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Introduction

Lecture notes outlines the sections corresponding to the
third semester according to the curriculum of the Advanced
Mathematics course for full-time and part-time students
education level “bachelor” specialty 192 — Construction and
civil engineering. It includes lectures on the topics "Multiple
integrals", "Line integrals" and "Numerical and power series".

The theoretical material is structured and coordinated
with classroom lectures, conducted in the study of module 3 in
the course "Advanced Mathematics".

An accessible, brief presentation of the theoretical
material is accompanied by detailed illustrations, a large
number of examples, and it allows students to acquire the
course of advanced mathematics on their own.



Lecture 1
Double integral. Properties of double integrals

1.1 Double integral

Let f(x,y) be a function of two variables whose do-
main is region D. Let region D be a rectangle [a,b]x[c,d],
i.e. a<x<b, c<y<d. Let us divide the interval [a,b] into
small intervals using a set of numbers {x,,x,,...,x,} so that
a=x,<x,<x,<..<x, ,<x,=>b. Similarly, a set of numbers
{¥o>V1»--»y,} 1s said to be a partition of the interval [c,d]
along the y-axis,if c=y, <y, <y, <..<y,,<y,=d.

If M,(x,y;) is some point in the rectangle
[xi—l’xi]x[yj—l’yj] and Ax, =x,—x_,, Ay, =y, =V, then the
Riemann sum of a function f(x,y) over the partition of
[a,b]x[c,d] (fig. 1.1), is
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The limit of the Riemann sum as the maximum values
of Ax, and Ay, approach zero is the double integral of a func-

tion f(x,y) in the rectangular region [a,b]x[c,d]:

” f(x,y)dxdy=_lim ZZf( l,y/)AxAy/ (1.1)

max Ax; -0
[a,b][c.d] maxAy —0 =1 j=1

If the limit in (1.1) exists we say that the function
f(x,y) is integrable in the region D . The following theorem

tells us how to compute a double integral over a rectangle.
Theorem 1.1. Let the function f(x,y) be integrable on

arectangle D =[a,b]x[c,d]. Then

]/ Cxo)axay = idXTf(x,y)dy = jdyff(x,y)dx

The symbols _[ f x y dx and _[ f x y dy denote par-

tial definite integrals: the first 1ntegral called the partial defi-
nite integral with respect to x , is evaluated by holding y fixed
and integrating with respect to x (i.e., it is a function of y),
and the second one, called the partial definite integral with re-
spect to y, is evaluated by holding x fixed and integrating
with respect to y (i.e., it is a function of x ). This two-stage in-
tegration process is called iterated (or repeated) integration.

Theorem 1.1 says that: Double integrals over rectangles
can be calculated as iterated integrals. This can be done in two
ways, both of which produce the value of the double integral.
Thus, we can evaluate a double integral by integrating with re-
spect to one variable at a time.

Example 1. Evaluate the double integral _[ J.D 4x*y dxdy



over the rectangle D =[2,4]x[L,2].

Solution.

First way. We will integrate with respect to y firstly.
Since the dy is the inner differential, the inner integral needs
to have y -limits. We treat x as a constant when doing the first

integral and we do not do any integration by x yet:

4 2 4 2 4 y
dx|4x’ydy = |4x>-| | ydy |dx=|4x"-| —
o= prarje=lot|

22
X =
1 1

R

2x° .(yz\f)dxzjzxz (22 —12)dx=i6x2dx=
2 2

Now, we have a regular one-variable integral and we
finish the computation as follows:

4
=2 =2:(4-2")=2-(64-8) =112.

2

4 x3
:6-J.x2dx:6-—
0 3

Second way. We will integrate with respect to x firstly.
Since the dx is the inner differential, the inner integral needs to
have x-limits. We treat y as a constant when doing the first

integral and we do not do any integration by y yet:

2 4 2 4 2
IdyJ‘4x2ydx:J‘4y-Ux2 dx]dyj‘4y-[x—
1 2 1 1

34
2 32}4

2 2 2 r
S e
1 1 ! !

Now, we have a regular one-variable integral and we
finish the computation as follows:



112,
3

When D is the rectangle [a,b]x[c,d], the small pieces
of region partition fit D perfectly. For a triangle or a circle, the
rectangles miss part of D. But they do fit in the limit, and any
region with a piecewise smooth boundary will be acceptable.

If f(x,y)>0 for every point (x,y) € D, then the dou-
ble integral is equal to the volume of the solid under the surface
z= f(x,y) and above the xy-plane bounded by the integration
region D (fig. 1.2).

112
(22—12)=T-3=112.

Z A

Figure 1.2
1.2 Properties of double integrals

1. Homogeneous property.



Suppose that the function f(x,y) is integrable over a
closed region D and k is an arbitrary constant. Then f'(x, y)
is integrable over the region D and

[[ K (xy)dxdy =k[[ [ (x.)dxdy.

2. Additive property.

Suppose that the functions f(x,y) and g(x,y) are in-
tegrable over a closed region D. Then f(x,y)*g(x,y) is in-
tegrable over D and

”D(f(x,y) +g(x,y))dxdy = ”Df(x,y)dxdy + ”Dg(x,y)dxdy .

3. Additivity.
Let D and S be non-overlapping closed regions and
assume that a function f(x,y) is integrable over the region

DUS . Then
”DUS f(x,y)dxdy :”Df(x,y)dxdy+”Sf(x,y)dxdy.

4. Suppose that function f(x,y) is integrable over a
closed region D and § is a closed subregion of D . Then

Hsf(x, y)dxdy < _UDf(x,y)dxdy .

5. Non-negativity of the double integral.
Suppose that the function f(x,y) is integrable over a

closed region D and let f(x,y)>0 over D. Then

J.J.D f(x,y)dxdy>0.

6. Monotone property of the double integral.
Suppose that functions f(x,y) and g(x,y) are inte-

grable over a closed region D and g(x,y)< f(x,y) for all
(x,y)e D. Then



”D g(x, y)dxdy < [ ID £ (x,y)dxdy .

Example 2. Evaluate the double integral

3

jdyJ‘ l+8xy)dx.
1

0

Solution.
To calculate the inner integral over x, we assume that
y is a constant. Using 1 and 2 properties, we get:

1

o f{s oo
1

2

i(3 0+4y-( 02))dy=j(3+36y)dy:

1

j.dyj‘ 1+8xy dx J‘[J‘dx+8y dex]dy—
1 0

Now, we have a regular one-variable integral:
2 2

2 2
=3-jdy+36-jydy=3-y|f+36-y7
1 1

1

=3-(2-1)+18-(2° -1*) =3+18-3=57.

Lecture 2
Evaluation of double integrals by splitting
into iterated ones. Reversing the order of integration

Let y=y,(x) and y = y,(x) be functions whose graphs

10



are continuous curves such as y,(x)<y,(x) for a<x<bh.
Then a planar region D parallel to the xy-plane is called a
Y -simple region, if it is bounded below by the graph of
vy =y,(x), above by the graph of y = y,(x) and on the sides by
vertical lines x=a and x=b (a<b) (fig. 2.1).

Let x=x,(y) and x=x,(y) be functions whose graphs
are continuous plane curves such as x(y)<x,(y) for
c<y<d. Then a planar region D parallel to the xy-plane is
called an X -simple region, if it is bounded on the left side by
the graph of x=ux,(»), on the right side by the graph of
x=x,(y), below and above by horizontal lines y=c and
v=d (c<d)(fig. 2.2).

Va v J 0 %W
~ \_/7[1‘ ) ~2 (%) d
/ Q\yl(x)
T—A
L 1 > C
a b x >
Figure 2.1 / / g

Figure 2.2

The following theorem will enable us to evaluate dou-
ble integrals over X -simple and Y -simple regions using iter-
ated integrals.

Theorem 2.1. If D is a Y -simple region over which
f(x,y) is continuous, then

b o (x)
[[ £ Geyyaxdy =[x [ fx)dy.
D a  y(x)

11



If D is an X -simple region over which f'(x,y) is con-
tinuous, then

d X, ()
[[feeyyavdy=[dy [ f(x.yydx.
D e x)

To find the limits of integration when D is a Y -simple
planar region, we should take the following steps.

Step 1. Sketch the region D of integration and its
bounding curves.

Step 2. Since x is held fixed for the first integration we
find the y -limits of integration by drawing a vertical arrow L
passing through the interior of the region D at an arbitrary
fixed value of x. L intersects the boundary of D at two
points. The lower intersection point is on the curve y,(x) and

the higher one is on the curve y,(x). These are y -limits of in-

tegration.

Step 3. To find the x-limits of the second integration,
we imagine that L can move freely (from left to right and from
right to left). First move L to the leftmost part x =a and then
to the rightmost part x =5 of the region. These are x -limits of
integration.

To find the limits of integration when D is an
X -simple planar region, we should take the following steps.

Step 1. Sketch the region D of integration and its
bounding curves.

Step 2. Since y is held fixed for the first integration we

find the x -limits of integration by drawing a horizontal arrow
L passing through the interior of the region D at an arbitrary
fixed value of y. L intersects the boundary of D at two

points. The leftmost intersection point is on the curve x,(y)
and the rightmost one is on the curve x,(y). These are
x -limits of integration.

12



Step 3. To find the y -limits of the second integration,

imagine that L can move freely (from top to bottom and from
bottom to top). First move L to the bottom y =c¢ and then to

the top y =d ofthe region. These are y -limits of integration.
Regions that are more complicated, and for which this
procedure fails, can often be split up into pieces on which the
procedure works.
Example 1. Evaluate the double integral
_[ J.D(x+2y)dxdy over the region D enclosed between the

lines y=x, y=2x, x=2, x=3.

Solution. Let us find the limits of integration.

Step 1. Draw a figure bounded by the following lines
(fig. 2.3): y = x is straight line which passes through the points

(0,0), (1,1); y=2x is straight line which passes through the
points (0,0), (1,2); x=2 and x=3 are straight lines that are
parallel to the y -axis.

¥

Figure 2.3

13



Step 2. D is a Y -simple planar region, so we shall
firstly integrate with respect to y and then with respect to x.
The lower point of intersection of the arrow L with the bound-
ary of D is on the line y =x and the higher point of intersec-
tion is on the line y =2x.

Step 3. x=2 is the leftmost part of the region and
x =3 1is the rightmost one.

Thus,

2x

”(x+2y)dxdyZidxj(x+2y)dy,

X

Let us evaluate the double integral. We consider x as a
constant when doing the inner integral and we do not do any
integration by x yet:

2x

j.dxj‘(x+2y)dy:i[x-Tdy+2-Tydy]dx=
2 2 x x

2x+2.y722x}dxj‘(x-(2x—x)+((2x)2 —xz))dx:

2

(x-x+(4x2 —xz))dxzi(xz +3x2)dx=i4x2dx=
2

2

D Sy 0

Now, we have a regular one-variable integral and we
finish the computation as follows:

3 3 —
_4 (32 :4.(9_§]:4.M:4.Q:7_6,
33 3 3 33

3

3
_4.5
3

2

Example 2. Reverse the order of integration

jdx]‘xf(x,y)dy )

14



Solution.
The given region of integration is

D:0<x<2, x<y<2x.

Draw a figure bounded by the following lines (fig. 2.4):
x=0 is the y-axis; x=2 is straight line parallel to the

y-axis; y=x is straight line which passes through the points
(0,0), (1,1); y=2x is straight line which passes through the
points (0,0), (1,2).

Y

Figure 2.4

Let us change the order of integration: the inner integral
will be with respect to x and the outer one will be with respect
to y. D is not an X -simple planar region, so we have to split

it up into pieces D,, D, with the help of straight line y =2
(fig. 2.5).

Let us consider region D,. It is an X -simple planar re-
gion. The leftmost point of intersection of the arrow with the

15



boundary of D, is on the line x :g and the rightmost one is

on the line x=y, y=0 is the bottom and y =2 is the top of

the region. So, D, :0<y <2, gﬁxﬁy.

Let us consider region D,. It is also an X -simple pla-
nar region. The leftmost point of intersection of the arrow with
the boundary of D, is on the line ng and the rightmost
point is on the line x=2, y =2 is the bottom and y =4 is the
top of the region. So, D, :2<y <4, gﬁxSZ

Thus,

Jz.dxsz(x,y)dy:j.dy.y[f(x,y)dx+jdyif(x,y)dx.

2 2



Lecture 3
Double integral in polar coordinates

In rectangular coordinates the lines of division consist
of two systems, for one of which x is constant and for the oth-
er y is constant.

In polar coordinates, we have one system of straight
lines through the origin, for each of which ¢ is constant, and
another system of circles about the origin as centre, for each of
which p is constant (fig. 3.1).

The evaluation of some double integrals is easier, if the
region of integration is expressed in polar coordinates. This is
usually true if the region is bounded by a cardioid, a rose curve,
a spiral, or, more generally, by any curve whose equation is
simpler in polar coordinates than in rectangular coordinates.
Moreover, double integrals whose integrands involve x*+ y’
also tend to be easier for evaluating in polar coordinates.

Wil
SSRGS

RIS

</ ,
eSS N \
%YI §§ >
S NE L

O IS
OSSR
i

Figure 3.1

In a double integral, when passing from rectangular co-
ordinates (x,y) to polar coordinates (p,¢), which are con-

17



nected with rectangular coordinates by the relations
X=pcose, y=psing, (remember that x* + y*> = p*),

we have the formula
I, f@y)ddy=[]  f(peosp.psing) pdpdy.

A @-simple polar region in a polar coordinate system
is a region which is enclosed between two rays ¢ =a and
@=L, and two continuous polar curves p=p(p) and
p =p,(p), where the equations of the rays and the polar
curves satisfy the following conditions:

Otﬁﬁ, ﬁ_aﬁzﬂ-v OSPI((P)SPZ((P)

The ray ¢ = can be obtained by rotating the ray
¢ =a counterclockwise through at angle which is at most 27z
radians. Boundary curves p = p,(p) and p = p,(¢) can touch

but cannot actually cross over one another. Thus, it is appropri-
ate to describe p = p,(¢) as the inner boundary of the region

and p = p,(p) as the outer boundary. If p,(¢) is identically
zero, then the boundary p=p,(¢) reduces to a point (the
origin).

Theorem 3.1. If D, is a ¢ -simple polar region whose

boundaries are rays ¢ =a and ¢ =/ and curves p=p,(¢)

and p=p,(¢),and F(p,p) is continuous on D , then
B,
[[Flp.0)pdpdo=[dp [ F(p.p)pdp.
D, a Pi(@)

To find the limits of integration when D, is a ¢ -simple

planar region, we should take the following steps.

18



Step 1. Sketch the region D, of integration and its

bounding curves.
Step 2. Find p -limits of integration by drawing an ar-

row L passing through the region D, in the direction of p in-
creasing. Mark p values where L enters and leaves D, . The-
se are p -limits of integration. They usually depend on the an-
gle ¢, except the case when D, is a circle (in this case they

are constants).
Step 3. Find ¢-limits of integration by choosing

¢ -limits which include all rays passing through D, .

Regions which are more complicated, and for which
this procedure fails, can often be split up into pieces on which
the procedure works.

Example 1. Use polar coordinates to evaluate the dou-
ble integral _[ ‘[D(«/xz +y° +8)dxdy over the region D given

by the inequalities x <0, y>0, 1<x’+3y* <4,
Solution.
Draw a figure bounded by the following lines (fig. 3.2):

x=0 is the y-axis; y =0 is the x-axis; x* +y* =1 is a circle
of radius R =1 with center at the origin; x> +y> =4 is a circle
ofradius R =2 with center at the origin.

Let us pass to the polar coordinates:

1) integrand: f(pcosq, psing)=+/p° +8=p+8,
2) p-limits: p* =1, p=1; p’=4, p=2; 1<p<2,

3) ¢ -limits: %S p<r.

19



Figure 3.2

Thus,

n 2
”(\/xz +y° +8)dxdy :_U(p+8)pdpd(p :jd(pj(p+8)pdp.
D D, T 1
2
Let us evaluate the double integral. We consider ¢ as a
constant when doing the inner integral and we do not do any

integration by ¢ yet:

j p+8 pdp = jdgoj p’ +8p dp = ]E(—+8 ’Dzj
1

T

.\_)m'._.:;

z
2

3 2 7( A3 3
Jo) 2 ) 1 )
+4 dp=|| —+4-2"—| —+4-1" | |dp =
“[(5 o] ao=f{Frer-{5eer o
2

8 1 (8 1

—+16—| —+4 ||dp=|| -+16—=—4 |dp =
[3 3 D 4 j(s 3 J“’

2

M\ﬁ'—;ﬁ

I
0N —
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I\)m'—.ﬁ

( +12] I7+36 I% _
: :

Now, we have a regular one-variable integral and we
finish the computation as follows:

]T- 7r _ 43 (AN 43 n_ 43m
2 3 2) 32 6
2

Example 2.  Evaluate the double integral
_[ _[D(x+ y)dxdy over the region D given by the inequalities

X+ <R, y>x.

Solution.

Draw a figure bounded by the following lines (fig. 3.3):
x> +y* =R’ is a circle of radius R with center at the origin;

v =x is the bisector of the first and third quarters.
¥

x2+y2:R2

Figure 3.3

21



Let us pass to the polar coordinates:
1) integrand:

f(pcosp,psing)=pcosp+ psing = p(cosqo+singo),

2) p-limits: p*>=R*, p=R; 0< p<R,
St

3) ¢-limits: = <<%

) @- 2597,

Thus,

”D(“y)dx‘iy = ”D,, p(cosp+sing) pdpde =
sz

4
(cosp+sing)-p*dp = I [(cosqp+singp)- P

3R
30}
3 sz

= | (cosp+sing)- R?d(p—]; (sinp—cosg)|} =

do

Il
.z:.\bu'—..z:.‘;"‘
o —_

4

.z:.\bu'—..z:.‘;"‘

22



Lecture 4
Triple integral. Properties of triple integrals.
Evaluation of triple integrals in rectangular,
cylindrical and spherical coordinates

4.1 Triple integral. Properties of triple integrals

Double integrals _[ J.D f(x,y)dxdy are connected with

plane domains, i.e. with two-dimensional objects. When we
compute such integral we always finally come to the computa-
tion of two simple integrals.

If one substitutes plane domains with domains in the
three-dimensional space, one gets a more sophisticated notion,

namely the notion of a triple integral _[ _[ J.V f(x,y,z)dxdydz .

Here dxdydz is called an element of volume and f(x,y,z) is

called the density function. All the theory of such triple inte-
grals is nothing else then a slight generalization of the theory of
double integrals.

Triple integral of the function f(x,y,z) extended over

the region V' is the limit of the corresponding triple iterated
sum:
J], £y 2)dvdydz= lim L2 oy pz) bty

maXAy 50 1
maxAz; -0

Evaluation of a triple integral reduces to the successive
computation of three single integrals (if the limits of integra-
tion are constants) or to the computation of one double and one
single integral.

Triple integrals have the similar properties as single and
double integrals.

23



4.2 Evaluation of triple integrals
in rectangular coordinates

Let the three-dimensional region V' be a Z -simple re-
gion (fig. 4.1), then

2 (x,y)

[I] £y, dxdydz = [[ddy | f(x,p.2)dz.

z(x,»)

First of all we have to compute a simple integral rela-
tive to the variable z and after that we compute a double inte-
gral over the domain D, which is the projection of V' on the

xy -plane.

= N

0

el

X

Figure 4.1

It is possible to obtain an iterated integral with another
order of integration. It all depends both on the form of the inte-
grand f(x,y,z) and the region V', and on its location with re-
spect to the coordinate system Oxyz .

If the domain V' is not simple, then it must be divided
into simple parts.

24



Example 1. Evaluate the triple integral
1 1 2
Idx_[dy I xyzdz .

Solution.
First of all we compute a simple integral relative to the
variable z, so we consider x and y as constants when doing

the first integral:

1 1 2 1 1 i 2
_([dx‘[xy- .[ zdz dy.(l;d)cj.{xy.7 xz+yz}dy

-3 Jas o2 (o) -
=5 Jrf (o (4= 7)o =

Now we compute a simple integral relative to the varia-
ble y, so we consider x as a constant when doing it:

1 1
:%-J.[x.[4y x'y— y dyjdxz
0 0

f=}
=

o
+
=

%)




Now we have a regular one-variable integral:

_l.(l.l_l.l]_l. 7_1)_16_1
2142 24) 218 8) 28 2

4.3 Evaluation of triple integrals
in cylindrical and spherical coordinates

Cylindrical coordinates (fig. 4.2) represent a point M in
space by ordered triples (p,,z) in which p and ¢ are polar

coordinates for the vertical projection of M on the xy-plane
(0L p<+4w0, 0<p<2r), z is the rectangular vertical coordi-
nate.

Z
M(p.g.2)
Q) T :T
Y M,(p.9.0)

Figure 4.2

Equations relating rectangular (x,y,z) and cylindrical
(p,p,z) coordinates:

X=pcosQ, y=psing, z=z,

Pl =x*+y’, tang =2
x

26



In cylindrical coordinates, the equation p =a describes
not just a circle in the xy-plane but an entire cylinder about the
z -axis, which is given by p=0. The equation ¢ =¢, de-
scribes the plane which contains z -axis and makes an angle ¢,
with the positive x-axis. And, just as in rectangular coordi-
nates, the equation z =z, describes a plane perpendicular to

the z -axis.

The transition to cylindrical coordinates is useful for
applying, if the integration region V' is given in a cylindrical
system or it is projected into a circle or a part of it, or the inte-
grand f(x,y,z) contains the sum of squares of at least two
Cartesian coordinates.

The formula for the transition from rectangular to cy-
lindrical coordinates:

[ £ Gy 2) dvdydz = [[[ f(peos g, psing,2) pd pdepds .

Veyl

Spherical coordinates (fig. 4.3) represent a point M in
space by ordered triples (r,¢,0) in which r is the distance
from the origin O to the point M (0<r<+w), ¢ is the angle
as measured in cylindrical coordinates (0<¢@ <27), 0 is the

angle between the vector OM and the positive z -axis
(0£0<m).

x M (rsin6,@,n/2)
Figure 4.3
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Equations relating rectangular (x,y,z) and spherical
(r,¢,0) coordinates:

x=rcospsin@, y=rsingsin@, z=rcosf ,
P=x’+y"+z°.
The equation r=a describes the sphere of radius a

centered at the origin. The equation 6 =6, describes a single

cone whose vertex lies at the origin and whose axis lies along
the z-axis (the xy-plane is the cone 6 =7/2). The equation

@ = ¢, describes the half-plane which contains the z -axis and
makes an angle ¢, with the positive x -axis.

The transition to spherical coordinates is convenient for
applying, if the integration region V' 1is given in a spherical
system or it is a sphere or its part, or the integrand f'(x,y,z)

contains the sum of squares of all three Cartesian coordinates.
The formula for the transition to the triple integral in
cylindrical coordinates:

_[_Uf(x, ¥, z)dxdydz =

= _[”f(r cos@sin @, rsin@sin@,rcos ) r’ sin Odrd pd0 .

Vsph
Example 2. In triple integral _[ _[ J.V f(x,y,z)dxdydz

where V' bounded by the surfaces z=2—+x"+)", x>0,
y2>0, 0<z<2, determine the limits of integration in rectan-

gular, cylindrical and spherical coordinate systems.

Solution.

Draw a body bounded by the following surfaces
(fig. 4.4):

a) x’+y° —(z—2)* =0 is a cone with the vertex at the
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point (0,0,2):

z=2—\x’+y", z-2=—x"+)?,
(z=2)=x"+y", X+’ —(z-2)*=0;

b) x>0, y>0, z>0 are set the first octant;

c) z <2 is set the region below the plane z=2.
The region V' is a Z -simple one.

Figure 4.4

Draw a projection on the xy -plane (fig. 4.5):

a) x°+y° =4 is a circle of the radius R=2 with the
center at the origin:

0=2-yx*+y*, J&+) =2, ¥+)" =4,

b) x>0, y >0 are set the first quarter.
The region D, is a ¥ -simple one.
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Figure 4.5

According to the fig. 4.4, 4.5 we determine the limits of
integration in rectangular coordinate system:

0<x<2,0<y<\d4—x",0<z<2—x"+)",

[”:f(XAY=Z)dxdydz::J I I mf(xsy,Z)dZdydx.

0

Let us pass to the cylindrical coordinates:
a) z -limits: z=0;

z:2—\/m: z:2—\/?, z=2-p;
0<z<L2-p;
b) p-limits: p=0;
X +y =4 p' =4, p=2;
0<p<2;

c) ¢-limits: 0<¢ S%,
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2-p

2
f I f(pcose, psing,z)-pdzdpde.
0 0

O 0 [N

.m.f(xayaz)dxdydz -

Let us pass to the spherical coordinates:
a) r-limits: r=0;

z=2-x"+y*:

rcosf = 2—\/(rcosgz>sin9)2 +(rsingsin0)*

2 2 s 2 2 2 s 2
rcos9:2—\/r cos” @sin” @ +r sin” @sin” 6,

rcos9:2—\/r2 sin® @ - (cos’ @ +sin’ @) ,

rcos@=2—+r’*sin’0, rcos@=2—rsind,

rcos@+rsinf =2,

r(cos@+sinf) =2, r:;.;
cos6 +sin @
OSrS;.;
cos +sinf
b) ¢ -limits: OS(pS%;
. T
c) O -limits: OSQSE,
_[”f(x,y,z)dxdydz:
V
%c059+sm9’2r
I rcosgosin@,rsingosin@,rcos@)-rzsin@d@drdqo.
0
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Lecture 5
Applications of multiple integrals: calculation of area,
mass, static moments, center of gravity, moments of inertia
of a lamina, surface area and volume

5.1 Applications of double integrals

1. Area of a plane domain:
in rectangular coordinates S = _[ J.D dxdy,
in polar coordinates S :”D pdpde.

2. Volume of a cylindrical solid bounded above by a
continuous surface z=z(x,y), below by the plane z=0, and

on the sides by a right cylindrical surface, is equal to:
V :_UD z(x, y)dxdy .
3. Mass of a lamina with surface density u(x,y):

M = [[ u(x. y)dxdy .
4. Static moments of a lamina:

about the x -axis M, :J.J.Dy - u(x, y)dxdy ,

about the y -axis M :”Dx-u(x, v)dxdy .

5. The moments of inertia of a lamina:

about the x -axis I, = ”Dyz - u(x, y)dxdy

about the y -axis 7, :”D x> u(x, y)dxdy ,
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about the origin
=1 +1, = ”D(xz + %) u(x, y)dxdy .
6. Coordinates of the center of gravity of a lamina:

M M

Y X
X =—, . = .
cC M 4 M

7. Surface area of surfaces of the form z = z(x,y):

Suuy = [[ 1+(2)7 +(2)) dxdy .

5.2 Applications of triple integrals

1. Volume of a solid:
v =[] drdyd: .
2. Mass of a solid with the density u(x, y,z):
M = J.J.J.V,u(x, v, z)dxdydz .

3. Static moments of a solid:

about the xy-plane

M, = J.J.J.Vz-u(x,y,z)dxdydz ,
about the yz-plane

M, :J.”Vx-u(x,y,z)dxdydz,
about the xz -plane

M_ = J.”Vy-u(x,y,z)dxdydz .
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4. The moments of inertia of a solid:

about the x -axis
1,=[[[ 2 +2%)- (e, y. 2) dvdye

about the y -axis
1, = [[[, @7 + 2 (e, 2) dudy
about the z -axis
— 2 2 .
L= J..UV (x"+y7) - u(x, y,z)dxdydz ,
about the origin
ly= HL (x* +y* +2)u(x, y, z) dxdydz

about the xy-plane

I, = J._UV z° - u(x, y,z)dxdydz |

about the yz-plane

I,= J.”sz -u(x,y,z)dxdydz ,
about the xz -plane
I_= J.J.J.Vyz u(x, y,z)dxdydz .

5. Coordinates of the center of gravity of a solid:
M M M

_ )z _ Xz _ Xy
SV O VR VI

Example 1. Using the double integral find the volume
of the solid bounded by the planes z=0, x=0, x+y=4 and

by the parabolic cylinder z = 4\/; .
Solution.
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Draw a body bounded by the following surfaces
(fig. 5.1): z=0 is the xy-plane; x=0 is the yz-plane;
z=4,/y 1is a parabolic cylinder with rulings parallel to the
x -axis; x+ y =4 is the plane parallel to the z -axis.

Draw a projection on the xy-plane (fig. 5.2): x+y=4
is the straight line which passes through points (0,4), (4,0);
x=0 isthe y-axis; y =0 is the x -axis.

Figure 5.1

[

=
Il
— O

AR

hyzo

Figure 5.2
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The volume is calculated by the formula:
V :_UD z(x,y)dxdy = ”D 4\/; dxdy .

D,, is a Y -simple planar region, so we shall integrate
first with respect to y and then with respect to x. The lower
point of intersection of the arrow L with the boundary of D is
on the line y =0 and the higher point is on the line y=4-x,

x=0 is the leftmost part of the region and x =4 is the right-
most one.
Thus,

V:H4\/}dxdy=jdx4f4\/}dy.
D 0 0

First of all we compute a simple integral relative to the
variable y, so we consider x as a constant when doing the

first integral:

4 y%+l 4 y% 4 8 i4—x
— — e — | 2.2 —
_141 dx_j43 dx_j3y dx
0 —+1 0 — 0 0
2 2 o

Now, we have a regular one-variable integral. To eval-
uate it we make a substitution:
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t=4-x dt=-dx

0
- —dt=dx =§-j\/73(—dt)=
4

f=4-0=4 1,=4-4=0

0 0
3, 5 0
g2 8| 8ol 82f
:__.J.t dt = ——- 3 —__.? - =
39 33,035 3 s
27, 21,
_ 820’ 2w _§_(_ﬁ] 8 64_512
3 5 5 3075 )35 15°

Example 2. Find the mass of a lamina bounded by the
lines x> +)° =16, x*+y* =25, (x>0, y=>0), if the surface

-4
density u = al y .
x*+y°
Solution.

Draw a figure bounded by the following lines (fig. 5.3):
x> +y* =16 is a circle of the radius R=4 with the center at
the origin; x* + y*> =25 is a circle of the radius R =5 with the
center at the origin; x >0, y >0 are set the first quarter.

The mass of a lamina is calculated by the formula:

M = _U u(x,y)dxdy = _[ _[ 4y > dxdy .

Let us pass to the polar coordinates:

: _4psi
a) integrand: /(p cos, psing) =L EBPTIPNE

2

p(cosp—4sing) cosp—4sing
2 - 5

p p
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b) p-limits: p* =16, p=4; p> =25, p=5;

4<p<5;

c) ¢ -limits: %S ¢0<0.

¥

Figure 5.3
Thus,
M= [[2 4y  dxdy ”w.pdpd(p:

x+y

:J'J'(cos¢_4sin¢)dpd(p:}d(pi(cosgo—4sin(p)dp =
T 4

2

(cosgp—4sing) p| do =

M\:g'.—..o

((cosgo 4sing) IdpJ

.\_)\:g'.—.o
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= |(cosp—4sing)-(5-4)de = | (cosp—4sing)dp =

M\N'-—.o
M\N'-—-.o

=sin0—

2

0 0
= J.cosgodqo—4-jsin(pd(p :sin(p|og —4-(—COS(/))0£

2 2

—sin%+4-(cos0—cos%)=0—1+4-(1—O):—1+4:3.

Lecture 6
Line integrals of the first kind.
Properties of line integrals of the first kind

6.1 Line integrals of the first kind

Let f(x,y) be a continuous function and y= y(x)
(a < x <b) be the equation of some smooth curve L.

Let us construct a system of points M, (x,y,)
(i=0,1,2,...,n) which break up the curve L into elementary
arcs M, M,=Al (fig. 6.1), and let us construct the so called

integral sum
S, = Zf(xi’yi)AZi .
i=1

The limit of this sum, when n — o0 and maxAl, -0,
is called a line integral of the first kind

lim Z f(x,y)AL = j Fx,y)dl .

maXAl -0 =1

The physical meaning of the line integral of the first
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kind is that it is equal to the mass of the arc:
M= f(xydl.
If f(x,y)=1,then it is equal to the length of the arc:
L=|dl.

Figure 6.1

If the function f(x,y) is continuous in some domain
D containing a piecewise smooth curve L, then there exists a

line integral _[ f (x, y)dl (sufficient condition for the existence
L

of a line integral of the first kind). The line integral of the first
kind does not depend on the direction of motion along the arc.
Other properties of the line integral of the first kind are similar
to the properties of the usual single integral.

The concept of a line integral of the first kind extends
to the case of an arc of a spatial line L located in a three-

dimensional scalar field u = f(x,y,z):

[f(erz)di= tim 3 f(x.2)AL.
L

maxAl; —0 i=1
6.2 Computation of line integrals of the first kind

1. If a plane curve L is defined in the form y = y(x),
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with x €[a,b], then

[ £Gep)dl = [ £ e, yeoWT+ () dx.

2. If a plane curve L is defined in the form x=x(y),
with y €[c,d], then

[ £ pydl = [ £ (e, 1+ () dly .

3. If a plane curve L is defined in the polar coordinates
by the equation p = p(¢), with ¢ €[, B], then

B
[ f@ydi=]f(peosp.psing)p® +(p) dg.

4. If a curve L is defined in parametric form by equa-
tions x =x(¢), y=y(t), with t €[¢,,¢,], then

[ £t = [ Foxto, sy (e,

5. If a curve L is defined in parametric form by equa-
tions x =x(t), y=y(t), z=z(t), with ¢ €[¢,,t,], then

[ £y, 2)dl = [ £(x(0), 90, 2O () + () + (=) it

Example 1. Evaluate the line integral of the first kind
J- 2x+ y)dl
2
L

z

, where L is the line segment from point

A(3,-5,6) to point B(5,-8,12).
Solution.
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Let us write the equation of a straight line passing
through the points A4(3,—-5,6) and B(5,-8,12):
X=X _VY=»h _274%

=X mh 274

x=3 y—(-5 z-6
5-3 —8—(=5) “12-6’
x-3 y+5 z-6
2 -3 6

x-3 y+5 2_6—t

9

x=2t+3, y=-3t-5, z=6t+6.

Find how the parameter ¢ varies, if x €[3,5]:

x=3t330 x5t—531
2 2
Calculate the derivatives of x=2t+3, y=-3t-5,
z=06t+6:
X' =Qt+3) =2, y'=(3t-5)=-3, z'=(6t+6) =6.

Using the formula of the fifth case and substituting the

functions x=2¢t+3, y=-3t—-5, z=6¢t+6 and their deriva-

tives x'=2, y'=-3, z' =6 into the integral, we obtain:

I(2x+y)dl j-2(2t+3) 3¢—5) mdt_

) ) (6t +6)°
1 (4+6-3t-5) ‘ (t+1)
_l Gy 4+9+36 dt_j36 o _\49dr =
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c 7 7‘dz7
d_
S

- |t+1|
36-(t+1) 36 0l‘+1 36

=L (inft+1]=1n]0+1]) = (In2— o):llnz.
36 3 36

Example 2. Evaluate the line integral of the first kind

dl : : . :
J. ——, where L is defined in parametric form by equations
Xty

xX=cost+tsint, y=sint—tcost, with t €[0,27].

Solution.
Let us find the derivatives of x=cost+¢sint,

y=sint—tcost:
x'=(cost+tsint) =(cost) +¢ -sint+1-(sint) =
=—sinf+sint+tcost =tcost,
y' =(sint —tcost) =(sint) —(¢' -cost+1-(cost) ) =cost—
—(cost+t-(—sint))=cost—(cost—tsint) =
=COSf—CoSt+tsint =¢sint.

Using the formula of the forth case and substituting the
functions x=cost+t¢sint, y=sint—¢cost and their deriva-

tives x'=rtcost, y'=tsint into the integral, we obtain:

J- J- (t cost)’ +(tsint)’dt
x*+y? (cost+tsint)’ +(sint —tcost)’

_J- \/t2 cos’ ¢t +1*sin’ tdt
cos>t+2tcostsing +¢>sin>¢ +sin’f —2¢tcostsint +1cos>t

J- JP(cos® t +sin® 1)dt _ T tdt
(cos’ t+sin’ t)+0+¢°(sin* t+cos’t) ¢ 1+¢
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To evaluate integral we should make a substitution:
du

l+47? —

~ u=1+¢* du=2tdt %u:tdt
u

u =1+0>=1 u,=1+Q2r)* =1+4x" !

2

LT L =L (nfr 4=
1 u
:%n@nh+4nﬂ—o)=kﬂsgﬁiL
Lecture 7

Applications of the line integral of the first kind

1. Length of a curve:
L=|d.

2. Mass of a curve with the linear mass density u(x,y):
M= u(x.y)dl .

3. Static moments of a curve:

about the x -axis M = J.L yu(x,y)dl,

about the y -axis M, = J.L xp(x,y)dl .

4. Moments of inertia of a curve:

about the x -axis I, = J.L Ve u(x, y)dl,

about the y -axis /, = J.sz u(x,y)dl,
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about the origin 7, = J.L (x> +*)- u(x,y)dl.
5. Center of the gravity of a curve:
M M

Example 1. Find the mass of the line segment from

point A(0,1) to point B(8,3), if the density is equal to i/zy.
Solution.
The mass of a curve is calculated by formula:

M :L,u(x,y)dl :Li/;ydl.
Let us write the equation of a straight line passing
through the points A4(0,1) and B(8,3):
X=X _ V=N
Xy =X - =N ’

x=0_y-1 x_y-1 x_y-I

8-0 3-1" 8 2 4 1~
x=4y-1), x=4y—-4, 4y=x+4,

1
=—x+1.
YTy

The derivative is;

] T,
'=|—x+1| =—-x +0=
Y (4 ] 4

_ : 1 : o
Substituting the function y :Zx+l and its derivative

g1
4

S

1. . .
y'= 2 into the integral, one obtains:
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M :‘[%/;ydl:j[i/;-(%x+lj- 1+Gj2dx=

8 1 { 8 L
Ix3.(lx+lj. l+idx: E-J‘ l)C')C:;'i'.x?’ dx:
. 4 V' 16 16 ¢\ 4

8

l+1

8
4
—+1
3 3
_VI7 [l‘[ 3dx+.[ 3dx]—\/ﬁ- 1 z +f -
4 45 4 4—+l —+1
3 b 3
78 48
i x 8
17 |1 %8 x?3 V17 1 3%/x_4|
—_—— | — e — +_ e o — . + =
4 |4 7| 4 4 |4 7 ‘0 4 \0
3 30

4 7 4 4 7 4

r[1 J8_7+3v8_4]:¢ﬁ(1.3-27+3~24]:
4 4

5
M7 (32 )T (96 12]
4 7 4\ 7
_ V17 96+84 _VI7 180 _ o= 45 _45V17

4 7 4 7 77
Example 2. Find the length of an arc of a curve

59
= 7 T
p=5"2, ——<p<—.

2 2
Solution.
The length of a curve is calculated by formula:

L:Lﬂ.
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59
Let us find the derivative of p =5e'?:

! 50\ 5 ' 5 5
p’: Se%) =5. €£ :56£. 5_§0 ZSeﬁ.izz_Seg.
12 12 12

50
Substituting the function p =5e!> and its derivative

Sp
p'=——e'? into the integral, we obtain:

144
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Lecture 8
Line integrals of the second kind.
Properties of line integrals of the second kind.
Green's formula

8.1 Definition of line integral of the second kind

Let a vector field F(x,y)=P(x,y)i +O(x,y)] and a
piecewise smooth curve L be defined in some domain in R”.
By dividing the curve by points M,,M,,M,,...,.M, into n sub
curves M, M

Let us select on each arc M, M, an arbitrary point (x,,y,),

., i=1,2,...,n, we obtain a partition (fig. 8.1).

i=1,2,...,n, and form a sum of dot products

S, =Y F(x,y) M_ M, =Y (P(x,») Ax, + O(x,,5,) Ay,),

i=1 i=1

called an integral sum.

Y A

1

Ax, !
X,

i-1 i

Figure 8.1
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If there exists a finite limit of the sums S, as
max(A/,) - 0 which depends on neither the partition nor the

selection of the points (x,,y,), then it is called the line integral

of the second kind of the vector field F(x,y) along the curve
L and is denoted

J.L F-dF or J.L P(x, y)dx+Q(x,y)dy,

where d7 =idx+ jdy .
The line integral of the second kind depends on the di-
rection of the path:

[, PGy)dx+ 0, y)dy==[  P(x,y)dx+Q(x,)dy.

A line integral over a closed contour L is called a

closed path integral (or a circulation) of a vector field F
around L and is denoted

§ F-dr.
L

Physical meaning of line integrals of the second kind:
J. ' F-dF determines the work done by the vector field F(x, y)

on a particle of unit mass when it moves along the arc 4B .
Other properties are similar to the properties of the line
integrals of the first kind.
For a spatial vector field, the integral has the form

Lﬁ-df = L P(x,y,2)dx+0(x,y,z)dy + R(x, y,z)dz,

where dF = idx+ jdy + kdz .
8.2 Computation of line integrals of the second kind

1. If a plane curve L is defined in the form y = y(x),
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with x €[a,b], then

[ P, y)dx+ O(x, y)dy = [ (PLx, ()] + OLx, y(x)] -, ) dx .

2. If a plane curve L is defined in the form x=x(y),
with y €[c,d], then

[ PG, y)dx+Q(x, y)dy = [ (PLx(3), y]-x, + Qlx(»), y] dy .

3. If a curve L is defined in parametric form by equa-
tions x =x(¢), y=y(t), with t €[¢,,¢,], then

[ PG, y)dx +0(x, y)dy =

= j (P[x(0), y()]- x, + O[x(), y(t)]- v/ ) dt .

4. If a curve L is defined in parametric form by equa-
tions x =x(t), y=y(t), z=z(t), with ¢ €[t,,t,], then

[ P(x, y,2)dx + Q(x, y, 2)dy + R(x, y, 2)dz =
L

= J%(P[X(t),y(l‘)aZ(t)]-x,' +0[x(), (1), (D] y; +

+R[x(2), y(),z(1)]- Z,’)dt )

Example 1. Evaluate the line integral of the second kind
_[ (x* = y*)dx+xydy, where L is the line segment from point
L

A(1,1) to point B(3,4).
Solution.
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Let us write the equation of a straight line passing
through the points A(1,1) and B(3,4):
X% _ V=N
X=X V2N

x-1 y-1 x-1 y-1
_r- X 3e—D=2(y-1),
301 4s 2 3 Seb=20D

1

3
3x-3=2y-2, 2y=3x-1, ==—x——.
Y Y y Y73

Find the derivative is y' = (%x —%j = %

Using the formula of the first case and substituting the
function y = %x —% and its derivative )’ :% into the integral,
we obtain:

3 2
_[(x2 —y*)dx + xydy = J‘(xz —(%x—%) +x(%x—%j%]dx =

1

3
:I(xz_(sz_z.éx.l+l]+é.(§xz_lxndx:
1 4 2 2 4 2 \2 2
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1,38 1 g 1,5 1 _(p 1 1 _72-2-3_67
3742 2 0 37 2 32 6 6

8.3 Green's formula

Theorem 8.1. Suppose the region D is bounded by the
simple closed piecewise smooth curve L. Then a double inte-
gral over D equals a line integral around L :

§ P(x, y)dx + Q(x, y)dy = [ (a—Q - 8—P]dxdy .
) HL0x Oy
A curve is "simple" if it doesn't cross itself. It is
"closed" if its endpoint is the same as its starting point. This is
indicated by the closed circle on the integral sign. The curve is
"smooth" if its tangent changes continuously, the word "piece-
wise" allows a finite number of corners.
Theorem 8.2. If region D in the xy-plane is bounded
by a piecewise smooth simple closed curve L, then the area S
of D is

S :§xdy = —ifydx :l§xdy—ydx.
L L 23

Region D could contain holes, provided we integrate over the
entire boundary and always keep region D to the left of L.
Example 2. Use Green’s formula to evaluate the line in-
tegral ifL (2xy +1)dx+(y*> =3x>y +1)dy, where L is the boun-
dary of the region bounded by the lines xy =1, y=2, x=2.

Solution.
Draw a figure bounded by the following lines (fig. 8.2):
xy =1 1is a hyperbola with the branches in the first and third

quarters; y =2 1is a straight line parallel to the x -axis; x=2 is
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a straight line parallel to the y -axis.
¥
3 -

t
S
I

[\

1L
Figure 8.2

Find the intersection point of the lines xy =1, y=2:

{xyzl; {x-2:1; x:%;
y:2’ y:2’ y:2.

D is a Y -simple planar region. We will integrate first
with respect to y and then with respect to x. The lower point
of intersection of the arrow L with the boundary of D is on

the line y = ! and the higher one is on the line y=2, x= 1 is
x
the leftmost part and x =2 is the rightmost part of the region.
So, D: l<x<2, l<y<2.
2 X
Let us apply the Green’s formula:
P=2xy+1, Q=y>-3x"y+1,
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_P:(zxy—kl)’y :2x-(y)’y +0=2x-1=2x,

Z_Q:(y2—3x2y+1)’x —0-3y-(x*) . +0=-3y-2x=—6xy.
X

Thus,
§L Qxy+1Ddx+(y> =3x*y +1)dy = ”D (—6xy —2x)dxdy =

X

2 2 1Y
al +3-In|x|; +2-x|21:—8-(22—(—] j+
2 7 2 2

-16-—
2

+3-(1n2—1nlj+2-(2—lJ:—8-(4—1J+
2 2 4

+3-1n(2:l]+2-§:—8 1 3m(22)+3=
2) " 4 4

2 2

:j( 12x+3- ——4x+2jdx j( 16x+3- —+2jd
1 1
2 2

=-2-154+3-In44+3=-30+3In4+3=-27+3In4.
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Lecture 9
Independence of line integrals of the second kind
on the path of integration.
Solution of differential equations in total differentials

9.1 Independence of line integrals of the second kind
on the path of integration

Let D be a space (or plane) domain and let F bea
continuous field. We say that the integral §13 -dr 1is independ-
ent on path if for any two points 4 and B of D and for any
(piecewise) smooth path ¥ — D, which connects 4 and B, the

line integral of the second kind j;F“ -dr does not depend on the
Y
curve y itself but only on the endpoints 4 and B of it. This

means that if I" is another path which connects 4 and B one
has that jzﬁ-df :j;ﬁ-df.
Y r

Let us define a class of fields which has the above
property. F= P(x, y);+ O(x, y)}' is a conservative (potential)
field if it has the following properties:

a) _[ F -dF around every closed path is zero;

N
b) _[ F-dr depends only on M and N, not on the
M

path;
= ) ou ou
c) F is a gradient field: P=— and Q =— for some
ox oy
potential u(x,y);
. .. P
d) the components satisfy the condition o = 8_Q
oy Ox
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A field with one of these properties has them all. The
property d) is the quick test.
Example 1. Show that integral is independent of path,
and find its value
(13)
J. (6x°y —x)dx +2x°dy .
(0.-3)
Solution.

Let us check that the line integral is independent of in-
tegration path, i.e. let us check the condition d):

P=6x"y—-x, Q=2x,
opP

_ 20N a2 (o) 0 G2 1 a2
& —(6x b% x)y =6x (y)y 0=6x"-1=6x",
%Q (2x ) =6x’.
ox x
Therefore, the given integral is independent of the inte-
gration path. Let us find its value by integrating along the
straight line from point (0,-3) to point (1,3).
Find the equation of this straight line:

X% _ V=N

X=X V=N
x—OZy (-3) x_y+3
1-0 3-(-3)" 1 6 °
6x=y+3, y=6x-3.

The derivative is y'=(6x—3) =6.
Substituting the function y =6x-3 and its derivative
y' =6 into the integral, we obtain:
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(1,3) 1
[ (6x"y—x)dx+2x’dy = [ (6x(6x—3)—x+2x*-6)dx =
0

(0,-3)

S S——

1
(36x° —18x” —x+12x°)dx = I(48x3 —18x” —x)dx =
0

1 1 1 x4‘ x31 xzl
=48 [XPdx—18- [ Xdx— [ xdx=48-=| —18- - - =
0 0 0 4 0 3 0 0
4 4 3 3 2 2
_ag B0 g (B0 (B0 el el T
4 4 3 3) 12 2 4 73 2
gt Ll _12-1 11
2 2

9.2 Solution of differential equations in total differentials

The expression P(x,y)dx+Q(x,y)dy is a differential

form. When it agrees with the differential du :a—udx+a—udy

ox oy

of some function, the form is called exact. If the contour of in-
tegration L is contained entirely within some simply-
connected region S and the functions P(x,y) and Q(x,y) to-
gether with their partial derivatives of the first order are con-
tinuous in S, then a necessary and sufficient condition for the
existence of the function u(x,y) is the satisfaction (in S) of
the equality

oP 00

dy ox

Function u(x,y) is called a primitive and is calculated
by integration from some fixed point A(x,,y,) to the variable
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point B(x,y):

or

is named the differential equation in total differentials, if

or

u(x,y)= _[P(x,yo)dx + J.Q(x,y)dy +C

X0 Yo

u(x, )= [ P(x, y)dx+ [ Q(xg, »)dy +C.

X0 Yo

The equation
P(x, y)dx+0(x, y)dy =0

oP _ a0

dy ox

(9.1)

(9.2)

Its solution can also be found by integration both sides
of equation from some fixed point A(x,,y,) to the variable

point B(x,y):

j;P(x,yO)dx + j. O(x,y)dy=C

X0 Yo

J e [ o par=c.

X0 Yo
Example 2. Find a primitive function u(x, y), if
du(x,y)=GBx*y+Ddx+ (x> —1)dy .
Solution. Let us check the condition d):

P=3x’y+1, O=x"-1,
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oP _ 2 P A2 1 A2

5—(3x y+l)y =3x"-y +0=3x"1=3x,
8Q 3 ! 3 ! 2
—=(x-1) =(x) -0=3x".

—=(x-1) =),

Thus, du(x,y) is the exact differential form. A primi-
tive function u(x, y) will be calculated by integration along the
broken line OAB from fixed point O(0,0) to variable point
B(x,y) (fig. 9.1) with the help of the formula (9.1).

Va
B(x,y)
00,00  A(x,0) X
Figure 9.1
Therefore,

u(x,y)= _[ (3x2y+1)dx+(x3—l)dy+C:
OAB
= I (3x2y+l)dx+(x3—l)dy+ I (3x2y+l)dx+(x3—l)dy+
M4 AM
OA:y=0,y"=0

AB:x=x,x'=0

+C =

‘:j(3x2-0+1+(x3 ~1)0)dx +
0
y

+j((3x2y+1)-0+x3 —1)dy+czfdx+f(x3 ~1)dy+C=
0 0

0
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=x, +(’ =Dy +C=x+("-Dy+C.

Let us make a check:

(a3 =D+ O =y 1), 0
X

=1+y-3x*-0)=1+3x"y = P(x,y),

au ' [
5:(x+(x3—l)y+C)y =0+(x’=1)-) , +0=
:x3_1:Q(an’)-
Lecture 10

Numerical series
10.1 Basic definitions

Let {u,} be a numerical sequence. The expression
Uy Uy o U, =D U,
n=l1

is called a numerical series (infinite sum, infinite numerical se-
ries), u,, u,, u,, ... are terms of the series, u, is the nth term of

the series, and
n
S, =ty Uy U, = Y,
k=1

is the nth partial sum of the series. If there exists a finite limit
lims, =S, the series is called convergent, and S is called the

n—o
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sum of the series. In this case, one writes Zu =§. If lims,

n—»o0
n=l1

does not exist (or is infinite), the series is called divergent. The
series u,, +u,,,+u, ,+.. is called the nth remainder of the

n+2 n+3
series.

The geometric series

8

a+aq+aq’ +..+aq" +...:zaq

is convergent when the ratio |q|<1 (its sum has the form

s=-2 ), and is divergent when |q| >1.

The harmonic series

1 1
I+—+—+.. + +.. —
2 3 ,,Z:‘n

is always divergent.
The generalized harmonic series

201
2~
n=1 n

is convergent when p >1 and divergent when p <1.
A necessary condition for a series to be convergent. If a

series Zu converges, then limu, =0.

n—»o0
n=l1

Divergence test. If limu, #0, then the series Zu

n—»o0
n=l1

divergent.

Example 1. The series %+%+%+... has the following
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terms:

1 1 1 1 1 1
It has partial sums
1 I 1 2+1 3
Slz_’ S2:—+—:—:—,
2 2 4 4 4
I 1 1 4+2+1 7 1
S5 +—+ =— =1-—

=—+—+—= e S .
2 4 8 8 8 ! 2"

The series converges, because it has a finite limit of the
n th partial sum:

lims, :nm(l—i]:l——:l——:l—o=1=S.
n—>o0 n—>o0 2" 2%

Let us check a necessary condition for a series to be
convergent:

limu =1imi=i=l=0.
n—»o n—»o 2” 2°° 00
The sum of this series can also be found as the sum of
1
) : ) ) 4 12 1
geometric series with the ratio g = Lod_— 2
u, 1 41 2
2
1
a 2 2
S —_ e— T e— T — l
l-¢q 1_1 1
2 2

Example 2. Determine if the following series converges
or diverges



i 4n* —n’
~10+2n°

Solution.

The first thing which we always should do is checking a
necessary condition of series convergence:

4n* n’
23 23 S T
limunzlim4n n3:4oo 003 :(fj:‘ Lt
100 n->010+2n 10+2-00 w) 10 2n
o
. ﬂ‘l 2o 0-1 1
zhml’é = 108 = =——=0.
n_m—3+2 —+2 0+2 2
n o0

The limit of the series terms isn’t zero and so by the di-
vergence test the series diverges.

10.2 Properties of convergent series

1. If a series is convergent, then any of its remainders is
convergent. Removal or addition of finitely many terms does
not affect the convergence of a series.

2. If all terms of a series are multiplied by a nonzero
constant, the resulting series preserves the property of conver-
gence or divergence (its sum is multiplied by that constant).

3. If the series Zan and an are convergent and
n=l1 n=1
their sums are equal to S, and S,, respectively, then the series
> (a, £b,) is convergent and its sum is equal to S, £, .
n=1

Example 3. Determine if the following series converge
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or diverge. If they converge give the value of the series:

S —n+2 gn+l
029 W S

C) Z(9n+24n+l +2#] )
n=1

n +3n+2

Solution.

a) Notice that both parts of the series term are numbers
raised to a power. This means that it can be put into the form of
the geometric series. One of the n’s in the exponent has a neg-
ative sign in front of it. So, let us first get rid of that:

) 4n+1

ig—n+24n+l _ i9—(n—2)4n+1 _ z 9,,,2 _
n=l1 n=1

n=1

Since the series starts at n=1 we will want the expo-
nents on the numbers to be n—1:

4n1 42 0 4 n-1 ® 4 n-l
_ D SVER N R < VI el
Z9'” 9! Z‘ ’ (9] Z‘ (9J

So, given series is the geometric series with a =144

4 .
and g = 5 < 1. Therefore, the series converges and has the sum

g 144 144, 0 1296
43 5
9 9

b) Let us use partial fractions on the series term. The
first step is to factor the denominator as much as possible and
get the form of the partial fraction decomposition:
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1 1

"Rt 43n+2  (n+D(n+2)
_A B _An+D)+B(n+l)
n+l n+2 (n+D)(n+2)

u

Now, it is necessary to choose 4 and B so that the
numerators will be equal for every n, so the numerators have
to be set equal:

An+2)+B(n+1)=1.
The numerators must be equal for any »n that we would

choose to use. In particular the numerators must be equal for
n=-2and n=-1:

n=-2

n=-1

-B=1, (B=-1;
A=1, A=1.

Substituting the values of 4 and B to the partial frac-
tion decomposition, it will be obtained:

1 1

u =—————

" n+l n+2

Let us start to write out the terms of the » th partial sum
for given series using the partial fraction form:

1 1 I 1

1+1 1+2 2 3’
1 111

u = = ,
> 241 242 3 4
1 1 1 1

u3: = ,
3+1 342 4 5
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1 11

u = —_ =
"2 p-2+1 n-2+2 n-1 n

9

N S S S O
" n-1+1 n-1+2 n n+l’
1 1
u,=——- )
n+l n+2

Thus, the nth partial sum is:

S, =u Huy tuy o, tu, /%’/ % & &
+.. +%
/‘Z n-— /Y /Y n+\1\ n+\k n+2 2 n+2

Let us take the limit of the partial sum:

1 1) 1 1 1 1 1 1
lims, =lim| —— —— = =——0=—
n— e\ 2 n+2) 2 0+2 2 w 2 2

The sequence of partial sums is convergent and so the

. 1
series is convergent and has a value of 5

c) To get the value of this series we need to rewrite it
and use the properties of convergent series and previous re-
sults:

> 2 2
9—n+24n+1 + ] 9 n+24n+1 +
z( ? z ‘on +3n+2

= n +3n+2 !
_29 n+24n+1+2 1 1296+2.l:
n=l1 n=1 N +3I’l+2 5 2
1296 1301
= +1= .
5 5

66



Lecture 11
Convergence tests for positive series

11.1 Comparison tests

In practice it is rare to compute the partial sums
s, =u, +u,+...+u, . Usually a simple formula can not be
found. But it is possible to define the convergence or diver-
gence of the series, for example, by comparison with another
series which is convergent or divergent.

Comparison test. Suppose that we have two series

Zun and z\/n with u,, v >0 for all » and u, <v,  for all
n . Then,

1. If Zvn is convergent then Zun converges.

2.1f Z”n is divergent then z\/n diverges.

Example 1. Determine if the following series is conver-
gent or divergent

i 1
~3ip
Solution.
If we drop n from the denominator it will get smaller
and hence the whole fraction will get larger. So,
1 1

<—.
3+n 3"

=1
Since the series 237 is a geometric series with
n=0

1 . . .
q:§<l, it converges. Therefore, according to comparison

test the original series also converges.
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It may be difficult to select the second series in such a
way that condition u, <v, is fulfilled, so more frequently the

following comparison test is used.
Limit comparison test. Suppose that we have two series

Zun and z\/n with u, >0, v >0 forall n.
Define,

.u
c¢=lim—=.

n—>0 vn
If ¢ is positive (¢>0) and finite (¢ <o), then either
both series converge or both series diverge.

Example 2. Determine if the following series is conver-
gent or divergent

i n’+1
~3nd+1

Solution.

Fractions involving only polynomials or polynomials
under radicals will behave in the same way as the largest power
of n will behave in the limit. So, the terms in this series should
behave as

=1
The series Z— is a harmonic series and it diverges.
n=1 1

Let us find the limit:

n*+1 ,

3 n +1)n 3_|_
=i i 3L i 3 ) —lim—— = 2=
n—o Vn n—0 l n—o 3p° 4] n—o 3p° 41 0

n
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noon 1 1
3

—+ I+— 1+—
. 3 . 2 2 1 1
=lim n3 n_ —lim nl = Oci = +O:—.
o3 1 n_m3+73 34— 3+0 3
nwoon n ©

So, ¢ 1is positive and finite. According to the limit
comparison test either both series converge or both series di-

0

: : 1 .. .. .
verge. Since the series » — diverges the original series also

n=1

diverges.
11.2 Ratio test (D’Alembert test)

Ratio test (D’Alembert test). Suppose we have the se-

ries Zun .

Define,

u
L =1lim—L,
n—»0 un

Then,

1. if L <1, the series is convergent,

2.if L >1, the series is divergent,

3.if L =1, it is not known whether the series is conver-
gent or not.

This test will be especially useful for series which con-
tain factorials:

n!=1-2-3-...-(n—1)-nz(n—l)!-nz(n—Z)!-(n—l)-n=...,
(2n)1=1-2-3-.-(2n-1)-2n, 2-n!=2:[1-2-3-..-(n—1)-n]

or exponential functions:
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525
5 5

Example 3. Determine if the following series is conver-
gent or divergent

2n+3 — 2n _23 52n71 —

0

z n+2

n=l1 2” n!

Solution.

n+2

The general term of the series is u, = ol
-n!
To compute u,,, it is necessary to substitute n+1 for
all n’sin u,:

_on+l+2  n+3 n+3
m 2" (n+1)! 2" (n+1)! 2”-2-n!-(n+1)'
Let us find the limit:

n+3
"l "-n!
L:Iimu””zlimz 2n.(n+1):lim n+3 2 n!_
now oy o n+2 02" 2.pl(n+1) n+2
2" -n!
) n+3 1 .. n+3
=lim :—-11m2—:
oo (n+1)-(n+2) 2 m>on"+n+2n+2
n. 3
2 2
_1 1m2n;3: * :l-lim—zn n____
2 mep4+3n+2 \oo) 2 mep” 3n 2
ottt
n n n
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+— — 4+
:l-lim n3 n2 :l. 003 002 :l. 0+0 =0<1,
2 n—>wl+7+7 2 14242 2 1+0+40

n n [©ONe e

s0, by the ratio test the series converges.
11.3 Root test (Cauchy test)

Root test (Cauchy test). Suppose we have the series

Su, .
Define,

L=limyu, .

n—o0

Then,

1. if L <1, the series is convergent,

2.if L >1, the series is divergent,

3.if L =1, it is not known whether the series is conver-
gent or not.

Example 4. Determine if the following series is conver-

gent or divergent
i 3n+5Y
S\ n+2 '

Solution.

3n+5}n

The general term of the series is u, =
n+2

Let us find the limit:

L=limgfu, :limn(3n+5] zlim3n+5 _3-0+5 :(fj:

" oo\ n+2 oo p4+2 042 0

71



3n 5 5 5
— 4+ 3+~ 3+— 340
=lim -2 2”:1im ’21: Zo: =3>1,
n—0 E+7 n—>ool+7 142 l+0
n n n o0

s0, by the root test the series diverges.
11.4 Integral test

Integral test. Suppose that f(x) is a continuous, posi-
tive and decreasing function on the interval [k,c0) and that
f(n)=u, then,

1.if _[ f dx is convergent then Zu converges,
n=k

2. if _[ f dx is divergent then Zu diverges.

n=k

Example 5. Determine if the following series is conver-
gent or divergent

= In*n
n=l N
Solution.
4
The general term of the series is u, = -
n
In* x

The function we will use is f(x)= . This function

is clearly positive and if we make x larger the denominator
will get larger and so the function is decreasing.

Let us determine the convergence of the following inte-
gral:
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t=Inux; dt:@;
01 4 b1 4 X Inb
jln xdx:hmjln Y dx=|t, =In1=0; =lim [ £'dt =
1 X b—mol X h—mo
t, =Inb;
A" 1 w1 1
11m[— ]—hm(ﬁ\“ ):—hm(lnSb—oS):—-lnSoo:oo.
b—owo 5 5b—>oo 0 5b—>oo 5

The integral is divergent and so the series also diverges
by the integral test.

Lecture 12
Alternating series. Leibniz test.
Absolute and conditional convergence

An alternating series is any series Zan , for which the

series terms can be written in one of the following two forms:
a,=-D"u,, u,>0,
a,=(-D""u,, u, >0.

There are many other ways to deal with the alternating
sign, but they can all be written as one of the two forms above.
For instance,

(D" =D (=D = (=",
(_l)n—l — (_ 1)n+1 . (_ 1)—2 — (_1)n+1 )

Alternating series test (Leibniz test). Suppose that we
have a series Zan and either a, =(-1)"u, or a, =(-1)""u,,
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where u, >0 for all n. Then if,

a) limu, =0 and,

n—»o0
b) {u,} is a decreasing sequence:
U > Uy > Uy > > U >

then the series Zan is convergent.

An alternating series Zan is called absolutely conver-
gent if the series Z|an| of the absolute values of its terms is
convergent. If Zan is convergent and Z|an| is divergent the
series Zan is called conditionally convergent.

Example 1. Determine if each of the following alternat-

ing series is absolutely convergent, conditionally convergent or
divergent:

= _ln = n = n
2) Z% B2 o S

n+1

Solution.

a) Let us consider a series of the absolute values of the
given series terms:

11
U =—F7—= - -
n4
: : . . . 1 :
It is a generalized harmonic series with p = 1 <1, so it

diverges. Therefore, if the given series converges it does so
conditionally, not absolutely.
Let us apply the alternating series test:
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1) limu, = limL L1 0, so the first condition
n—»o n—o Yo o
is fulfilled;
1 1
2) u,=—=> =u,, for all n, so the second

1
ﬂ; Yn+1 "

condition is satisfied.

Thus, the given series converges by the alternating se-
ries test. As it has not absolute convergence, the convergence is
conditional.

b) Let us consider a series of the absolute values of the
given series terms:
n

n+3

u =

n

and check the necessary condition of a series convergency:

limu, = lim—— =~ [ 2| = lim—— — fim —— -
n—»0 n—op 43 0+3 0 n—o 1 n—>ool 3
— +
n n n
:%:L:1¢0
14> 140
0

As the necessary condition of a series convergence is
not satisfied, the series diverges by the divergent test.

c) Consider a series of the absolute values of the given
series terms:
n

u = .
"ot +l

Let us apply the limit comparison test. The terms in this
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: 1 - )
series should behave as —. The series Z— i1s a harmonic se-

n n:ln
ries and it diverges.
Find the limit:
n
o, . 24l ..onmoon o ©
c=lim—%=1lim =1lim — —=lim— = = |=
n—o Vn n—o l n—® p _|_1 1 n—® p +1 0
n
n2
) w2 : 1 1 1
=lim 2” =1lim = = =1.
' n—2+% B B 1+0
non n 0

So, ¢ is positive and finite. According to the limit
comparison test either both series converge or both series di-

nof

: U O S R
verge. Since the series Z— diverges the series z .
n=1 1 n=1 N +

the absolute values of the terms also diverges, so if the given
series converges it does so conditionally, not absolutely.
Let us apply the alternating series test:

n
2
D limu, =lim——=——=| 2 | = lim—%— =
n—® nsep+]1 o +1 \o) #oep 1
2t
n n
1 1
=lim—*—=—%*°_ - 0 =0, so the first condition is ful-
ey 1 1 1+0
+— 1+
n o0

filled;

2) we need to know whether the terms are decreasing:
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1 1 2 2 3 3

u, = - D) u = D) u = D)
Yk 2707 2241 057 7 3241 10

U, >u, >y >

The series is decreasing, so the second condition is sat-
isfied. Both of the conditions of alternating series test are ful-
filled, accordingly, the given series converges. As it has not ab-
solute convergence, the convergence is conditional.

Lecture 13
Power series. Interval and radius of convergence
of power series. Properties of power series

A power series is any series which can be written in the
form
0
D a,x" =ay+ax+ax’ +ax’+
a,x" =a,+ax+a,x" +a;x" +...
n=0

or in a more general form

Zan(x—xo)" =a,+a,(x—x,)+a,(x—x,)" +a;(x—x,) +...,
n=0

where x, and a, are constants. The a,’s are called the coeffi-

cients of the power series. A power series is a function of x
and its convergence depends on the values of x. It may con-
verge for some values of x and not for other values of x.

Below, we consider power series of the first form, since
the second series can be transformed into the first one by the
replacement X = x—x, .

0
Abel theorem. A power series Zanx" which is con-
n=0
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vergent for some x = x, is absolutely convergent for all x such
that |x|<|x1|. A power series which is divergent for some

x = x, is divergent for all x such that |x| > |x2| .

There exist series convergent for all x, for instance,

00 n

x . :
Z—'. There are series convergent only for x=0, for in-
n=1 N:

o0
stance, Zn!x" )

n=l1

Let R be the least upper bound of all |x| such that the

series Zanx" is convergent at point x . Thus, by the Abel the-
n=0

orem, the series is (absolutely) convergent for all |x| <R, and

the series is divergent for all |x| > R . The constant R is called

the radius of convergence of the power series, and the interval
(—R,R) is called its interval of convergence. The problem of a
power series convergence at the endpoints of its convergence
interval has to be studied separately in each specific case. If a
series is convergent only for x =0, the convergence interval
degenerates into a point (and R =0); if a series is convergent
for all x, then, obviously, R =.

The radius of convergence of a power series Zanx"
n=0
with finitely many zero terms can be calculated by the formulas

. |a . 1
R=1lim|—{, R=lim—
n—»0 an+1 n—>»0 n' an|

or by applying the ratio and root tests, i.e. from the given con-
ditions
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. u
111'1’1 n+1 < l

n—»0

<1, limz
n—»o0

where u, =a,x".

The series obtained by differentiation or integration by
parts of the power series have the same interval of convergence
and their sum within this interval is accordingly equal to the
derivative or to the integral from the sum of the original series.

Example 1. Determine the radius and interval of con-
vergence for the following power series:

= on+l =~ (n+ 2) (n+2)-4""
Solution.
a) Let us find the radius of convergence:

n _ n+l n+l1 n+l

a, = H an+_ - - 5
" 2n+l 2+ )+1 204241 2043

n n
R = lim |22 | = lim [+ 1] _ fjp | 201
n—o0 a,. noo| n+1 nso| n+1
2n+3 2n+3
N A I P T U
Croe|(2n+1)-(n+1)| =2 4 2n 4|

2 2
lim 2n” +3n () tim 2n n _
0|22 +3n+1] o) m=[2n> 3n 1
Tyttt
n n-on
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3 3
e e | e
=lim T 11" ] :| |:l.
n_m2+—+—2 2+ —+— 2+0+0
n o n 0 0

Therefore, the series is absolutely convergent on the in-
terval
-1<x-3<1,

—1+3<x<1+3,
2<x<4

and is divergent outside the interval. The radius of convergence
is R=1.

At the left endpoint of the interval, for x =2, we have
the alternating series

2 (2-3)'n & (=1)'n
2 2n+1 =2 '

g ‘o 2n+l1

0

2

' 2n+1
check the necessary condition for it:

is a series of the absolute values. Let us

n
limu, =lim——=—2 [ 2| jm-2 =
o > 2p+1 2-00+1 oo n—>w27n+l
n o n
. 1 1 1 1
24— 24— +
n o0

As the necessary condition of a series convergence is
not satisfied, the series diverges by the divergent test.

At the right endpoint, for x =4, we have the numerical
series with positive terms
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which diverges by the divergent test.
Thus, the series under consideration is convergent on

the open interval

2<x<4.

b) Let us apply the ratio test:

xn xn+1 xn+1

u, =T A U, = n+l n+l 2
(n+2)-4 (n+142)-4™  (n+3)-4

n+l

X
tim et | — i (n+1+2)-4"" . |x"-x-(n+2)-4" _
noely n—w xf" n—>oo‘(n+3).4”.4.xn
(n+2)-4"
_ mwzﬂhmﬂz(fj:
ool (n+3)-4] 4 moep+3 o0
L I+—
4"—”0&_'_; 4"—””1_'_; 4 1+0 4
n o n n

Therefore, the series is absolutely convergent on the in-
terval

M<l, x| <4,
4

4<x<4

and is divergent outside the interval. The radius of convergence
is R=4.
At the left endpoint of the interval, for x =—4, we have
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the alternating series

00 _4n o0 _ln.4n o0 _ll’l
$ YD S

= (n+2)-4" S (n+2)-4" Sn+2

0

2

= n+2
the limit comparison test.

is a series of the absolute values. Let us apply

) ) ) 1 i
The terms in this series should behave as —. It is a

n
harmonic series and it diverges.
Let us find the limit:
1
) ) ) 1 )
c:hmu—”:hmn+2:hm -Ezlm no__® .
n—>oovn n—o l n—>oon+2 1 n—>oon+2 OO+2
n
n
) " 1 1 1+
o0 n—o E & o 142 142 1+0
n n n o0

: |
The series z

n=l1 n+
test, so it does not converge absolutely.
Let us apply the alternating series test:

diverges by the limit comparison

1
u,= ,
n+2
. .1 1 1 .
1) limu, =lim = =—=0, so the first condi-
n—w nsop4+2 w+2 ©

tion is fulfilled;
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2)u:1>1=u

for all n, so the second

n+l
condition is satisfied.

Thus, the series converges by the alternating series test.
As it has no absolute convergence, the convergence is condi-
tional.

At the right endpoint, for x =4, we have the numerical
series with positive terms

0 0

Z“(n+2) 4" z

p— 1n+2

which diverges by the limit comparison test.
Thus, the series under consideration is convergent on
the semi-open interval

—4<x<4.

Lecture 14
Taylor and Maclaurin series.
Function expansion in a power series.
Applications of series in numerical calculations

14.1 Taylor and Maclaurin series.
Function expansion in a power series

Let us assume that the function f(x) has a power se-
ries representation about x = x,,

f() =Y a,(x=x) =

=a,+a,(x—x,)+a,(x—x,)" +a,(x—x,) +a,(x—x,)* +...
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Next, we will assume that the function f(x) has derivatives of
every order and that we can in fact find them all.
Now we need to determine what the coefficients a, are.

Let us first evaluate everything at x = x,,. This gives,

f(x))=a,.
If we take the derivative of the function (and its power
series) and plug in x = x,,, then we get

f(x)=a,+2a,(x—x,)+3a,(x—x,)" +4a,(x—x,) +...,

f,(xo) =4q.

Let us continue with this idea and find the second de-
rivative:

fM(x)=2a,+2-3a,(x—x,)+3-4a,(x—x,)* +...,

f"(x))=2a,, a, :@.

Using the third derivative gives,
Sf"(x)=2-3a,+2-3-4a,(x—x)) +...,
" fm(x())
x,)=2-3a,, a,=——=.
f ( 0) 3 3 2 . 3
Using the fourth derivative gives,
fPx)=2-3-4a,+...,
(%)
f(‘”(xo) =2-3-4a,, a, :TZ

Thus, in general, we have got the following formula for
the coefficients:
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_ f(n)(xo) .

n!

n

So, provided a power series representation for the func-
tion f(x) about x=1x, it exists the Taylor series for f(x)
around the basepoint x = x,:

0 (n) ’
=2 L ey = )+ L8 (e +
+—f”§)f°)(x—xo) A ( S ) (x—x,)" +....

S0 (x—x,)’ +...+_f(n;(!xo)

The Taylor series about x, =0 is named a Maclaurin
series for f(x):

(n) "
=S L00 L0, SO

21
3 (n)
L O +...+mx" +
3! n!
Example 1. Find the Maclaurin series for f(x)=e".
Solution.
Let us first take some derivatives and evaluate them at
x,=0:
f(x)=e", fO)y=e’ =1,
flx)=(e") =e, f'0)=e’ =1,
fl(x)=(e") =e", f"0)y=e’=1,
fr(x)=(e") =e", f"oy=e’=1,
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fr(x)=e", FO) =€ =1.

Plug these into the Maclaurin series formula, we obtain:

N 1 1 1 1
e =l+—x+—xX"+—x"+.+—x"+..
2! 3! n!

x X X x"
e =l+—+—+—+..+—+..
1 21 31 n!

The following representations of elementary functions
by Maclaurin series are often used in applications:

2 n

1. e :1+£+x—+...+—+..., xeR,
1M 2! n!
3 5 n_2n+l
2. sinx:x—x—+x——... - l) , XeR,
3! 5! 2n+1)!
2 4 n_2n
3. cosle—x—+x——... (= l) ———+..., xXeR,
21 4! (2n)!
2 3 1 n—1 n
4. 1n(1+x)=x—%+%— LD ven.
n
3 5 2n+1
5. 1n1+—x_2 x—+x—+...+ al +... ], |x|<1,
1-x 3 5 2n+1
3 5 _1\" 2n+l1
6. arctanxzx—%+%—...+(;)—xl+..., xe[-1;1],
n+
1 X 1.3
7. arcsinx=x+—-—+———
2 3 245

3.0@n-1) X

+..., xe[-1;1],
2-4...-2n  2n+1
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8. (I+x) =l+ax+

a(a
2!

_l) 2

X +...

+oc(oc -D..(ax—n+1) o

n!

3 3

9. shx=x+—++
3!

5!

2 4
X

10. chx:1+x—+—+

21 41

14.2 Applications of series in numerical calculations

In numerical calculations, the power series are used, in
particular, for calculating the values of functions, integrals and

2n-1
X

2n

+
(2n)!

for solving the differential equations.

+
(2n-1)!

+...

o

+...

+

x|<1,

, X€E

R,

, XeER.

Example 2. Compute 'Ye with accuracy 0,001.

Solution.

Let us substitute % instead of x to the well-known

representation of the function e by the Maclaurin series and

compute it with the given accuracy:

e =1+

o)

1

4
o)
+

21

o, lio) [
1 L
¥+10+
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! ! ! 4!
~1+0,1+0,005+]0,0002 +...~1,105.



0,5
Example 3. Compute the integral _[ xln(l+x2)dx with
0

accuracy 0,001.

Solution.

Let us substitute x° instead of x to the well-known
representation of the function ln(l + x) by the Maclaurin series

and compute the integral with the given accuracy:

1n(1+x2):xz_(’“2)2 () ()

+ — +..=
2 3 4
X xSy
=x -t
2 3 4

0,5 0,5 x4 x6 x8
len(l+x2)dx= Ix- X+ -4 ldx=
0 0 2 3 4

0,5 xS x7 x9 0,5 0,5 x5 0,5 x7
:I Xt =t |dx = Ix3dx—I—dx+ I—dx—
0 2 3 4 0 Y 2 ) 3

_oj_sx_gd N _oj_s 5 _l.oj_s ‘ +l_0j'5 "
4x...—0xx20xx30xx

0,5 610> g 105 10 |9-3

0,5 4

_l J.xgdx+ :x_ —_——— +_.x_ _l.x_ +.“:
4 41, 2 6|, 3 8| 4 10|
0,5 105 105 10,5
— - +—- - +
4 2 6 3 8 4 10

~0,015-0,001+0,0002~-...=0,014.

Example 4. Find the first three nonzero terms of expan-
sion into the power series of the solution of the differential
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equation y"+xy'—y =0 satisfying the initial conditions

y(0)=1, y'(0)=0.
Solution.
Because x, =0, then we will find the first three non-

zero terms of the expansion into the Maclaurin series:

y(x):y(0)+yl('0)x+y2('0) x’ +y3('O) Xt

The initial condition y(0)=1 is the first nonzero term.
Let us find the second one:

y'(0)=0,
Vi=—x'+y,
Y'(0) = —x,-y'(0)+ y(0) =—0-0+1=1,
So, »"(0)=1 is the second nonzero term.
Let us find the third nonzero term:
V'= (0 y) =) Y =y (V) )+ =
=—('+0")+y' =-) -n"+)y'=-n",
y"(0)=-x,-»"(0)=-0-1=0,

y]V — (_xyu)' — _x; . yu _xym — _y/r _xym ,
¥ (0)=-y"(0)~x,-y"(0)=~1-0-0=~1.

So, " (0) = -1 is the third nonzero term.
Thus,

_ 1 2 -1 4 _ X2 x4
y(X)—1+2—!x +4—!x +..._1+2—!—4—!+
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Lecture 15
Fourier series. Expansion of periodic, even
and odd functions in the Fourier series

A Fourier series is a specific type of infinite mathemat-
ical series involving trigonometric functions. Fourier series are
used in applied mathematics, and especially in physics and
electronics, to express periodic functions such as those which
contain communications signal waveforms.

Let us consider some basic principles of this theory.

A function f(x) is said to satisfy the Dirichlet condi-

tions on an interval (a,b) if:

a) this interval can be divided into finitely many inter-
vals on which f(x) is monotone and continuous;

b) at any discontinuity point x, of the function, there
exist finite one-sided limits f(x,+0) and f(x,—0).

Dirichlet theorem. Any 27 -periodic function which
satisfies the Dirichlet conditions on the interval (—z,7) can be
represented by its Fourier series

f(x) :&+Z(an cosnx+b, sinnx),

n=1

whose coefficients are defined by the Euler—Fourier formulas
1% 1%
a, =— x)dx, a =— x)cosnxdx,

b, _1 _[ f(x)sinnxdx, n=1,2,3..,
4 -
where the coefficients a, and b, are called the Fourier coeffi-

cients.
At the points of continuity of f(x), the Fourier series
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converges to f(x), and at any discontinuity point x,, the se-
ries converges to

S(x)= 11m f (x)+ 11m f (x)].

The case of 2/ -periodic functions can be easily reduced
to that of 27 -periodic functions by changing the variable x to

X . : s .
z=—_ The Fourier expansion of a 2/-periodic function

f(x) has the form
a, ~ nwx nx
f(x)—? Z‘( cos ; +b ; ],

where

l
b =-jf(x)sinﬂlxdx, n=1,23...
-1

Let f(x) be an even function, i.e., f(—x)= f(x). Then
the Fourier expansion of f(x) on the interval (—/,/) has the
form of the cosine Fourier series:

f(x)——+ a cosg

n=1
where the Fourier coefficients have the form

l l
aozé_[f(x)dx, an:%_[f(x)cos?dx,
0 0

b =0, n=1,2,3...

n
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Let f(x) be an odd function, ie., f(—x)=—f(x).
Then the Fourier expansion of f(x) on the interval (—/,/) has
the form of the sine Fourier series:

nwx

f(x)= ibn sinT,

where the Fourier coefficients have the form
a,=0, a,=0,

l

b, :%_([f(x)sinml[—xdx, n=1,23...

If f(x) is defined on the interval (0,/) and satisfied

the Dirichlet conditions, it can be represented by the cosine
Fourier series, as well as the sine Fourier series. The cosine
Fourier expansion of f(x) on the interval (0,/) corresponds to

the extension of f(x) to the interval (—,0) as an even func-
tion. The sine Fourier expansion of f(x) on (0,/) corresponds
to the extension of f(x) to the interval (~/,0) as an odd func-

tion.
For finding the coefficients a, and b, we will use the

integration by parts taking into account the following:
sinnt =0, cosnr=(-1)".

Example 1. Find the Fourier series for the periodic
function with period 27 :

0, —T<x<0;

x, O<x<m.

f(x):{

Solution.

A graph of the given function is shown on the fig. 15.1.
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Figure 15.1

Let us find the Fourier coefficients for the 27 -periodic
function:

a, :l]r.f(x)dx— {J.O dx+jxdx]
T %

- 0

Vg 0 Vg
a, :l‘[f(x)cosnxdx:l[.f 0-cosnxdx+jxc0snxdx]=
T m

,r u=x du =dx
—Ixcosnxdx: 1 . =
T dv = cosnxdx v:‘[cosnxdx:—smnx

n
1 1.

=—-| x-—sinnx

T n

N ] 1 ( 1.
—J.—smnxdx =—-| r-—sinzn—
n b

0 0 n

—0-lsin0—l-‘[sinnxdx]:l-LE-O—l-(—lcosnx]
n n o

T n n

%-(cosnn—cosO) = 7[112 -((—l)" —1),

3 | =

V3 0 V3
b, :l _[ f(x)sinnxdx:l[.f O-sinnxdx+J‘xsinnxdx]=
T 7\ 2

0

93



,r u=x du = dx
—_[xsinnxdx: ) ) 1
T dv = sin nxdx v:_[smnxdx:——cosnx

n
1 o

:—-Lx- ——cosnx] I(——cosnx}dx]
T 0

:l-{—l-(ﬂcosnn—O-cos0)+l-_[cosnxdx] =
T n

:l(_l.ﬁ.(_l) +l ls1nnx|

n non
1.(_2(_1)" +i2.(smn_smo)] Ty =Ly
T n
Thus, the Fourier series for our function is given by:
T = 1 1 n+l .
f(x)=z+;(7m2 —(-1) 1s1nnxj.

n
Example 2. Find the Fourier series of the function

f(x)=x-3, x€[0,3].

-((—1)" - 1) COS 11X +

Solution.
A graph of the given function is shown on the fig. 15.2.

Figure 15.2

Let us extend the given function to the interval [-3,0]
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as an odd function and prolong it with the period 7'=2/=6 to
the whole axis (fig. 15.3).

Figure 15.3

Since the function is odd, we need to find only b, :

[=3,

2 . TTNX 21 . TTHX
b =— x)sin—dx=—|(x-3)sin——dx =
" l-([f( ) / 3;[( ) 3
u=x-3 du =dx
= b8 3 Tnx|=

= . Tnx
dv =sin——dx y=———C0S—
3 n 3

3
+i‘[cosﬂdx :% 0-(—icosnnj+3-(—icos0J+
n 3 3 n n
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ﬂn.ﬂn 3
2 9 9 ) )

=—| —+——-(sinzn—sin0) |=
3( mn m'n’ ( )]

2( 9 9 j 2( 9 j 6
=— ——+?'0 = —— | =— .
3\ nn 7n°n 3\ 7nn n

Thus, the Fourier series for our function is given by:

f(x)= ij(—%j-sin%.
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