




. 

As the necessary condition of a series convergence is 
not satisfied, the series diverges by the divergent test. 

c) Consider a series of the absolute values of the given 
series terms: 

2 1n
nu

n



. 

Let us apply the limit comparison test. The terms in this 
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series should behave as 1
n

. The series 
1

1
n n




  is a harmonic se-

ries and it diverges.  
Find the limit: 

22

2 2
1lim lim lim lim1 1 1 1

n
n n n n

n

n
u n n nnc
v n n

n
   

           
 

2

2

2

2 22 2

1 1 1lim lim 11 11 1 01 1
n n

n
n

n
nn n

 
    

 


. 

So, c  is positive and finite. According to the limit 
comparison test either both series converge or both series di-

verge. Since the series 
1

1
n n




  diverges the series 2

1 1n

n
n



   of 

the absolute values of the terms also diverges, so if the given 
series converges it does so conditionally, not absolutely. 

Let us apply the alternating series test: 

1) 
2

22 2

2 2

lim lim lim
11 1nn n n

n
n nu

nn
n n

  

            
 

2 2

1 1
0lim 01 1 1 01 1

n
n

n


   
 



, so the first condition is ful-

filled; 

2) we need to know whether the terms are decreasing: 
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1 2

1 1
1 1 2

u  


,   2 2

2 2
2 1 5

u  


,   3 2

3 3
3 1 10

u  


, …, 

1 2 3 ...u u u   . 

The series is decreasing, so the second condition is sat-
isfied. Both of the conditions of alternating series test are ful-
filled, accordingly, the given series converges. As it has not ab-
solute convergence, the convergence is conditional. 

 
 

Lecture 13 
Power series. Interval and radius of convergence  

of power series. Properties of power series 
 

A power series is any series which can be written in the 
form 

2 3
0 1 2 3

0
...n

n
n

a x a a x a x a x




      

or in a more general form 
2 3

0 0 1 0 2 0 3 0
0

( ) ( ) ( ) ( ) ...n
n

n
a x x a a x x a x x a x x





         , 

where 0x  and na  are constants. The na ’s are called the coeffi-
cients of the power series. A power series is a function of x  
and its convergence depends on the values of x . It may con-
verge for some values of x  and not for other values of x . 

Below, we consider power series of the first form, since 
the second series can be transformed into the first one by the 
replacement 0x x x  . 

Abel theorem. A power series 
0

n
n

n
a x




  which is con-
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vergent for some 1x x  is absolutely convergent for all x  such 
that 1x x . A power series which is divergent for some 

2x x  is divergent for all x  such that 2x x . 
There exist series convergent for all x , for instance, 

1 !

n

n

x
n




 . There are series convergent only for 0x  , for in-

stance, 
1

! n

n
n x




 . 

Let R  be the least upper bound of all x  such that the 

series 
0

n
n

n
a x




  is convergent at point x . Thus, by the Abel the-

orem, the series is (absolutely) convergent for all x R , and 

the series is divergent for all x R . The constant R  is called 
the radius of convergence of the power series, and the interval 
( , )R R  is called its interval of convergence. The problem of a 
power series convergence at the endpoints of its convergence 
interval has to be studied separately in each specific case. If a 
series is convergent only for 0x  , the convergence interval 
degenerates into a point (and 0R  ); if a series is convergent 
for all x , then, obviously, R   . 

The radius of convergence of a power series 
0

n
n

n
a x




  

with finitely many zero terms can be calculated by the formulas 

1

lim n

n
n

aR
a



 ,   1lim
n n

n

R
a

  

or by applying the ratio and root tests, i.e. from the given con-
ditions 
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1lim 1n

n
n

u
u



 ,   lim 1n

nn
u


 , 

where n
n nu a x . 

The series obtained by differentiation or integration by 
parts of the power series have the same interval of convergence 
and their sum within this interval is accordingly equal to the 
derivative or to the integral from the sum of the original series. 

Example 1. Determine the radius and interval of con-
vergence for the following power series: 

a) 
1

( 3)
2 1

n

n

x n
n






 ,   b) 

1 ( 2) 4

n

n
n

x
n



   . 

Solution. 
a) Let us find the radius of convergence: 

2 1n
na

n



,   1

1 1 1
2( 1) 1 2 2 1 2 3n

n n na
n n n
  

  
    

, 

1

2 1 2 1lim lim lim1 1
2 3 2 3

n

n n n
n

n n
a n nR n na

n n
  



    
 
 

 

 
   

2

2

2 3 2 3lim lim
2 1 1 2 2 1n n

n n n n
n n n n n 

  
  

     
 

2

2 2 2

22

2 2 2

2 3
2 3lim lim

2 3 12 3 1n n

n n
n n n n

n nn n
n n n
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2 2

3 32 2 2 0lim 13 1 3 1 2 0 02 2
n

n

n n


     
    

 

. 

Therefore, the series is absolutely convergent on the in-
terval  

1 3 1x    , 

1 3 1 3x     , 

2 4x   

and is divergent outside the interval. The radius of convergence 
is 1R  . 

At the left endpoint of the interval, for 2x  , we have 
the alternating series 

1 1

(2 3) ( 1)
2 1 2 1

n n

n n

n n
n n

 

 

 


   . 

1 2 1n

n
n



   is a series of the absolute values. Let us 

check the necessary condition for it: 

lim lim lim 2 12 1 2 1nn n n

n
n nu nn

n n
  

            
 

1 1 1 1lim 01 1 2 0 22 2
n

n


    
 



. 

As the necessary condition of a series convergence is 
not satisfied, the series diverges by the divergent test. 

At the right endpoint, for 4x  , we have the numerical 
series with positive terms 
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1 1

(4 3)
2 1 2 1

n

n n

n n
n n

 

 




   , 

which diverges by the divergent test.  
Thus, the series under consideration is convergent on 

the open interval 

2 4x  . 

b) Let us apply the ratio test: 

( 2) 4

n

n n
xu

n


 
,   

1 1

1 1 1( 1 2) 4 ( 3) 4

n n

n n n
x xu

n n

 

   
    

, 

1

1
1 ( 2) 4( 1 2) 4lim lim lim

( 3) 4 4
( 2) 4

n

n nn
n

n n nn n n
n

n

x
u x x nn

xu n x
n






  

       
   

 

 

( 2) 2lim lim
( 3) 4 4 3n n

xx n n
n n 

            
 

2 21 1 0lim lim 13 34 4 4 1 0 41
n n

n
x x x xn n n

n
n n n

 

  
     

 
. 

Therefore, the series is absolutely convergent on the in-
terval  

1
4
x
 ,   4x  , 

4 4x    

and is divergent outside the interval. The radius of convergence 
is 4R  . 

At the left endpoint of the interval, for 4x   , we have 
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the alternating series 

1 1 1

( 4) ( 1) 4 ( 1)
( 2) 4 ( 2) 4 2

n n n n

n n
n n nn n n

  

  

   
 

       . 

1

1
2n n



   is a series of the absolute values. Let us apply 

the limit comparison test.  

The terms in this series should behave as 1
n

. It is a 

harmonic series and it diverges.  
 
Let us find the limit: 

1
12lim lim lim lim1 2 1 2 2

n
n n n n

n

u n nnc
v n n

n
   

      
  

 

1 1 1 0lim lim 12 2 2 1 01 1
n n

n
n

n
n n n

 

             


. 

The series 
1

1
2n n



   diverges by the limit comparison 

test, so it does not converge absolutely. 
Let us apply the alternating series test: 

1
2nu

n



, 

1) 1 1 1lim lim 0
2 2nn n

u
n 

   
  

, so the first condi-

tion is fulfilled; 



83 
 

2) 1
1 1

2 3n nu u
n n   
 

 for all n , so the second 

condition is satisfied. 

Thus, the series converges by the alternating series test. 
As it has no absolute convergence, the convergence is condi-
tional. 

At the right endpoint, for 4x  , we have the numerical 
series with positive terms 

1 1

4 1
( 2) 4 2

n

n
n nn n

 

 


    , 

which diverges by the limit comparison test. 
Thus, the series under consideration is convergent on 

the semi-open interval 

4 4x   . 
 
 

Lecture 14 
Taylor and Maclaurin series.  

Function expansion in a power series.  
Applications of series in numerical calculations 
 

14.1 Taylor and Maclaurin series.  
Function expansion in a power series 

 
Let us assume that the function ( )f x  has a power se-

ries representation about 0x x , 

0
0

( ) ( )n
n

n
f x a x x





    

2 3 4
0 1 0 2 0 3 0 4 0( ) ( ) ( ) ( ) ...a a x x a x x a x x a x x           
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Next, we will assume that the function ( )f x  has derivatives of 
every order and that we can in fact find them all. 

Now we need to determine what the coefficients na  are. 
Let us first evaluate everything at 0x x . This gives, 

0 0( )f x a . 

If we take the derivative of the function (and its power 
series) and plug in 0x x , then we get 

2 3
1 2 0 3 0 4 0( ) 2 ( ) 3 ( ) 4 ( ) ...f x a a x x a x x a x x         , 

0 1( )f x a  . 

Let us continue with this idea and find the second de-
rivative: 

2
2 3 0 4 0( ) 2 2 3 ( ) 3 4 ( ) ...f x a a x x a x x         , 

0 2( ) 2f x a  ,   0
2

( )
2

f xa


 . 

Using the third derivative gives, 

3 4 0( ) 2 3 2 3 4 ( ) ...f x a a x x        , 

0 3( ) 2 3f x a   ,   0
3

( )
2 3

f xa





. 

Using the fourth derivative gives, 
(4)

4( ) 2 3 4 ...f x a    , 

(4)
0 4( ) 2 3 4f x a   ,   

(4)
0

4
( )

2 3 4
f xa 
 

. 

Thus, in general, we have got the following formula for 
the coefficients: 
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( )
0( )

!

n

n
f xa

n
 . 

So, provided a power series representation for the func-
tion ( )f x  about 0x x  it exists the Taylor series for ( )f x  
around the basepoint 0x x : 

( )
0 0

0 0 0
0

( ) ( )( ) ( ) ( ) ( )
! 1!

n
n

n

f x f xf x x x f x x x
n






       

3 ( )
2 30 0 0

0 0 0
( ) ( ) ( )( ) ( ) ... ( ) ...
2! 3! !

n
nf x f x f xx x x x x x

n


        . 

The Taylor series about 0 0x   is named a Maclaurin 
series for ( )f x : 

( )
2

0

(0) (0) (0)( ) (0)
! 1! 2!

n
n

n

f f ff x x f x x
n





 
      

3 ( )
3(0) (0)... ...

3! !

n
nf fx x

n
    . 

Example 1. Find the Maclaurin series for ( ) xf x e . 
Solution. 
Let us first take some derivatives and evaluate them at 

0 0x  : 

( ) xf x e , 

( ) ( )x xf x e e   , 

( ) ( )x xf x e e   , 

( ) ( )x xf x e e   , 
… 

0(0) 1f e  , 
0(0) 1f e   , 
0(0) 1f e   , 
0(0) 1f e   , 

… 
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( ) ( )n xf x e , ( ) 0(0) 1nf e  . 

Plug these into the Maclaurin series formula, we obtain: 

2 31 1 1 11 ... ...
1! 2! 3! !

x ne x x x x
n

       , 

2 3

1 ... ...
1! 2! 3! !

n
x x x x xe

n
       . 

The following representations of elementary functions 
by Maclaurin series are often used in applications: 

1. 
2

1 ... ...
1! 2! !

n
x x x xe

n
      , x R , 

2. 
3 5 2 1( 1)sin ... ...

3! 5! (2 1)!

n nx x xx x
n


     


, x R , 

3. 
2 4 2( 1)cos 1 ... ...

2! 4! (2 )!

n nx x xx
n


      , x R , 

4. 
2 3 1( 1)ln(1 ) ... ...

2 3

n nx x xx x
n


       , ( 1;1]x  , 

5. 
3 5 2 11ln 2 ... ...

1 3 5 2 1

nx x x xx
x n

 
        

, 1x  , 

6. 
3 5 2 1( 1)arctan ... ...

3 5 2 1

n nx x xx x
n


     


, [ 1;1]x  , 

7. 
3 51 1 3arcsin ...

2 3 2 4 5
x xx x 

     


 

2 11 3 ... (2 1) ...
2 4 ... 2 2 1

nn x
n n

   
  

   
, [ 1;1]x  , 
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8. 2( 1)(1 ) 1 ...
2!

x x x   
       

( 1)...( 1) ...
!

nn x
n

    
  , 1x  , 

9. 
3 3 2 1

... ...
3! 5! (2 1)!

nx x xsh x x
n



     


, x R , 

10. 
2 4 2

1 ... ...
2! 4! (2 )!

nx x xch x
n

      , x R . 

 
 
 

14.2 Applications of series in numerical calculations 
 
In numerical calculations, the power series are used, in 

particular, for calculating the values of functions, integrals and 
for solving the differential equations. 

Example 2. Compute 10 e  with accuracy 0,001 . 
Solution. 

Let us substitute 1
10

 instead of x  to the well-known 

representation of the function xe  by the Maclaurin series and 
compute it with the given accuracy: 

2 3 4

1
10

1 1 11
10 10 10101 ...

1! 2! 3! 4!
e

     
     
             

1 0,1 0,005 0,0002 ... 1,105      . 
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Example 3. Compute the integral  
0,5

2

0

ln 1x x dx  with 

accuracy 0,001 . 
Solution. 
Let us substitute 2x  instead of x  to the well-known 

representation of the function  ln 1 x  by the Maclaurin series 
and compute the integral with the given accuracy: 

       2 3 42 2 2
2 2ln 1 ...

2 3 4
x x x

x x        

4 6 8
2 ...

2 3 4
x x xx     , 

 
0,5 0,5 4 6 8

2 2

0 0

ln 1 ...
2 3 4
x x xx x dx x x dx

 
        

 
   

0,5 0,5 0,5 0,55 7 9 5 7
3 3

0 0 0 0

...
2 3 4 2 3
x x x x xx dx x dx dx dx

 
         

 
     

0,5 0,5 0,5 0,59
3 5 7

0 0 0 0

1 1...
4 2 3
x dx x dx x dx x dx            

0,5 0,5 0,5 0,50,5 4 6 8 10
9

0 0 0 0 0

1 1 1 1... ...
4 4 2 6 3 8 4 10

x x x xx dx             

4 6 8 100,5 1 0,5 1 0,5 1 0,5 ...
4 2 6 3 8 4 10

          

0,015 0,001 0,0002 ... 0,014     . 

Example 4. Find the first three nonzero terms of expan-
sion into the power series of the solution of the differential 
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equation 0y xy y     satisfying the initial conditions 
(0) 1y  , (0) 0y  . 

Solution. 
Because 0 0x  , then we will find the first three non-

zero terms of the expansion into the Maclaurin series: 

2 3(0) (0) (0)( ) (0) ...
1! 2! 3!

y y yy x y x x x
  

     . 

The initial condition (0) 1y   is the first nonzero term. 
Let us find the second one: 

(0) 0y  , 

y xy y    , 

0(0) (0) (0) 0 0 1 1y x y y          . 

So, (0) 1y   is the second nonzero term. 
Let us find the third nonzero term: 

( ) ( ) ( ( ) )y xy y xy y x y x y y                       

( )y xy y y xy y xy                , 

0(0) (0) 0 1 0y x y        , 

( )IVy xy x y xy y xy              , 

0(0) (0) (0) 1 0 0 1IVy y x y           . 

So, (0) 1IVy    is the third nonzero term. 
Thus, 

2 4
2 41 1( ) 1 ... 1 ...

2! 4! 2! 4!
x xy x x x

        . 
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Lecture 15 
Fourier series. Expansion of periodic, even  

and odd functions in the Fourier series 
 
A Fourier series is a specific type of infinite mathemat-

ical series involving trigonometric functions. Fourier series are 
used in applied mathematics, and especially in physics and 
electronics, to express periodic functions such as those which 
contain communications signal waveforms. 

Let us consider some basic principles of this theory. 
A function ( )f x  is said to satisfy the Dirichlet condi-

tions on an interval ( , )a b  if: 
a) this interval can be divided into finitely many inter-

vals on which ( )f x  is monotone and continuous; 
b) at any discontinuity point 0x  of the function, there 

exist finite one-sided limits 0( 0)f x   and 0( 0)f x  . 
Dirichlet theorem. Any 2 -periodic function which 

satisfies the Dirichlet conditions on the interval ( , )   can be 
represented by its Fourier series 

0

1
( ) ( cos sin )

2 n n
n

af x a nx b nx




   , 

whose coefficients are defined by the Euler–Fourier formulas 

 0
1a f x dx



 

  ,    1 cosna f x nx dx


 

  , 

 1 sinnb f x nx dx


 

  ,   1, 2, 3...n  , 

where the coefficients na  and nb  are called the Fourier coeffi-
cients. 

At the points of continuity of ( )f x , the Fourier series 
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converges to ( )f x , and at any discontinuity point 0x , the se-
ries converges to  

 
0 00 0

1( ) lim ( ) lim ( )
2 x x x x

S x f x f x
   

  . 

The case of 2l -periodic functions can be easily reduced 
to that of 2 -periodic functions by changing the variable x  to 

xz
l


 . The Fourier expansion of a 2l -periodic function 

( )f x  has the form 

0

1
( ) cos sin

2 n n
n

a n x n xf x a b
l l
 



    
 

 , 

where 

 0
1 l

l

a f x dx
l 

  ,    1 cos
l

n
l

n xa f x dx
l l





  , 

 1 sin
l

n
l

n xb f x dx
l l





  ,   1, 2, 3...n  . 

Let ( )f x  be an even function, i.e., ( ) ( )f x f x  . Then 
the Fourier expansion of ( )f x  on the interval ( , )l l  has the 
form of the cosine Fourier series: 

0

1
( ) cos

2 n
n

a n xf x a
l




  , 

where the Fourier coefficients have the form 

 0
0

2 l

a f x dx
l

  ,    
0

2 cos
l

n
n xa f x dx

l l


  , 

0nb  ,   1, 2, 3...n  . 
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Let ( )f x  be an odd function, i.e., ( ) ( )f x f x   . 
Then the Fourier expansion of ( )f x  on the interval ( , )l l  has 
the form of the sine Fourier series: 

1
( ) sinn

n

n xf x b
l




 , 

where the Fourier coefficients have the form 

0 0a  ,   0na  , 

 
0

2 sin
l

n
n xb f x dx

l l


  ,   1, 2, 3...n  . 

If ( )f x  is defined on the interval (0, )l  and satisfied 
the Dirichlet conditions, it can be represented by the cosine 
Fourier series, as well as the sine Fourier series. The cosine 
Fourier expansion of ( )f x  on the interval (0, )l  corresponds to 
the extension of ( )f x  to the interval  ,0l  as an even func-
tion. The sine Fourier expansion of ( )f x  on (0, )l  corresponds 
to the extension of ( )f x  to the interval  ,0l  as an odd func-
tion. 

For finding the coefficients na  and nb  we will use the 
integration by parts taking into account the following: 

sin 0n  ,   cos ( 1)nn   . 

Example 1. Find the Fourier series for the periodic 
function with period 2 : 

0, 0;
( )

, 0 .
x

f x
x x




  
   

 

Solution. 
A graph of the given function is shown on the fig. 15.1.  
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Figure 15.1 

Let us find the Fourier coefficients for the 2 -periodic 
function: 

0 2 2

0
0 0

1 1 1 1( ) 0
2 2 2
xa f x dx dx xdx

 

 

 
    

 
         

 
   , 

0

0

1 1( ) cos 0 cos cosna f x nx dx nxdx x nxdx
 

   

 
     

 
    

0

1 cos 1cos cos sin

u x du dx
x nxdx

dv nxdx v nxdx nx
n





 
  

   
 

0 0

1 1 1 1 1sin sin sinx nx nx dx n
n n n

 

 
 

            
  

0 0

1 1 1 1 10 sin 0 sin 0 cosnx dx nx
n n n n n

 


                    
  

    2 2

1 1 1cos cos0 1 1nn
n n


 

        , 

0

0

1 1( )sin 0 sin sinnb f x nx dx nxdx x nxdx
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0

1 sin 1sin sin cos

u x du dx
x nxdx

dv nxdx v nxdx nx
n





 
  

    
 

00

1 1 1cos cosx nx nx dx
n n

 



                   
  

 
0

1 1 1cos 0 cos 0 cosn nx dx
n n



 


 
         

 
  

  0

1 1 1 11 sinn nx
n n n




        


 

        1
2

1 1 11 sin sin 0 1 1n n nn
n n n n
 


 

             
 

. 

Thus, the Fourier series for our function is given by: 

     1
2

1

1 1( ) 1 1 cos 1 sin
4

n n

n
f x nx nx

n n









        
 

 . 

Example 2. Find the Fourier series of the function 

( ) 3f x x  , [0,3]x . 

Solution. 
A graph of the given function is shown on the fig. 15.2.  

 
Figure 15.2 

Let us extend the given function to the interval [ 3,0]  
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as an odd function and prolong it with the period 2 6T l   to 
the whole axis (fig. 15.3). 

 
Figure 15.3 

Since the function is odd, we need to find only nb : 

3l  , 

 
3

0 0

2 2( )sin 3 sin
3 3

l

n
nx nxb f x dx x dx

l l
 

      

3
3sin cos

3 3

u x du dx
nx nxdv dx v

n
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Thus, the Fourier series for our function is given by: 
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