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Abstract 

Metal-on-ultra high molecular weight polyethylene (UHMWPE) total hip 

replacement (THR) has been the most popular and clinically successful hip 

prosthesis to date. The long-term performance of THR depends on both the 

tribological characteristics and biomechanical behaviour of the prosthesis. 

This project focused on understanding the contact mechanics and 

mechanical behaviour of cemented and cementless metal-on-UHMWPE 

THRs under different conditions using a computational approach. 

Three-dimensional (3D) computational models of THRs with realistic pelvic 

bone were developed. Two typical bearings, the Charnley hip and the 

Pinnacle cup system, were investigated. The effect of different factors on the 

contact mechanics and cement stresses for Charnley THR were examined. 

Additionally, the contact mechanics and mechanical behaviour of Pinnacle 

THR under daily activities, standard and microseparation conditions were 

analysed. 

The cup angles and penetration depths in the cup, and the sizes of the 

components were found to have a significant effect on the contact 

mechanics and cement stresses for Charnley THR. The stresses at the 

bone-cement interface for the Charnley THR with outer diameter of 40 mm 

were predicted to be higher than that of 43 mm, the difference was found to 

be consistent with the clinical observation of different aseptic loosening 

rates. 

The cup angles and radial clearances were found to have a synergistic 

effect on the contact mechanics of Pinnacle THR. Edge loading on both 

articulating surface and backside surface of the liner was observed during 

some daily activities due to steep cup inclination angles and smaller radial 

clearance. The introduction of microseparation into the gait cycle, especially 

when combined with steep cup inclination angles, resulted in concentrated 

stresses and plastic deformation in the liner, which would cause potential 

damage to the liner. Therefore, it is critically important to reduce the levels of 

rotational and translational mal-positioning of the components clinically. 
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Chapter 1 

Introduction and Literature Review 

1.1  Introduction 

THR is one of the best solutions for hip joint diseases and the most 

successful surgical interventions in the orthopaedics field. It is a surgical 

technology that replaces the hip joint with artificial parts, aiming to reduce 

joint pain, restore hip function and improve the quality of life for patients with 

severe hip disease and injury. Several material combinations for hip joint 

replacements have been introduced, including metal-on-polyethylene (MoP), 

ceramic-on-polyethylene (CoP), metal-on-metal (MoM), ceramic-on-ceramic 

(CoC) and ceramic-on-metal (CoM). Each of them has its own benefits and 

limitations. Due to its durability and performance, MoP has been the leading 

bearing material combination chosen by surgeons for at least 30 years, and 

remains the gold standard for hip joint replacements today.  

Hip replacements can fail for a variety of reasons, either biologically or 

mechanically. By far the most common cause is called “aseptic loosening” 

(Ingham and Fisher, 2005). Aseptic loosening occurs when the hip implants 

become loose within the bone as a result of focal periprosthetic inflammatory 

bone loss. This focal inflammation is induced by particulate wear debris, 

which is generated primarily on the articulating surface or other non-articular 

prosthesis or cement interface (Goldring et al., 1983). When failure of the 

implant occurs, a re-operation is required to replace the failed joint with a 

new prosthesis. This re-operation is called a “revision”. Hip replacement 

revisions are often not as successful as the primary operations. Patients with 

revision operations tend to have less overall motion of the joint, and the 

longevity of the implant decreases with each revision. Aseptic loosening and 

revision of hip prostheses are caused by many reasons and involve many 

factors such as the component design, the fixation of the components, the 

conditions that the implants are subjected to, etc (Sundfeldt, et al., 2006). 

For this reason, pre-clinical testing and evaluation of the THR are necessary 

and very important. The development of experimental tests to simulate in 
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vivo kinematics and loading conditions allow the performance of the implant 

system to be evaluated physiologically. However, experimental studies are 

complex, time consuming and expensive to conduct. Alternatively, 

computational simulation is an effective solution for assessing and 

evaluating the performance of THR. By modifying the input conditions and 

system parameters, the performance of the hip implant under different 

conditions can be evaluated and tested and the design can be optimized. 

With the help of computational simulation, the mechanical behaviour of hip 

prostheses, as well as the mechanism of the failure of the hip replacements 

can be better understood. 

The computational analysis of contact mechanics and fixation of the THR is 

very important. Contact stress, one of the parameters from the contact 

mechanics analysis, is generally related to the fatigue-related wear 

mechanism and surface damage of hip prostheses (Rostoker and Galante, 

1979; Rose et al., 1983; McNie et al., 1998). In view of this, to minimize the 

contact stresses has been the ultimate goal for design of the implants. In 

most cases, contact occurs within the surface of the cup and the contact 

stresses are at a low level in MoP THR due to the lower stiffness of the 

polyethylene of the cup compared to the metal of the femoral head. However, 

under certain circumstances, some unexpected consequences can occur. 

Contact may be extended to the edge of cup, namely “edge loading”, which 

can lead to a stress concentration and potentially plastic deformation of the 

material, causing damage to the cup (Besong et al., 2001a; Williams et al., 

2003). The scientific understanding of the contact mechanics of MoP THR 

undergoing edge loading is still in a preliminary stage and is the main focus 

of this research. 

1.2  The Human Hip Joint 

1.2.1  Synovial Joint 

In the human body, a joint is the location at which two or more bones make 

contact. It is constructed to allow various movements and provide 

mechanical support. The most common type of joint in the human body is 

the synovial joint (Moor and Agur, 2002). In the synovial joint, the end of the 
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articulating surface is covered with hyaline cartilage - the articular cartilage. 

The articulating bones are separated by a space called the joint cavity but 

held together by the synovial membrane, which forms a synovial capsule 

and secretes synovial fluid into the joint cavity for lubrication and also 

provides a source of nutrition (Blewis et al., 2007). The outer layer of the 

capsule consists of the ligaments that hold the bones together, as shown in 

Figure 1.1. Movement of the joint is controlled by the action of the muscles, 

which are connected to the bone via tendons. 

 

Figure 1.1  Typical synovial joints (Fisher, 2001). 

 

1.2.2  Anatomy of The Hip Joint 

The hip joint is a typical ball and socket type of synovial joint, which 

connects the lower extremities of the body to the pelvis and axial skeleton of 

the trunk. The hip joint is formed by the head of the femur (thigh bone) and 

the acetabulum of the pelvis (Figure 1.2 a), and as such it accommodates a 

wide range of movements, as well as transmits high dynamic loads (7-8 

times the body weight (BW)) (Palastanga et al., 2006). The hip joint is 

wrapped in a capsule that contains the synovial fluid (Figure 1.2 b). The 

stability of the hip joint is mainly ensured by the strong ligaments, the joint 

capsule that surrounds the hip joint and the muscles that surround the hip. 
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Figure 1.2  The nature hip joint. (a) dissected joint, (b) hip joint with synovial 

capsule (Gray, 2000). 

 

The pelvis is a large semicircular complex structure, which comprises three 

bones: the ilium, ischium and pubis (Figure 1.3). The uppermost bone is the 

ilium which is formed in the shape of a wing. The ischium forms the middle 

portion of the pelvis, and the pubis is the lower, posterior part. The three 

bones are joined together and form the acetabulum. 

The femur is the longest and strongest bone in the body and forms the thigh. 

Close to the top of the femur are two protrusions, known as the greater 

trochanter and lesser trochanter (Figure 1.3). The main function of the two 

trochanters is for muscle attachment. The femoral neck connects the head 

and the main femoral shaft. The angle between the femoral neck and the 

shaft is known as the inclination angle in the frontal plane and anteversion 

angle in the horizontal plane. In an average adult, the inclination angle of the 

femoral head is approximately 125º and the anteversion angle is around 10º. 

However, these angles vary from one individual to another (Palastanga et al., 

2006).  
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Figure 1.3  The bones of pelvis and femur (Norkin and Levangie, 1992). 

 

1.2.3  Hip Joint Motion 

The ball-in-socket configuration of the hip joint allows the head of the femur 

to rotate inside the socket of the acetabulum, resulting in three degrees of 

freedom (DOF) movement in three planes: flexion-extension in the sagittal 

plane, abduction-adduction in the coronal plane, and internal-external 

rotation in the transverse plane (Figure 1.4).  

Hip flexion involves moving the femur forward/upward relative to the top of 

the pelvis while extension is moving the femur backward/downward. 

Abduction is lateral movement away from the midline of the body while 

adduction is medial movement towards it. Internal rotation or medial rotation 

is rotary movement around the longitudinal axis of the bone towards the 

centre of the body which will turn the thigh inward, while external rotation or 

lateral rotation is the rotary movement away from the centre of the body 

which will turn the thigh outward (Gray, 2000) (Figure 1.4). A mixture or a 

single contribution of these movements produces the range of movements 

that are experienced during daily life. 
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Figure 1.4  The anatomic movements for the hip joint (Neill, 2008). 

 

Hip joint motion during normal walking has been measured using different 

methods and instruments, among which, two typical studies were conducted 

by Johnston and Smidt (1969), and Bergmann’s group (Bergmann et al., 

1993; 2001a; 2004). In 1969, Johnston and Smidt measured the hip joint 

motion during walking for thirty-three normal subjects by an electro 

goniometric method, and reported that the mean ranges of movement for the 

hip motion during walking were approximately 37º and 15º for flexion and 

extension, 7º and 5º for abduction and adduction, 5º and 9º for internal and 

external rotation respectively (Figure 1.5). Bergmann et al. (2001a) 

measured the patterns of hip motion in vivo from patients in several daily 

activities. According to their studies, the ranges of movement for the hip 

motions during walking were approximately between -6° and 26° for flexion-

extension, -9° and 9° for adduction-abduction, -2° and 12° for internal-

external rotation respectively. Other patterns and ranges of movement for 

hip motion during walking have also been reported, and these are 

summarised in Table 1.1. 

Flexion and extension Abduction and adduction

Internal-external rotation
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Figure 1.5  Normal pattern of hip joint motion (Johnston and Smidt, 1969).  

 

Table 1.1  The mean total ranges of hip joint motion during the gait cycle. 

Studies Methods Age 
Mean ranges of motion 

FE (º) AA (º) IER (º) 

Sutherland et al, 1980 Cline film 19-40 43 14 9 

Isacson et al., 1986 Goniometer 25-35 30.2 13.6 9.9 

Kadaba et al., 1990 Vicon 18-40 43.2 11.6 13 

Smidt, 1971 Electrogoniometer 23-56 42 12.2 10 

Gore et al., 1984 Electrogoniometer 18-74 40 10-15 10 

Apkarian et al., 1989 Video 21-26 25 13 18 

Õunpuu, 1995 Cinematography Adults 43 13 8 

 

1.2.4  Hip Joint Loading 

Daily activities such as normal walking, running, climbing and even standing 

and sitting can produce a broad range of forces that act upon the hip joint. 

These forces are mainly generated by the activity of muscles that cross the 

hip, the weight of the limbs and trunk, and the inertia forces caused by the 

mass of the body.  
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The studies that estimated the resultant forces acting on the hip joint during 

normal daily activities have been conducted using two main techniques. The 

first method was by mathematical calculation. This method is based on 

simplified muscle models and use a reduction method or optimisation 

technique (Paul, 1966; Fraysse et al., 2009). The musculoskeletal model is 

developed and the external forces (e.g. ground reaction force) are measured 

and are transmitted through the lower limb of the human body. Equilibrium is 

specified at each of the joints in the lower limb. Due to the redundancy of the 

muscles and other tissues, the number of variables generally exceeds the 

number of the equilibrium equations and cannot be solved with a unique 

solution. Two general approaches are used to overcome this problem: (1) 

the reduction technique, in which the number of variables is reduced so as to 

make exact solution of the equilibrium equations possible by making 

simplified assumptions about the anatomy and function of the load 

transmitting elements (Paul, 1966; Duda et al., 1997); or (2) the optimisation 

method, where all the variables are included and the equilibrium equations 

are solved by choosing a specified criteria, e.g., the minimisation of energy 

consumption (Stansfield et al., 2003; Hashimoto et al., 2005).  

The second method was by using instrumented implants. This approach can 

provide the most accurate measurements and be used for different activities. 

However, such a method has ethical issues and some challenges, such as 

the cost and technical complexity. Importantly, this method cannot study 

truly normal hips. Nevertheless, this method has been widely used by Rydell 

(1966), English and Kilvington (1979) etc in early studies, and by 

Bergmann’s group (Bergmann et al., 2001a; 2004) in more recent studies.  

The hip resultant forces during different daily activities that have been 

reported are summarised in Table 1.2. Two typical studies should be noted. 

The first study was conducted by Paul (1966), who predicted the resultant 

forces that transmitted at the joints in the human body during walking. The 

hip resultant force curve obtained from this study is still regarded as one of 

the standard loading configurations for modern hip simulators. The second 

study was conducted by Bergmann’s group (Bergmann et al., 1993; 2001a; 

2004), in which, gait analysis data along with hip joint contact forces and 

ground reaction forces were documented for the most common human 
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activities like walking, stair climbing, standing up, etc. These data have been 

applied as inputs into computational models to study the biomechanics of 

both natural hip joints and artificial hip joints (Tong et al., 2008; Zant et al., 

2008; Anderson et al., 2008; Harris et al., 2012). 

Figure 1.6 shows a wave pattern of the hip resultant force during walking 

which was obtained from Bergmann’s study (Bergmann et al., 2001a). It 

shows a double-peak pattern with the maximum force occurring at the first 

peak in the gait cycle. The hip resultant forces during level walking ranged 

from 2.64 BW to 7.6 BW, which were found to be dependent on the walking 

speed, muscle strength, gender and age of the studied subjects, as well as 

on the technique used (Bergmann et al., 1993; 2001a; Hashimoto et al., 

2005). 

Interestingly, the hip resultant forces during normal activities calculated by 

the mathematical method were consistently higher than those measured in 

vivo by using instrumented prostheses. This is likely because the 

instrumented prostheses studies were conducted on patients with medical 

conditions and hence could not be classified as ‘normal’ hips, whilst in 

mathematical studies, several assumptions were made which may affect the 

accuracy of the outcomes. (Brand et al., 1994; Stansfield et al., 2003). 

 

 

Figure 1.6  Averaged variation during the walking cycle of the resultant hip 

joint force at fast, normal and slow speeds (Bergmann et al., 2001a). 
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Table 1.2  Typical studies on hip joint forces during different activities. 

Studies 

Hip joint forces 
(BW) Activities 

Methods 
used 

Max Average 

Rydell, 1966 
3.3 
2.9 

-- 
-- 

Walking (1.4 m/s) 
One-legged stance 

Instrumented 
implants 

Paul, 1966 6.4 3.88 Walking Reduction 

Paul, 1976 -- 

4.9 
4.9 
7.6 
7.2 
7.1 

Slow walking (1.10 m/s) 
Normal walking (1.48 m/s) 
Fast walking (2.01 m/s) 
Ascending stairs 
Descending stairs 

Reduction 

Crowninshield et 
al., 1978 

5.0 
7.6 
3.9 
3.7 

4.3 
-- 
-- 
-- 

Walking (0.95-1.05 m/s) 
Ascending stairs 
Descending stairs 
Rising from chair 

Optimisation 

English and 
Kilvington, 1979 

2.7 
3.59 

-- 
-- 

Walking (0.73 m/s) 
One-legged stance 

Instrumented 
implants 

Davy et al., 1988 
2.8 
2.6 
2.1 

2.64 
Walking (0.5 m/s) 
Stair climbing 
One-legged stance 

Instrumented 
implants 

Iglic et al., 1993 2.4 -- One-legged stance Reduction 

Brand et al., 
1994 

4.0 3.5 Walking (1.11-1.36 m/s) Optimisation 

Duda et al., 1997 3.8  Level walking Reduction 

Heller et al., 
2001 

3.1 
3.2 

2.7 
2.7 

Walking (1.08 m/s) 
Ascending stairs 

Optimisation 

Stansfield et al., 
2003 

3.2 
2.8 
2.2 
4.5 

3.1 
2.6 
2.2 
3.8 

Walking (1.43 m/s) 
Rising from chair 
Sitting on chair 
2-1-2 leg stance 

Optimisation 

Fraysse et al., 
2009 

-- 4.0 Walking Optimisation 

Bergmann et al., 
1993 

8.7 
5.5 

-- 
Stumbling 
Jogging 

Instrumented 
implants 

Bergmann et al., 
2001a 

 

2.33 
2.32 
2.52 
2.60 
1.90 

Walking (1.08 m/s) 
One-legged stance 
Ascending stairs 
Desending stairs 
Rising from chair 

Instrumented 
implants 

Hashimoto et al., 
2005 

 

2.68 
3.50 

 
3.04 

Normal walking 
Normal walking (young 
group) 
Normal walking (old 
group) 

Optimisation 

Simonsen et al., 
1995 

 5.5 Walking Optimisation 
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1.2.5  Hip Joint Disease 

The hip joint is one of the strongest and most durable joints and serves a 

number of functions in the human body. However, it may suffer from disease 

or trauma, leading to joint pain, inflammation and even loss of the function 

and disability (Charlish, 1996). Hip joint disease can affect a variety of 

people from all age groups. The most common disease is hip arthritis, which 

is any condition that leads to degeneration of the joint and the cartilage 

surface (Charlish, 1996). Osteoarthritis (OA) is the most common arthritis 

form. It occurs when the equilibrium between the breakdown and repair of 

the joint tissues becomes unbalanced. It is a slow, progressive, ultimately 

degenerative disorder confined to movable joints. OA mainly affects older 

people and can range from mild to severe conditions. Apart from age-related 

reasons, it is also believed to be induced by high levels of stress in the joint 

causing structural and biomechanical changes (Hellio and Graverand-

Gastineau, 2009). The end-stage of OA is the condition under which the 

cartilage is completely worn out, the femoral and acetabular subchondral 

bones are exposed and are directly in contact with each other (Muehleman 

and Arsenis, 1995). 

Rheumatoid arthritis is an inflammatory condition that affects the lining of all 

joints in the body. It causes an inflammatory response in the joint lining 

which destroys the articular cartilage and surrounding tissues (Charlish, 

1996). 

Avascular necrosis (AVN), also known as osteonecrosis, is a disease which 

commonly involves the hip joint. The end result of this disease is the 

collapse and complete deterioration of the femoral head, commonly referred 

to as the “ball” of the hip joint (Charlish, 1996). 

1.3  Artificial Hip Joint 

1.3.1  Overview 

The hip joint is expected to function in the human body for a lifetime. 

However, hip disease or trauma often require this natural bearing to be 

replaced by an artificial one. Hip joint replacement is currently the most 
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successful surgical treatment for hip joint disease, and the outcomes are 

excellent with a long-term survival rate of minimum 70% at 35 years for hip 

arthroplasty in the follow-up studies (Hardidge et al., 2003; Callaghan et al., 

2009). Most patients with hip replacements have excellent pain relief and 

improved ability to perform routine daily activities.  

There are two main choices that should be considered when a hip joint 

replacement is undertaken: the materials for the components and fixation 

methods for the prostheses. The most popular and favourite material 

combinations for the hip joint replacement are MoP, MoM and CoC. They 

are usually categorized into hard-on-soft combinations (e.g. MoP) and hard-

on-hard combinations (e.g. MoM and CoC). Fixation of the implants can be 

achieved by using bone cement (referred as cemented hip replacement) or a 

porous sintered coating which allows bone in-growth (referred as non-

cemented or cementless hip replacement) or combination of them (hybrid 

hip prostheses). The selection of the material combination and fixation 

method for the hip joint replacements depend on several factors, including 

the age and activity level of the patient, and the surgeon’s preference. 

1.3.2  History of Hip Joint Replacement 

The earliest recorded attempt on hip joint replacement was in 1891, using 

ivory to replace the femoral head and fixing the implant to the bone with 

nickel-plated screws. However, the implant suffered extrusion after several 

months of wear (McKee, 1982). In 1938, Philip Wiles developed the first 

implanted MoM hip joint replacement, in which stainless steel was used for 

both the acetabular cup and femoral head. However, the materials had poor 

wear characteristics and the components of cup and head had matching 

sizes with no clearance between them. Therefore, these hip prostheses 

failed soon mainly due to excessive wear and equatorial binding.  

The first generation of MoM hip joint replacement was introduced in 1960s. 

Designs included the Mckee-Farrar, Ring, Hugger and Müller. Figure 1.7 

shows the design of Mckee-Farrar and Müller MoM hip joint replacement. 

However, by 1975, the MoM combination was abandoned due to poor 

prosthesis design, limited choice of materials, poor manufacturing 

processes, and more importantly, concerns over biological reaction to the 
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alloy constituents. However, merit exhibited in some of the first generation of 

MoM hip prostheses prompted the revival of the second generation of MoM 

hip joint replacement in late 1980s. 

In late 1980s, concerns over osteolysis attributed to polyethylene wear 

debris, and improvements in technology, production tolerances and the 

material design prompted a renaissance of MoM bearings, particularly in 

Switzerland. These new-generation MoM joints have been more successful. 

Typical designs at this stage included the Müller prosthesis, the Ultamet hip 

joint replacement manufactured by Depuy International and the Metasul hip 

joint replacement by Zimmer Orthopaedics.  

 

Figure 1.7  The first generation of MoM hip joint replacement. Left-McKee-

Farrar design, right- Müller design (Semlitsch and Willert, 1997). 

 

In 1960s, Sir John Charnley designed the first metal-on-polymer hip joint 

replacement, which has been a basis for existing designs of the modern 

Charnley total hip arthroplasty (Charnley et al., 1961). At the beginning, the 

bearing combination of polytetrafluoroethylene (PTFE) as the acetabular cup 

and stainless steel as the femoral head was used due to the low friction 

property of PTFE and the assumption that lower friction had lower wear. In 

order to minimize the mechanical loosening of the component fixation, a 

femoral head diameter of 22.225 mm was chosen in this low friction 

prosthesis. However, clinical results showed that the majority of these 
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prostheses failed due to complete penetration of the femoral head through 

the acetabular cup within three years (Charnley et al., 1969). Following the 

poor success of the PTFE replacement, a high density polyethylene (HDPE) 

was introduced in 1962 which articulated against a stainless steel head. The 

follow up studies had shown a 92.7% success rate for 379 hips between 4 

and 7 years (Charnley, 1972) and a 92% success rate of 106 implants 

between 9 and 10 years (Charnley and Cupic, 1973). Later on, a more 

appropriate polymer known as UHMWPE with low friction coefficient, high 

resistance to wear and high impact resistance was introduced to replace the 

PTFE and HDPE cups. This prosthesis was called the “Low Friction 

Arthroplasty” (LFA), as shown in Figure 1.8, and has become the most 

widely used implant since then (Wroblewski et al., 2009a). 

In the mid 1960s, Müller adopted Charnley LFA’s concept and introduced his 

metal-on-UHMWPE hip prosthesis. The femoral head was made from a cast 

chrome cobalt molybdenum alloy (CoCrMo) and the diameter was increased 

from 22.225 to 32 mm. aiming to increase the range of motion (ROM) and 

reduce the risk of dislocation.  

 

Figure 1.8  Charnley low friction metal-on-UHMWPE total hip joint 

replacement (Semlitsch and Willert, 1997). 
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In the early 1970s, CoC joints were first used by Boutin because of the 

favourable wear and frictional characteristics combined with good 

biocompatibility (Sedel et al., 1994). In CoC hip joint replacement, the 

articulating surfaces are made from aluminium oxide ceramic. Ceramic 

components are extremely wear resistant and have much smaller debris 

particles than those of the MoP components. The surfaces have a high 

wettability which also reduces friction in the articulating surfaces. 

1.3.3  Cemented and Cementless Hip Joint Replacement 

Two primary methods have been used to secure the fixation of a total hip 

prosthesis to the skeleton: the cemented method and the uncemented 

(cementless) method. The common aim of both fixation methods is to 

produce a strong, durable interface between the implant and the bone. 

Cemented Hip Joint Replacement 

The cemented approach for the fixation of hip joint replacements was 

introduced by Sir John Charnley in 1960 and has been the basis for the 

development of Charnley LFA over the following decades (Charnley et al., 

1969). The rationale behind the cemented THR is to employ 

polymethylmethacrylate (PMMA) bone cement as a medium to fix the 

components to the bone. After the procedure, the bone cement completely 

fills the irregular gap between the bone and the implants and thus allows the 

smooth transfer of physiological loading from the prosthesis to the bone 

(Ries et al., 2006). 

PMMA bone cement has been used in cemented THR for more than 50 

years. The main mechanical function of PMMA bone cement is to transfer 

the stress across the interface between the components and the bone to 

ensure that the artificial implant remains in place over the long term (Ries et 

al., 2006). The yield strength for the regular PMMA bone cement is about 

11.6 MPa (Boger et al., 2008a). However, the value is dependent on the 

quality of the cement, such as the porosity, viscosity, composition etc (Boger 

et al., 2007; Boger et al., 2008b). 

PMMA bone cement itself is not a true glue and has poor adhesive 

properties (Kuehn et al., 2005). The fixation of the implant to the bone was 
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implemented through the mechanical interlock between the porous 

cancellous bone and the geometric features of the prosthesis. To achieve 

this, it is absolutely necessary to ensure intimate contact between the bone 

and cement, and the cement and implant over the maximum possible area. 

The intimate contact between the bone and cement inevitably make the 

cement penetrate into the cancellous pore spaces or irregularities in cortical 

surfaces. Therefore, the true interface layer between the bone and cement is 

actually a transition region of a bone-cement composite, rather than a flat 

interface between cement on one side and bone on the other (Lewis, 1997). 

However, in computational modelling, the bone-cement interface has usually 

been considered to be a bilayer, which consists of the surface of bone and 

the surface of cement individually on two sides. (Lamvohee et al., 2009; 

Coultrup et al., 2010). 

The cemented procedure is preferably recommended for older patients over 

age 60, all patients with cervical neck fractures, or younger patients with 

poor bone quality and density who cannot tolerate a long period of 

rehabilitation. Due to the improved cementing techniques, good outcomes of 

both short term and long term survivorship of cemented THR have been 

achieved and well documented (Schulte et al., 1993; Callaghan et al., 2009). 

However, aseptic loosening has been the major challenge for the durability 

of this kind of prosthesis. As the bone cement ages and cracks occur, the 

bond between the bone and the implant may be lost after the cemented 

operation, promoting the process of loosening of the hip prosthesis 

(Gardiner and Hozack, 1994; Mann et al., 2001). The unsatisfactory results 

of the cemented THR during a certain period prompted researchers to 

develop alternative methods for reliably and durably securing hip implants in 

bone, i.e. uncemented or cementless THR. 

Cementless Hip Joint Replacement 

The cementless hip joint replacement was introduced in orthopaedic fields 

during the 1970s. It was developed as an alternative method to cemented 

hip joint replacement, primarily aiming to improve long term success rates of 

implantation in younger patients (Rothman and Cohn, 1990). 
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The cementless cup system normally consists of an outer metallic layer and 

an inner layer made of polyethylene, metal or ceramic. The outer metallic 

layer, known as metal shell or metal-backing, is used to separate the bone 

and the polyethylene or ceramic material, as the direct contact between the 

bone and these materials would provoke bone resportion (Rothman and 

Cohn, 1990). The inner layer is usually called the liner or insert, which 

articulates with the femoral component. 

The success and long term stability of the cementless hip joint replacement 

depends upon both the initial or primary stability and the secondary 

biological response between the bone and the prosthesis (Geesink et al., 

1987). The initial stability of the implant is achieved by a purely mechanical 

fixation to the bone, normally using techniques such as additional screws, 

pegs or interference fit (press fit). The long term or secondary stability of 

cementless implant, however, relies on a favourable host bone response, 

the conditions for which must be achieved by the initial fixation (Kienapfel et 

al., 1999). As it is impossible to ensure perfect contact between bone and 

implant with current surgical techniques in the primary fixation, the long term 

success and stability of cementless implants requires a growth response and 

gap bridging by the bone to achieve osseointegration into the implant in the 

secondary fixation period, by means of improved coating materials and 

techniques such as porous and bioactive coatings (Kienapfel et al., 1999; 

Yamada et al., 2009). 

The short-term performance of cementless hip joint replacement has been 

reported as good (Sakalkale et al., 1999; Gaffey et al., 2004), with revision 

rates of approximately 1.91% for MoP combinations and approximately 

3.29% for MoM hip replacement in three years after primary hip replacement 

(National joint register, 9th annual report, 2012). However, the long-term 

clinical success is of major concern (Yamada et al., 2009), a revision rate of 

12.48% was reported for uncemented MoM articulations in ten years after 

primary hip replacement (National joint register, 9th annual report, 2012). 

The predominant potential problems involved in these implants include the 

delamination or fragmentation of the coatings and subsequent exposure of 

metal beneath to the bone, causing particulate debris and invoking a foreign 

body host response (Yamada et al., 2009). The particulate debris could also 
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migrate into the joint articulation regions and act as third-body particles 

causing higher wear rates of the bearing surfaces and further consequences 

from the greater volumes of liberated wear debris (Kleinhans et al., 2009). 

In summary, cementless hip prosthesis offers the advantage of fixation by 

direct bone-implant osseointegration, therefore avoiding the use of a 

synthetic intermediary material with limited mechanical strength, such as is 

used with the cemented hip prosthesis. Therefore, cementless hip joint 

replacement is preferably performed for younger patients with good bone 

quality. However, problems specific to cementless prosthesis have been 

reported. These include failure of the locking system of the polyethylene liner, 

which can cause dislocation of the liner from the metal backing and produce 

additional polyethylene wear particles (Diwan and Drummond, 1997); 

insufficient polyethylene thickness leading to the abrasion and breakage of 

the liner; the use of screws which promote osteolysis due to the dispersion 

of wear debris through the screw hole; and backside wear which can speed 

up the loosening of the hip prosthesis (Dorr et al., 1997; Yamada et al., 

2009). 

1.3.4  Failure of Hip Joint Replacement 

Conventional, primary hip joint replacement is a durable operation in the 

majority of patients. While the hip replacement surgery has become more 

successful and safer, the hip implant is far from being perfect. Failure do 

occur and can be caused by a number of reasons. 

Aseptic loosening 

The most common cause of failure and revision of hip prosthesis is aseptic 

loosening. Aseptic loosening is related to the loosening of arthroplasty in the 

absence of infection and can be the result of poor initial fixation, mechanical 

loss of fixation or biological loss of fixation (Sundfeldt et al., 2006). Among 

these, the biological loss of fixation caused by the resorption of 

periprosthetic bone or osteolysis induced by the particulate debris is 

increasingly accepted as the main reason (Ingham and Fisher, 2005). 

Clinically, the particulate debris can be accumulated due to implant interface 

wear, micromotion, minor pathogen contaminations, and oxidative reactions 
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(Maloney et al., 1995; Kadoya et al., 1998). It can be formed at the 

prosthetic joint articulations, or at non-bearing surfaces which rub together 

such as the backside of the acetabular liner, the modular interface, the bone-

cement and cement-implant interfaces. However, wear debris caused by the 

articulating surface wear is considered as the main contribution, particularly 

the polyethylene debris in MoP hip joint replacement (Goldring et al., 1993; 

Harris, 1995). This particulate debris was found to vary in a wide range of 

size and shape, and accumulate over time after hip replacement surgery 

(Maloney et al., 1994; Campbell et al., 1995). The accumulated particulate 

debris then causes a tissue response and local osteolysis and bone 

resorption at the bone-implant interface. 

The mechanisms of bone resorption and osteolysis of hip arthroplasty is 

actually an interaction of biological and mechanical processes (Sundfeldt et 

al., 2006). Mechanically, joint forces and kinematics combined with contact 

surface geometries and material properties determine the cyclic stresses 

that lead to the generation of particulate debris. Biologically, the ingress of 

accumulated particle debris to the bone-implant interface stimulates a 

foreign-body response, resulting in the release of bone resorption mediators 

and formation of a periprosthetic membrane with an abundance of 

macrophages, giant cells and particulate debris around the hip prosthesis 

(Ulrich-Vinther et al., 2002; Clohisy et al., 2004; Inhgam and Fisher, 2005). 

Subsequently, resultant bone loss occurs due to the phagocytosis of 

particulate debris by macrophages and other cells capable of phagocytosis 

at the bone-implant interface, which then cause the demarcation and 

migration of the hip prosthesis (Murray et al., 1990; Wang et al., 1993; 

Ingham and Fisher, 2005). 

Many factors have been described as facilitating progression of the bone 

resorption or osteolysis events. Indeed, the process of aseptic loosening is a 

complex and multifactorial event, and is probably the result of a combination 

of different factors. Huiskes (1993) defined a series of “failure scenarios”, 

which were useful to classify the potential failure processes for the cemented 

THR. These “failure scenarios” included: (a) the “implant reaction scenario”, 

which is related to the particulate-induced bone resorption; (b) the 

“accumulated damage scenario”, which is related to the bone-cement 
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interface failure due to the mechanical stresses upon it; (c) the “bone-

adaptation scenario”, where the bone responds to the uneven stress 

patterns caused bone hypertrophy in high stress areas and bone resorption 

in low stress areas; (d) the “destructive wear scenario”, which involves the 

mechanical wear and eventually loss of continuity of the bearing surface. 

Sundfeldt et al. (2006) reviewed different theories about the cause of aseptic 

loosening, indicating that aseptic loosening was not only a question of wear 

and could not be explained by a single theory. It was a multifactorial etiology 

and a combination of macro-, micro- and nano- events, involving cell 

activation in particle disease, cement damage, micromotion, stress shielding, 

high fluid pressures etc. 

Bone cement damage 

Bone cement damage has been accepted as one of the main factors that 

causes the aseptic loosening and failure of hip prosthesis recently 

(McCormack and Prendergast, 1999; Sundfeldt et al., 2006). The main 

contributions of bone cement damage to loosening were confirmed in two 

ways: on one hand, the fatigue failure and defects of the cement mantle led 

to the release of cement particles, which would invade the articulating 

surface and act as third-body particles, causing severe articulating surface 

wear. It would also cause a foreign body reaction, promoting the osteolysis 

and loosening of the hip arthroplasty (Jones and Hungerford, 1987; Willert et 

al., 1990). On the other hand, the bone-cement demarcation or the crack of 

cement mantle, either by mechanical overload or due to the cement mantle 

damage, provided a pathway for the particulate debris to access the bone-

cement interface directly, facilitating the propagation of inflammatory and 

eventual osteolytic events (Hirakawa et al., 2004). 

The accumulated damage of the cement mantle is affected by the 

mechanical behaviour in the cement material and at the bone-cement or 

cement-implant interfaces (Tong et al., 2008; Coultrup et al., 2009). It is 

mainly determined by two factors - the stresses in the cement mantle and at 

the bone-cement or cement-implant interfaces, and the strength at these 

interfaces. If the stress levels in the materials or at the interfaces exceed the 

corresponding strength, cement damage or mechanical failure would be 
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initiated. Therefore, the probability of failure of the cement mantle can be 

decreased by reducing stresses and/or increasing strength of the interfaces 

(Gardiner and Hozack, 1994). 

The accumulated damage of the cement mantle can also be caused by the 

fatigue failure of the cement mantle under cyclic loading, which has been 

shown to be closely related to the tensile stresses in the cement mantle. 

Murphy and Predergast (1999) applied a damage accumulated routine to 

simulate fatigue failure of the cement mantle using the fatigue data of 

specimens, in which the number of cycles to failure of the cement mantle 

was derived by: 

                                    (  )                                         (1.1) 

Where   is the stresses developed in the cement mantle,    is the number 

of cycles to fatigue failure. 

Using this routine, the threshold value of 8.25 MPa which represents a 95% 

probability of survivorship of the cement mantle over 10 million cycles was 

determined (Lamvohee et al., 2009). Another cement damage accumulation 

method considering the porosity of the cement mantle was presented by 

Stolk et al. (2004) in which fatigue loading cycles were simulated 

incrementally in batches of thousands of cycles. In this study, the number of 

cycles to failure of cement mantle was calculated considering the element 

stress following the equation (Stolk et al., 2004): 

                                       (       )                                       (1.2) 

Where   is the stresses developed in the cement mantle,    is the number 

of cycles to fatigue failure. 

Based on this damage accumulation method, Coultrup et al. (2009) analyzed 

the mechanical fatigue failure of the cement mantle using a computational 

approach and indicated that both the increase of cup penetration depths 

from 0 mm to 4 mm and decrease of thickness of cement mantle from 4 mm 

to 2 mm led to increase of cement stresses, resulting in a reduction of the 

fatigue life of cement mantle by 9% to 11%. 

The mechanical behaviour at the bone-cement interface and the load 

transfer between the prosthesis, cement and bone were widely investigated 
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on both a macroscopic level or a microscopic level, and using either 

experimental or finite element (FE) methods (Heaton-Adegbile et al., 2006; 

Zant et al., 2007; Wang et al., 2009; Tozzi et al., 2012). Different failure 

modes of cement mantle were reported based on these studies (Zant et al., 

2007; Wang et al., 2009). Zant et al. (2007) developed an experimental 

multilayer model and a plane strain FE model to explore the fatigue failure of 

the cement mantle under peak contact force during normal walking. They 

indicated that radial fatigue cracks of cement mantle was observed and the 

location of the cracks was in the vicinity of the maximum tangential and 

compressive stresses as predicted by the FE model. This cracking pattern 

was found to be consistent with that observed in sections of cemented 

femoral replacements tested in vitro (Race et al., 2003) and retrieved 

samples (Jasty et al., 1991). However, different failure scenarios were 

observed for three-dimensional (3D) acetabular reconstruction models. 

Heaton-Adegbile et al. (2006) conducted an in vitro study to assess the 

fatigue behaviour of a cemented acetabular reconstruction under constant 

amplitude cyclic load, and demonstrated an extensive debonding at the 

bone-cement interface around the dome region of cement mantle. The same 

failure pattern was also observed in the studies conducted by Zant et al. 

(2008) and Wang et al. (2009), in which the fatigue behaviour of cemented 

acetabular replacement was tested using a hip joint simulator and the stress 

states in the reconstructions were analysed under long-term physiological 

loading conditions. It is reassuring in these studies that the location of the 

failure of the cement fixation seemed to be consistent with the high-stress 

region identified from FE analysis. Coultrup et al. (2009) focused on the 

mechanical fatigue failure of the cement mantle using a computational 

cement damage accumulation method, which was based on the damage 

accumulation routine published by Stolk et al. (2004). It was indicated that 

extreme combinations of a thin cement mantle and high cup penetration may 

result in mechanical failure of the cement mantle and a thin cement mantle 

itself may lead to the mechanical overload at the bone-cement interface. 

Although a number of the studies were carried out to analyse the failure of 

cement fixation, they were at a macroscopic level and could not describe the 

mechanical response of the interface at a microscopic level. The 
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micromechanical behaviour at the bone-cement interface was studied 

recently by Wang et al. (2010) and Tozzi et al. (2012) using FE method. In 

these studies, the bone-cement interfaces were detailed on a microscopic 

level, where the bovine trabecular bone was interdigitated with bone cement. 

The FE models were developed from the CT images of the tested specimen. 

The bone-cement interface in the FE models was divided into four regions: 

(a) bone region, (b) bone-cement partially interdigitated region, (c) bone–

cement fully interdigitated region and (d) cement region. Based on these 

studies, the fracture process of cement mantle, initial and propagation of the 

defects and failure at the bone-cement interface were described and 

analysed, which may be useful in moving towards a micromechanical 

understanding of the failure process at the bone-cement interface. 

Other complications 

After aseptic loosening, recurrent dislocation has historically ranked as the 

second leading cause of failure in total hip arhtroplasty (Woo and Morry, 

1982). The contributing factors to dislocation include insufficient pseudo-

capsular tissue, muscle weakness and imbalance due to inappropriate 

implant placement (Scifert et al., 1998; Bader et al., 2004). Dislocation 

usually occurs along with impingement which is caused by excessive joint 

motion. when impingement occurs, the centre of rotation moves from head 

centre to the rim of the cup. Recurrent impingement can result in material 

failure of the implant components, such as plastic damage of the 

polyethylene liner and fracture of the ceramic components (Pedersen et al., 

2005). Further motion leads to subluxation of the femoral head and lever-out 

(Scifert et al., 1998). Instability of the hip prosthesis and inappropriate 

manoeuvres would also lead to dislocation (Barrack, 2003; Nadzadi et al., 

2003). To avoid impingement and dislocation, advanced design and proper 

implant positioning are essential. Advanced design and surgical treatments 

for recurrent dislocation involve dual-head cups, larger heads, modular cups, 

high offset femoral necks and soft-tissue interventions such as posterior 

tissue or capsular repair (Kerschbaumer et al., 2007; Hummel et al., 2009; 

Konan et al., 2009). 
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Other factors that cause the failure of the hip prosthesis include avascular 

necrosis or osteonecrosis that will cause the collapse of the bone and 

periprosthetic fractures; the infection and fracture of the stem, which tend to 

occur at the early stage of the operation etc. 

1.4  Biotribology and Biomechanics of Artificial Hip Joint 

According to the concise Oxford English Dictionary, tribology is a study to 

deal with lubrication, friction, wear and other basic engineering subjects such 

as solid mechanics, lubricant chemistry, material science, heat transfer, etc. 

(Johnson, 1985). 

Tribology applied to the biological systems is known as biotribology, which 

was first introduced by Dowson and Wright (1973) in 1970s. It covers all 

aspects of tribology related to biological systems such as the natural 

synovial joint and joint replacements. 

1.4.1  Wear 

Wear is defined as the progressive damage of surface or loss of materials 

from one or both solid surfaces as a result of relative motion on the surfaces 

(Rabinowicz, 1995). Wear of the joint replacement is vitally important as it is 

related to not only the decreased function and cost of implant, but also the 

adverse effects of wear particles in arthroplasty. For example, wear debris 

from hip implants has been proven to be the main reason for the bone 

resorption leading to the loosening of the hip prosthesis (Ingham and Fisher, 

2005). 

There are five types of wear mechanisms: adhesive, abrasive, fatigue, 

corrosive and erosive (Stachowiak and Batchelor, 2005). Adhesive wear 

refers to unwanted removal and attachment of wear debris, and transference 

of material from one surface to another. Abrasive wear is defined as the 

displacement of material due to hard particles or protuberances that force 

against and move along a solid surface. Fatigue is a process by which the 

material is weakened or fails by cyclic loading when a local stress exceeds 

the fatigue strength of that material. Corrosive wear is defined as the 

damage of the surface due to the mechanical and chemical or 

electrochemical combined reactions in a corrosive environment. Erosive 
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wear refers to the loss of the material from a solid surface due to relative 

motion in contact with a fluid which contain solid particles (Stachowiak and 

Batchelor, 2005). 

A wide range of laboratory equipment and measuring systems, as well as 

computational modelling have been used to study the wear mechanisms of 

THR (Maxian et al., 1996a; Nevelos et al., 2000; Bowsher and Shelton, 

2001). The three major forms of equipment used were pin-on-disc machines, 

pin-on-plate machines and hip joint simulators. Among them, hip joint 

simulators were mostly used to evaluate the hip joint devices with different 

designs and material combinations. Alternatively, computational approaches 

have also been applied to study the wear behaviour of the hip joint 

replacement (Maxian et al., 1996b; Kang et al., 2008; Liu et al., 2008). 

These computational simulations were conducted on the basis of sliding-

distance coupled wear algorithms, which can be expressed mathematically 

as follows (Maxian et al., 1996a):  

                                 V KFS                                                              (1.3) 

                     W K S                                                            (1.4) 

Where V  is the wear volume, K  is the wear factor, F  is the normal applied 

load, S  is sliding distance, W  is linear wear depth, and   is the contact 

stress.  

Based on these laboratory and computational studies, the typical wear rates 

among different bearings were reported and compared, as shown in Table 

1.3. Generally, MoP hip implants exhibited the highest volume wear rate and 

linear wear rate, while the MoM hip implants showed the lowest volume and 

linear wear rate.  
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Table 1.3  Typical volumetric and linear wear rates for various hip implants 
(Salek, 2012). 

Bearing couples 
Volumetric wear 
rate (mm3/year) 

Linear wear rate 
(µm/year) 

MoP 30-100 100-300 

CoP 15-50 50-150 

MoM 0.1-1 2-20 

CoC 0.05-1 1-20 

One year was assumed to be equal to 1 million cycles. 

 

1.4.2  Friction 

Friction is defined as the resistance to motion experienced when one solid 

body moves tangentially over another (Rabinowicz, 1995). For hip joint 

replacement, friction plays an important role in the load transmission from 

implant to the bone, and stresses generated on the bearing surface as well 

as the fixation interface. Generally, low friction is preferential on the bearing 

surface in order to reduce the stress transmitted to the fixation interface, and 

therefore reducing the likelihood of the interface failure. This has been the 

basic principle for LFA proposed by Sir John Charnley (Wroblewski et al., 

2009a). 

The friction experienced in artificial hip joints has been measured using 

pendulum simulators, in which simplified loading and motion was applied. A 

typical example was a simplified gait cycle consisting of a dynamic vertical 

load and a horizontal flexion and extension motion (Brockett et al., 2007). 

However, in order to investigate the potential squeeze-film effect in the 

friction measurement, a dynamic load that represents complete walking 

cycles was used (Scholes and Unsworth, 2000). 

Friction of hip implants was found to vary greatly among different material 

combinations, as shown in Table 1.4. Under the same conditions, CoC and 

CoM couples produced a lower friction coefficient than other couples, while 

MoM couples exhibited the highest friction coefficient (Banchet et al., 2007).  
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Friction also serves as an important factor to assess the lubrication regimes, 

which can be reflected in the Stribeck curve, and will be discussed in the 

section 1.4.3. 

Table 1.4  Typical friction factors for various bearings for hip implants in the 
presence of bovine serum (Jin et al., 2006). 

Bearing couples Friction factor 

MoP 0.06-0.08 

CoP 0.06-0.08 

MoM 0.22-0.27 

CoC 0.002-0.07 

CoM 0.002-0.07 

 

1.4.3  Lubrication 

Lubrication refers to interposing a lubricant between two contacting solids for 

the purpose of reducing friction and wear (Bhushan, 2002). There are three 

distinct lubrication regimes in engineering: fluid-film lubrication, boundary 

lubrication and mixed lubrication. 

The lubrication regimes are often determined using two major methods: 

experimental measurement and theoretical prediction (Dowson, 2001).  

In the experimental method, a so-called Stribeck curve was used to compare 

the friction coefficient with the Sommerfield number (Dowson, 2001). The 

Stribeck curve is depicted in three phases, which correspond to three 

lubrication regimes respectively, as shown in Figure 1.9. The boundary 

lubrication regime occurs when the average surface roughness of the 

articulating surface is larger or equal to the thickness of fluid film. This 

lubrication regime is more likely to occur in rough bearing surface or the 

implants that remain in situ for a long time. As the thickness of the fluid film 

increases, the articulating surfaces become separated from each other, and 

the friction coefficient decreases sharply. At this stage, the mixed lubrication 

regime is achieved. The friction coefficient continues decreasing until the full 

fluid film lubrication is generated, where the articulating surface is separated 
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completely by the lubricant (Brown and Clarke, 2006). This is the ideal 

condition in which the hip implants are expected to work (Jin et al., 1997). 

 

  
                                         

    
 

Figure 1.9  Typical strbeck curve (Jin et al., 2006). 
 

The theoretical method to determine the lubrication regimes is based on the 

lambda ratio (λ) which is defined as (Dowson, 2001): 
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                                 (1.5) 

Where _a HeadR  and _a CupR  are the average surface roughness for the head 

and cup respectively. 
minh  is the minimum film thickness between the two 

articulating surfaces. 

The relationship between the values of the lambda ratio and the lubrication 

regimes is shown in Table 1.5. 

The lubrication condition for the hip joint replacement is strongly dependent 

upon the design parameters, such as the femoral head diameter, the radial 

clearance and the materials used (Brown and Clarke, 2006). Under realistic 

loads and in the presence of synovial fluid, MoP hip joints are more likely to 

operate in the mixed or boundary lubrication regime, while CoC and MoM 

bearings primarily work in the mixed film lubrication regime (Jagatia et al., 

2001; Dowson and Jin, 2006; Brockett et al., 2007). 
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Table 1.5  Lambda ratio and lubrication regimes (Jin et al., 2006). 

Lambda ratio λ Lubrication regime 

λ≥3 Fluid film lubrication 

3≥λ≥1 Mixed lubrication 

λ≤1 Boundary lubrication 

 

1.4.4  Contact Mechanics 

Contact mechanics is the study of contact pressure and area when two 

bodies interact with each other under load (Johnson, 1985). The 

investigation of the contact mechanics of hip replacements is an important 

step to optimize the implant design, materials, surgical parameters, and 

provide better understanding of the long-term performance and success of 

the implants (Mak et al., 2002; Udofia et al., 2004; Korhonen et al., 2005). 

Contact pressures and contact area 

The main parameters determined from contact mechanics are the contact 

stresses and contact area. It has been shown that contact stresses are 

directly related to fatigue-related wear mechanisms (McNie et al., 1998; 

Orishimo et al., 2003). According to the Archard-Lancaster wear equation 

pioneered by Maxian et al. (1996a), the wear volume is proportional to the 

wear factor, the normal load and sliding distance, as demonstrated in 

Section 1.4.1. The normal load is normally obtained from the integration of 

the contact stresses over the contact area in the computational simulation 

(Liu et al., 2012). Recent studies have shown that the wear factor is 

dependent on the cross-shear motion and contact pressures for the 

polyethylene components. With increased contact pressures and cross-

shear ratio, the wear factors increased (Kang et al., 2008; 2009). Therefore, 

with the same sliding distane, the increased contact pressures normally 

result in increased wear in the acetabular components (Mazzucco et al., 

2003). More importantly, the high contact stresses in the UHMWPE 

components can exceed the yield stress of the UHMWPE, which would be 

decreased due to the oxidative degradation (Kurtz et al., 1999; McKellop et 

al., 2000), leading to plastic deformation and catastrophic rupture of the 
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components and potentially the failure of the implants. To this end, the 

investigation of the contact mechanics of the hip replacement is critically 

important and has been widely carried out through experimental studies 

(Plank et al., 2007; Müllera et al., 2004) and theoretical analysis (Korhonen 

et al., 2005; Plank et al., 2007). 

Experimental studies 

The experimental measurement of contact pressure and contact area on 

bearing surface of the hip prosthesis was usually conducted using a 

pressure sensitive film (Fuji film) (Hale and Brown 1992; Plank et al., 2007) 

or sensors (Müllera et al., 2004). The Fuji pressure sensitive film is usually 

composed of two layers, a colour developing layer and a microcapsule layer. 

Before loading, the film is folded spherically and placed between the two 

surfaces of the artificial joints. When the pressure is applied to the film, a 

local pressure-dependent colour reaction in the film is caused. The 

distribution of the colour reaction is then recorded by scanning the film to get 

the contact pressure distributions (Hale and Brown, 1992). The 

measurement data from Fuji film is usually used to validate the numerical 

methods, particularly the FE methods (Plank et al., 2007). The main 

problems with Fuji film are that it involves wrapping a flat surface onto a 

spherical ball of the femoral head, and changing the radial clearances of the 

bearings, which would affect the accuracy of the measurement (Hale and 

Brown 1992; Plank et al., 2007). 

Apart from the pressure sensitive film, pressure sensors or transducers are 

alternative ways to obtain the pressure distribution on the bearing surface 

experimentally. The advantage of the sensors or transducers over the 

pressure sensitive film is that they can be used to measure how pressure 

changes as the joint moves in simulated activities, therefore providing the 

possibilities of both spatial and temporal resolution (Wilson et al., 2003; 

Müllera et al., 2004). However, both approaches have their limitations. The 

thickness of the film or sensor makes them not perfect methods for artificial 

hip joints with small clearances. Besides, the insertion of the film or sensor 

to the bearing surface would change the clearance of the bearing, reducing 
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the accuracy of the measured contact pressure and area (Wu et al., 1998; 

Liau et al., 2002). 

Mathematical analysis 

The typical theoretical method used to study the contact mechanics of 

artificial hip joints was simple elasticity analysis. It was originally developed 

by Bartel et al. (1985; 1986). The main assumption adopted in this method 

was that the contact pressure was dominated only by the radial 

displacement and therefore the contact analysis was simplified. This simple 

elasticity analysis was later applied by Jin et al. (1994) to undertake a 

parametric and design study in which a number of geometric parameters for 

artificial hip joints were investigated. This method was also used to compare 

with other numerical and analytical methods, such as modified Hertzian 

theory (Eberhardt et al., 1990; 1991), the rigid-body-spring method and the 

FE method, and was shown to be reasonably accurate for close conformity 

contacts such as artificial hip joint (Li et al., 1997; Jin et al., 1999). 

Another method of calculation for the contact pressure between a hard 

femoral head and soft plastic cup of an artificial hip joint was proposed by 

Keiji and his colleagues (Keiji et al., 2005). In this method, an equation of 

equilibrium in terms of a nondimensional parameter was derived, the contact 

pressure distribution was obtained once the magnitude of the parameter was 

determined through solving the equation. Unlike other methods, in this 

method, the pressure distribution can be directly obtained without any 

iterative calculation. 

FE modelling 

Although the experimental studies and mathematical analysis can provide 

some information on the contact mechanics of artificial hip joints, it is difficult 

to reproduce the physiological conditions of daily activities and examine the 

stress and strain inside the artificial hip joints and surrounding materials 

(bone, cement or metal backing). Numerical approaches, such as FE 

analysis, however, can make up for this insufficiency (Fuziansyah et al., 

2006). FE analysis has also been an useful tool for parametric analysis, 

design optimization and pre-clinical testing for the artificial hip joint during 

the design phase (Korhonen et al., 2005; Plank et al., 2007). 
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There are three basic FE model types available for artificial hip joints: 

axisymmetric, two-dimensional (2D) and 3D models. The axisymmetric 

model is generally based on an axisymmetric configuration and used to 

replace the 3D model for saving computational resources. An early example 

of the axisymmetric model was used by Pedersen et al. (1982) who 

investigated the stress state within the acetabular region that was associated 

with some variations in prosthetic component design and surgical technique. 

Another axisymmetric model was presented by Jin et al. (1999) who 

investigated the stresses and contact areas within the components for eight 

combinations of femoral head and cups for MoP THR. In this study, the 

axisymmetric model was also validated by comparing the predicted results 

with the experiment measurements and simple elasticity analysis.  

The 2D FE model for an artificial hip joint was initially presented by Vasu et 

al. (1982) who determined the alterations of stress patterns in the acetabular 

region caused by the implant. The model was based on a conventional 

UHMWPE cup, which was cemented with a 3 mm thick layer of PMMA bone 

cement. This model was further developed by altering the thickness of the 

cement layer and adding a 2 mm cobalt chromium alloy (CoCr) backing to 

the cup (Carter et al., 1982), aiming to explore the effect of cement thickness 

and metal backing on the stress distribution in the acetabular region. These 

studies showed that the von Mises equivalent stresses in the cancellous 

bone superior to the acetabular cup and stresses in the medial wall of the 

ilium increased immediately by approximately 30% after total joint 

replacement. Increasing cement thickness from 1 mm to 5 mm and adding a 

CoCr alloy backing to the cup caused a decrease of the von Mises 

equivalent stresses in the cement and surrounding cancellous bone by 

approximately 20%. 

The advantage of the axisymmetric and 2D models was that by using a 

simple configuration, a relatively high computational efficiency was achieved 

and lower computational storage was required. Therefore, they were 

generally used as tools for the purpose of initial investigation before the 

more complex and expensive 3D analysis, and for computationally 

expensive problems such as non-linear interface analysis and shape 
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optimisation (Joshi et al., 2000). For the ‘more realistic’ configuration of the 

artificial hip joint and bone, 3D modelling should be used. 

3D FE modelling can provide a rapid and relatively inexpensive estimation 

and evaluation for implanted factors, such as the geometry and design of the 

components, and surgery-related factors, such as abduction angle of the 

implant for THR (Korhonen et al., 2005). Korhonen et al. (2005) utilized 3D 

FE models to investigate the effect of geometrical design, thicknesses and 

abduction angles of the acetabular cup, as well as the radial clearances on 

the contact stresses on the cup/head and cup/cement interface for four 

designs of cemented THR. The FE analyses showed that an increase in the 

abduction angle led to mild increase of contact pressures at cup-head 

inferface, and increased clearance between head and cup resulted in market 

increase of contact pressure both at cup-head and cup-cement interfaces, 

whereas a decreased thickness of polyethylene layer increased contact 

pressure only at the cup-cement interface. For cementless THR, Kurtz et al. 

(1997) used 3D FE models to investigate the effect of liner thicknesses, 

shell/liner interface conditions and load application angles on the contact 

stresses on the articulating surface and backside surface of the liner. They 

found that among the variables that could be modified by either surgeon or 

engineer, liner thicknesses and cup angles (load application angles) played 

a greater role in determining the resulting contact stresses, compared to the 

shell/liner interface conditions. 

The 3D models were also used to assess the contact stress of conventional 

and highly crosslinked UHMWPE liners for modular THR by Plank et al. 

(2007). Different combinations of head sizes and liner thicknesses were 

modelled in this study. It was indicated that the stresses at the articulating 

surface of highly crosslinked liners were lower compared to conventional 

polyethylene in every THR sizes examined. Specifically, the use of a large 

head against highly crosslinked material even at 3 mm thickness resulted in 

lower stresses than in a conventional 22 mm head and 5 mm thick 

combination. The innovation of this study was that a clearance between the 

shell and liner due to the manufacturing tolerance stack was modelled, and 

an increased stresses in the liner was observed. An asymmetrical 

distribution of stresses was predicted for this kind of modular THR in this 
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study which was not seen in the cemented THR. This contact pattern was 

also observed in the study conducted by Kurtz et al. (1998) who investigated 

the effect of backside nonconformity and locking restraints on the load 

transfer mechanisms and relative motion at the shell/liner interface in a 

modular THR. 

Due to the versatility and capability of describing the detail of geometry and 

material features of the system, the pelvic bone has been integrated into the 

3D FE models for artificial hip joints (Liu et al., 2005a; Udofia et al., 2007). 

The influence of the inclusion of pelvic bone in the 3D FE model on the 

computed contact pressure and wear was assessed by Barreto et al. (2010). 

It was indicated that inclusion of pelvic bone in the model led to decreased 

contact pressures and linear wear on the bearing surface for both all-

polyethylene cup and metal backed cup. This is presumably due to the fact 

that in the model without pelvic bone, the outer surface of the cup was 

constrained rigidly while in the mode with pelvic bone, the elastic 

deformation of the bone allow the cup to deform more freely and the 

stresses to distribute on the bearing surface more evenly, which then 

resulted in decreased contact stresses on the bearing surface. 

3D FE models were also adopted in MoM and CoC hip implants (Besong et 

al., 2001b; Verdonschot et al., 2002; Mak and Jin, 2002). Unlike the MoP 

combination, the deformation of both femoral head and acetabular cup in 

MoM and CoC bearings were considered. The design parameters such as 

clearances, head diameters and liner thicknesses, as well as the surgical 

parameters such as the cup angles were shown to have a marked effect on 

the predicted contact parameters (Udofia et al., 2004; Wang et al., 2012). 

The increased clearance, cup inclination angle and decreased head 

diameter and liner thickness were found to induce a marked increase of 

contact stresses (Mak and Jin, 2002; Udofia et al., 2004; Wang et al., 2012). 

Furthermore, different designs of the metallic and ceramic acetabular 

components such as taper-connected and sandwiched cups were modelled 

in the 3D FE model, and studies showed that the maximum contact 

pressures on the bearing surface of sandwiched design and taper-contected 

design were reduced by approximately 27% and 32.5% compared to other 

designs such as mono-block design. (Besong et al., 2001b; Liu et al., 2003). 
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1.4.5  Microseparation and Edge Loading 

With the aid of fluoroscopy, microseparation of the head and cup during hip 

motion has been observed (Dennis et al., 2001; Glaser et al., 2008). 

Microseparation, combined with the cup inclination angle, has been 

considered as the main causes leading to edge loading in hip arthroplasty 

(Mak et al., 2002). Microseparation occurs during the swing phase and can 

be caused by different factors such as laxity of the joint, femoral head offset 

deficiency or medialised cups. These factors cause the femoral head to be 

moved laterally relative to the acetabular cup during swing phase. When a 

load is applied in the stance phase, the femoral head is moved vertically, 

leading to the contact between the femoral head and the rim of the 

acetabular cup (edge loading), as schematically illustrated in Figure 1.10 

(Nevelos et al., 1999). This can result in accelerated wear of articulations for 

hard-on-hard bearings and increased stresses in the components of hip 

arthroplasty (Stewart et al., 2001; Mak et al., 2002). 

 

Figure 1.10  A simple scheme shows the occurrence of microseparation 

during gait. Microseparation occurs at swing phase (a) followed by rim 

contact at heel strike (b) and relocation during the stance phase (c) 

(Nevelos et al., 1999). 

 

Clinical retrievals have shown various stripe wear patterns on the femoral 

head which was not produced by in vitro simulatior studies under standard 

gait conditions even when steep cup inclination angles were simulated 

(Walter et al., 2004; Manaka et al., 2004). These observations prompted the 

Microseparation Rim contact Relocation

(a) Swing phase (b) Heel strike (c) Stance phase
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interest in quantifying in vivo hip kinematics (Nevelos et al., 1999; Stewart et 

al., 2001). Nevelos et al. (1999; 2000) were the first to introduce the 

microseparation motion in the hip simulator and reproduced clinically 

relevant wear rates, wear patterns, and wear particle distributions for CoC 

articulations. Following that, Stewart et al. (2001) presented the first long-

term simulator study which incorporated microseparation motion during 

simulation. Subsequently, the microseparation motion was repeated by 

many researchers in the form of retrieval (Walter et al., 2004) and laboratory 

studies (Manaka et al., 2004; Affatato et al., 2004). 

Fluoroscopic imaging was used to obtain the microseparation levels of the 

hip arthroplasty during hip motion, which were reported to be variable among 

different bearing materials (Komistek et al., 2004). Lombardi et al. (2000) 

determined the hip joint separation levels during normal gait on a treadmill 

and in abduction/adduction leg-lift manoeuvres, and reported that the 

average separation of head and cup was 1.2 mm (range 0.8 – 2.8 mm) and 

2.4 mm (range 1.7 – 3.0 mm) for normal gait and abduction/adduction 

manoeuvres respectively. In this study, a computer automated model-fitting 

technique was used to convert 2D fluoroscopic images into 3D images. The 

same technique was applied by Komistek et al. (2002) who compared the 

hip separations during normal gait for MoM and MoP THRs. The results 

showed that the average separation in the subjects with MoM implants was 

0.38 mm (range 0.3 – 0.51 mm), while the average separation in the 

subjects with MoP prostheses was 2.0 mm (range 0.8-3.1 mm). When 

considering the abduction/adduction leg lift manoeuvre, the maximum 

amount of separation of head and cup was reported to be 7.4 mm for a 

subject with alumina-on-polyethylene (AoP) THR and 3.1 mm for a subject 

with MoP THR (Komistek et al., 2004). 

Microseparation of the head and cup in THRs have been replicated 

experimentally in hip joint simulators and the results have been compared 

with the retrievals (Nevelos et al., 2000; Shishido et al., 2006). 

Microseparation has been shown to produce both edge wear and 

accelerated general wear in CoC and MoM articulations. Stewart et al. (2001) 

tested Hot Isostatically Pressed (HIPed) alumina on alumina joints to 5 

million cycles at two microseparation levels and reported that the wear rates 
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increased from 0.11 mm3/million cycles in the bedding-in phase and 0.05 

mm3/million cycles in the steady-state phase under standard conditions to 

0.55 mm3/million cycles and 0.1 mm3/million cycles respectively under mild 

microseparation conditions. These continued to increase to 4 mm3/million 

cycles and 1.3 mm3/million cycles respectively under severe microseparation 

conditions. Stripe wear was observed under both mild and severe 

microseparation conditions after the initial 1 million cycles. Compared to 

retrieved implants, Stewart et al. (2001) reported that the simulator implants 

had narrower stripe wear scars compared to the first general non-HIPed 

Mittelmeier replacements. However, similar stripe wear patterns were 

observed compared with the early retrieved HIPed alumina implants 

(Nevelos et al., 2000; 2001b). 

Shishido et al. (2006) compared two types of retrieved hip prosthesis with 

the simulator joints under standard and microseparation conditions. The 

wear rates of the simulator joints were 0.011 mm3/million cycles in steady-

state phase under standard conditions, compared to a range from 0.16 to 

0.65 mm3/million cycles under microseparation conditions. Different stripe 

wear scars of the simulator and retrieved joints were observed in this study. 

For MoM combination, Williams et al. (2004) tested the prostheses to 

5 million cycles with a low (100 N) and ISO (280 N) swing phase loads 

(standard conditions), and under microseparation conditions. The results 

showed that the overall mean wear increased from low swing phase load to 

ISO standard load, and to microseparation conditions further with wear rates 

of 0.06 ±0.05 mm3/million cycles, 0.58 ±0.53 mm3/million cycles and 1.58 

±0.85 mm3/million cycles respectively. Stripe wear was observed on the 

femoral head, as seen in the ceramic joints. However, the metal scars were 

wider and fatter than those found on the ceramic joints (Smith et al., 2002). 

Microseparation conditions were also applied on simulators to test CoP 

combination. Williams et al. (2003) examined the wear of CoP artificial hip 

joints under standard and microseparation conditions using an in vitro 

simulator. Different from hard-on-hard combinations, the volume change of 

the polyethylene cup in CoP bearings was decreased from 25.6 ±5.3 

mm3/million cycles under standard conditions to 5.6 ±4.2 mm3/million cycles 
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under microseparation conditions. No damage to the ceramic head was 

observed due to the softer polyethylene cup. However, there was local 

deformation at the rim of the cup and reduction of scratching within the wear 

patch which resulted in a decreased wear rate. 

FE studies have also been widely carried out to examine the contact stress 

on the articulating surface due to microseparation (Mak et al., 2002; Sariali 

et al., 2012). It has been shown that the introduction of microseparation 

would induce edge contact between the femoral head and superior rim of the 

acetabular cup, leading to a substantial increase in the contact stresses on 

the bearing surface. The edge contact induced by microseparation was 

shown to be dependent upon the microseparation levels, radial clearances 

and cup inclination angles (Mak et al., 2002). The concentrated stress due to 

edge loading under a larger microseparation level could be reduced by the 

introduction of a fillet at the mouth of the acetabular cup. Mak et al. (2011) 

conducted 3D FE analysis to investigate the contact stresses in three 

acetabular cups with different rim designs (new, worn, and chamfer) under 

microseparation conditions. The results showed an approximately 5-8 fold 

increase in predicted contact stress when a microseparation distance of 250 

µm was introduced. However, introducing a 2.5 mm radius chamfer reduced 

the maximum contact stress, von Mises stress and tensile stress by about 

35%, 63% and 60% respectively. 

The combined influence of the head lateral microseparation and the cup 

abduction angles on the contact stress in CoC THR was evaluated by Sariali 

et ai. (2012). It was indicated that as the microseparation distances 

increased, the maximal contact stress increased and converged to an 

asymptotic value. Both the lateral microseparation of the head and high cup 

abduction angle above 75º induced a large increase in the stress in the CoC 

articulation. However, the increase in contact pressures induced by a high 

abduction angle became negligible as the lateral separation increased. 

A comparison of the contact mechanics for different bearing couples under 

microseparation conditions was conducted by Besong et al. (2001a). The 

study showed that the introduction of microseparation with distance of 35 µm 

resulted in an increase of contact pressures at the bearing surface by about 
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56% for MoP bearings. The limitation of this study was that the polyethylene 

in the MoP hip replacement was modelled as elastic material. However, it is 

expected that the substantial increase of stress in the polyethylene liner 

under microseparation conditions could exceed the yield strength of the 

material, leading to plastic deformation of the liner. The plastic deformation 

in the polyethylene liner would weaken the mechanical properties of the 

polyethylene, leading to the rapid fatigue of the material when subjected to 

cyclic stress. 

1.5  Summary of Literature and Rationale 

The ball and socket configuration of the hip joint allows it to provide the 

second largest ROM after the shoulder joint in the human body and make it 

capable of supporting a larger load, even more than seven times BW for fast 

walking (Paul, 1966), as discussed in Section 1.2.4. However, the hip joint 

will have severe functional limitations when suffering from hip disease or 

trauma. At this time, the natural bearing of the hip joint is required to be 

replaced by an artificial one. Hip joint replacement is the most effective way 

to restore hip function and mobility. 

Whilst hip joint replacements provide substantial benefits, the failure of these 

devices still occurs too frequently, placing a significant burden on the patient 

and the adjunct health care system. Therefore, the failure mechanism of the 

hip prosthesis and the performance of implants under different conditions 

should be investigated for the purpose of improving their longevity and 

reliability. 

The major problem with the application of the hip joint replacements is that 

they are prone to wear, releasing wear debris which will cause loosening of 

the implants. For this reason, major efforts have been made to explore the 

wear mechanism for the hip prosthesis. Contact mechanics analysis is one 

such attempt as contact stress on the bearing surface has been shown to be 

associated with fatigue-related wear mechanisms and surface damage of 

the prosthesis (Rostoker and Galante, 1979; McNie et al., 1998).  

For cemented THR, bone cement damage is one of the main factors that 

cause the loosening and failure of the hip prosthesis, as discussed in 
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Section 1.3.4. The bone cement damage is closely related to the 

mechanical stresses experienced in the cement mantle which has been 

shown to be affected by cement mantle thickness, porosity, cup penetration 

and bone quality etc. as reviewed in Section 1.3.4. It is important to 

recognize that the stress experienced in the cement mantle is associated 

with the contact mechanics on the bearing surface, since the contact 

stresses on the bearing surface are directly transmitted to the cement and 

vice versa. However, few studies have addressed these two problems 

interactively. Additionally, the synergistic effect of cup inclination angle, 

components size and cup penetration depth on the contact mechanics and 

cement stresses for cemented MoP THR has not been investigated 

comprehensively and is one of main focuses in this thesis. 

Modular acetabular cup systems have been widely used for hip replacement 

with the advantage of providing not only biological and mechanical fixation 

but also a wide range of cup options depending on the patients’ individual 

needs. However, due to the engineering manufacturing tolerances, there is 

clearance between the shell and liner in the modular THR. It has been 

shown that the nonconformity between the shell and liner make the contact 

mechanics and biomechanical behaviour of the modular THR quite sensitive 

to the cup inclination angles and load directions, which was largely different 

from non-modular THR (Kurtz et al., 1998; Plank et al., 2007). However, few 

studies have focused on this. The effect of cup inclination angles and normal 

activities on the contact mechanics of modular THR is still to be determined. 

Edge loading would occur in the THR and can be the result of different 

factors, such as smaller radial clearances, steep cup inclination angles, 

microseparation and daily activities undertaken. Edge loading can induce 

some adverse complications such as concentrated stresses, high wear rates 

and unexpected damage in the components. This has been extensively 

investigated for the hard-on-hard combinations (MoM and CoC) (Williams et 

al., 2006; AI-Hajjar et al., 2010; AI-Hajjar et al., 2013), as reviewed in 

Section 1.4.5. However, limited works have been conducted for MoP THR, 

especially modular MoP THR. The investigation of edge loading in MoP THR 

deserves further attention and is another main focus in this thesis. 
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1.6  Aims and Objectives 

The primary aims of this study were to investigate the contact mechanics of 

the bearings and the mechanical behaviour in the cement mantle as well as 

at the bone-cement interface for a cemented MoP THR (Charnley THR), and 

to investigate the contact mechanics and biomechanical behaviour of the 

bearings for a cementless modular MoP THR (Pinnacle THR), both using 

computational modelling. 

The aims of this study were achieved through the following objectives: 

 To develop a 3D anatomic FE model for a cemented MoP THR 

(anatomic Charnley THR model). 

 To examine the effect of penetration depths, cup angles and sizes of the 

components on the contact mechanics of the bearings and the stresses 

in the cement mantle as well as at the bone-cement interface for 

Charnley THR using the anatomic Charnley THR model. 

 To determine the wear depths, wear directions and the radial clearances 

between the head and worn surface of the cup based on the retrieved 

Charnley cups using CMM and surface-fitting technique. To examine 

how these factors affect the contact mechanics and cement stresses of 

Charnley THR. 

 To develop a 3D anatomic FE model for a modular MoP THR which 

incorporates a high level of geometric details (anatomic Pinnacle THR 

model). 

 To measure the contact areas of a Pinnacle THR system using the 

ProSim hip joint simulator to provide confidence in the validity of the FE 

predictions from anatomic Pinnacle THR model by comparing the 

contact areas from experimental measurements and FE predictions. 

 To apply physiological loads from different daily activities to the anatomic 

Pinnacle THR model to analyse the contact mechanics and plastic 

behaviour of the modular MoP THR during different daily activities. 

 To analyse the contact mechanics and plastic behaviour of the modular 

MoP THR under standard and microseparation conditions. 
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Chapter 2 

Materials and Methods 

2.1  Introduction 

The development of general anatomic FE modelling is introduced in this 

chapter. The model includes the pelvic bone and hip replacement 

components, as well as the fixation between the bone and components. The 

realistic geometries, the material properties of the pelvis in terms of cortical 

and cancellous bones and the components themselves are detailed. Two 

types of total hip systems, which are often used in hip replacement, are 

considered. The first one is Charnley THR, which consists of an UHMWPE 

cup and a stainless steel femoral head, with the acetabular cup fixed to the 

pelvic bone by using cement (‘cemented THR’). The second one is Pinnacle 

THR, which consists of a titanium shell, a UHMWPE liner and a CoCr 

femoral head, which is intended for uncemented fixation (‘cementless THR’). 

The boundary and loading conditions used in the model, as well as the 

contact simulation are also presented. 

2.2  Materials 

2.2.1  Geometric Properties 

The general anatomic model considered in this study is composed of the 

anatomic pelvic bone, the acetabular and femoral components as well as the 

fixation between the bone and the components. 

Pelvic bone 

The geometry of the anatomic hemi-pelvic bone used in this study was taken 

from the literature (Liu et al., 2005a; Udofia et al., 2007), which was 

reconstructed from computed tomography (CT) scans. However, the 

meshing and the assignation of materials properties for the pelvic bone were 

undertaken in this study and are described in this chapter. As shown in 

Figure 2.1, the pelvic bone was modelled as a cancellous region surrounded 

by a cortical bone layer with a thickness of 1.5 mm (Liu et al., 2005a; Udofia 
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et al., 2007), the cortical bone in the acetabulum was removed for the 

purpose of cement fixation. The acetabular components were usually fixed 

into the pelvic bone by using either a cemented or a cementless approach. 

(a)   (b)  

                         (c)    

Figure 2.1  The anatomic pelvic bone model (a), including the cortical region 
(b), and the cancellous region (c). 

 

Charnley THR 

A standard 22.225 mm diameter Charnley bearing system, consisting of an 

UHMWPE acetabular cup and a stainless steel femoral head was 

considered (Jin et al, 1999). The main geometric parameters for the 

Charnley bearing were the radius of femoral head (R1), the radius (R2) and 

thickness (d1) of the acetabular cup, as shown in Figure 2.2. The radial 

clearance C (C=R2-R1) between the acetabular cup and femoral head thus 

was obtained from the two radii. In the present study, the radius was 

considered as 11.1125 mm for the femoral head and 11.295 mm for the 
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inner surface of the acetabular cup, giving a nominal radial clearance of 

0.1825 mm (Jin et al, 1999). The nominal outer diameter of the UHMWPE 

cup was 40 mm, giving a cup thickness of 8.705 mm.  

The acetabular component was implanted into the pelvic bone by using 

PMMA bone cement. The thickness of the bone cement (d2) was selected as 

2 mm in the present study (Coultrup et al., 2010).  

 

Figure 2.2  The main geometric parameters of Charnley THR considered in 
the present study. 

 

Pinnacle THR 

A typical MoP Pinnacle THR (DePuy Orthopaedics, Inc.), consisting of 

acetabular shell, polyethylene liner and femoral head, was analysed. Figure 

2.3 (a) is the cross-section of the Pinnacle system, showing the geometric 

characteristics of the components. The inside of the acetabular shell is 

comprised of two distinct regions: the central dome region and the Variable 

Interface Prosthesis (VIP) taper. The central dome region covers 

approximately 140 degrees of the interior of the shell, providing backside 

support to the liner. Peripheral to the dome is the patented VIP taper, which 

extends to the face of the acetabular shell. This VIP taper provides 

advanced modularity - allow the acetabular cup system to offer multiple 

liners and advanced bearing options, including MoM, CoC, MoP, CoP or 

CoM bearing combinations. The polyethylene liner mechanically locks with 

the acetabular shell via the VIP taper junction and articulates with the 
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femoral head which is fixed to the thigh bone through a metallic femoral 

stem. 

The fixation of the Pinnacle acetabular cup system is achieved through 180 

degrees of either Porocoat Porous Coating or plasma sprayed 

Hydroxyapatite (HA) over Porocoat Porous Coating. Since its introduction, 

the Porocoat Porous Coating has established a clinically successful record 

of more than 20 years (Bobyn and Engh, 1984; Engh et al., 1995). HA 

Coating has been in use for over eight years (Frayssinet et al., 1995). 

The geometry of the Pinnacle THR was provided by the manufacturer as an 

I-DEAS file, which was pre-processed using I-DEAS (Version 11, EDS, 

USA). Figure 2.3 (b) shows the detailed geometric dimension of the Pinnacle 

cup system. The radii of the femoral head (R1) and polyethylene liner (R2) 

were measured in I-DEAS as 18 mm and 18.542 mm respectively, giving a 

radial clearance of 0.542 mm between the inner surface of liner and the 

femoral head. The inner radius of the central dome region of the acetabular 

shell (R3) was measured as 24.14 mm and outer radius of the polyethylene 

liner (R4) was measured as 24 mm, giving a gap of 0.14 mm between the 

acetabular shell and polyethylene liner. A polar fenestration with radius of 10 

mm was also considered in the central dome region of the acetabular shell. 
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(a) 

 

(b) 

Figure 2.3  (a) The cross-section of the Pinnacle system showing the 
detailed structure and features of the Pinnacle cup system, (b) a 
schematic diagram showing the geometric dimensions of Pinnacle cup 
system. In order  to clearly show the dimensions, just the main features 
of the acetabular shell and polyethylene liner are displayed. Note the 
eccentricity of inner surface of polyethylene liner and acetabular shell, 
as well as the gap between the outer surface of liner and acetabular 
shell. 

 

2.2.2  Material Properties 

All the materials considered in the present study were modelled as 

homogeneous, isotropic and linear elastic, except the UHMWPE for the 

Charnley cup and Pinnacle acetabular liner. It should be pointed out that the 

real pelvic bone has a non-homogeous, anisotropic property (Dalstra et al., 
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1993), and previous studies have shown that the thickness of the cortical 

bone layer and the material properties of the cancellous bone are site-

dependent and bone density-dependent (Dalstra et al., 1995; Anderson et 

al., 2005; Leung et al., 2009). However, as using fixed thickness for the 

cortical bone and uniform modulus for the cortical bone and cancellous bone 

were found to have negligible effect on the biomechanical behaviour of 

THRs (Liu et al., 2005a; Udofia et al., 2007), these values were assumed to 

be uniform in the present study. The elastic modulus and Poisson’s ratio of 

17 GPa and 0.3, and 0.8 GPa and 0.2 were assigned for cortical bone and 

cancellous bone respectively. 

The femoral head for the Charnley hip replacement was made of stainless 

steel with Young’s modulus of 190 GPa and Poisson’s ratio of 0.3, and for 

the Pinnacle hip prosthesis was made of CoCr with Young’s modulus of 220 

GPa and Poisson’s ratio of 0.3. However, as the elastic modulus for femoral 

head is about 200 times that for polyethylene, it was assumed to be rigid in 

the present study. The acetabular shell in the Pinnacle cup system was 

made of titanium with Young’s modulus of 116 GPa and Poisson’s ratio of 

0.25. All the material properties of the components are summarised in Table 

2.1.  

In order to realistically investigate the mechanical behaviour of the 

polyethylene components, the UHMWPE cup for Charnley THR and 

polyethylene liner for Pinnacle hip prosthesis was considered as nonlinear 

elastic-plastic with the plastic stress-strain constitutive relationship showing 

in Figure 2.4 (Liu et al., 2005b). 
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Table 2.1  Material properties for the components used in the present study 
(Liu et al., 2005b; Udofia et al., 2007). 

Components Materials 
Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Metallic head (Charnley) Stainless Steel 190 0.3 

Metallic head (Pinnacle) CoCr 220 0.3 

UHMWPE cup and liner UHMWPE 1 0.4 

Bone cement PMMA 2.5 0.254 

Cortical shell Cortical bone 17 0.3 

Cancellous bone Cancellous bone 0.8 0.2 

Metal shell Titanium 116 0.25 

 

 

Figure 2.4  The plastic stress-strain relationship for polyethylene (Liu et al, 
2005b). 
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The first FE model in the present study was anatomic Charnely THR model, 

which consisted of a hemi-pelvic bone, the cement mantle, the UHMWPE 

cup as well as the stainless steel femoral head, as shown in Figure 2.5. The 

geometries and mechanical properties for the pelvic bone and components 

were described in Section 2.2. The backside of the UHMWPE cup was 

bonded with a layer of cement, which was then attached to the pelvic bone. 

The 3D anatomic FE model for Charnley THR and the mesh for the 

components is shown in Figure 2.5. Three-noded thin shell elements were 

used to model the layer of cortical bone in the pelvis with a uniform thickness 

of 1.5 mm (Liu et al., 2005a; Udofia et al., 2007). For the cancellous bone, 

four-node solid tetrahedron elements were employed. In order to achieve a 

trade-off between the accuracy of the results and computer resources as 

well as the simulation time, the pelvic bone was partitioned into two volumes 

as upper volume and lower volume, and meshed with different element sizes, 

as shown in Figure 2.5.  

For the cement and prosthesis components, a “dual-poled” mesh design was 

selected. It was achieved by meshing the cross section of the cement and 

acetabular cup first to produce a plane mesh and then revolving the plane 

mesh around an angle of 180º to form the 3D mesh, as shown in Figure 2.6. 

Following a mesh sensitivity analysis which will be discussed in Section 2.4, 

the FE model consisted of a total of approximately 50, 000 nodes and 13, 

000 elements, including ‘brick’ and ‘wedge’ elements for the cancellous bone, 

cement and prosthetic components, and ‘thin-shell’ elements for the cortical 

bone. The ‘brick’ and ‘wedge’ elements used here may have 4, 5, 7, 8, 15 or 

20 nodes and are normally used to model solid objects. The ‘thin-shell’ 

elements are 3 or 4 node 2D elements that can be oriented anaywhere in 3D 

space. It is usually used to model thin shell and membrance material such 

as fabric, thin metal shell and cortical shell as in the present study. The 

thickness of the shell must be small relative to its length or width. 
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Figure 2.5  The FE model of the Charnley THR in an exploded view, the 
metallic femoral head was considered to be rigid. 

 (a)  

(b)  

Figure 2.6  The “dual-poled” mesh for the Charnley cup and cement. The 
cross section of the cup and cement was first meshed to produce 
planar elements (a), and then the planar elements of the cup and 
cement were revolved around the pole by 180º to form the 3D FE 
model (b). 
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Anatomic Pinnacle THR modelling 

The second FE model in the present study was anatomic Pinnacle THR 

model, as shown in Figure 2.7. As described above, the cortical bone and 

cancellous bone in the pelvis were meshed with three-noded thin shell 

elements and four-noded tetrahedron elements respectively. Because of the 

axisymmetry of the shell, polyethylene liner and femoral head in the Pinnacle 

system, a “unipolar” mesh was selected, as shown in Figure 2.8. It should be 

noted that finer mesh was used in the expected loaded region and coarse 

mesh was applied in the non-loaded region for the polyethylene liner to 

reduce the simulation time further. Four-noded tetrahedron elements were 

also applied to mesh the femoral stem. However, during the processing, the 

femoral head and the femoral stem were constrained to be rigid body. 

Following a mesh sensitivity analysis which will be discussed in Section 2.4, 

the total number of the nodes and elements for the FE model were 

approximately 120,000 and 95, 000 respectively, including ‘brick’ and ‘wedge’ 

elements for the cancellous bone and prosthetic components, and ‘thin-shell’ 

elements for the cortical bone. 

 

Figure 2.7  The FE model of the Pinnacle THR in an exploded view, the 
femoral head and femoral stem were considered to be rigid. 
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           (a)                                                            (b) 

 

           (c)                                                            (d) 

Figure 2.8  The mesh for the Pinnacle acetabular cup system, (a) the cross-
section of the mesh for UHMWPE liner showing the element numbers 
in radial, circumferential and longitude directions, (b) the integral mesh 
for the UHMWPE liner, (c) the cross-section of the mesh for metal shell 
showing the element numbers in radial, circumferential and longitude 
directions, (d) the integral mesh for the metal shell. 

 

The solid models for both the Charnley THR and Pinnacle THR were 

meshed in I-DEAS (Version 11, EDS, USA) and the FE models were solved 

using ABAQUS (Version 6.9, Dassault Systèmes Simulia Corp., Providence, 

United States). 

 

2.3.2  Boundary Conditions and Contact Simulation 

In both anatomic models, the nodes situated at the sacroiliac joint and about 

the pubic symphysis were fully constrained to simulate the sacral and pubic 

support of the pelvic bones (Udofia et al., 2007; Coultrup et al., 2010), as 

shown in Figure 2.9. However, it should be pointed out that the real 

constrain on the bone is elastic by the ligaments and other tissues rather 
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than rigid. While the difference of boundary conditions between FE 

modelling and real reconstrations should be recognized and considered, the 

effect of these differences may not be as significant when only the implants 

is considered. (Hao et al., 2011). 

In the anatomic Charnley THR model, the contact interfaces between the 

bone and the cement as well as between the cement and the acetabular cup 

were assumed to be firmly bonded to simulate a full cement interlock and 

perfect fixation (Coultrup et al., 2010; Zant et al., 2008). A sliding contact 

formulation was adopted on the bearing surface between the cup and 

femoral head, and a frictionless behaviour was modelled on the bearing 

surface as coefficient of friction less than 0.1 was found to have negligible 

effect on the predicted contact mechanics in the artificial hip joint (Udofia et 

al., 2004) (Figure 2.9 a). 

In the anatomic Pinnacle THR model, the interface between the bone and 

the implant was assumed to be fully bonded to simulate a situation where 

the porous sintered coating and in-grown bone were well bonded. A sliding 

contact formulation was used on both the bearing surface between the 

femoral head and polyethylene liner, and at the interface between the liner 

and metal shell, with friction coefficients of 0.083 and 0.15 respectively 

(Figure 2.9 b). The friction coefficients used on the bearing surface and 

shell/liner interface were taken from the literature (Ramero et al., 2007; 

Amirouche et al., 2008) and will be discussed in Chapter 5. 
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                                  (a)                                                    (b) 

Figure 2.9  The boundary conditions for the anatomic FE Charnley THR 
model (a) and the anatomic FE Pinnacle THR model (b). The nodes 
situated at sacroiliac joint and about pubic symphysis were fully 
constrained in both models. 

 

2.4  Mesh Convergence Analysis 

Mesh convergence analysis was conducted in the present study in order to 

obtain the balance between the accuracy of results and computer resources. 

For this purpose, different element numbers used in the pelvic bone, 

Charnley THR components and Pinnacle THR components were analysed 

and the parameters of interest for both models were examined. 

Anatomic Charnley THR model 

Both the pelvic bone and components of the Charnley THR were considered 

in the mesh convergence analysis for the anatomic Charnley THR model. 

For the purpose of this, a series of meshes with increasing elements 

numbers in the pelvic bone, cup and cement for the anatomic Charnley THR 

model were applied. Different combinations of the element numbers for the 

pelvic bone, cup and cement for Charnley THR were considered. 

Firstly, the mesh convergence analysis was conducted for the pelvic bone. 

This was achieved by keeping the element numbers of the cement and cup 

constant with large numbers (20, 736 for cement and 51, 840 for cup) and 
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applying different element numbers to the pelvic bone. Once the element 

number for the pelvic bone was determined, the mesh convergence analysis 

was conducted for the cement and the cup. Different combinations of the 

element numbers for the cement and cup were considered. 

Just one case of simulations was conducted in the mesh convergence 

analysis, and once the element numbers for the components in the model 

were determined, they were then applied for the other simulation cases. The 

model used for the mesh convergence analysis has been described 

previously in Section 2.3. In the model, the cup was positioned with 

inclination angle of 45º and no penetration was considered within the cup. A 

load of 2500 N with direction of 10º medially was applied in the model. The 

maximum von Mises stress and peak max principal stress in the cement 

mantle, as well as the maximum contact pressure on the bearing surface 

were examined, since the maximum von Mises stress and contact pressure 

is associated with the tribological performance of the bearings and the max 

principal stress is closely related to the functional performace of the cement 

fixation (Maxian et al., 1996a; Coultrup et al., 2009). The convergence of 

these parameters against the element numbers are shown in Figure 2.10 

and Figure 2.11. 

As can be seen from Figure 2.10, the changes of all parameters examined in 

the mesh convergence analysis were within 5% when the element numbers 

for pelvic bone increased from 5, 608 to 11, 204. Hence, the former was 

used in all subsequent models. Similarly, the element number of 2, 076 and 

5, 184 were applied for the cement and cup respectively as the changes of 

all parameters examined were within 5% when the numbers were nearly 

doubled. 
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Figure 2.10  The convergence of maximum von Mises stress, peak max 
principal stress in the cement mantle and maximum contact pressure 
on the bearing surface as a function of element numbers for pelvic 
bone (keeping the element numbers of cement and cup as 4416 and 
10720). 

 

 

Figure 2.11  The convergence of maximum von Mises stress, peak max 
principal stress in the cement mantle and maximum contact pressure 
on the bearing surface as a function of combination of element 
numbers for cement and cup (keeping the element numbers of pelvic 
bone as 5608). 
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Anatomic Pinnacle THR model 

The mesh convergence analysis for the anatomic Pinnacle THR model was 

conducted under both standard and microseparation conditions. Under 

standard conditions, the contact areas were mainly located within the inner 

surface of the liner, so the element numbers used at the rim of the liner 

would have negligible effect on the results. This case was considered to 

determine the element numbers used for the entire articulating region. 

However, under large microseparation conditions, the contact areas were 

concentrated at the rim of the liner, so the mesh density in this region would 

markedly affect the simulation results. Therefore, the element numbers used 

at the rim of liner were determined from the microseparation case. Similar to 

the anatomic Charnley THR model, just one simulation case was considered 

for both conditions. 

Under the standard condition, a series of meshes with increasing element 

numbers for the components of Pinnacle THR were applied. The model was 

conducted with the metal shell and liner positioning with an inclination angle 

of 45º and no microseparation was considered. A vertical load of 2500 N 

was applied. The radial clearance between the liner and the head was 0.3 

mm. The maximum von Mises stress in the liner and maximum contact 

pressure on the articulating surface were examined and the results are 

shown in Figure 2.12. 

Subsequent anatomic Pinnacle THR models were meshed with element 

numbers of about 53, 000 for the liner and about 37, 000 for the metal shell 

because the change in the parameters of interest were within 5% when the 

element numbers were nearly doubled, as shown in Figure 2.12. 
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Figure 2.12  The convergence of maximum von Mises stress in the liner and 
maximum contact stress on the articulating surface as a function of 
combination of element numbers for liner and shell (keeping the 
element numbers of pelvic bone as 5608). 

 

Under microseparation conditions, the meshes at the rim of the liner were 
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considered during the mesh convergence analysis, as shown in Figure 2.13. 
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the articulating surface were examined and the results are shown in Figure 

2.14. 
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Figure 2.13  The cross-section of the Pinnacle cup system showing the arc 
of rim of the liner. Different element numbers were applied along the 
arc of the rim of the liner during the mesh convergence analysis. 

 

 

Figure 2.14  The convergence of maximum von Mises stress in the liner and 
maximum contact stress on the articulating surface as a function of 
element numbers used along the arc of the rim of the liner. 
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Chapter 3 

Contact Mechanics and Cement Fixation Studies of Charnley 

THR 

3.1  Introduction 

The long-term clinical performance of artificial hip joints depends on both the 

tribology of the bearings and the fixation of the components. For cemented 

THR, the main reasons that caused the failure of the prosthesis are bone 

resorption due to the wear particles (Ingham and Fisher, 2005) and bone 

cement damage which is associated with the mechanical behaviour upon it 

(Crowninshield et al., 1983; Coultrup et al., 2009), as reviewed in Section 

1.3.4. It is generally believed that the mechanical behaviour in the cement 

mantle and at the bone-cement interface is closely related to many factors 

such as head diameters (Mai et al., 1996; Morrey et al., 1989), penetration 

depths (Coultrup et al., 2009), outer diameters of the acetabular cup 

(Wroblewski et al., 2009a) etc. All these parameters can affect not only the 

contact mechanics and tribology on the articulating surfaces but also the 

mechanical characteristics in the fixation at the bone-cement interface, 

which are two main factors influencing the failure of the cemented THR. It is 

particularly important to recognize the interaction between the contact 

mechanics and the fixation, since the contact stresses on the articulating 

surface are directly transmitted to the interface and vice versa. Therefore, 

these parameters may have a synergistic effect on the performance of hip 

prostheses. However, to the author’s knowledge, few studies reported in the 

literature have addressed the two problems interactively. Furthermore, the 

effect of cup inclination angles on the contact mechanics and especially the 

fixation of a MoP THR, with respect to the cement mantle, has not been 

investigated comprehensively. Therefore, the aims of this chapter were to 

investigate the individual and combined influence of different factors, 

including the cup inclination angles, penetration depths, outer diameters of 

the acetabular component and the head diameters on the contact mechanics 

and cement fixation of cemented MoP THRs using anatomic Pinnacle THR 

model.  
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3.2  Materials and Methods 

3.2.1  FE Model 

A typical Charnley THR was considered in this chapter. The geometries and 

nominal sizes of the components for the Charnley THR have been illustrated 

in Chapter 2. In order to examine the effect of cup inclination angles, 

different cup orientations of 45º, 55º and 65º were modelled. In order to 

study the effect of outer sizes of the acetabular components, two typical 

designs of acetabular cup sizes for the Charnley THR with outer diameter of 

40 mm and 43 mm were modelled under these three different cup angles. 

Different head diameters of 22.225, 28, 32, 36, and 38 mm were also 

modelled to investigate the effect of head sizes. 

Different liner penetration depths of 1, 2 and 4 mm in the acetabular cup 

were considered for each case described above. Geometrical 

characterization of the penetration on the acetabular cup was performed by 

intersecting the cup using the femoral head in the direction of the resultant 

load, as illustrated in Figure 3.1 (Coultrup et al., 2009). The maximum 

penetration depth of 4 mm was considered as the limit beyond which 

impingement between the neck and cup would occur (Wroblewski et al., 

2009b). For a linear penetration rate of 0.1-0.2 mm/year (Wroblewski et al., 

2009c), this would represent a maximum service life of 20-40 years. 

 

Figure 3.1  A schematic diagram (cross-section) shows the femoral head 
and UHMWPE cup with penetration indicated. 
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An anatomic Charnley THR model was developed. The FE model, 

mechanical properties of the components and the boundary conditions for 

the model were discussed in Chapter 2. A fixed resultant hip joint contact 

force of 2, 500 N with direction of 10º medially was applied through the 

centre of the femoral head, simulating the mid-to-terminal stance loading of 

the gait cycle (Udofia et al., 2005), as shown in Figure 2.9. This hip joint 

contact force corresponds to about 3-4 times BW for a patient weight of 

80 kg, which is close to the average weight for both males and females 

between the ages of 20 and 74 (Ogden et al., 2004). 

The von Mises stress of the cement material and the max principal stress in 

the cement mantle, as well as the shear stress at the bone-cement interface 

were examined in the present study. The reason for this was that the von 

Mises stress is directly related to the fatigue of the cement mantle which 

could lead to the failure of the cement mantle, the max principal stress in the 

cement mantle and shear stress at the bone-cement interface could be an 

important contributor to the shear damage at the bone-cement interface and 

tensile damage in the cement mantle which can consequently lead to 

loosening of cemented acetabular components (Kim et al., 2004; Arola et al., 

2005), especially since the PMMA cement is weak in tension and strong in 

compression (Kuehn et al., 2005). However, it should be noted that all the 

stresses were used as an indication of potential failure of the cement mantle, 

rather than using a damage accumulation approach (Coultrup et al., 2009), 

and also the present study focused on the medium to long-term period rather 

than the long-term when cement failure ultimately occurs. The bone-cement 

interface was examined in detail, since the cement failure is likely to be 

initiated at this interface (Tong et al., 2008; Zant et al., 2008). 

3.2.2  Model Validation 

The validation of the anatomic Charnley THR model was carried out by 

comparing the present study with a previous study (Jin et al., 1999). The 

main features of the components in the present anatomic Charnley THR 

model were identical with those in the axisymmetric model in the previous 

study. However, there are some differences between the two models 

regarding to the boundary and loading conditions, as well as the component 
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positions. The comparison of the two models is shown in Figure 3.2 and 

Table 3.1. 

An experimental measurement of the contact areas using a pigmented paste 

(engineering blue) was also conducted in the previous study (Jin et al., 

1999). By doing this, the cup was placed horizontally and the vertical load of 

2, 500 N was applied at a loading rate of 1 mm/min, as shown in Figure 3.3. 

After the load was removed, the contact areas on the bearing surfaces were 

then measured in terms of half contact angle and the contact radius. These 

parameters were then converted into contact areas and compared with the 

contact areas predicted in the present study. 

(a)  (b)  

Figure 3.2  The comparison of the anatomic Charnley THR model with the 
axisymmetric model: (a) the anatomic Charnley THR model in the 
present study, (b) the axisymmetric model in the previous study (Jin et 
al., 1999). 
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Table 3.1  The comparison of the model, dimensions of the components and 
the loading conditions between the present study and previous study 
(Jin et al., 1999). 

 
Model in the present 

study 

Model in previous 

study 

Model 
Anatomic model with 

pelvic bone 

Axisymmetric model 

without pelvic bone 

Head diameter (mm) 22.225 22.225 

Radial clearance (mm) 0.1825 0.1825 

Cup thickness (mm) 8.705 8.705 

Cup inclination (º) 45 0 

Load (N) 2500 2500 

Load direction 10º medially vertical 

 

 

Figure 3.3  The experimental configuration to measure the contact areas on 
the bearing surface between the femoral head and cup in the previous 
study (Jin et al., 1999). 

 

3.3  Results 

3.3.1  Validation 

The validation of the anatomic Charnley THR model was conducted by 

comparing the predicted contact pressures and contact areas on the bearing 

Metallic holder

PMMA cement

Load
Femoral head

UHMWPE cup
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surfaces between the present study and previous study, which included both 

simulation predictions and experimental measurements (Jin et al., 1999). 

The difference in the predicted maximum contact pressures and contact 

areas on the bearing surfaces between the anatomic Charnley THR model in 

the present study and the axisymmetric model in the previous study were 

about 4.7% and 10.3% respectively. However, the difference in contact 

areas between the prediction from the anatomic Charnley THR model in the 

present study and the experimental measurement in the previous study was 

about 5.5% (Table 3.2). 

Table 3.2  The comparison of maximum contact pressure and contact area 
on the bearing surface between the anatomic Charnley THR model in 
the present study, the axisymmetric model and the experimental 
measurement in the previous study (Jin et al., 1999). 

 

Max contact pressure Contact area 

Values (MPa) 
Difference 

(%) 

Values 

(mm2) 

Difference 

(%) 

Anatomic Charnley 

THR model 
17.1 -- 268 -- 

Axisymmetric model 17.9 4.7 243 10.3 

Experimental 

measurement 
-- -- 254 5.5 

 

3.3.2  Effect of Wear and Cup Angles 

Generally, for all conditions considered, the predicted contact areas were 

located about the superior region of the cup in the loading direction (Figure 

3.4 and Figure 3.5). Contact area was shifted towards the edge of the cup as 

the inclination angle was increased (Figure 3.5). Both the maximum contact 

pressure on the bearing surface and von Mises stress in the acetabular cup 

were reduced markedly by ~30% and ~20% respectively when even a small 

penetration depth of 1 mm occurred. However, there was no large difference 

among different cup penetration depths with regard to either contact 

pressures or von Mises stress (Figure 3.6). Furthermore, the increase in the 
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cup inclination angles only resulted in a modest increase in the maximum 

contact pressure and von Mises stress (less than 10%) (Figure 3.6). These 

values were predicted corresponding to the mid-to-terminal stance portion of 

the gait cycles, and might not be the same when considering other instants 

of the walking cycle or other activities such as sitting, standing and the use 

of stairs. 

 

(a) (b)   

Figure 3.4  Contour plots of the predicted stresses (MPa) for the acetabular 
cup under cup inclination angle of 45º and with penetration depth of 1 
mm: (a) contact pressures on the bearing surface, (b) von Mises 
stresses in the acetabular cup. 
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Figure 3.5  The distributions of predicted contact pressures (MPa) and 
contact areas as a function of cup inclination angles for the UHMWPE 
cup with different penetration depths. 
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Figure 3.6  (a) the predicted maximum Von Mises stress (MPa) in the 
UHMWPE cup, (b) The predicted maximum contact pressure (MPa) on 
the bearing surface with different cup inclination angles and penetration 
depths. 

 

The distributions of predicted von Mises stress in the cement mantle and at 

the bone-cement interface, as well as the max principal stress in the cement 

mantle for 1 mm penetration depth model and 45º cup inclination angle 

condition is shown in Figure 3.7. It is noted that both the peak von Mises 

stress and max principal stress in the cement mantle and at bone-cement 

interface seem to occur in the superior region of the cement mantle. 

With increased cup inclination angles, the distribution of von Mises stresses 

over the cement mantle at the bone-cement interface was shifted towards 

the edge of the cement as well (Figure 3.8). Both the cup inclination angles 
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and penetration depths in the acetabular cup had a marked effect on the 

peak von Mises stress over the cement mantle at the bone-cement interface 

(Figure 3.9 a). When the cup inclination angles increased from 45º to 65º, 

the peak von Mises stress was elevated moderately by about 18%-46% for 

all the cup penetration depths. When minor wear in the acetabular cup 

occurred, i.e. with a wear depth of 1 mm and 2mm, the peak von Mises 

stress at the bone-cement interface was reduced and the reduction varied 

among different cup inclination angles. For example, the peak von Mises 

stress was reduced by about 18%-32% for cup angles of 45º and 55º, and 

below 5% for cup angle of 65º (Figure 3.9 a). An increase of penetration 

depths in the acetabular cup led to an increased von Mises stress (by 

approximately 15%-37% when the wear depth increased from 1 mm to 4 

mm). Typically, a combination of a maximum penetration depth of 4 mm and 

a cup angle of 65º resulted in a large increase in the predicted von Mises 

stress by more than 40%, slightly above the unworn cup (Figure .9 a). 

With increased cup angles from 45º to 65º, for all the cup penetration 

depths, the maximum shear stress at the bone-cement interface increased 

markedly by about 26%-32%, while the peak max principal stress in the 

cement mantle increased slightly by approximately 4%-12% (Figure 3.9 b 

and c). It is also interesting to note that a modest penetration depth in the 

acetabular cup resulted in a decreased shear stress at the bone-cement 

interface and peak max principal stress in the cement mantle, however, if the 

penetration depth was continuously increased to 4 mm, higher peak shear 

stresses and max principal stresses were observed (Figure 3.9 b and c). 
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(a) (b)  

(c) (d)  

Figure 3.7  The predicted stresses (MPa) for the cement mantle under cup 
inclination angle of 45º and with penetration depth of 1 mm: (a) Von 
Mises stresses in the cement mantle (cross-section), (b) Von Mises 
stresses at the bone–cement interface, (c) max principal stresses in the 
cement mantle (cross-section), (d) max principal stresses at the bone-
cement interface. 
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Figure 3.8  The distributions of predicted Von Mises stresses (MPa) at the 
bone-cement interface as a function of cup inclination angles for the 
UHMWPE cup with different penetration depths.  
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Figure 3.9  The predicted peak stress (MPa) for the cement mantle with 
different cup inclination angles and penetration depths: (a) von Mises 
stress at the bone-cement interface, (b) shear stress at the bone-
cement interface, (c) max principal stress in the cement mantle. 
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3.3.3  Effect of Acetabular Cup Sizes 

The maximum contact pressure on the bearing surface for both the two 

models with cup outer diameters of 40 mm and 43 mm were located at the 

superior region of the acetabular cup in line with the load vector, and the 

same pattern of the contact pressures was observed between the two 

models (Figure 3.10). 

For all cup angle conditions, an increase in the penetration depth in the 

acetabular cup to 4 mm led to a marked decrease of both the maximum von 

Mises stress in the acetabular cup and maximum contact pressure on the 

bearing surface by approximately 20% and 50% respectively (Figure 3.11). 

At the same level of penetration depth, the maximum von Mises stress in the 

acetabular cup and contact pressure on the bearing surface for cup outer 

diameter of 40 mm were observed to be higher than that for cup outer 

diameter of 43 mm. However, the discrepancy was negligible (less than 5%) 

(Figure 3.11). 

 

(a) (b)  

Figure 3.10  Contour plots of the predicted contact pressures (MPa) on the 
bearing surface at cup inclination angle of 45º and penetration depth of 
1 mm with cup outer diameters of (a) 40 mm, (b) 43 mm. 
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Figure 3.11  The predicted peak stress (MPa) for the acetabular cup as a 
function of penetration depths with different cup inclination angles and 
cup outer diameters: (a) von Mises stress in the acetabular cup, (b) 
contact pressure on the bearing surface. 

 

The same pattern of the von Mises stresses and max principal stresses in 

the cement mantle was observed in both cup design models (cup outer 

diameter of 40 mm and 43 mm). However, the values for the cup design with 

outer diameter of 40 mm were higher than that with outer diameter of 43 mm 

(Figure 3.12 and Figure 3.13). 

The peak von Mises stress and shear stress at the bone-cement interface, 

and max principal stress in the cement mantle for the model with cup outer 

diameter of 40 mm were observed to be higher compared with that of 43 
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increased penetration depths (from 1 to 4 mm), the discrepancies in the 

peak von Mises stress and max principal stress between the two cup 

designs were also increased (from about 15% to19% for von Mises stress, 

and about 15% to 22% for max principal stress when the penetration depths 

increased from 1 mm to 4 mm). However, no such difference for the shear 

stresses was observed (Figure 3.14). 

(a) (b)  

(c) (d)  

Figure 3.12  Comparison of the predicted von Mises stresses in the cement 
mantle (MPa) at 45º cup inclination angle and 1 mm penetration depth 
for different cup outer diameters: von Mises stresses at the bone-
cement interface for cup outer diameter of (a) 40 mm, (b) 43 mm; von 
Mises stresses in the cement mantle for cup outer diameter of (c) 40 
mm, (d) 43 mm. 
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(a)  (b)  

(c)  (d)  

Figure 3.13  Comparison of the predicted max principal stresses (MPa) in 
the cement mantle at 45º cup inclination angle and 1 mm penetration 
depth for different cup outer diameters: max principal stresses at the 
bone-cement interface for cup outer diameter of (a) 40 mm, (b) 43 mm; 
max principal stresses in the cement mantle for cup outer diameter of 
(c) 40 mm, (d) 43 mm. 
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Figure 3.14  The predicted peak stress (MPa) for the cement mantle as a 
function of penetration depths with different cup inclination angles and 
cup outer diameters: (a) von Mises stress at the bone-cement interface, 
(b) shear stress at the bone-cement interface, (c) max principal stress 
in the cement mantle. 
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3.3.4  Effect of Head Diameters and Cup Thicknesses 

An increase in the sizes of femoral head, hence a decrease in the thickness 

of acetabular cup, resulted in an increase in the contact area and a marked 

decrease in the contact pressure on the bearing surface and von Mises 

stresses in the acetabular cup (Figure 3.15 and Figure 3.16), and both 

stresses were reduced by nearly 50% (Figure 3.16). However, when the 

head diameters increased from 22.225 mm to 36 mm, the peak von Mises 

stress and shear stress at the bone-cement interface, and the max principal 

stress in the cement mantle were predicted to increase by about 30%, 25% 

and 11% respectively, followed by a slight decrease when the head sizes 

increased up to 38 mm (Figure 3.17, Figure 3.18 and Figure 3.19). 

 

      

                 17.2 MPa                     13.08 MPa                    11.29 MPa 

                   22.225 mm                      28mm                           32mm                                                            

   

                                   9.659 MPa                    8.983 MPa 

                                        36 mm                          38 mm 

  

Figure 3.15  Contour plots of contact pressures (MPa) on the bearing 
surfaces with different head diameters. 
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Figure 3.16  The predicted maximum contact pressure (MPa) on the bearing 
surface and von Mises stress (MPa) in the acetabular cup with different 
head diameters. 
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Figure 3.17  Contour plots of von Mises stresses (MPa) at the bone-cement 
interface with different head diameters. 
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5.28 MPa                        5.15 MPa 
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Figure 3.18  The predicted max principal stresses (MPa) in cement mantle 
with different head diameters (cross-section view for the cement 
mantle). 

 

 

Figure 3.19  The predicted peak von Mises stress (MPa) and shear stress 
(MPa) at the bone-cement interface, and max principal stress (MPa) in 
the cement mantle with different head diameters. 
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3.4  Discussion 

Results of this study showed that both the contact mechanics of the bearings 

and the mechanical behaviour in terms of von Mises stresses, shear 

stresses and max principal stresses for the cement mantle in the cemented 

MoP THR were influenced by the cup inclination angles, the wear in the 

acetabular cup and the sizes of both acetabular and femoral components. 

The validation of the model was conducted by comparing the present 

predictions with the previous FE predictions and experimental 

measurements (Jin et al., 1999) for the same design of components and 

under the same conditions. The slight difference between the present results 

and the previous results may be due to the fact that in the previous study, 

the FE model was an axisymmetric contact model without pelvic bone, while 

in the present study, a 3D FE model including the pelvic bone was 

considered. Indeed, a previous comparison study (Barreto et al., 2010) has 

proved that the contact pressures on the bearing surface and the wear 

generated in the acetabular cup for a MoP THR modelling without pelvic 

bone was predicted to be higher than that with pelvic bone. Therefore, the 

results presented in this chapter were considered to be fairly reasonable. 

3.4.1  Effect of Wear and Cup Angles 

Under all cup inclination angles, when penetration in the acetabular cup 

occurred, a large reduction in both the maximum von Mises stress in the 

acetabular cup and contact pressure on the bearing surface was observed. 

This is largely due to the increased conformity between the acetabular cup 

and femoral head as a result of wear. However, the difference was almost 

negligible between different penetration depths, and between different cup 

angles. This indicated that the soft-on-hard Charnley hip system is rather in-

sensitive of wear on the polyethylene cup to both the wear rate and cup 

angles, as compared with the running-in wear of hard-on-hard articulations 

of MoM and CoC.  

The outcomes of this FE study showed that the peak von Mises stress and 

max principal stress in the cement mantle and at the bone-cement interface 

occurred in the superior quadrant of the cement mantle, which was found to 

coincide with the location where the initial debonding of the cement mantle 
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was observed in vitro (Heaton-Adegbile et al., 2006; Wang et al., 2009). It is 

also interesting to note that the peak von Mises stress and shear stress 

within the cement mantle were observed at the prosthesis-cement interface. 

However, as failure in the acetabular implants was generally observed to 

initiate from the bone-cement interface(Tong et al., 2008), and the stress 

variation across the thickness of the cement mantle was found to be within 

10%, the peak von Mises stresses and shear stresses at the bone-cement 

interface were examined in this study. 

The FE results in this study also showed that a modest penetration depth (1 

mm and 2 mm) in the acetabular cup actually resulted in a reduction in the 

predicted peak von Mises stress and max principal stress in the cement 

mantle. There are two competing factors in this process. The cement 

stresses depend on both the contact pressure on the articulating surfaces 

and how the contact stresses are transferred to the bone-cement interface. 

Although the increased penetration depths in the acetabular cup resulted in 

a potential increase in the cement stresses due to the reduction of the cup 

thickness, the improved conformity and the corresponding reduction in the 

contact pressure actually resulted in a reduction in the cement stresses. 

However, both the von Mises stresses at the bone-cement interface and 

max principal stress in the cement mantle increased with increased 

penetration depths. This was attributed to the reduced thickness of the cup 

due to the increased penetration depths and consequently, the stresses was 

getting closer to the bone-cement interface. A similar FE simulation study 

conducted by Coultrup et al. (2010) supported this observation that the 

increased cup penetration was associated with increased cement mantle 

stresses, resulting in a reduction of the cement mantle fatigue life of 9% to 

11% for a high cup penetration depth. However, it is only limited to small 

penetration depths. When the penetration depth was increased to 4 mm, the 

effect of the cup thickness reduction became more dominant and 

consequently, the cement stresses were increased correspondingly. This is 

particularly evident, when combined with a steep cup inclination angle of 65º, 

that the peak von Mises stress was increased well above that of the un-worn 

cup. 
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For the conditions considered in the present study which represented the 

successful Charnley cups, neither the cup inclination angles nor the 

penetration depths affected the contact mechanics and the cement fixation 

markedly. These observations are consistent with the clinical observations 

reported in the literature (Wroblewski et al., 2009a; 2009c). However, 

beyond these conditions when the penetration or the inclination angle is 

increased further, a marked increase in the cement stresses would be 

predicted from the trend observed in Figure 3.7. These may cause rim crack 

and the rapid failure of the cement mantle. Furthermore, it should be pointed 

out that although the results in the present study reinforced the robustness 

of the Charnley THR, every effort should still be made to select the correct 

implant and to position the prosthesis correctly. 

3.4.2  Effect of Acetabular Cup Sizes 

Under all conditions considered, the differences in the von Mises stresses in 

the acetabular cup and contact pressures on the bearing surface between 

the hip prostheses with outer diameter of 40 mm and 43 mm were negligible. 

This can be explained from the consideration of the cup thickness and 

conformity. Due to the sufficient thickness of the acetabular cup, for the 40 

mm prostheses, the cup thickness is approximately 8.7 mm, an increased 

diameter of 43 mm results in an increase in the cup thickness to around 10.2 

mm. However, such an increase in the cup thickness is unlikely to cause 

large changes in the contact mechanics at the articulating surfaces (Bartel et 

al., 1985). Even though the severe penetration contributes to the decrease 

of the cup thickness, the improved conformity could compensate such a 

loss. Furthermore, it is expected from the present study that wear would not 

be influenced by the cup outer diameters, since neither the contact area, 

contact pressure nor the motion between the head and cup were altered 

markedly by the increased cup outer diameter.  

The stresses in the cement mantle and at the bone-cement interface for the 

hip prosthesis with outer diameter of 40 mm were predicted to be higher 

compared to that with outer diameter of 43 mm for all cup inclination and 

penetration conditions. This observation was confirmed by the previous 

studies conducted by Lamvohee et al. (2007; 2009), who reported that both 
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the maximum tensile stress and shear stress in the cement mantle were 

decreased with an increased acetabular component sizes. This is 

presumably due to the fact that for a given penetration depth, a larger outer 

diameter of the acetabular cup implies an increase in the thickness of the 

acetabular component which helped to distribute the stresses better in the 

acetabular component itself rather than transferring the compressive loading 

to the cement mantle directly. 

Clinical studies have shown that under similar conditions, a cup with outer 

diameter of 43 mm had smaller chance of aseptic loosening with increasing 

penetration depths compared to that of a 40 mm diameter cup. This was 

attributed to the lower friction torque with larger outer diameter of the 

acetabular cup (Wroblewski, et al., 2009a). However, the etiology of the 

aseptic loosening is multifactorial, and recent studies have particularly 

shown that high stress at the bone-cement interface would lead to premature 

failure of the fixation and the loosening of hip prosthesis (Kuehn et al., 2005; 

Coultrup et al., 2010). Whether other factors, such as the wear at the 

bearing surfaces or the mechanical behaviour at the bone-cement interface 

(Coultrup et al., 2010), will contribute to the difference of aseptic loosening 

observed clinically should be recognized. The present study showed that 

similar tribological characteristics in terms of contact pressures and contact 

areas were predicted on the bearing surfaces between the hip prostheses 

with outer diameter of 40 mm and 43 mm under all conditions considered. 

Therefore, it is supposed that wear is not the major contribution factor to the 

difference of aseptic loosening incidence between 40 mm and 43 mm 

diameter cup of Charnley THR observed clinically. However, it is interesting 

to note that the differences of the peak von Mises stress at the bone-cement 

interface and max principal stress in the cement mantle between the two cup 

designs were predicted to be between ~15-19% and ~15-22% respectively, 

and such differences were found to be similar to the clinical observations 

from Wroblewski et al. (2009a) who reported a difference of aseptic 

loosening incidence of ~20% between the acetabular components with outer 

diameter of 40 mm and 43 mm in favour of the cup with outer diameter of 43 

mm clinically. Therefore, it is proposed that besides the friction torque, the 

difference of stress amplification in the cement mantle or at the bone-cement 
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interface between the two cup designs could also be responsible for the 

different incidence of aseptic loosening observed clinically.  

3.4.3  Effect of Head Diameters and Cup Thicknesses 

Previous studies have shown that the size of the femoral head and the 

thickness of the acetabular cup were key factors that influenced the 

biomechanics and long-term performance of THRs (Crowninshield et al., 

2004; Lamvohee et al., 2009). This is due to the fact that the thickness of the 

acetabular component plays an important role in transferring the 

compressive forces acting on the pelvis (Lamvohee et al., 2007). The 

present study showed that an increase in the diameter of the femoral head, 

hence a decrease in the thickness of the polyethylene cup resulted in a 

decrease in both the maximum von Mises stress in the acetabular cup and 

the contact pressure on the bearing surface, yet led to an increase in the 

stresses in the cement mantle and at the bone-cement interface when the 

head diameters increased from 28 mm to 32 mm. This is due to the fact that 

the decrease of the thickness of the cup make the maximum stress closer to 

the bone-cement interface for head diameter of 28 mm compared to that of 

32 mm. However, if the head diameter increased further to 38 mm, the von 

Mises stresses at the bone-cement interface and maximum principal 

stresses in the cement mantle decreased. This is because the decrease of 

the contact stress on the bearing surface is becoming dominant, making the 

stresses transferred to the interface decreased. These observations agree 

with the previous studies (Crowninshield et al., 2004; Lamvohee et al., 2007; 

Lamvohee et al., 2009). Crowninshield et al. (2004) investigated the 

biomechanics of THR with larger femoral heads and found that the stresses 

in the acetabular component were decreased with increased femoral head 

sizes. The FE study conducted by Lamvohee et al. (2009) showed that with 

increased sizes of femoral head, the max tensile stress in the cement mantle 

was increased, although there was a reduction in the stress experienced in 

the acetabular component. However, if the femoral head  

Although the present study seemed to show that the larger femoral head 

was generally associated with better performance in terms of the contact 

stresses at the bearing surfaces, the increased sliding distance and contact 
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area contributed by the larger femoral head may result in increased wear of 

the UHMWPE cups (Kang et al., 2009). Indeed, a FE study to investigate the 

wear of the THR by Maxian et al. (1996b) demonstrated that an implant with 

28 mm femoral head generated 25% more volumetric wear than that a 22 

mm femoral head and an implant with 32 mm femoral head produced even 

more volumetric wear. Besides, the present FE results showed that the peak 

von Mises stress, shear stress and max principal stress in the cement 

mantle or at the bone-cement interface were predicted to increase with 

larger femoral head, which indicated that there is an increasing probability of 

fatigue failure of the cement mantle and mechanical loosening of the hip 

prostheses clinically as the head diameter was increased. From this point of 

view, it seems that a small head implant should be recommended for the 

patient. However, studies to investigate the biomechanics of the prosthesis 

with larger femoral head found that an increase in the femoral head size 

could result in an increase in prosthetic impingement-free ROM (Burroughs 

et al., 2005; Hammerberg et al., 2010) and decreased incidence of 

dislocation (Berry et al., 2005; Ng et al., 2011). Thus, it could be argued that 

a balance should be found when choosing a hip system relating to the 

femoral head sizes. However, as aseptic loosening has been the most 

commom cause of the failure of hip implant, the smaller femoral head should 

be considered preferentially clinically. 

There are a number of limitations in the present study. Firstly, in the present 

simulation, the cup was assumed to be bonded to the bone cement using a 

tied contact formulation rather than modelling the macro-features on the cup 

external surface explicitly. Although this geometric simplification was 

reasonable in the computational simulation to study the contact mechanics 

at the bearing surfaces (Zant et al., 2007; Tong et al., 2008; Coultrup et al., 

2010), it would inevitably affect the stress in the cement mantle. Besides, 

one of the most important concepts in the Charnley hip system is the low 

frictional torque. This was not simulated in the present FE modelling. A 

typical friction coefficient for a MoP combination is 0.08. Assuming a uniform 

shear stress at the bone-cement interface, the additional shear stress 

induced as a result of the frictional torque was estimated to be approximately 

0.04 MPa. Therefore, considering the effect of friction is unlikely to affect the 
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major conclusions made from the present study. Additionally, as the model 

considered in the present study was a staic model rather than dynamic one, 

the effect of friction coefficient on the preditions is negligible. 

The penetration of the acetabular cup was simulated towards the direction of 

the resultant load in the present study, which was 10º medially. However, it 

is interesting to note that in retrieval studies, the direction of wear was 

generally observed to be lateral (Wroblewski et al., 1985). This may be due 

to the complex motion occurring during the different daily activities. The 

specific direction of the wear needs to be further studied. Furthermore, a 

simple worn geometry with a zero clearance to the head was considered, 

which may affect how the contact pressure distributes at the articulating 

surfaces and potentially the stress in the cement mantle. It has been shown 

in a retrieval study (Wroblewski et al., 1985) that there were clearly 

clearances between the worn area of the cup and the femoral head which 

were close to the clearance between the unworn area and the head. More 

adverse conditions such as large penetration and potential impingement and 

higher cup inclination angles as well as anteversion angles should also be 

simulated. Other cup designs, particularly a thicker polyethylene cup or 

different cement thicknesses should also be investigated to further 

understand the clinical observations (Wroblewski et al., 2007). 

3.5  Summary 

A general methodology combining contact mechanics between the 

articulating surfaces and fixation of the cement mantle was developed for a 

MoP hip system. The effect of wear depths, cup inclination angles, sizes of 

both the acetabular and femoral component on the contact mechanics of 

bearings and mechanical behaviour in the cement fixation for a MoP THR 

were analysed. The following conclusions can be drawn from this study: 

1. Both the cup inclination angles and wear in the acetabular cup had a 

marked effect on the contact mechanics at the bearing surfaces and the 

stress states in the cement mantle. Typically, a combination of cup angle 

of 65º and penetration depth of 4 mm generated a marked increase in the 
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contact pressures and cement stresses, compared with the cup angles of 

45º and no penetration conditions. 

2. Similar tribological characteristics were predicted at the bearing surfaces 

between the hip implants with outer diameter of 40 mm and 43 mm. 

However, the cement stresses for the hip implants with outer diameter of 

40 mm were predicted to be higher than that of 43 mm, the difference was 

found to be consistent with the clinical observations of different aseptic 

loosening rate. 

3. The increase of the femoral head diameters resulted in deceased contact 

pressures on the bearing surface and von Mises stress in the acetabular 

cup. However, the maximum stress in the cement mantle or at the bone-

cement interface were increased with the increase of the head sizes. 
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Chapter 4 

Surface Geometry and Contact Mechanics Analysis on 

Retrieved Charnley THRs 

4.1  Introduction 

The contact mechanics and stability of the cemented THR in terms of the 

cement stresses were investigated using FE methods in Chapter 3. 

Particularly, the effect of wear depths in the acetabular cup was assessed. 

However, in the FE model, the geometrical characterization of the wear in 

the acetabular cup was simplified. The clearance between the femoral head 

and worn region of the cup was assumed as zero and the wear direction was 

assumed towards the direction of the resultant load. This would not be the 

normal case in retrieved components as clinical studies have shown that 

there was actually a gap between the femoral head and worn region of the 

cup, and the wear direction was normally observed to be lateral with respect 

to the cup position in the body. (Wroblewski et al., 1985; Hall et al., 1998). 

Therefore, the simplification of the worn surface geometry made in the FE 

model should be clarified with respect to retrieved components and the 

effect of these parameters needs to be examined. The aim of this chapter 

was therefore to develop a methodology to determine the geometric 

characteristics of worn components, i.e. the wear direction and the gap 

between the femoral head and worn region of the cup, for retrieved Charnley 

THRs using surface fitting technique, and to investigate how these factors 

affect the contact mechanics and mechanical behaviour of the cement 

fixation for cemented THR using FE methods. 

 

4.2  Materials and Methods 

4.2.1  Surface Geometry Prediction 

The surface geometry prediction was conducted to determine the geometric 

characteristic of the worn surface of the cup with respect to the wear 
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direction and radial clearance between the femoral head and worn region of 

the cup from two retrieved Charnley sockets using surface fitting technique. 

Data collection 

Two retrieved Charnley acetabular cups, one had severe wear (severely 

worn cup) and another had mild wear (mildly worn cup), were considered in 

the present study. A coordinate measuring machine (CMM, Legex 322, 

Mitutoyo, UK) was used to scan the cups in the form of traces starting at the 

pole and ending at the rim. The CMM machine had a resolution of 0.8 µm. 

However, this value increased depending on the probe/stylus combination 

and measurement parameters.  

A single straight stylus configuration with stylus diameter of 2 mm was used 

to measure the retrieved cups. AI-Hajjar (2012) compared the accuracy of 

different styli configurations by using an unworn ceramic femoral head and 

showed a form error in the range of ±2 µm for this stylus configuration. The 

definition of accuracy in ISO 10360-4:2000 (Geometrical product 

specification (GPS)-Acceptance and re-verification tests for coordinate 

measuring machines (CMMs)-part 4: CMMs used in scanning measuring 

mode) was accepted in the present study to evaluate the measurement 

accuracy. For the present set-up, the accuracy stated by Mitutoyo is 

(0.8+2L/1000) µm, where L is the measurement length in mm (Lord et al., 

2011). The largest value of L for 22.225 mm diameter cup was 17.45 mm, 

which corresponded to a measurement accuracy of 0.804 µm in the present 

study. 

At the beginning of scanning, the retrieved cup was placed on the slate bed 

of the machine with its rim plane parallel to the machine’s XY plane. It was 

critical to create an individual co-ordinate system on the component before 

the measurement. For the purpose of this, a reference plane was first 

identified from the measurement of the rim of the cup and aligned as the XY 

plane of the co-ordinate system. The origin of the coordinate system was 

determined by taking 25 points over the unworn part of the component’s 

surface. Alignment of the X-axis was achieved by measuring a line through 

the introducer holes in the cup. 
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Once the co-ordinate system was developed, the acetabular cup was 

scanned by taking 2, 304 points in the form of 36 traces rotated by 10 

degrees from each other about the Z-axis passing through the origin of the 

defined coordinate system. Each trace consisted of 64 points with a pitch of 

0.5 mm starting at the pole and finishing at the rim of the cup. The last three 

points of each trace lay on the chamfer of the rim (Figure 4.1). All the points 

were recorded as X, Y and Z co-ordinates relative to the defined origin. 

 

Figure 4.1  Data points taken on the surface of the Charnley cups using 
CMM by taking traces about the vertical axis. 

 

Surface geometry prediction 

Co-ordinate data collected from the CMM was read in to a MATLAB program 

to predict the surface geometry. The flowchart for the entire prediction 

process is shown in Figure 4.2. The program code is present in Appendix A. 
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Figure 4.2  Flowchart for entire surface fitting process (t was the threshold 
value which was decreased for each iteration). 

 

The data was split into 36 traces and each trace was split into three matrices 

(original matrices) which represented the Cartesian co-ordinates at each 

measured point. To determine the original surface of the cup, the traces that 

included the matrices representing the unworn region of the surface were 

selected. To do this, all the traces were imported in a co-ordinate system. 

The traces that coincided with each other were assumed to represent 
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unworn surface and the matrices of these traces were selected for the first 

surface fitting (Figure 4.3). 

 

(a)  

(b)  

Figure 4.3  (a) The tracks of the collected data in a 2D co-ordinate system. 
The tracks that represented the unworn surface coincided with each 
other in the co-ordinate system; (b) the points selected for surface 
fitting. 

Surface fitting was conducted based on the selected matrices. A new 

spherical surface was then reconstructed. The deviation of each point in the 

selected matrices (the error between the radius of the new spherical surface 

and the distance from the point to the centre of the new spherical surface) 

was calculated. If the maximum deviation of the points was larger than 

manufacturing tolerance of 10 µm, a threshold value was set based on the 

maximum deviation of the points. Any point for which the calculated 

The selected tracks 

for surface fitting
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deviation was greater than the threshold value was discarded. The 

remaining points were retained to form new matrices and used in the fitting 

of the second sphere. The process was repeated until the maximum 

deviation of the points was smaller than 10 µm, and the sphere fitted at this 

stage was assumed as the original surface of the cup. 

Once the original surface of the cup was determined, the deviation of each 

point in the original matrices to the original surface was calculated. All the 

points for which the calculated deviation greater than 10 µm were picked out. 

These points were then used in the calculation of a new spherical surface 

which was considered as the worn surface of the cup. The clearance 

between the femoral head and the worn surface of the cup was then 

determined. The maximum deviation was assumed as the maximum 

penetration depth and the wear direction was calculated based on the 

maximum deviation.  

The wear direction was defined using the angle between the rim plane of the 

cup and vector from centre of the cup to the maximum deviation point, as 

shown in Figure 4.4. 

 

Figure 4.4  The definition of the wear direction in the surface fitting progress. 

 

4.2.2  FE Modelling 

The FE modelling was developed to conduct a parametric study for 

assessing the effect of wear direction and radial clearance between the 

femoral head and the worn region of the cup (Cw) on the contact mechanics 
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of the bearing and mechanical behaviour of the cement mantle for cemented 

THR. 

The anatomic Charnley THR model used in Chapter 3 was used once more 

in this Chapter. The FE modelling, mechanical properties of the components 

and the boundary conditions for the model were detailed in Chapter 2.  

The geometries and structures of the components for the Charnley THR 

were described in Chapter 2. The nominal diameters of the femoral head 

and original surface of the cup were 22.225 mm and 22.59 mm respectively, 

giving a radial clearance of 0.1825 mm between the femoral head and 

original surface of the cup (C0). The outer diameter of the acetabular cup 

was considered as 40 mm. The cup inclination angle was considered as 45º. 

The wear depth in the acetabular cup was modelled as 2 mm. The method 

to simulate the wear in the acerabular cup was illustrated in Chapter 3. The 

parametric study was conducted separately. Firstly, keeping the radial 

clearance between the femoral head and worn region of the cup (Cw) as 0 

mm invariably, different wear directions of -10º, 0º, 15º and 30º were 

modelled. The wear direction was defined as the angle between the superior 

axis and the vector from centre of the cup to the maximum deviation point, 

as shown in Figure 4.5. The negative value of the angle represented the 

medial direction while the positive value of the angle mean the lateral 

direction. The angle of 0º represented vertical wear direction. Afterward, 

keeping the wear direction constant at -10º, different radial clearances of 0 

mm, 0.1825 mm and 0.27 mm between the femoral head and worn region  

of the cup (Cw) were modelled. These radial clearances were considered 

correspond to 0, 1 and 1.5 times as the radial clearance between the 

femoral head and the original surface of the cup (C0) respectively. 



- 96 - 

 

Figure 4.5  The definition of the wear direction in the FE modelling. Negative 
value represented the medial direction while the positive value 
represented the lateral direction. 

 

4.3  Results 

4.3.1  Wear and Surface Geometry Prediction for Retrieved 

Charnley THRs 

Figure 4.6 shows the wear maps at the bearing surface in the acetabular 

cups in terms of linear penetration for the two retrieved cups. The 

characteristics of the surface geometry for the worn surfaces for the 

retrieved cups is summarized in Table 4.1. 

The severely worn cup had a linear penetration of approximately 1.85 mm 

while the mildly worn cup had a linear penetration of about 0.23 mm. The 

maximum penetration for the severely worn cup was offset at an angle of 

approximately 32.5º from the rim plane while for the mildly worn cup, the 

maximum penetration was predicted at the rim of the cup. 

The radial clearance between the head and worn region of the cup (Cw) was 

predicted as 0.15 mm for the severely worn cup, which was slightly smaller 

than the radial clearance between the head and original surface of the cup 

(C0). For the mildly worn cup, the radial clearance Cw was predicted to be 

0.23 mm, which was slightly bigger than the radial clearance C0. 
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(a) 

 
(b) 

Figure 4.6  Wear maps of bearing surfaces in acetabular cups: (a) the 
severely worn cup, (b) the mildly worn cup. Dark blue represents the 
unworn surface, dark red represents the deepest wear areas, the 
vertical colour scales show wear depth in mm. 

 

Table 4.1  The predicted wear and surface geometry of the retrieved 

Charnley cups. C0 was the radial clearance between the femoral head and 

original surface of the cup, Cw was the radial clearance between the femoral 

head and the worn region of the cup. 

Components 
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sphere (mm) 
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penetration 

(mm) 

Wear 

angle 

(º) 

Radial 

clearance 

C0 (mm) 

Radial 

clearance 

Cw (mm) 

Severely worn 

cup 
11.19 1.85 32.5 0.19 0.15 

Mildly worn cup 11.21 0.23 3.9 0.21 0.23 
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4.3.2  Contact Mechanics and Cement Stresses Analysis 

Effect of wear direction 

With the penetration depth of 2 mm in the acetabular cup, the maximum 

contact pressure on the bearing surface was increased by approximately 1.2% 

when the wear directions changed from 10º medially to 15º laterally, and 

about 11.3% when the wear directions changed from 10º medially to 30º 

laterally (Figure 4.7 and 4.8). However, the change of wear directions from 

10º medially to 30º laterally had negligible effect on the maximum von Mises 

stresses in the acetabular cup (Figure 4.8). 

 

(a) (b)  

Figure 4.7  The predicted contact pressure (MPa) distributions on the 
bearing surface with penetration depth of 2 mm in the cup with wear 
direction of (a) 10º medially and (b) 15º laterally (Clearance Cw: 0 mm, 
cup inclination angle: 45º). 

 

 

 

 



- 99 - 

 

Figure 4.8  The predicted maximum contact pressure (MPa) on the bearing 
surface and maximum von Mises stress (MPa) in the acetabular cup 
with different wear directions. Negative value represented the medial 
wear direction, 0º represented vertical direction and positive value 
represented the lateral wear direction, as shown in Figure 4.5. The 
penetration depth of the cup was 2 mm (Clearance Cw: 0 mm, cup 
inclination angle: 45º). 

 

With the penetration depth of 2 mm in the acetabular cup, the change of 

wear directions from 10º medially to 30º laterally had negligible effect on the 

maximum von Mises stress at the bone-cement interface (Figure 4.9 and 

4.11). However, it led to a slight increase of peak max principal stress in the 

cement mantle of about 4.0% (Figure 4.10 and 4.11) and moderate increase 

of maximum shear stress at the bone-cement interface of about 23.4% 

(Figure 4.11). 

(a) (b)  

Figure 4.9  The predicted von Mises stresses (MPa) in the cement mantle at 
the bone-cement interface with wear depth of 2 mm in the cup with 
wear direction of (a) 10º medially and (b) 15º laterally (Clearance Cw: 0 
mm, cup inclination angle: 45º). 
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(a) (b)  

Figure 4.10  The predicted max principal stresses (MPa) in the cement 
mantle with wear depth of 2 mm in the cup with wear direction of (a) 10º 
medially and (b) 15º laterally (Clearance Cw: 0 mm, cup inclination 
angle: 45º). 

 

 

Figure 4.11  The predicted peak von Mises stress (MPa) and shear stress 
(MPa) at the bone-cement interface, and max principal stress (MPa) in 
the cement mantle with different wear directions. Negative value 
represented the medial wear direction, 0º represented vertical direction 
and positive value represented the lateral wear direction, as shown in 
Figure 4.5. The penetration depth of the cup was 2 mm (Clearance Cw: 
0 mm, cup inclination angle: 45º). 

 

Effect of radial clearance Cw 

The increase of radial clearance Cw between the femoral head and worn 

region of the cup from 0 mm to 0.27 mm resulted in a moderate increase of 

maximum von Mises stress in the acetabular cup of approximately 15.3% 

and markedly increase of maximum contact pressure on the bearing surface 

of about 70.2% (Figure 4.12 and 4.13). 
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(a) (b)  

Figure 4.12  The predicted contact pressure (MPa) distributions on the 
bearing surface with radial clearance Cw of (a) 0 mm and (b) 0.1825 
mm between the femoral head and worn surface of the cup under cup 
inclination of 45º. The penetration depth of the cup was 2 mm with wear 
direction of 10º medially. 

 

 

Figure 4.13  The predicted maximum contact pressure (MPa) on the bearing 
surface and maximum von Mises stress (MPa) in the acetabular cup 
with different radial clearances Cw  under cup inclination of 45º. The 
penetration depth of the cup was 2 mm with wear direction of 10º 
medially. Cw was the radial clearance between the femoral head and 
worn region of the cup. 

 

With the penetration depth of 2 mm in the acetabular cup, and the radial 

clearance Cw between the femoral head and the worn region of the cup 

increased from 0 mm to 0.27 mm, the peak von Mises stress at the bone-

cement interface and peak max principal stresses in the cement mantle 

increased markedly by approximately 68% (from 6.9 MPa to 11.6 MPa) and 

40% (from 4.2 MPa to 5.9 MPa) respectively (Figure 4.14, 4.15, and 4.16). 
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The maximum shear stress at the bone-cement interface increased mildly by 

about 20.9% (Figure 4.16). 

 

(a) (b)  

Figure 4.14  The predicted von Mises stresses (MPa) at the bone-cement 
interface with radial clearance Cw of (a) 0 mm and (b) 0.1825 mm 
between the femoral head and worn region of the cup under cup 
inclination of 45º. The penetration depth of the cup was 2 mm with wear 
direction of 10º medially. 

 

(a) (b)  

Figure 4.15  The predicted max principal stresses (MPa) in the cement 
mantle with radial clearance Cw of (a) 0 mm and (b) 0.1825 mm 
between the femoral head and worn surface of the cup under cup 
inclination of 45º. The penetration depth of the cup was 2 mm with wear 
direction of 10º medially. 
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Figure 4.16  The predicted peak von Mises stress (MPa) and shear stress 
(MPa) at the bone-cement interface, and max principal stress (MPa) in 
the cement mantle with different radial clearances Cw under cup 
inclination of 45º. The penetration depth of the cup was 2 mm with wear 
direction of 10º medially. Cw was the radial clearance between the 
femoral head and worn surface of the cup. 

 

4.4  Discussion 

To model the real-life wear of the components in the FE model is a 

challenge as it is difficult to obtain enough geometric information for the worn 

components for THRs. In our previous studies (Chapter 3) and other 

previous study (Coultrup et al., 2010), the wear of the component in the FE 

model was simplified, as discussed in Chapter 3. However, this geometric 

simplification of the worn component should be clarified, and the effect of the 

simplification should be evaluated. This chapter, therefore, presented a 

novel approach to assess the wear and surface geometries of two worn cups 

from retrieved Charnley THRs. With the aid of the method, the geometric 

information of the worn cup, in terms of wear depth, wear direction and the 

clearance Cw between the femoral head and worn region of the cup, was 

obtained. The effect of the worn surface geometries on the contact 

mechanics and cement fixation for a cemented THR was then evaluated. 

A maximum penetration depth of 1.85 mm with wear direction of 

approximately 33º from the rim plane was predicted for the severely worn 

cup. It should be noted that the definition of wear direction in the surface 
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geometry prediction was different from that in the FE model (as seen in 

Figure 4.3 and 4.5) and the initial orientation of the retrieved cup in the 

human body was not known when the explants were analysed. Considering 

a cup inclination angle of 45º, the wear direction of 33º in the surface 

geometry prediction corresponded to a wear direction of 12º laterally in the 

FE model. This was found to be in keeping with the observations of wear 

directions from retrieved Charnley sockets conducted by Hall et al. (1998). A 

maximum penetration depth of 0.23 mm was predicted for the mildly worn 

cup at the very rim of the cup. This rarely happens. However, two cases 

were reported by Wroblewski (1985) where extreme wear was found at the 

very rim of the socket when 22 Charnley sockets were considered. This 

occurred probably due to the steep inclination of the cup or microseparation 

taking place on the bearing. 

It is interesting to notice that the maximum penetration in the mildly worn cup 

was much closer to the rim compared to the severely worn cup, and the 

radial clearance Cw between the femoral head and worn region of the cup 

was predicted to be higher for mildly worn cup than that for the severely 

worn cup. This showed a potential relationship between the penetration 

depths and wear directions, as proposed by Hall et al. (1998), as well as a 

relationship between the penetration depths and radial clearances Cw 

between the femoral head and worn region of the cup. However, more data 

should be analysed before any conclusions are drawn. Nevertheless, the 

radial clearance Cw between the femoral head and worn region of the cup 

was predicted to be close to the gap C0 between the femoral head and 

original surface of the cup for both retrieved components. 

The contact mechanics analysis showed that the wear directions did not 

affect the contact mechanics of the THR. However, if the wear direction was 

too lateral, i.e. over 30º laterally, the contact stress would be increased. This 

is probably due to the fact that with a too lateral wear direction, the contact 

pitch moved to the transition zone between the worn region and unworn 

region in the cup thus the contact areas decreased, leading to an increase in 

the contact stress. However, it should be pointed out that the load direction 

considered in this study was 10º medially, and the findings may not be the 

same when different load directions are considered. 
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The effect of the wear directions on the von Mises stresses at the bone-

cement interface and the max principal stresses in the cement mantle was 

negligible. However, the change of the wear direction from medial to lateral 

resulted in a marked increase of the shear stresses at the bone-cement 

interface. Again, this may not be true if load with different directions was 

considered. 

Compared to the wear direction, the radial clearance Cw between the 

femoral head and worn region of the cup had marked effect on the contact 

mechanics of the THR, as well as the von Mises stresses at the bone-

cement interface and max principal stresses in the cement mantle. This was 

reasonable as the radial clearance is a key factor that affects the 

biomechanics of the THR (Jin et al., 1994; Chen et al., 2012). However, the 

change of the radial clearance between the femoral head and worn region of 

the cup had negligible effect on the shear stresses at the bone-cement 

interface. 

The method presented in this Chapter was used to assess the linear 

penetration depth for the retrieved cup. However, it can be further developed 

to assess the volumetric wear of the retrieved components. The advantages 

of this method over the gravimetric analysis method are that it could provide 

a 3D construction of the component showing the area, depth and location of 

the wear patch on the components, and more importantly, it could be used 

reliably to determine the linear and volumetric wear in components where 

there is no pre-wear or ‘zero-cycle’ data. 

4.5  Summary 

A novel approach that can be used to assess the wear of the THR and 

characterise the surface geometry of the worn component was developed in 

this Chapter. Two retrieved Charnley acetabular components were analysed 

to get the geometric information of the worn cup. The effect of the surface 

geometry of worn cup in terms of wear direction and radial clearance 

between the femoral head and worn region of the worn cup was then 

evaluated. The following conclusions can be drawn from this study: 
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1. The wear directions for the two retrieved cups were predicted to be 

lateral, rather than medial with respect to the wear direction defined in 

the FE modelling. The radial clearances Cw between the femoral head 

and worn region of the cup for the two retrieved components were close 

to the radial clearances C0 between the femoral head and original 

surface of the cup. 

2. The wear direction had negligible effect on the contact mechanics of the 

bearings, the von Mises stresses and the max principal stresses for the 

cement mantle. However, if the wear direction was too lateral (i.e., over 

30º laterally), the contact stresses on the bearing surface would increase 

markedly.  

3. The radial clearance Cw between the femoral head and worn region of 

the cup had marked effect on the contact mechanics of the bearings, the 

von Mises stresses and the max principal stresses for the cement mantle. 

However, it had negligible effect on the shear stresses at the bone-

cement interface. 
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Chapter 5 

Experimental Study and Contact Mechanics Analysis of 

Pinnacle THR 

5.1  Introduction 

As discussed in Section 1.4.1, FE models, as an alternative to the 

experiment, are becoming increasingly useful tools to conduct parametric 

analysis, design optimization and pre-clinical testing for hip joint 

replacements (Huiskes and Chao, 1983; Saha and Roychowdhury, 2009; 

Laz and Browne, 2010). However, the level of confidence in the FE model 

depends upon how the FE predictions agree with the experimental or clinical 

observations (Okrajni et al., 2007; Lerch et al., 2012). Therefore, the 

experimental validation for the FE model is very important. 

In this Chapter, an attempt was made to validate the methodology used in 

the 3D anatomic Pinnacle THR model by comparing the contact areas on 

the articulating surface between the experimental measurements and FE 

predictions from an experimentally-matched model. The experimentally-

matched model used the same methodology as that used in the anatomic 

Pinnacle THR model. The methodology was further supported by conducting 

a parametric analysis to investigate the influence of friction coefficients at the 

shell/liner interface using the experimentally-matched model. The anatomic 

Pinnacle THR model with validated methodology will then be used to 

investigate more complications in the hip prostheses such as edge loading 

and microseparation in Chapter 6 and Chapter 7. 

5.2  Materials and Methods  

The validation of the methodology was undertaken in three steps: (1) the 

contact areas on the articulating surfaces for Pinnacle bearings were 

measured for a variety of different radial clearances and loadings; (2) the 

contact areas on the articulating surfaces were predicted from an 

experimentally-matched model which used the same methodology as the 3D 

anatomic Pinnacle THR model and had the same constructions with 
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experiemental set-up, (3) the contact areas were compared between the 

experimental measurements and the FE predictions from the experimentally-

matched model. 

5.2.1  Experimental Measurement 

Hip joint simulator 

The Leeds Prosim hip joint simulator (Prosim Limited, Manchester, UK) was 

used in the experimental measurement. The simulator consists of ten 

stations that can generate multi-direction motion between the femoral head 

and the acetabular cup (Goldsmith and Dowson, 1999). It has three axes, a 

single vertical load axis and two independently controlled axes of motion, 

extension/ flexion (-15°/+30°) and internal/external rotation (+/-10°) (Figure 

5.1). The load is applied vertically through the centre of the femoral head. 

Under standard gait conditions, the machine is running at a frequency of 1 

Hz with a twin peak loading cycle with a peak load of 3 KN and swing phase 

load of 0.3 KN, as recommended by ISO 14242-1 (2002). The loading and 

motion profiles are shown in Figure 5.2. 

 

Figure 5.1  Schematic diagram of load axis and rotational axes of a test 
station of the hip joint simulator from the front view (Goldsmith and 
Dowson, 1999). 
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Figure 5.2  Loading and motion profiles on the Leeds ProSim hip simulator. 
One gait cycle takes one second. 

 

Specimens 

Three specimens of Pinnacle polyethylene liner (DePuy Orthopaedics, Inc.) 

in conjunction with 36 mm CoCr femoral heads were considered in this 

Chapter, as shown in Figure 5.3. The specimens were processed using 

three different approaches before test. The first specimen was soaked in 

deionised water for approximately 16 weeks to allow moisture uptake to 

stabilize prior to the test, it was then soaked in 25% serum with 0.03% 

sodium azide during the test. This specimen was termed as “soak control 

liner”. The second specimen was loaded using the Leeds Prosim hip joint 

simulator (Prosim Limited, Manchester, UK) by the twin peak load (Figure 

5.2) for 4.8 million cycles at frequency of 1 Hz without any articulations on 

the bearing surface, this specimen was termed as “load control liner”; The 

third specimen was loaded and wear-tested in Leeds Prosim hip joint 

simulator (Prosim Limited, Manchester, UK) under standard gait cycle 

conditions for 4.8 million cycles. The input of loading and motion is shown in 

Figure 5.2. This specimen was termed as “worn liner”. These processed 

liners were used in order to represent three types of Pinnacle liners with 

three different clearances.  

A coordinate measuring machine (CMM, Legex 322, Mitutoyo, UK) which 

was describe in Chapter 4 was used to obtain the clearances of the contact 
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surfaces between these polyethylene liners and the femoral head. Before 

the test, the crept area of the load control liner and the worn region of the 

worn liner were identified. Thirty-two data points were taken in these regions 

and in the inner surface of the soak control liner. The diameters of the inner 

surface of soak control liner, crept region of the load control liner and the 

worn region of the worn liner were then measured based on these data 

points and are summarised in Table 5.1. 

 

Figure 5.3  The Pinnacle liner specimens used in the experimental 
measurement. 

 

Table 5.1  The sizes of the three polyethylene liner specimens measured 
using CMM. 

Pinnacle liner 

specimens 

Diameter of inner 

surfaces (mm) 

Raidal 

clearances 

(mm) 

Soak control 36.932 0.932 

Load control 36.727 0.727 

Worn 36.514 0.514 

 

Experimental set up and measurement 

A station of the Leeds Prosim hip joint simulator (Prosim Limited, 

Manchester, UK) was used to undertake experimental measurement. The 

Soak control liner

Load control liner

Worn liner
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polyethylene liner specimen was taper locked to the metal shell, which was 

mounted to the stainless steel cup holder using PMMA resin. The cup holder 

was fixed to the station of the hip simulator to ensure that the centre of the 

cup was at the centre of rotation of the simulator. The metal shell was 

securely mounted in the cup holder with a hole drilled from the back and 

blocked with a grub screw for the liner specimen to be pushed out when 

needed for measurement. During mounting up, the cup was positioned at the 

desired inclination angle to the horizontal plane using a bespoke fixturing jig. 

The CoCr femoral head of 36 mm diameter was screwed into the stainless 

steel head holder which was attached in the machine, making sure the 

centre of the femoral head was positioned on the centre of rotation of the 

machine through which the load was applied. By doing this, the concentricity 

between the femoral head and polyethylene liner was maintained. The whole 

experimental set-up is shown in Figure 5.4. 

 

 

Figure 5.4  The experimental set up for the tests and cup holder for the 
acetabular components. 

 

A pigmented paste (MicroSet, Warwickshire, UK) was used to mark the 

contact areas on the articulating surfaces between the femoral head and 

liner when the system was loaded. Before loading, the femoral head was 

coated with a uniform thin layer of MicroSet and articulated with the liner with 
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a uniform clearance. The whole system was first loaded with a small 

compressive force to make sure the femoral head contacted with the liner 

without dynamic impact. It was then loaded with a series of vertical 

compressive forces stock-still for 2 minutes to allow for the contact pattern in 

the liner to stabilize. The load was then moved immediately. The MicroSet 

was shifted from the femoral head to polyethylene liner during this process, 

as shown in Figure 5.5. 

 

Figure 5.5  The MicroSet was coated on the femoral head and shifted from 
femoral head to the cup when the loading was removed. 

 

Various compressive forces from 500 N to 2500 N at regular intervals of 

500 N were applied in the tests. Different cup inclination angles of 35º and 

50º to the horizontal plane were considered in the experimental tests.  

The photos of the liners with MicroSet were collected and post-processed. 

The contact areas at the liner were then calculated using Image ProPlus 

V3.0 (Media Cybernetics, Inc., MD, USA). For each specimen and a given 

loading, the experiment was repeated three times to obtain an average value. 

 

5.2.2  FE Modelling 

Model development 

The experimentally-matched model was developed to predict the contact 

areas on the articulating surfaces for Pinnacle THR, which were then used to 

compare with the contact areas measured experimentally. 

Micro set
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The experimentally-matched model used femoral head-polyethylene liner-

metal shell-cement construction (Figure 5.6), which replicated the 

experimental set-up. The methodology used to generate the experimentally-

matched model, i.e., the mechanical properties and mesh for the 

components, as well as the friction properties and contact formulation for the 

contact surfaces, was the same as that used to generate the anatomic 

Pinnacle THR model, which was detailed in Chapter 2. The mechanical 

properties and mesh for the cement in the experimentally-matched model 

were the same with that in the anatomic Charnley THR model which was 

also described in Chapter 2. The nodes at the outside of the cement in the 

experimentally-matched model were fully constrained and the interface 

between the cement and the metal shell was fully bonded, simulating the 

fixation of the metal shell in the cup holder using PMMA cement, as 

processed in the experimental tests. The FE modelling and boundary 

conditions for the experimentally-matched model is shown in Figure 5.6. 

 

Figure 5.6  The FE modelling and boundary conditions for the simple 
Pinnacle THR model, which have the same construction and boundary 
conditions with the experimental set-up. 

 

The outer diameters for the cement and metal shell in the experimentally-

matched model were 76 mm and 52 mm respectively. Three polyethylene 

liners with three different clearances, corresponding to the specimens used 

in the experimental tests (Table 5.1), were reconstructed in the 

experimental-matched model. For the purpose of directly comparing with the 
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Titanium shell
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Femoral head
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experimental tests, the liners used in the FE models were termed as “soak 

control liner”, “load control liner”, “worn liner” respectively as well. Vertical 

loads of 500 N, 1000 N, 1500 N, 2000 N and 2500 N, which were applied in 

the experimental tests, were applied at the centre of the femoral head in the 

experimentally-matched model. The acetabular cup was positioned at 

inclination angles of 35º and 50º to reproduce the experimental conditions. 

The models were solved using ABQUS (Version 6.9, Dassault Systèmes 

Simulia Corp., Providence, United States). 

Parametric study 

The parametric study was conducted to examine the effect of frictional 

characteristics at the metal shell/liner interface on the contact stresses on 

the articulating surface and backside surface of the liner. Different friction 

coefficients of 0.1, 0.15, 0.3, and 0.6 were applied at the metal shell/liner 

interface in the experimentally-matched model (Kurtz et al., 1997; Besong et 

al., 2001b; Ramero et al., 2007; Amirouche et al., 2008) and the contact 

mechanics of the Pinnacle THR were analysed. 

5.3  Results 

5.3.1  Comparison of Experimental Measurements and FE 

Predictions 

Similar contact area patterns were observed between the experimental 

measurements and FE predictions from the simple Pinnacle THR model for 

soak control liner, load control liner and worn liner, although there were 

slight differences in the contact area values (Table 5.2 and 5.3). For all 

loading conditions and cup angles, the differences of contact areas between 

the experimental measurements and FE predictions from the simple 

Pinnacle THR model were within 3.5% for soak control liner, which was the 

lowest among the three specimens. The maximum differences of 14% was 

observed for worn liner. The differences of contact areas between the 

experimental measurements and FE predictions for load control liner was 

within 12% (Figure 5.7 and 5.8). 

An increased load from 500 N to 2500 N resulted in an increased contact 

areas of approximately 85%-110% for cup inclination angles of 35º and of 
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about 181%-262% for cup inclination angles of 50º for both experimental 

measurements and FE predictions (Figure 5.7 and 5.8). 

 

Table 5.2  The contact area patterns on the articulating surfaces between 
experimental measurements and FE predictions from experimentally-
matched model under load of 2500 N and cup inclination angles of 35º. 

 

 Soak control Load control Worn 

Experimental 

measurements 

 

370 mm2 

 

425 mm2 

 

535 mm2 

FE predictions 

from 

experimentally-

matched model  

388 mm2 

 

447 mm2 

 

565 mm2 
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Table 5.3  The contact area patterns on the articulating surfaces between 
experimental measurements and FE predictions from experimentally-
matched model under load of 2500 N and cup inclination angles of 50º. 

 

 Soak control Load control Worn 

Experimental 

measurements 

 

325 mm2 

 

385 mm2 

 

425 mm2 

FE predictions 

from 

experimentally-

matched model  

341 mm2 

 

409 mm2 

 

465 mm2 
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(a) 

 

(b) 

 

(c) 

Figure 5.7  Comparison of the contact areas on the articulating surface 
between the experimental measurements and FE predictions from 
experimentally-matched model under cup inclination angles of 35º for 
different liners: (a) soak control liner, (b) load control liner, (c) worn liner. 
The error bars represent 95% confidence limit. 
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(a) 

 

(b) 

 

(c) 

Figure 5.8  Comparison of the contact areas on the articulating surface 
between the experimental measurements and FE predictions from 
experimentally-matched model under cup inclination angles of 50º for 
different liners: (a) soak control liner, (b) load control liner, (c) worn liner. 
The error bars represent 95% confidence limit. 
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5.3.2  Parametric Study 

For all cup inclination angles and loading conditions considered, the 

differences in maximum contact stress on the frontside articulating surfaces 

were within 9% for cup inclination angle of 35º and within 8% for cup 

inclination angle of 50º when different friction coefficients (m) were 

considered at the metal shell/liner interface in the FE modelling (Figure 5.9). 

Under the same conditions, the differences in maximum contact stress on 

the backside surface of the liner were within 6% for cup inclination angle of 

35º and within 12% for cup inclination angle of 50º (Figure 5.10). 

 

(a) 

 

(b) 

Figure 5.9  The predicted maximum contact pressures on the articulating 
surface with different friction coefficients (m) and loading under cup 
angles of (a) 35º and (b) 50º. 
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(a) 

 

(b) 

Figure 5.10  The predicted maximum contact pressures at the shell/liner 
interfaces with different friction coefficients (m) and loading under cup 
angles of (a) 35º and (b) 50º. 

 

5.4  Discussion 

In this Chapter, an experimentally-matched model was developed as a 

bridge between the experimental measurements and the anatomic Pinnacle 

THR model, which applied the same methodology as the anatomic Pinnacle 

THR model on one hand, and had the same constructions, boundary 

conditions, and loading conditions as the experimental set-up on the other 

hand. The validity of anatomic Pinnacle THR model prediction was 

evaluated by directly comparing the contact areas between the experimental 

tests and FE predictions from the experimentally-matched model. 
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The anatomic Pinnacle THR model would be used in the future study to 

investigate the contact mechanics of Pinnacle THR under different 

conditions, which would be related to the contact pressures and contact 

areas. Therefore, the direct validation of the anatomic Pinnacle THR model 

would involve experimental measurements of contact pressure and contact 

area. The measurement of contact stress is challenging to some extent due 

to some reasons, such as the small radial clearance between the femoral 

head and acetabular cup and the geometric characteristics of the bearing 

surface for hip joint replacement restrict the effective use of pressures film or 

sensors. However, the measurement of contact area was conducted in this 

Chapter, and good agreement was obtained between the experimental 

measurements and FE predictions from the experimentally-matched model 

with respect to the contact area patterns and contact area magnitudes. This 

confirmed the validity of the experimentally-matched model to predict contact 

area, and provided great confidence in the validity of the experimentally-

matched model to predict contact stresses. As the experimentally-matched 

model used the same constructions and methodology (i.e. contact 

formulation and conditions, mesh) as the anatomic Pinnacle THR model, this 

provided great confidence in the validity of the prediction of contact stress 

and contact area from anatomic Pinnacle THR model as well. 

Although the results of the FE modelling showed good agreement with the 

experimental measurements, studies of this nature are not without their 

limitations. Indeed, errors from several sources may affect the final results 

and need to be examined with caution. Firstly, the material properties of the 

polyethylene liner in the FE modelling was from literatures (Liu et al., 2005a; 

Udofia, et al., 2007) which may be different from that used in the 

experimental tests. This is likely to be a major source of error. Although the 

load was removed immediately and each test was run for a short time, the 

polyethylene specimens still showed a degree of viscoelastic behaviour 

which can result in creep and material flow away from the contact region 

(Gauthier and Schirrer, 2000; Gauthier et al., 2001), this may have a marked 

effect on the contact areas measured. However, in the FE predictions, the 

creep and viscoelasticity was not considered. Moreover, the error may be 

generated during the calculation of the contact areas (i.e. how to choose the 
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fringe of the ink during the processing) as there was some ambiguity in the 

fringe of the ink for some measurement (Figure 5.3). An error of 

approximately 5% could be produced if the outside edge of the ambiguity 

was considered compared to that when the inside edge of the ambiguity was 

selected. Finally, only three experiments per polyethylene specimen were 

performed, it would have been desirable to conduct a series of experiments 

on each specimen and then take the average results to minimize the random 

errors. 

In spite the several limitations and error sources listed above, as well as 

other potential error sources which have not been evaluated, the present 

study produced exceptionally positive outcome. The FE modelling produced 

very reasonable predictions with respect to the contact areas when 

compared to experimental measurements. This gives an encouraging 

indication about the accuracy of the anatomic Pinnacle THR model 

developed in this project, and provides great confidence in the use of the 

model to study the clinical applications across the hip implants such as edge 

loading, microseparation etc., and to evaluate the new hip implants designs. 

Previous studies have demonstrated that a change of the friction coefficient 

at the articulating surfaces between the femoral and acetabular components 

was found to have a negligible effect on the predicted contact pressure and 

contact area for both cemented and cementless THRs (Besong et al., 2001b; 

Udofia et al., 2004). The friction coefficient for MoP was reported to range 

from 0.083 to 0.2 (Kurtz et al., 1997; Capitanu et al., 2005). Ramero and 

colleagues (Ramero et al., 2007) ran a series of FE models with friction 

coefficient values that varied between the given range (0.083 to 0.2), and 

compared the FE model prediction with the experimental data, they 

demonstrated that the results obtained in the FE models with different 

friction coefficients were between the maximum and minimum values 

obtained in the experiment. However, with a friction coefficient of 0.083, the 

FE prediction showed a close fit to the experimental data. Based on these, 

the coefficient of friction of 0.083 was chosen for the articulating surfaces in 

the full anatomic Pinnacle model in the current study as well as in the other 

FE models of modular THRs (Kurtz et al., 1997; Kurtz et al., 1998; 

Amirouche et al., 2008). 
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The results of this study also suggest that FE prediction of peak contact 

stresses at the articulating surface and backside of the liner at the shell/liner 

interface were not overly sensitive to changes in the friction coefficient at the 

liner/cup interface. When the friction coefficient at the liner/cup interface 

changed from 0.1 to 0.6, the maximum contact stresses were within 9% at 

the bearing surface and within 12% at the shell/liner interface. The same 

conclusion was drawn by Kurtz and colleagues (Kurtz et al., 1997) that there 

was a negligible change in the contact stresses both in the inner surface and 

outer surface of the liner as the coefficient of friction was changed from 0.08 

to 0.16. This is indicated that polishing inside of the metal shell and the 

backside of the polyethylene will not substantially change the contact 

mechanics of the modular THR. Previous studies have demonstrated that 

the contact stresses in acetabular components were strongly dependent 

upon the manufacturing tolerances (conformity), the material properties, the 

thickness of the liner as well as the cup inclination angles for the modular 

THRs (Kurtz et al., 1994; Kurtz et al., 1998; Plank et al., 2007). The results 

of this study have an instructive significance to the surgeon and the engineer 

that, of the available design variables to be selectively modified, polishing 

the metal back plays the smallest role in lowering the contact stresses at the 

articulating surface and shell/liner interface for the modular THRs. 

 

5.5  Summary 

Experimental measurements of contact areas on the articulating surfaces of 

Three Pinnacle bearings were conducted in this Chapter. The measured 

contact areas were then compared with the FE predictions from an 

experimentally-matched model. Afterwards, the effect of friction coefficient 

on the contact stresses on the articulating surface and the backside surface 

of the liner were explored. The following conclusions can be drawn from this 

study: 

1. Good agreement of the contact areas on the articulating surfaces with 

the maximum difference of 14% was obtained between the experimental 
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measurements and the corresponding FE predictions from the 

experimentally-matched model. 

2. As the experimentally-matched model used the same constructions and 

methodology as the anatomic Pinnacle THR model, the positive outcome 

of the comparisons between the experimental measurements and the FE 

predictions provided great confidence in the use of experimentally-

matched model, and the anatomic Pinnacle THR model as well. 

3. The friction coefficient at the shell/liner interface was found to have only a 

slight effect on the contact stresses on the frontside articulating surface 

and backside surface of the liner for the Pinnacle THRs. 
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Chapter 6 

Contact Mechanics Analysis of Pinnacle THR During 

Different Activities 

6.1  Introduction 

It is well known that the stresses experienced in the liner and on the 

articulating surface have been shown to be directly related to structural 

failure and fatigue-related wear mechanisms, which is closely linked to 

osteolysis and failure of the implant (Rostoker and Galante, 1979; Rose et 

al., 1983; McNie et al., 1998; Orishimo et al., 2003). Therefore, it is essential 

to estimate the stress levels and peak stress on the artificial hip joint in order 

to comprehensively understand the mechanics and the causes of failure of 

the joint. 

The investigation of non-modular THR has been widely conducted and the 

contact mechanics have been extensively investigated (Jin et al., 1999; 

D’Lima et al., 2001; Korhonen et al., 2005). It is recognized that the contact 

stresses on the bearing surfaces for non-modular THR were affected by 

implant design, dimensions and materials of the components (Jin et al., 1994; 

Crowininshield et al., 2004; Lamvohee et al., 2009). Due to the conformity 

and integral support behind the acetabular component in non-modular THR, 

the cup inclination angles were found to have only a small influence on the 

contact mechanics if the contact area was within the bearing surface of the 

cup (Patil et al., 2003; Korhonen et al., 2005; Hua et al., 2012). However, for 

modular THR, the nonconformity between the shell and the liner has a 

marked effect on the stresses on both the frontside and backside surfaces of 

the liner (Kurtz et al., 1997; 1998). Additionally, the load and cup inclination 

angles were found to strongly affect the contact stresses on both the 

frontside articulating surfaces and backside shell/liner interfaces (Kurtz et al., 

1997). However, for modular THRs such as the Pinnacle THR, few studies 

have been conducted that focus on the contact mechanics. The contact 

characteristics of the modular THRs are still not fully understood, especially 

under gait and also other daily activity conditions. 
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It is documented that for patients with implanted total hip prostheses, the hip 

joints are subjected to high mechanical loading during daily activities 

(Bergmann et al., 2001a). The magnitude and variation of the direction of the 

resultant force during daily activities may make the force vector toward the 

rim of the liner. This, when combined with steep cup inclination angles, can 

lead to edge loading, which has been identified as a factor that can 

adversely affect the biomechanics and long-term performance of THR, 

especially for hard-on-hard articulations, leading to the edge wear and 

acceleration of wear of the whole joints (Tipper et al., 2000). The attention 

on edge loading in hard-on-hard articulations prompted the investigation of 

edge loading in hard-on-soft bearings that occur during the daily activities. 

Therefore, the aims of this chapter were to investigate the effect of the cup 

inclination and anteversion angles on the contact mechanics of modular 

THR with respect to Pinnacle THR during activities and identify the edge 

loading that occurs during daily activities using the anatomic Pinnacle THR 

model. 

6.2  Materials and Methods  

A typical Pinnacle THR was considered in this chapter. The geometries and 

structures of the components for the Pinnacle THR were presented in 

Chapter 2. The nominal head diameter and radial clearance between the 

femoral head and cup was considered to be 36 mm and 0.3 mm respectively. 

In order to examine the effect of the radial clearances on the contact 

mechanics, clearances of 0.542 mm and 0.1 mm were also modelled.  

The anatomic Pinnacle THR modelling was developed, as shown in Figures 

2.7 and 2.9. The FE model was described in Chapter 2 including the 

mechanical properties of the components, the boundary conditions, and the 

type and number of elements used. The validity of the FE predictions from 

the anatomic Pinnacle THR model have been discussed in Chapter 5. 

To investigate the behaviour of the Pinnacle THR during daily activities, 

loading profiles of six different human activities, which were assumed to 

occur frequently in daily living, were created and applied to the FE model. 

The detailed descriptions of these routine activities can be seen in Table 6.1. 



- 127 - 

The muscle forces data has already been accounted for when converting the 

resultant contact forces to the FE model (Bergmann et al., 2001b). In order 

to consider the specific direction and orientation of the forces, the resultant 

hip joint forces were resolved to three components and converted to the FE 

model coordinate system, as shown in Figure 6.1. During the simulation 

process, the resultant hip joint forces were discretized into 21 steps and 

applied to the centre of the femoral head in a quasi-static manner. The 

resultant forces of different activities of daily living are shown in Figure 6.2. 

The rotation of the head was constrained during the simulation process. In 

the first step, the femoral head was moved vertically by a small distance to 

allow contact with the acetabular component. The load vector corresponding 

to each step of the loading profile was applied one after the other in each 

step without changing any of the boundary conditions. A total of 16 

orientations of cup angles were considered, with inclination angles varying 

between 35º and 65º and anteversion angles varying between 0º and 30º, 

both in 10º increments. The FE models were solved using ABAQUS (Version 

6.9, Dassault Systèmes Simulia Corp., Providence, United States). 

 

 

Figure 6.1  Resultant hip joint forces during normal walking. The resultant 

force was converted to three components (  ,   ,   ) and computed as 

  √  
    

    
  (Bergmann et al., 2001b). 
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Table 6.1  The descriptions of six human routine activities (Bergmann et al., 

2001a). 

Activities Descriptions 
Cycle times 

(sec) 

Normal Walking 
Walking at normal speed on level ground, 

average speed: 3.9 km/h (1.09 m/s) 
1.103 

Ascending Stairs 
Waking ascending stairs, stairs height 17 

cm, no support at hand rail 
1.593 

Descending Stairs 
Walking descending stairs, stairs height 

17 cm, no support at hand rail 
1.439 

Standing Up 
Standing up, chair height 50 cm, arms 

hold at the chest height 
2.489 

Sitting Down 
Sitting down, chair height 50 cm, arms 

hold at the chest height 
3.719 

Knee Bending 
Two-legged stance-bending knees-two-

legged stance 
4.665 
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Figure 6.2  Hip joint contact forces during different activities of daily living 
(Bergmann et al., 2001b). 
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6.3  Results 

6.3.1  Gait Analysis 

Frontside contact stresses 

The contact stress distribution on the frontside articulating surface at 

different stages of normal walking cycle under cup inclination angle of 45º 

and anteversion angle of 10º for radial clearance of 0.3 mm is shown in 

Figure 6.3. It can be seen that during the stance phase when the load was 

relatively high, the areas of contact were mostly located about the superior 

region of the liner. It was then shifted towards the medial region of the liner 

during the swing phase. The maximum contact pressure of approximately 11 

MPa was predicted at 17% of walking cycle. The corresponding contact 

areas were less than 40% of the total inner surface of the liner during the 

whole cycle. No edge loading on the frontside articulating surface of the liner 

was observed during the whole cycle in this case. 

 

 

Figure 6.3  Contact stress (MPa) distribution on the frontside articulating 
surface of the liner during different phases of normal walking at the cup 
inclination angle of 45º and anteversion angle of 10º (A-Anterior; S-
Superior; P-Posterior; I-Inferior) (clearance: 0.3 mm). 
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stress for radial clearance of 0.542 mm were predicted to be 2-3 times that 

for radial clearance of 0.1 mm during the whole cycles (Figure 6.4). 

Under cup inclination angle of 45º and anteversion angle of 10º, the 

maximum value of peak von Mises stress in the liner during the whole cycle 

among six activities were 10.84 MPa, 9.48 MPa and 8.15 MPa for the radial 

clearances of 0.542 mm, 0.3 mm and 0.1 mm respectively, which were all 

found to occur during the stair descending case. For the peak contact stress 

on the articulating surface, the maximum value among six activities were 

predicted to be 13.95 MPa (during ascending stair), 11.30 MPa (during 

descending stair) and 7.97 MPa (during descending stair) for the three radial 

clearances respectively (Figure 6.5). 
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Figure 6.4  The predicted maximum contact pressure (MPa) on the frontside 
articulating surface of liner for three radial clearances of 0.542 mm, 0.3 
mm and 0.1 mm under cup inclination angle of 45º and anteversion 
angle of 10º during different activities: (a) normal walking, (b) knee 
bending, (c) ascending stairs, (d) descending stairs, (e) standing up, (f) 
sitting down. 
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Figure 6.5  The predicted maximum stress (MPa) in the liner for different 
radial clearances during six different activities under cup inclination 
angle of 45º and anteversion angle of 10º: (a) maximum von Mises 
stress in the liner, (b) maximum contact pressure on the frontside 
surface (NW: normal walking, AS: ascending stairs, DS: descending 
stairs, SU: standing up, SD: sitting down, KB: knee bending). 
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region at 50% of cycle time and 12.35 MPa in the spherical region at 17% of 

cycle time were predicted for this condition (Figure 6.6). 

As with the frontside contact stresses, the peak contact stresses in the 

equatorial region of the backside surface of the liner for different activities 

showed a similar time-dependent trend to that of the contact forces. 

However, the peak contact stresses in the spherical region were found to be 

different from that of the contact forces (Figure 6.7). No contact between the 

spherical region of liner and the metal shell was observed for standing up 

case before the 20% of cycle. 

 

 

Figure 6.6  Contour plots of contact stresses (MPa) at the backside surface 
of UHMWPE liner during different phases of normal walking at the cup 
inclination of 45º and anteversion angle of 10º (clearance: 0.3 mm). 
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Figure 6.7  The predicted contact pressures (MPa) at two regions of the 
backside surface of liner under cup inclination angle of 45º and 
anteversion angle of 10º during different activities: (a) normal walking, 
(b) knee bending, (c) ascending stairs, (d) descending stairs, (e) 
standing up, (f) sitting down (clearance: 0.3 mm). 
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chapter refers to the condition where the contact patch between the liner and 

the femoral component extends over the rim of the liner, as shown in Figure 

6.9. Using this definition, edge loading on the frontside articulating surface of 

the liner for the Pinnacle THR with a radial clearance of 0.3 mm was 

identified during different daily activities. The proportion of the cycle and the 

specific instances where edge loading occurred during different activities as 

a function of the cup angles are shown in Figure 6.10. 

It can be seen that edge loading in frontside surface of the liner was 

observed with steep cup inclination angles for normal walking, ascending 

stair, and descending stairs cases. No edge loading was predicted for 

standing up, sitting down and knee bending cases. For normal walking and 

ascending stair cases, the combination of steep cup inclination angle and 

lower anteversion angle was more inclined to cause edge loading, while for 

descending stair case, the combination of the steep cup inclination and high 

anteversion angle prone to induce edge loading.  

Taking the normal walking case as an example (Figure 6.10 a), with cup 

inclination angle of 55º, edge loading occurred in specific instances of 45%-

55% of cycle time (proportion of 5% of the cycle) with cup anteversion angle 

of 0º while no edge loading was observed with cup anteversion angle of 30º. 

When the cup inclination angle increased to 65º, the proportion of the cycle 

where edge loading occurred increased to 40% (in specific instances of 

15%-55% of cycle time) with cup anteversion angle of 0º, however, the 

proportion decreased to 13% (in specific instances of 42%-55% of cycle time) 

with cup anteversion angle of 30º. 
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Figure 6.8  Contour plots of contact stresses (MPa) on the frontside 
articulating surface of liner at 17% of normal walking cycle at cup 
inclination of 65º and anteversion of 0º (clearance: 0.3 mm). 

 

 

    (a)                                                    (b)    

Figure 6.9  The definition of edge loading in MoP THR in the present study. 
(a) the case where edge loading does not occur because the contact 
patch is within the inner surface of the liner; (b) the case where edge 
loading occurs because the contact patch extends over the rim of the 
liner. 
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Figure 6.10  The proportion of the cycle and the specific instances over the 
cycle where edge loading occurred on the frontside articulating surface 
of the liner as a function of cup angles during different activities (NW: 
normal walking, AS: ascending stairs, DS: descending stairs. No edge 
loading in the frontside of liner was observed for standing up, sitting 
down and knee bending cases (clearance: 0.3 mm). 
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Backside edge loading 

As mentioned above, concentrated stress in the equatorial region of the 

backside surface of the liner was observed in some instances of normal 

walking (Figure 6.6). This was probably due to the edge loading that 

occurred at the fringe of the taper on the backside surface of the liner, as 

shown in Figure 6.11 a. An example of such edge loading on the backside of 

the liner is shown in Figure 6.11 b. The proportion of the cycle and the 

specific instances when edge loading occurred in the taper of the backside 

surface of the liner during different activities as a function of the cup angles 

are presented in Figure 6.12. 

Generally, edge loading in the taper of the backside surface of the liner was 

predicted at most instances of the cycle of activities and was more inclined 

to occur under steep cup inclination angle and lower anteversion angle 

conditions, except ascending stairs case, where edge loading prone to occur 

under high cup anteversion angles. Taking normal walking case as an 

example (Figure 6.12 a), with cup anteversion of 0º, the proportion of the 

cycle at which edge loading occurred at the taper of the liner was 60% under 

cup inclination of 35º, which increased to 100% when the cup inclination 

angle increased to 65º. Considering a cup inclination of 35º, the proportion of 

the cycle at which edge loading occurred was 60% under cup anteversion 

angle of 0º and decreased to 40% under cup anteversion angle of 30º. 

Under cup inclination angle of 35º and anteversion angle of 0º, edge loading 

occurred in the specific instances of 0-55% and 95%-100% of cycle time. It 

is important to note that edge loading in the taper of the backside surface of 

the liner occurred during the whole cycle under the cup inclination angle of 

65º condition for all activities considered. 
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(a) 

 

Figure 6.11  (a) The diagram shows the edge loading occurred at the fringe 
of the taper at the backside of UHMWPE liner, (b) Contour plots of 
contact stresses (MPa) at the backside surface of liner at 17% of 
normal walking cycle at cup inclination of 35º (clearance: 0.3 mm), Note 
the concentrated stresses at the equatorial region and spherical region 
in the vicinity of the polar hole of the metal shell. 
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Figure 6.12  The proportion of the cycle and the specific instances over the 
cycle where edge loading occurred in the taper of the backside surface 
of the liner as a function of cup angles during different activities (NW: 
normal walking, AS: ascending stairs, DS: descending stairs, SU: 
standing up, SD: sitting down, KB: knee bending.(clearance: 0.3 mm). 
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6.3.3  Effect of Cup Angles on Contact Stresses 

Frontside contact stress 

Figure 6.13 shows the distribution of contact stress, the value and location of 

the peak contact stresses as well as the instance of the cycle when the peak 

contact stress occurred on the frontside articulating surface of liner with 

different cup inclination angles and anteversion angles during normal 

walking for radial clearance of 0.3 mm.  

Generally, the areas of the predicted contact stresses were located about 

the superior region of the liner and shifted towards the superior edge as 

inclination angles were increased. The peak contact stress was located in 

the spherical region when the cup inclination angles were lower than 55°. It 

then moved to the equatorial region when the cup inclination angle was 

increased to 65°. With lower cup inclination angles, the peak contact 

stresses were predicted at 17% of the cycle for normal walking, at which 

point the maximum contact force exist. However, when the cup inclination 

angle increased to 65°, the peak contact stresses were predicted at 15% 

and 50% of normal walking cycle. 
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Figure 6.13  The distribution and maximum value of contact pressures (MPa) 
on the frontside surface of the liner and the corresponding instance of 
the cycle as a function of cup inclination angles and anteversion angles 
at the instance when the peak contact stress occur during normal 
walking (clearance: 0.3 mm). 

 

The activities, cup angles and radial clearances were found to have a 

synergistic effect on the contact stress on the frontside articulating surface of 

the liner (Figure 6.14). For normal walking, ascending stairs and descending 

stairs cases, the cup inclination angles had marked effect on the contact 

stresses while the cup anteversion angles had limited effect. For large radial 

clearances of 0.542 mm and 0.3 mm, the maximum contact stress was 
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decreased moderately first and then increased slightly when the cup 

inclination angles increased from 35º to 65º. However, for small radial 

clearance of 0.1 mm, the results were totally different. The maximum contact 

stress was increased continually when the cup inclination angles increased 

from 35º to 65º. 

In contrast, for standing up, sitting down and knee bending activities, the 

anteversion angles were found to have marked effect on the contact stress. 

The increased cup anteversion angles from 0º to 30º led to marked increase 

in the contact stress. The cup inclination angles had limited effect. However, 

there were increasing trend in contact stresses with increased cup inclination 

angles for these three activities. 
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                   0.542 mm              0.3 mm                 0.1 mm 

Figure 6.14  Peak contact stresses (MPa) on the frontside articulating 
surface of the liner as a function of cup inclination angle and 
anteversion angle during different activities (NW: normal walking, AS: 
ascending stairs, DS: descending stairs, SU: standing up, SD: sitting 
down, KB: knee bending) for different radial clearances. 
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Backside contact stress 

For all activities considered, the cup inclination and anteversion angles were 

found to markedly affect the peak contact stresses in the equatorial region 

on the backside surface of the liner (Figure 6.15). For normal walking, 

ascending stairs and descending stairs activities, the cup inclination angles 

were found to have most effect on the contact stresses in this region. The 

contact stresses in the equatorial region of the backside surface of the liner 

increased markedly with increased cup inclination angles from 35º to 65º. In 

contrast, for standing up, sitting down and knee bending cases, the cup 

anteversion angles had most effect on the contact stress. There was marked 

decrease in the contact stress with increased cup anteversion angles from 0º 

to 30º (Figure 6.15). 

The concentrated contact stresses were also observed in the vicinity of the 

hole of the metal shell on the backside surface of liner, as shown in Figure 

6.11 b. Similar to the peak equatorial contact stresses, the peak contact 

stresses in the spherical region were found to be sensitive to the cup 

inclination angles and anteversion angles (Figure 6.16). However, as 

opposed to the peak equatorial contact stresses, the high contact stresses 

were predicted to be associated with lower cup inclination angles of 35°, 

which was approximately 2.5-3 times that for cup inclination angles of 65° for 

normal walking, ascending stairs and descending stairs cases (Figure 6.16). 
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Figure 6.15  Peak contact stresses (MPa) at the equatorial region of 
backside surface of liner as a function of cup inclination angle and 
anteversion angle during different activities (NW: normal walking, AS: 
ascending stairs, DS: descending stairs, SU: standing up, SD: sitting 
down, KB: knee bending) (clearance: 0.3 mm). 
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Figure 6.16  Peak contact stresses (MPa) at the spherical region of 
backside surface of liner as a function of cup inclination angle and 
anteversion angle during different activities (NW: normal walking, AS: 
ascending stairs, DS: descending stairs, SU: standing up, SD: sitting 
down, KB: knee bending) (clearance: 0.3 mm). 

 

6.3.4  Effect of Cup Angles on Plastic Strain 

Figure 6.17 shows the distribution of equivalent plastic strain in the liner in 

the instance of 17% of cycle during normal walking under cup inclination 

angle of 45° and anteversion angle of 10° for radial clearance of 0.1 mm. 

The maximum equivalent plastic strain was predicted as 1.618×10-3 in this 

case (Figure 6.17). 
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Plastic deformation in the liner was observed during most of the activities 

(Figure 6.18). The maximum equivalent plastic strain in the liner was found 

to be affected synergistically by activities, cup angles and radial clearances 

(Figure 6.18). Normally, the maximum equivalent plastic strains in the liner 

during normal walking, ascending and descending stairs activities were 

larger than those during standing up, sitting down and knee bending 

activities. The maximum equivalent plastic strain in the liner with a radial 

clearance of 0.542 mm was predicted to be about 4-5 times that with a 

radial clearance of 0.1 mm. 

The effect of cup angles on the equivalent plastic strain in the liner was 

dependent upon the radial clearances (Figure 6.18). For example, for the 

normal walking case, the maximum equivalent plastic strain in the liner was 

increased moderately first and then increased markedly when the cup 

inclination angles increased from 35º to 65º for large radial clearance of 

0.542 mm and 0.3 mm. However, for radial clearance of 0.1 mm, the 

maximum equivalent plastic strain increased continually with increased cup 

inclination angle from 35º to 65º. For normal walking, ascending and 

descending stairs activities, the cup inclination angles were found to have 

most effect on the maximum equivalent plastic strain while for standing up, 

sitting down and knee bending cases, the cup anteversion angles were 

found to have dominating effect.  

 

 

Figure 6.17  The equivalent plastic strain in the liner under cup inclination of 
45º and anteversion of 10º in the instance of 17% of the cycle for 
normal walking (radial clearance: 0.3 mm). 
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                   0.542 mm              0.3 mm                 0.1 mm 

Figure 6.18  Peak equivalent  plastic strain in the liner as a function of cup 
inclination angles and anteversion angles during different activities 
(NW: normal walking, AS: ascending stairs, DS: descending stairs, SU: 
standing up, SD: sitting down, KB: knee bending) for different radial 
clearances. 
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6.4  Discussion 

The investigation of the contact mechanics for THR under different activities 

is very important because both the magnitude and direction of the contact 

forces vary during the cycle of the activities (Bergmann et al., 2001a). This 

variation in contact forces, together with the cup angles, were found to have 

a large effect on the contact mechanics of THRs, especially for modular 

THRs, where the gap between the metal shell and liner exists and the 

stiffness behind the liner in equatorial and spherical regions was different 

(Kurtz et al., 1997). This study aims to investigate the contact mechanics of 

modular THR during different daily activities and to examine the effect of the 

cup inclination and anteversion angles on the contact stresses on both the 

frontside and backside surface of liner for a modular THR. Particularly, the 

conditions under which edge loading occurred were predicted during 

different activities in this Chapter. 

The gait analysis in this Chapter highlighted two aspects: first, the variation 

of the contact stresses on the frontside articulating surface of the liner 

followed that of hip contact forces in all activities considered, the magnitude 

of the maximum contact stress was found to be proportional to the applied 

hip contact force. Second, both the maximum von Mises stress in the liner 

material and the peak contact stress on the articulating surface showed their 

highest values for the stair descending case, when the implant was 

positioned at an anatomic position (i.e. inclination angle of 45º and 

anteversion angle of 10º). This indicates that the descending stairs activity 

represented the worst case scenario among the six loading profiles 

examined in this Chapter. It should be noted that all the activities considered 

in this Chapter represented relatively mild conditions which would not cause 

adverse complications such as impingement and dislocation of the hip 

prostheses (Nadzadi et al., 2003; Stewart et al., 2004; Pedersen et al., 2005). 

However, they did represent the most frequent activities for human daily 

living (Bergmann et al., 2001a).  

Edge loading of THRs has attracted more and more attention in 

biomechanical fields, especially for hard-on-hard bearings (Walter et al., 

2004; Mellon et al., 2011; EIkins et al., 2012). The factors that cause the 
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edge loading have been identified and are generally associated with the 

component positions (such as cup angles, head offset/microlateralisation), 

prosthetic design (such as the radial clearance, cup coverage), impingement 

and activities (Fisher, 2011; Underwood et al., 2012). The edge loading that 

occurred on the articulating surface of the Pinnacle THR during routine 

activities was explored, and the effect of the cup inclination and anteversion, 

as well as the radial clearances on the occurrence of edge loading were 

examined in this study. The FE simulations showed that no edge loading 

was observed for the radial clearance of 0.542 mm for all activities and cup 

angles considered. However, for a radial clearance of 0.3 mm, edge loading 

did occur in some instances during normal walking, ascending and 

descending stairs activities under steep cup inclination angle conditions. 

Despite this, no edge loading was predicted for the remaining activity cases. 

This highlighted the contribution of the radial clearances, cup angles as well 

as the activities to the occurrence of the edge loading for modular THRs. 

The cup anteversion angles were found to have a crucial effect on the 

occurrence of edge loading as well. For example, for radial clearance of 0.3 

mm under steep cup inclination angles of 65º, edge loading occurred over 40% 

of the cycle for normal walking under an anteversion angle of 0º, but reduced 

to 13% under an anteversion angle of 30º. 

It is reassuring that the contact stresses in the articulating surfaces did not 

increase markedly even when the edge loading existed, which is markedly 

different from hard-on-hard articulations (EIkins et al., 2011; Sanders et al., 

2011; Wang et al., 2012). This highlighted the robustness of the hard-on-soft 

articulations, which was less sensitive to the edge loading than hard-on-hard 

ones (EIkins et al., 2011; Wang et al., 2012). It is also indicated from the 

study that at the early stage after implantation of modular MoP, when the 

radial clearance was relatively large, edge loading would not be likely to 

occur. The radial clearance would then decrease during running-in and 

would increase the possibility of the occurrence of edge loading at this stage.  

The analysis of the effect of cup angles on the contact stress on the 

articulating surface showed that the increase of the cup inclination angle 

seemed to induce decreased peak contact stress for larger radial clearances 

of 0.542 mm and 0.3 mm but increased stress for small radial clearance of 
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0.1 mm for most of activities. This was probably due to the fact that at lower 

cup inclination angle conditions, the peak contact stress was predicted along 

the direction of the applied load and mainly concentrated in the spherical 

area of the liner. However, with increased inclination angles, the peak 

contact stresses moved to the transition region between the spherical and 

equatorial areas. In this case, both spherical and equatorial regions would 

bear the peak contact stress, leading to an decrease of maximum contact 

stress (Figure 6.13). However, for the radial clearance of 0.1 mm, the 

contact areas were distributed on both equatorial and spherical regions for 

all cup inclination angle conditions. In this case, under steep cup inclination 

conditions, the peak contact stress was located in the equatorial region near 

the rim of the liner, where the stiffness behind the liner was larger than that 

in the spherical region, therefore leading to elevated stresses in this area. 

This indicated that at early stage of the hip implantation, the lower cup 

inclination was likely to produce higher stresses on the articulating surface 

for modular MoP THRs. However, the liner was expected to creep soon due 

to the high stresses, and the radial clearance would decrease markedly at 

the running-in stage, the lower cup inclination would then induce lower 

stress levels on the articulating surface at this stage. Therefore, the lower 

cup inclination would still be the recommendation for implant positioning for 

modular MoP THRs. 

Edge loading would also occur at transition zone between the equatorial and 

spherical regions on the backside of the liner during all activities considered. 

The occurrence of the edge loading in this area was dependent upon the 

cup inclination and anteversion angles as well as the daily activities. Edge 

loading in this area was more inclined to occur at steep cup inclination 

angles. Different from the frontside articulating surface, the edge loading on 

the backside surface of liner would cause concentrated stresses, especially 

at steep cup inclination conditions. This is of significant interest as the 

damage and fracture of the liner would be induced by the high stress levels 

predicted in this area, which matched a retrieved case study that the rim of 

the liner was fractured at this location (Halley et al., 2004). However, it is 

expected that the local high stress levels predicted in this area represent 
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uniquely high values in this study, which would likely soon be reduced by 

creep at those locations. 

Another noticeable observation in the present study was that concentrated 

stress was also predicted on the backside surface in the surrounding of the 

hole of the metal shell (Figure 6.11). The concentrated stress in this area 

was found to occur at lower cup angles, and was 2.5-3 times the value found 

for steep cup inclination angles. This increased contact stress in the 

surrounding of the hole of the metal shell would induce more backside wear, 

which was believed to aggravate the process of loosening of the hip implants, 

as debris generated at this location has direct access to subchondral bone 

through the dome holes (Kurtz et al., 1999; Krieg et al., 2009). This direct 

access may contribute to an increased prevalence of acetabular osteolysis 

around modular cups with holes (Kurtz et al., 1999; Young et al., 2002). 

For all conditions and activities considered, the equivalent plastic strain was 

observed to increase with increased cup inclination angles. In particular, 

there was a substantial increase in the equivalent plastic strain for cup 

inclination angle of 65°. It is expected that the polyethylene would then creep 

due to the plastic deformation of the liner, leading to the decreased stress in 

the liner. Even though, the severe plastic deformation was still predicted 

under steep cup inclination angle conditions. Therefore, it is indicated that 

the positioning of the component is important clinically to avoid severe 

plastic deformation of the liner which is inclined to occur under steep cup 

inclination angle conditions. 

Radial clearances of 0.542 mm, 0.3 mm and 0.1 mm were modelled in the 

present study. However, it should be noted that the larger radial clearance of 

0.542 mm was modelled to represent the tolerance stack dimensional 

conditions while the smaller radial clearance of 0.1 mm was modelled to 

imply the joint replacements under steady-state stage after the running-in 

process. The present study suggests that the modular MoP THRs show 

different behaviour and sensitivity to the cup angles at different stages of the 

application of the THR. When the radial clearance decreased to 0.1 mm due 

to the creep and wear of the polyethylene liner, this study predicted that 

lower contact stresses occur under lower cup inclination angles compared to 
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steeper cup inclination angles, indicating that the lower cup angle remains a 

recommendation for implant positioning of the modular THRs. 

6.5  Summary 

The investigation of contact mechanics of Pinnacle THR under different daily 

activities has been conducted and the effect of cup inclination and 

anteversion angles on the contact mechanics for Pinnacle THR have been 

assessed in this Chapter. The following conclusions can be drawn from this 

study: 

1. Both the peak contact stress on the frontside articulating surface and the 

backside shell/liner interface at the equatorial region showed the same 

time-dependent trend to the hip contact forces. The maximum values of 

peak von Mises stress in the liner material and contact stress on the 

frontside articulating surface were predicted to be the highest for cases of 

ascending and descending stairs, indicating that these two activities 

represent the worst case scenarios among the six loading profiles 

examined in this study. 

2. The contact mechanics of the Pinnacle THR were found to be sensitive to 

the cup inclination angles and anteversion angles, as well as the type of 

daily activity. 

3. Edge loading on the frontside articulating surface occurred during the 

activities of normal walking, and ascending and descending stairs when 

steep cup angles and a small radial clearance were considered. However, 

under all conditions considered, no edge loading was observed during 

standing up, sitting down and knee bending cases. Despite this, no 

significant increase in contact stresses was observed even when edge 

loading occurred.  

4. Edge loading at the transition zone between the equatorial and spherical 

region at the backside of the liner also occurred during all activities 

considered, leading to a region of concentrated stress at this location. 

5. Concentrated stresses on the backside surface of the liner in the 

surrounding of the hole of the metal shell were also observed, which 

would induce more backside wear at this location. 
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Chapter 7 

Contact Mechanics Analysis of Pinnacle THR Under 

Microseparation Conditions: Effect of Cup Angles and Head 

Lateral Microseparation 

7.1  Introduction 

Edge loading has been one of the main concerns for THRs today, 

particularly for hard-on-hard articulations. It has been identified as an 

adverse factor that can negatively affect the biomechanics and long-term 

performance of THRs (Angadji et al., 2009; Harris, 2012; Elkins et al., 2012; 

Underwood et al., 2012). Edge loading can be caused by many factors, 

including the rotational and translational mal-positioning of components 

which have been recognized as two of the main reasons (Fisher, 2011). The 

rotational mal-positioning of the component is defined as the steep 

inclination and excessive anteversion of the acetabular component clinically 

and the translational mal-positioning of the component is classified as the 

microseparation of the centres of the head and cup, and has been 

demonstrated and recognized in vivo during gait (Dennis et al., 2001; Glaser 

et al., 2008). The microseparation occurs during the swing phase in the 

direction along the axis of the cup and has been associated with different 

factors such as laxity of the joint/soft tissues, femoral head offset deficiency 

or medialised cups (Nevelos et al., 2000). When a load is applied at heel 

strike, the femoral head is moved up and contacts the rim of the acetabular 

cup, leading to edge contact between the femoral head and rim of the 

acetabular cup and can have significant consequences on wear and 

biomechanics of the THRs (Nevelos et al., 2001a; Leslie et al., 2009). 

The effect of edge loading on the biomechanics and performance of hard-

on-hard articulations has been documented, as reviewed in Section 1.4.5 

(Manaka et al., 2004; Williams et al., 2006; Leslie et al., 2009; AI-Hajjar et al., 

2010; AI-Hajjar et al., 2013). Edge loading can produce high rates of wear 

and high metal ions in the blood for MoM bearings (De Haan et al., 2008; 

Langton et al., 2008; Hussain et al., 2010), and high wear rates, stripe wear 

and fracture of the components as well as the squeaking of the implants for 
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CoC articulations (Stewart et al., 2001; Lusty et al., 2007; Jarrett et al., 2009; 

Restrepo et al., 2010). However, for MoP THRs, limited work has been done 

(Besong et al., 2001a; Netter et al., 2013). The limited experimental work to 

date with CoP bearings, does not indicate an increase in surface wear when 

inferior and lateral translations of 0.7 mm were introduced (Williams et al., 

2003). However, for MoP hip prostheses, the average separation of the 

femoral head and acetabular cup during gait has been reported to be up to 2 

mm (Lombardi et al., 2000; Dennis et al., 2001). This microseparation would 

produce concentrated stresses in the acetabular component and hence 

cause fatigue and damage of the soft material (Besong et al., 2001a). 

Despite this, the biomechanical behaviour of the hard-on-soft bearings under 

microseparation conditions is actually not clear and not extensively 

understood. Besides, the effect of edge loading on the contact mechanics 

and biomechanics of MoP THRs, especially for modular MoP THRs has not 

been comprehensively investigated. Therefore, the aim of the present study 

was to investigate the effect of cup angles and microseparation on the edge 

loading and contact mechanics of a current MoP modular THR using 3D 

anatomic Pinnacle THR model. 

7.2  Materials and Methods 

The Pinnacle THR used in Chapter 6 was considered in this Chapter in 

order to predict the contact stresses and contact areas under an ideal 

centred regime and then under microseparation conditions. The effect of cup 

inclination angles and head lateral microseparation distances on contact 

mechanics of the Pinnacle THR were investigated. 

The geometries and structures of the components for the Pinnacle THR 

have been described in Chapter 2. The nominal diameters of the femoral 

head and inner surfaces of the polyethylene liner were 36 mm and 36.6 mm 

respectively. The outer diameter of the acetabular component was assumed 

to be 54 mm. In order to examine the effect of the radial clearances, radial 

clearances of 0.542 mm and 0.1 mm were also considered in this Chapter. 

The anatomic Pinnacle THR model was developed, as shown in Figure 2.7 

and 2.9. The FE modelling processes, including the mechanical properties of 
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the components, the boundary conditions and meshing, as well as the mesh 

sensitivity analysis were described in Chapter 2. The FE analysis was 

performed with the ABAQUS software package (Version 6.9, Dassault 

Systèmes Simulia Corp., Providence, United States). A static analysis was 

used in the present study. Two steps were undertaken during the analysis: in 

the first step, a lateral displacement of the femoral head was performed to 

achieve a microseparation, in the second step, a specific load was applied 

through the centre of the head and vertically upwards onto the liner, as 

shown in Figure 7.1. 

  

Figure 7.1  Schematic diagram shows the two steps used during the 
analysis in the study: the lateral displacement of the head was 
achieved in the first step and vertical load was applied in the second 
step. 

 

A vertical load of 2,500 N, corresponding to about 3-4 times BW for an 

average weight (Bergmann et al., 2001), was applied through the centre of 

the femoral head. Four cup inclination angles, with inclination angles varying 

between 35º and 65º in 10º increments, and 13 microseparation distances of 

0 µm, 60 µm, 100 µm, 150 µm, 200 µm, 240 µm, 300 µm, 400 µm, 500 µm, 

800 µm, 1000 µm, 1500 µm and 2000 µm were considered in this Chapter. 

The microseparation distance of the femoral head was defined as the lateral 

displacement of the femoral head from the centre of rotation of the 

acetabular cup, as shown in Figure 7.2. 

Lateral 

Step 1 

Vertical 
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Figure 7.2  The definition of cup inclination angles and microseparation 
distances of the head, 4 orientation of cup inclination and 13 
microseparation distances were considered in the present study. 

 

7.3  Results 

7.3.1  Contact Mechanics Analysis Under Cup Inclination Angle of 

45º 

Under standard conditions (no microseparation), the contact area was 

located about the superior region of the liner and the contact patch was 

within the inner surface of the liner. The contact areas were then moved 

towards the edge of the liner when the microseparation distances increased 

(Figure 7.3). When the microseparation distance increased to 100 µm, the 

femoral head was found to contact with the rim of the liner and edge loading 

occurred. A stripe shape contact area was observed around the rim of the 

liner when the microseparation distance was over 800 µm (Figure 7.3). 

Under standard conditions, the maximum von Mises stress in the liner and 

peak contact pressure on the articulating surface were predicted as 11.71 

MPa and 12.98 MPa respectively, and were increased by about 22% and 21% 

respectively when a microseparation distance of 150 µm was introduced 

(Figure 7.4). The maximum von Mises stress and peak contact pressure 

under a microseparation distance of 2000 µm were found to be more than 

four times that under standard conditions. The contact area under standard 

conditions was predicted to be ~504 mm2 and decreased substantially by 
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~78% under a microseparation distance of 2000 µm. It is interesting to note 

that the contact area tended to converge to an asymptotic value of ~140 

mm2 when the microseparation distance increased to 2000 µm. 

 

Figure 7.3  The distribution of predicted contact pressures (MPa) on the 
articulating surfaces for different microseparation distances under a cup 
inclination angle of 45º for a radial clearance of 0.3 mm. Contact areas 
moved to the rim of the liner as the microseparation distances 
increased. 
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Figure 7.4  The predicted maximum von Mises stresses (MPa) in the liner, 
the predicted peak contact pressures (MPa) and contact areas on the 
articulating surfaces for different microseparation distances. 

 

7.3.2  Effect of Cup Inclination Angles and Head Lateral 

Microseparation Distances on Von Mises Stresses and Frontside 

Contact Stresses 

Under standard conditions, the areas of contact were located about the 

superior region of the liner for all cup inclination angle conditions. However, 

the areas were closer to the edge of the liner for steep cup inclination angles. 

The areas of contact were then moved towards the edge of the liner for all 

cup inclination angle conditions when the microseparation distances were 

increased, and finally converged to a stripe shape in the surrounding of the 

rim of the liner (Figure 7.5). 

Edge loading was observed under microseparation conditions at certain 

microseparation levels (Figure 7.5). The occurrence of edge loading was 

found to be strongly dependent upon the cup inclination angles and radial 

clearances (Table 7.1, Table 7.2 and Table 7.3). For example, for a radial 

clearance of 0.542 mm, edge loading occurred initially at a microseparation 

distance of 300 µm for a cup inclination angle of 35º but 200 µm for cup 

inclination angle of 65º. For a cup inclination of 35º, the microseparation 

distances that caused the initial occurrence of edge loading were 300 µm, 

200 µm and 60 µm for radial clearances of 0.542 mm, 0.3 mm and 0.1 mm 
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respectively (Table 7.1, Table 7.2 and Table 7.3). No substantial elevation of 

the peak contact stress was observed at the initial occurrence of edge 

loading. However, the peak contact stresses increased continuously when 

the microseparation distances increased. 

 

Figure 7.5  The distribution of contact stresses on the frontside articulating 
surface as a function of cup inclination angle and microseparation 
distance for a nominal radial clearance of 0.3 mm. 
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Table 7.1  The peak contact stresses (MPa) and edge loading states for 
different cup inclination angles and microseparation distances for radial 
clearance of 0.542 mm. The shadow in the table represents the 
occurrence of edge loading. 

 

Cup inclination angles (deg) 

35 45 55 65 

Microseparation (µm) 

0 
13.77 

(no edge contact) 
13.94 

(no edge contact) 
16.6 

(no edge contact) 
18.09 

(no edge contact) 

200 
13.92 

(no edge contact) 
16.72 

(no edge contact) 
18.95 

(no edge contact) 
22.05 

(edge contact) 

240 
14.26 

(no edge contact) 
17.25 

(no edge contact) 
20.59 

(edge contact) 
22.9 

(edge contact) 

300 
15.28 

(edge contact) 
19.3 

(edge contact) 
21.85 

(edge contact) 
24.11 

(edge contact) 

400 
17.65 

(edge contact) 
20.61 

(edge contact) 
22.84 

(edge contact) 
25.01 

(edge contact) 

500 
19.22 

(edge contact) 
21.71 

(edge contact) 
23.99 

(edge contact) 
25.98 

(edge contact) 

Table 7.2  The peak contact stresses (MPa) and edge loading states for 
different cup inclination angles and microseparation distances for radial 
clearance of 0.3 mm. The shadow in the table represents the 
occurrence of edge loading. 

 

Cup inclination angles (deg) 

35 45 55 65 

Microseparation (µm) 

0 
10.75 

(no edge contact) 
12.98 

(no edge contact) 
15.08 

(no edge contact) 
16.77 

(edge contact) 

60 
11.35 

(no edge contact) 
13.96 

(no edge contact) 
15.8 

(edge contact) 
18.51 

(edge contact) 

100 
12.06 

(no edge contact) 
14.32 

(no edge contact) 
17.09 

(edge contact) 
19.03 

(edge contact) 

150 
12.63 

(no edge contact) 
15.86 

(edge contact) 
18.13 

(edge contact) 
19.94 

(edge contact) 

200 
14.02 

(edge contact) 
16.86 

(edge contact) 
19.09 

(edge contact) 
20.62 

(edge contact) 

240 
14.74 

(edge contact) 
17.61 

(edge contact) 
19.95 

(edge contact) 
21.3 

(edge contact) 

300 
15.91 

(edge contact) 
18.72 

(edge contact) 
20.84 

(edge contact) 
22.3 

(edge contact) 
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Table 7.3  The peak contact stresses (MPa) and edge loading states for 
different cup inclination angles and microseparation distances for radial 
clearance of 0.1 mm. The shadow in the table represents the 
occurrence of edge loading. 

 

Cup inclination angles (deg) 

35 45 55 65 

Microseparation (µm) 

0 
10.06 

(no edge contact) 
12.61 

(no edge contact) 
14.52 

(no edge contact) 
17.18 

(no edge contact) 

30 
10.85 

(no edge contact) 
13.21 

(no edge contact) 
15.20 

(edge contact) 
18.05 

(edge contact) 

60 
11.69 

(edge contact) 
14.02 

(edge contact) 
16.59 

(edge contact) 
18.95 

(edge contact) 

100 
12.58 

(edge contact) 
15.65 

(edge contact) 
18.01 

(edge contact) 
19.8 

(edge contact) 

150 
13.78 

(edge contact) 
17.15 

(edge contact) 
19 

(edge contact) 
20.67 

(edge contact) 

200 
15.36 

(edge contact) 
18.37 

(edge contact) 
19.9 

(edge contact) 
21.81 

(edge contact) 
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For all cup inclination angles considered, the maximum von Mises stresses 

in the liner increased markedly by ~67.5%-157.9%, ~87.7%-159.6% and 

~74.1%-178.4% for radial clearances of 0.542 mm, 0.3 mm and 0.1 mm 

respectively when the microseparation distances increased to 1500 µm 

(from standard conditions) (Figure 7.6). Correspondingly, the peak contact 

stresses on the frontside articulating surface increased substantially by 

~124.3%-161.6%, ~134.5%-255.6% and ~141.9%-290.1% for the three 

radial clearances respectively (Figure 7.7). 

With increased cup inclination angles from 35º to 65º, both the maximum 

von Mises stress and peak contact stress increased as well. However, this 

increase in von Mises stresses and contact stresses induced by higher cup 

inclination angles became negligible as the microseparation distance 

increased (Figure 7.7). 

For all cup inclination angles considered, the contact areas on the frontside 

articulating surface were decreased markedly as the microseparation 

distance increased to 1000 µm, and slightly decreased to an asymptotic 

value of ~140-150 mm2 for three radial clearances. Similarly to the stresses, 

the difference of contact areas induced by variation of cup inclination angles 

were found to decreased as microseparation distances increased (Figure 

7.8). 
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Figure 7.6  The variation of the maximum von Mises stresses (MPa) in the 
liner against cup inclination angle and microseparation distance for 
different radial clearances of (a) 0.542 mm, (b) 0.3 mm, (c) 0.1 mm. 
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Figure 7.7  The variation of the peak contact pressure (MPa) on the 
articulating surfaces against cup inclination angle and microseparation 
distance for different radial clearances of (a) 0.542 mm, (b) 0.3 mm, (c) 
0.1 mm. 
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Figure 7.8  The variation of the contact areas (mm2) on the articulating 
surfaces against cup inclination angle and microseparation distance for 
different radial clearances of (a) 0.542 mm, (b) 0.3 mm, (c) 0.1 mm. 
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7.3.3  Effect of Cup Inclination Angles and Head Lateral 

Microseparation on Backside Contact Stresses and Shear 

Stresses 

For all cup inclination angles considered, the maximum contact stress on the 

backside surface of the liner increased markedly by ~90.6%-217.2%, 

~117.4%-249.7% and ~119.2%-333.6% for radial clearances of 0.542 mm, 

0.3 mm and 0.1 mm respectively when the microseparation distances 

increased to 1500 µm (from standard conditions) (Figure 7.9). 

Correspondingly, the peak shear stress at the shell/liner interface increased 

substantially by ~97.2%-179.1%, ~86.7%-135.3% and ~97.2%-122.2% for 

the three radial clearances respectively (Figure 7.10). 

Both the peak contact stress on the backside surface of the liner and shear 

stress at the shell/liner interface increased with increased cup inclination 

angles under standard conditions and microseparation conditions. However, 

the difference of the backside contact stresses and shear stresses induced 

by the variation of cup inclination angles became insignificant when the 

microseparation distances increased to 1500 µm (Figure 7.9 and Figure 

7.10). 
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Figure 7.9  The variation of the peak contact pressure (MPa) on the 
backside surface of liner against cup inclination angle and 
microseparation distance for different radial clearances of (a) 0.542 mm, 
(b) 0.3 mm, (c) 0.1 mm. 
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Figure 7.10  The variation of the peak shear stress (MPa) at the shell/liner 
interface against cup inclination angle and microseparation distance for 
different radial clearances of (a) 0.542 mm, (b) 0.3 mm, (c) 0.1 mm. 
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7.3.4  Effect of Cup Inclination Angles and Head Lateral 

Microseparation on Plastic Strain 

Plastic deformation in the liner was observed for both standard conditions 

and microseparation conditions. The maximum equivalent plastic strain in 

the liner with radial clearance of 0.3 mm was predicted to be 21×10-3 for cup 

inclination angle of 45º at microseparation distance of 500 µm (Figure 7.11). 

For all cup inclination angles considered, the maximum equivalent plastic 

strain in the liner increased substantially with increased microseparation 

distances (Figure 7.12). The maximum equivalent plastic strain in the liner 

was predicted to be around 10×10-3 under standard conditions, and 

increased markedly to around 60×10-3 when the microseparation distance 

increased to 1500 µm (Figure 7.12). 

 

 

Figure 7.11  The equivalent plastic strain in the polyethylene liner under cup 
inclination angle of 45º and at microseparation distance of 500 µm 
(Radial clearance: 0.3 mm). 
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Figure 7.12  The variation of the peak equivalent plastic strain in the liner 
against cup inclination angle and microseparation distance for different 
radial clearances of (a) 0.542 mm, (b) 0.3 mm, (c) 0.1 mm. 
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7.4  Discussion 

Current adverse tissue responses in MoM THRs and the presence of 

squeaking and stripe wear in CoC THRs have evoked interest in edge 

loading in these hard-on-hard articulations (Manaka et al., 2004; Williams et 

al., 2006; Leslie et al., 2009). Indeed, edge loading as an adverse condition 

which would cause accelerated wear and major clinical problems of the hip 

prostheses have been widely investigated for hard-on-hard articulations 

(Willert et al., 2005; Restrepo et al., 2010; Walter et al., 2010). However, for 

hard-on-soft combinations, limited work has been done and the effect of 

edge loading on the behaviour of these combinations deserves further 

attention. The aims of the present study were therefore to focus on edge 

loading in a current modular MoP THR, and to examine the effect of cup 

inclination angles and microseparation on the edge loading and contact 

mechanics of a current modular MoP THR. 

This study showed that the microseparation distances required for 

generation of edge loading depended upon the cup inclination angles and 

radial clearances. In order to illustrate this, a mathematic analysis was 

carried out to determine the condition when microseparation leads to edge 

loading and how the microseparation distances that caused initial edge 

loading were related to the cup inclination angles and radial clearances, 

based on a simple 2D model, as shown in Figure 7.13. 

The mathematic analysis showed that the theoretical lateral displacement of 

the head required for generation of edge loading decreased as the cup 

inclination angles increased and radial clearances decreased (Figure 7.14). 

Indeed, the theoretical microseparation distances that required for the 

generation of edge loading was 410 µm for a cup inclination angle of 35º and 

radial clearance of 0.542 mm, and just 42 µm for a cup inclination angle of 

65º and radial clearance of 0.1 mm. 
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                                                                                        (7.1) 

Where  : radial clearance 

            : cup inclination angle 

Figure 7.13  Simple 2D model of calculation of the microseration distances 
required for edge loading generation based on the geometry of the 
THR. 

 

 

Figure 7.14  The microseparation distances required for edge loading 
generation as a function of cup inclination angle and radial clearance. 
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microseparation distances required to generate the edge loading decreased, 

suggesting that a steep cup inclination angle potentially facilitates the 

occurrence of edge loading due to the head lateral microseparation. This 

therefore highlighted the relatively increased instability of the hip prostheses 

with steep cups in vivo. From another point of view, for a given 

microseparation distance, the component with a steep cup inclination angle 

was more inclined to suffer from edge loading. This was found to be 

consistent with the previous clinical studies, indicating that the cups 

positioned with high inclination angles tend to suffer from edge loading 

(Nevelos et al., 1999; Nevelos et al., 2000).  

It is interesting to note that the maximum contact pressures on the bearing 

surface for articulation with radial clearance of 0.1 mm was found to be lower 

under standard conditions but a little higher under microseparation 

conditions (with microseparation distance of 1500 µm) compared to that with 

radial clearance of 0.542 mm. This can be explained from two competing 

factors. Under standard conditions, the bearing with smaller clearances has 

more conformity between the femoral head and acetabular cup, therefore 

leading to decreased contact pressure. However, under larger 

microseparation conditions, the liner with smaller clearances subjects to 

more lateral load under the same microseparation distances compared to 

the bearing with larger clearances, making the contact between the femoral 

head and liner more lateral and edge loading on the bearing surface more 

severe. The more severe edge loading would result in increased contact 

pressure on the bearing surface. 

The contact areas on the articulating surface were located about the 

superior region of the liner under standard conditions, and were found to 

centralize at the rim of the liner when the microseparation distances were 

larger than 800 µm, leading to a stripe contact area at the rim of the liner and 

elevated stresses at this area. This elevation of the stresses would cause 

severe plastic deformation at this area. Indeed, the FE predictions from this 

study have shown that plastic deformation occurred in the liner under both 

standard conditions and microseparation conditions. However, there was a 

rapid increase in the equivalent plastic strain when the microseparation 

distances were over 500 µm. This substantial increase in the equivalent 
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plastic strain indicated that severe plastic deformation of the liner occurred 

when the microseparation distances increased. The severe plastic 

deformation at the rim of the liner would lead to the weakness of the 

mechanical properties of the material at this area in terms of elastic modulus 

and yield stress, making the material of the liner more susceptible to fatigue. 

The plastic deformation at the rim of the liner would also induce pitting and 

delamination of the surface at this area, leading to the fatigue damage and 

fracture of the material, which has been observed in an in vitro study 

(Williams et al., 2003). 

The contact stresses on both the frontside articulating surface and the 

backside surface of the liner were found to increase as the cup inclination 

angles increased. This was consistent with the previous study (Kurtz et al., 

1997). However, it is interesting to note from present study that the effect of 

cup inclination angles was found to be negligible in case of microseparation 

distances above 1500 µm. This indicated that in case of hip laxity, the 

dominating factor to affect the biomechanics of the modular MoP THR is the 

level of microseparation, rather than acetabular component position. 

However, the two factors are not independent. As discussed above, in cases 

of steep cup inclination, the microseparation distance of the head that 

caused edge loading was largely reduced. Additionally, clinically a steep cup 

angle may increase the frequency of occurrence of microseparation at a 

certain level. 

The shear stresses at the shell/liner interface along the taper surface of the 

liner increased significantly when the microseparation was introduced. This 

has two implications. Firstly, when the head lateral microseparation occurred, 

the shear forces applied to the shell/liner interface increased, thus the risk of 

mechanical loosening of the liner may be increased. Secondly, under 

microseparation conditions, the increased shear stresses at the shell/liner 

interface induced the increase of the stresses associated with surface 

damage due to contact, which could result in the release of wear debris to 

the surrounding tissue that also increases the risk of loosening. 

Microseparation is believed to generate both elevated localized wear and 

global wear for hard-on-hard articulations (Stewart et al., 2001; Leslie et al., 
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2009; AI-Hajjar et al., 2010; Restrepo et al., 2010). However, it may not be 

true for hard-on-soft combinations (Williams et al., 2003). The limited 

experimental work to date with CoP bearing, did not indicated an increase in 

surface wear when a microseparation of 0.7 mm was introduced. Rather, 

four fold reduction in volume loss of material for the polyethylene were 

observed in that study (Williams et al., 2003). However, by contrast, a recent 

FE and experimental study of low and highly crosslinked polyethylene liners 

against metallic femoral head total hip arthroplasty has shown that wear 

rates increased by 15.59 mm3/million cycles in the low crosslinked liner and 

by 1.12 mm3/million cycles in the highly crosslined liner when lateral 

microseparation of 0.8 mm was introduced (Netter et al., 2013). Therefore, 

the effect of microseparation on the wear performance of hard-on-soft THR 

needs to be further confirmed. Nevertheless, this study has shown that the 

introduction of microseparation conditions to the gait cycle did significantly 

increase the von Mises stresses in the liner and contact stresses on the 

articulating surface, which was consistent with a previous study (Besong et 

al., 2001a). This highlighted the importance of the surgical technique in 

positioning the centre of the head in the centre of the axis of rotation to avoid 

head lateral displacement and thus reduce the component stress level.  

This study has some limitations. First of all, a static analysis was performed 

and a fixed static load representing the mid-to-terminal stance loading of the 

gait cycle was used in the present study. As the head microseparation was 

actually a dynamic process (Lombardi et al., 2000; Dennis et al., 2001; Uribe 

et al., 2012), it did not consider the effect of dynamic impact on the contact 

stresses in the present study. However, a contact force of 2500 N was used 

in the present study, which was higher than physiological loading during 

daily activities (Bergmann et al., 1993; 2001a) and can be expected to 

include the dynamic impact loading. Besides, the creep behaviour of the 

polyethylene liner was not modelled in the present study, which is believed 

to occur during the application of modular THR and affect the contact 

mechanics of the THR (Penmetsa et al., 2006; Galvin et al., 2010). 

Despite these limitations, this study did suggest that the head lateral 

microseparation would cause edge loading and induce a marked increase in 

von Mises stresses in the liner and contact stresses on the articulating 
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surfaces, as well as severe plastic deformation in the liner, and that the 

steep cup inclination angles would facilitate these phenomena. Therefore, 

clinically it is critically important to avoid conditions that may lead to edge 

loading, which means reducing the levels of rotational and translational mal-

positioning of the head and cup. 

7.5  Summary 

In this Chapter, the contact mechanics of the Pinnacle MoP THR was 

analysed under both standard conditions and adverse conditions where the 

head lateral microseparation occurred. The effect of cup inclination angles 

and microseparation levels on the edge loading and contact mechanics of 

the Pinnacle THR have been examined. Based on the study, the following 

conclusions can be drawn: 

1. The head lateral microseparation would cause edge loading on the 

articulating surface in Pinnacle THR and steep cup inclination could 

facilitate this edge loading. 

2. The von Mises stresses in the liner and contact stresses both on the 

frontside articulating surface and backside shell/liner interface, as well as 

the shear stresses at the shell/liner interface increased significantly when 

the microseparation was introduced and increased. 

3. The contact areas on the articulating surface were decreased and tended 

to converge to a constant value when the microseparation distance was 

increased. A stripe shape contact area was observed around the rim of 

the liner when the microseparation distances were over 800 µm. 

4. The plastic deformation in the liner occurred under both standard 

conditions and microseparation conditions. The equivalent plastic strain 

increased substantially when the microseparation distances increased to 

1500 µm. This severe plastic deformation of the liner would lead to the 

piiting and delamination of the material and finnaly the fatigue damage of 

the liner. 



- 181 - 

Chapter 8 

Overall Discussion and Conclusions 

8.1  Overall Discussion 

The contact mechanics and biomechanical behaviour of MoP THR were 

investigated in this thesis using FE methods. Two types of design were 

focused on: cemented and cementless. For the cemented THR, the contact 

mechanics of the bearings and stresses states in the cement mantle were 

analysed and the effect of the cup inclination angles, the sizes of the 

components as well as the penetration depths and surface geometries on 

the worn cup were examined. For the cementless THR, the contact 

mechanics and biomechanical behaviour were assessed under different 

conditions, including normal daily activities, standard and microseparation 

conditions. The effect of cup angles and radial clearances between the 

femoral head and polyethylene liner were evaluated. The effect of 

microseparation levels was also examined in the microseparation studies. 

8.1.1  Contact Mechanics and Cement Stresses for Cemented 

THR 

As discussed in Section 1.3.4, aseptic loosening of the cemented THR, 

which is considered as the main reason that causes the revision and failure 

of hip prosthesis, can be the result of particulate-induced bone resorption 

and bone-cement interface failure due to the mechanical stresses upon it 

(Ingham and Fisher, 2005; Sundfeldt et al.; 2006). The underlying 

mechanical mechanism is closely related to the wear of the implant which 

has been shown to be related to the contact mechanics on the bearing 

surfaces (Rostoker and Galante, 1979; Rose et al., 1983). Therefore, the 

investigation of the contact mechanics on the bearing surfaces and stresses 

at the bone-cement interface as well as in the cement mantle can help better 

understand the failure mechanism of the hip prosthesis. 

The investigation of contact mechanics and cement stresses for cemented 

THR was conducted by using a 3D anatomic Charnley THR model 

(Chapter 3). The model was detailed in Chapter 2 and validated by 
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comparing the contact stresses and areas with a previous study (Jin et al., 

1999) in which the model had the same structures of component and the 

same geometric parameters. 

The effect of different factors on the contact mechanics and cemented 

stresses for cemented THR was examined (Chapter 3). Cup inclination 

angles, one key surgical related factor in the application of THR, were shown 

to have little effect on the contact mechanics if the cup inclination angles 

were lower than 65º. However, they had an important effect on the cement 

stresses. Both the von Mises stresses and shear stresses at the bone-

cement interface increased markedly by 18% when the cup inclination 

angles increased from 45º to 65º. 

Although the wear in the acetabular cup resulted in marked decrease of 

contact stresses on the bearing surface, the penetration depths had little 

effect on the contact mechanics of THR (Chapter 3). This could be inferred 

from two aspects. On the one hand, the conformity between the femoral 

head and acetabular cup was increased when wear in the acetabular cup 

occurred. However, on the other hand, even though the penetration depth of 

4 mm resulted in marked decrease in the wall thickness of the aetabular cup, 

the improved conformity between the femoral head and the acetabular cup 

could compensate such a loss. In contrast, the penetration depths had an 

important effect on the stresses both at the bone-cement interface and in the 

cement mantle. This is because the stresses produced in the cement mantle 

depended on both the contact stresses on the bearing surface and how the 

contact stresses were transferred to the cement mantle. 

It should be pointed out that the wear and penetration in the acetabular cup 

considered in this study as well as in the previous study (Coultrup et al., 

2010) was largely simplified by intersecting the cup using the femoral head 

in the direction of the resultant load, as described in Chapter 3. The wear 

direction for the worn cup was therefore modelled as medial and consistent 

with the direction of the resultant load. The clearance between the femoral 

head and the worn region of the cup (Cw) was therefore assumed as zero. 

However, this was not the normal situation clinically. Clinical studies have 

showed that the wear direction was always observed to be lateral and there 
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was actually a gap between the femoral head and worn region of the cup 

(Wroblewski et al., 1985; Hall et al., 1998). These parameters were therefore 

quantified in this thesis from two retrieved Charnley sockets in Chapter 4. 

CMM machine was used to collect data and surface fitting technique was 

applied to reconstruct the worn and unworn regions in the surface of the 

worn cup. The prediction results confirmed the clinical observations that the 

wear direction for the retrieved Charnley cups were predicted to be lateral by 

12.5º and the clearance Cw was close to the radial clearance between the 

femoral head and origin surface of the cup (Co).  

The effect of the wear directions and radial clearances Cw on the contact 

mechanics and cement stresses for cemented THR were then evaluated 

(Chapter 4). Given the load with medial direction, the change of wear 

directions from medial to lateral did not affect the contact mechanics and 

cement stresses substantially. However, there was an increasing trend for 

the contact stresses on the articulating surface with more lateral wear 

directions (i.e. over 30º lateral). In contrast, the radial clearance Cw had a 

marked effect on the contact mechanics and cement stresses for cemented 

THR, similar to the findings in Chapter 3. 

The effect of wall thickness of the acetabular cup on the contact mechanics 

of THR is dependent on whether the cup is thick sufficiently. If the acetabular 

cup has sufficient thickness, the effect of the wall thickness is negligible, 

otherwise, the effect is apparent (Bartel et al., 1985). This conclusion was 

confirmed further in this thesis (Chapter 3). Keeping all other parameters 

constant, the change of the outer diameters of the acetabular cup from 40 

mm to 43 mm, hence an increase of the wall thickness from 8.7 mm to 10.2 

mm, did not affect the contact mechanics on the articulating surface. 

However, the increased head diameters from 22.225 mm to 36 mm, 

therefore a decreased wall thickness from 8.7 mm to 1.72 mm, resulted in a 

decrease of contact stresses on the bearing surface by nearly 50%. 

However, it should be pointed out that when the head diameters increased 

to 36 mm, the thickness of the cup goes below approximately 2 mm, which 

will become slightly irrelevant in practice. 
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The effect of wall thickness on the cement stresses was largely different. 

Both the outer sizes of the cup and the diameters of the femoral head had 

marked effect on the stresses produced in the cement mantle (Chapter 3). 

This again highlighted the conclusion that the stresses produced in the 

cement mantle depended on both the contact stresses on the bearing 

surface and how the stresses were transferred to the cement mantle. 

Clinical studies have reported that under similar conditions, a cup with an 

outer diameter of 43 mm had approximately 20% lower aseptic loosening 

incidence compared to that with outer diameter of 40 mm with increasing 

penetration depths in the cup (Wroblewski, et al., 2009a). Correspondingly, 

the maximum von Mises stress at the bone-cement interface and the peak 

max principal stress in the cement mantle for the cup design with outer 

diameter of 43 mm were predicted to be approximately 15-19% and 15-22% 

lower compared to that of 40 mm for different cup inclination angles and 

penetration depths (Chapter 3). This provided a possible explanation on the 

difference of aseptic loosening incidence observed clinically between the two 

cup designs from a mechanical point of view. 

8.1.2  Contact Mechanics for Modular THR Under Normal 

Activities 

It has been shown that the contact mechanics of modular MoP THR was 

largely different from that of non-modular MoP THR, due to the 

nonconformity between the shell and liner in the modular bearings (Kurtz et 

al., 1998; 1999). However, whilst the contact mechanics has been 

extensively investigated for non-modular THRs, limited works have been 

done for modular THRs. 

The contact mechanics and biomechanical behaviour for modular MoP THR 

were therefore investigated in this thesis by using a 3D anatomic Pinnacle 

THR model which was detailed in Chapter 2. In order to improve the 

confidence of using the anatomic Pinnacle THR model, the methodology 

used in this model was validated in Chapter 5. An experimental set-up was 

developed to allow the contact areas on the articulating surface for a 

modular MoP THR to be measured. An experimentally-matched model 

which applied the same methodology with that in the anatomic Pinnacle THR 
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model was developed to reproduce the experimental set-up, as described in 

Chapter 5. The contact areas measured from experiment and predicted 

from the experimentally-matched model were then compared. Good 

agreements were obtained between them in both patterns and values of 

contact areas, with a maximum difference of 14%, confirming that the 

methodology used in the anatomic Pinnacle THR model had a sound 

experimental footing. 

There were, however, several limitations to the experimental validation 

which have been discussed in Section 5.4. A thorough and more accurate 

approach could be developed in the future, e.g. the material properties of the 

polyethylene liner used in the experiment should be tested and applied in the 

experimentally-matched model; the contact stresses on the articulating 

surface could be measured with the help of a transducer etc. Despite these 

limitations, the experimentally-matched model reproduced the experimental 

outcomes prospectively. 

The anatomic Pinnacle THR model with validated methodology was then 

used to investigate the contact mechanics and biomechanical behaviour of a 

modular MoP THR (Pinnacle THR) during activities of daily living such as 

walking, ascending stairs etc. (Chapter 6). The loading data applied in the 

model was obtained from Bergmann’s study (Bergmann, 2001b). 

Contact stresses on the frontside articulating surface of the Pinnacle THR 

over the whole cycle for normal walking were predicted to distribute both at 

and away from equatorial regions, leading to a double-peak contact pattern 

(Figure 6.3), which was largely different from non-modular THR, such as the 

cemented THR discussed in Chapter 3 (Figure 3.2). Contact was also 

predicted between the shell and the backside surface of the liner both at 

corresponding regions. This backside contact would produce backside wear 

which was considered to aggravate the aseptic loosening of the hip 

prosthesis (Chapter 6). 

Edge loading on both the frontside articulating surface and backside surface 

of the liner for Pinnacle MoP THR was investigated and the contribution of 

cup angles, radial clearances and daily activities were examined in 

Chapter 6. It has been shown that the occurrence of edge loading on the 
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two surfaces of the liner was dependent on the cup angles, radial clearances 

as well as the daily activities. For radial clearance of 0.3 mm, edge loading 

on the frontside articulating surface was inclined to occur at steeper cup 

inclination angles and with smaller radial clearances for normal walking, 

ascending and descending stairs activities. In contrast, edge loading on the 

backside surface of the liner was predicted to occur for all activities 

considered. Similarly, it was inclined to occur at steeper cup inclination 

angles and with smaller radial clearances. 

It is interesting to note that even though edge loading existed on the 

articulating surface, the contact stresses did not increase markedly. This 

indicated that this kind of hip prosthesis has less sensitivity to edge loading 

than hard-on-hard articulations (Wang et al., 2012). In contrast, the edge 

loading on the backside surface of liner led to concentrated stresses, which 

would induce damage and fracture of the liner at this region, as observed in 

a retrieved liner (Halley et al., 2004). 

The study on the effect of cup angles suggested that both cup inclination 

angles and anteversion angles had a marked effect on the contact 

mechanics of modular MoP THR for all activities considered. However, how 

the cup angles affected the contact mechanics was dependent on the radial 

clearances. Take the normal walking activity as an example, the increased 

cup inclination angles resulted in decreased contact stresses on the 

articulating surface for radial clearances of 0.542 mm and 0.3mm, but led to 

increased contact stresses for radial clearance of 0.1 mm. The different 

behaviour of the modular MoP THR induced by varied cup angles for radial 

clearance of 0.1 mm suggested that lower cup angles remain a 

recommendation for implant positioning for the modular THRs. 

8.1.3  Contact Mechanics for Modular THR Under Microseparation 

Conditions 

As discussed in Section 1.4.5, microseparation of the femoral head and the 

acetabular cup can provoke adverse biomechanical and biotribological 

problems for THR, including the production of unexpected accelerated wear 

rates and stripe wear on hard-on-hard articulations, and fracture of the 

components as well as the squeaking of the implants for CoC bearings 
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(Manaka et al., 2004; Williams et al., 2006; Leslie et al., 2009). It can also 

lead to concentrated stresses and undesired deformation of the components, 

especially for MoP THR (Williams et al., 2003), which will cause damage of 

the components and promote the failure of the implants. Therefore, the 

investigation of microseparation for MoP THR is necessary in order to better 

assess the long-term performance of the THR. 

The contact mechanics and biomechanical behaviour of a modular MoP 

THR (Pinnacle THR) under microseparation conditions were investigated by 

using the 3D anatomic Pinnacle THR model used in Chapter 6. The effect of 

cup inclination angles, microseparation distances and radial clearances 

between the femoral head and liner were evaluated (Chapter 7). 

The microseparation study showed that the introduction of microseparation 

resulted in marked increase in the peak von Mises stress in the liner and 

contact stress on the articulating surface. With increased microseparation 

distances, the maximum von Mises stress and contact stress increased 

continually. Plastic deformation for the polyethylene liner occurred under 

both standard conditions and microseparation conditions, and the plastic 

deformation became more severe with increased microseparation distances. 

This plastic deformation on the polyethylene liner due to the microseparation 

was also observed in an in vitro study (Williams et al., 2003) (Chapter 7). 

Edge loading would occur on the bearing surface due to microseparation. 

Previous studies have shown that the generation of edge loading was 

strongly dependent on the cup inclination angles and radial clearances (Mak 

et al., 2002; Sariali et al., 2012). This was further confirmed in this study 

(Chapter 7). It was suggested that the microseparation distances required to 

generate edge loading decreased with increasing cup inclination angles, 

indicating that the implants with higher cup inclination angles were more 

inclined to suffer from edge loading and had potentially increasing instability. 

This study also suggested that all the stresses tested in this study increased 

markedly with increased cup inclination angles. However, the difference of 

the stresses induced by varied cup inclination angles became negligible 

when the microseparation distances increased to a certain level (Chapter 7). 

This indicated the leading role of microseparation level to the biomechanical 
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behaviour of the modular THR in case of hip laxity, highlighting the 

importance of aligning the position of the components to avoid head lateral 

microseparation clinically. 

There are a number of limitations to the models used in this study. Firstly, in 

both antomic Charnley THR model and antomic Pinnacle THR model, the 

bone was modelled as a cancellous region surrounded by a cortical shell 

with fixed thickness, the mechanical properties in terms of elastic modulus 

and Poisson’s ratio were considered to be uniform. However, in reality, the 

thickness of the cortical shell and the elastic modulus and Poisson’s ratio of 

the bone are site-dependent and bone density-dependent (Leung et al., 

2009). These were not considered in both models. Additionally, the pelvic 

bone in both models was constrained rigidly at the sacroiliac joint and at the 

pubic symphysis, these were not true for the pelvis in the human body. The 

real constraint for the pelvis at the sacroiliac joint and at the pubic symphysis 

was elastic by soft tissues such as ligaments and tendons (Hao et al., 2011). 

Furthermore, the soft tissues surrounding the hip joint such as capsule, 

muscles and ligaments were not considered in the anatomic models (Elkins 

et al., 2011). The loadings applied in both models were simplified to a point 

force. All these limitations may have a certain impact on the FE predictions 

and should be addressed in future studies. 

8.2  Overall Conclusions 

In summary, the following major conclusions can be made from this study. 

For cemented THR (Charnely THR): 

 The cup inclination angles had little effect on the contact pressures on 

the articulating surface but had marked effect on the cement stresses. 

 The wear in the acetabular cup resulted in marked decrease in the 

contact pressures on the acetabular surface, however, the penetration 

depths had little effect on the contact pressures. By contrast, the 

penetration depths had marked effect on the cement stresses. 

 Assuming the cup was positioned at an inclination angle of 45º, the wear 

directions for the two retrieved Charnley sockets were predicted to be 

lateral, rather than medial. However, the change of the wear directions 
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from medial to lateral did not affect the contact pressures and cement 

stresses substantially. 

 The radial clearances between the femoral head and the worn region of 

the cup (Cw) for the two retrieved Charnley sockets were found to be 

close to the radial clearances between the femoral head and original 

surface of the cup (C0). The radial clearances Cw had an important effect 

on the contact pressures and cement stresses. A larger radial clearance 

Cw  produced higher contact pressures and cement stresses. 

 The difference of the contact pressures on the bearing surface between 

the two cups with outer diameters of 40 mm and 43 mm was negligible. 

However, the cement stresses for the cup with outer diameter of 40 mm 

were predicted to be higher compared to that of 43 mm. 

 Increased diameters of the femoral head from 22.225 mm to 38 mm 

resulted in decreased contact stresses by nearly 50% but increased 

cement stresses by about 30%, 25% and 11% with respect to peak von 

Mises stress, shear stress and max principal stress. 

For modular THR (Pinnacle THR): 

 Good agreements in contact areas were obtained between the 

experimental measurements and the FE predictions from the 

experimentally-matched model. This provides some level of confidence 

in using the anatomic Pinnalce THR model which applied the same 

methodology as the experimentally-matched model. 

 Both the cup inclination angles and anteversion angles, as well as the 

type of daily activities had marked effects on the contact mechanics of 

the modular MoP THR. However, how the cup angles affected the 

contact mechanics was dependent on the radial clearances. 

 Edge loading on the frontside articulating surface for the modular MoP 

THR was predicted during the activities of normal walking, ascending 

and descending stairs for radial clearance of 0.3 mm. Edge loading was 

more inclined to occur for the prosthesis with steeper cup inclination 

angles and smaller radial clearances. 
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 Edge loading in the equatorial region on the backside surface of the liner 

for modular THR was also observed for all activities considered, leading 

to a region of concentrated stress at this area. 

 Edge loading on the frontside articulating surface would occur due to the 

lateral microseparation of the femoral head. The starting point of 

occurrence of edge loading was strongly dependent on the cup 

inclination angles and radial clearances between the femoral head and 

acetabular cup. 

 The introduction of microseparation resulted in a significant increase of 

von Mises stresses in the liner material and contact stresses on the 

bearing surface. The material yielding of the polyethylene liner occurred 

under both standard conditions and microseparation conditions, leading 

to the plastic deformation for the polyethylene liner, which became 

increasingly more severe with increased microseparation distances. 

 The contact stresses on the backside surface of the liner and shear 

stresses at the shell/liner interface increased significantly as well when 

the microseparation was introduced. 

8.3  Future Work 

The contact mechanics and biomechanical behaviour of a cemented MoP 

THR and a modular MoP THR were investigated in this thesis by using 

computational models. Meaningful and encouraging conclusions have been 

made based on the investigation. However, there are a few limitations in this 

thesis and need to be addressed in the future works. 

 In order to investigate the macro mechanical behaviour of the cement 

mantle, the bone-cement interface was modelled at a continuum level in 

this thesis, where the bone-cement interface was considered as a 

bilayer which consists of the cement on one side and bone on the other. 

However, the true interface layer between the bone and the cement is 

actually a transition region of a bone-cement composite (Lewis, 1997). 

Therefore, in order to better understand the failure process of the 

interface, the bone-cement interface is recommended to be modelled at 
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a microstructural level which includes the bone-cement interdigitated 

region in the future study. 

 The load applied in the anatomic Charnley THR model was static with a 

direction of 10º medially. However, the magnitudes and directions of the 

load may have a marked effect on the contact mechanics of the bearing 

and mechanical behaviour of the cement mantle, especially the wear 

with lateral direction was modelled in the acetabular cup. Therefore, 

loads with varied magnitudes and directions for gait and other activities 

are recommended in the future study. 

 The contact mechanics for modular THR was shown to be different from 

that for non-modular THR, which was attributed to the non-conformity 

between the shell and liner in the modular THR (Kurtz et al., 1998; 

1999). This can be confirmed by investigating the effect of conformity 

between the shell and the liner in modular THR in the future study. 

 The dynamic process of microseparation of the femoral head includes 

separation during swing phase, rim contact at heel-strike and relocation 

during the stance phase. These processes can be simulated dynamically 

to better understand the biomechanics of the hip prosthesis under 

microseparation conditions in the future study. 

 The final recommendation for the future study is to investigate the 

impingement and dislocation of the hip prosthesis. The impingement and 

dislocation of the hip implants can also cause concentrated stresses and 

damage of the components, and finally the instability of the hip 

arthroplasty (Woo and Morry, 1982; Scifert et al., 1998). Therefore, the 

investigation of impingement and dislocation for the THR will be a good 

complementary for understanding the edge loading and the failure of the 

hip prosthesis. 
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Appendix A 

Matlab Code For Surface Fitting 

% Select the X,Y,Z coordinate for the CMM data 
 
x = A(:,1); 
y = A(:,3); 
z = A(:,2); 
o=[x,y,z];                           
 
% Remove the data on the rim of the cup 
 
k=1; 
m=length(o); 
   for j=1:m 
          if  o(j,3)<-6; 
                n(k,:)=o(j,:);               
                k=k+1; 
          end 
   end 
 
x1=n(:,1); 
y1=n(:,2); 
z1=n(:,3); 
 
% Split the data into 36 tracks 
 
t(1,:)=n(1,:);                           
nrow=2; 
 
track=1; 
    for row=2:length(n) 
          if abs(n(row,3)-n(row-1,3))<5; 
                t(nrow,track*3-2)=n(row,1); 
                t(nrow,track*3-1)=n(row,2); 
                t(nrow,track*3)=n(row,3); 
                nrow=nrow+1; 
          else 
                track=track+1; 
                nrow=2; 
                t(nrow-1,track*3-2)=n(row,1); 
                t(nrow-1,track*3-1)=n(row,2); 
                t(nrow-1,track*3)=n(row,3); 
            end 
      end 
 
 
 
% tracks plot 
 
      for j1=1:36 
             p(j1,:)=t(j1,:); 
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      end 
 
pstrack=1; 
ptrack=36; 
 
      for j2=pstrack:pstrack+ptrack-1 
                plot(sqrt(p(:,3*j2-2).^2+p(:,3*j2-1).^2),p(:,3*j2)); 
                hold on; 
      end 
 

% Choose tracks on unworn surface for surface fitting (one group track) 
 
ftrack=1;                     % the first tracks of the tracks chosen for surface fitting 
nftrack=17;                   % the number of tracks chosen for surface fitting 
 
xdata0=t(:,3*ftrack-2); 
ydata0=t(:,3*ftrack-1); 
zdata0=t(:,3*ftrack); 
 
      for a=ftrack+1:ftrack+nftrack-1 
               xdata0=cat(1,xdata0,t(:,3*a-2)); 
               ydata0=cat(1,ydata0,t(:,3*a-1)); 
               zdata0=cat(1,zdata0,t(:,3*a)); 
               plot(sqrt(p(:,3*a-2).^2+p(:,3*a-1).^2),p(:,3*a)); 
               hold on; 
      end 
 
grid on; 
figure; 
 
xdata0(find(xdata0==0))=[]; 
ydata0(find(ydata0==0))=[]; 
zdata0(find(zdata0==0))=[]; 
 
data0=[xdata0,ydata0,zdata0]; 
 

% first surface fitting 
 
f=@(p,data0)(data0(:,1)-p(1)).^2+(data0(:,2)-p(2)).^2+(data0(:,3)-p(3)).^2-p(4)^2; 
p=nlinfit(data0,zeros(size(data0,1),1),f,[0 0 0 1]')                  %Surface fitting 
 
[X,Y,Z]=meshgrid(linspace(-18,18),linspace(-18,18),linspace(-18,-5,50)); 
V1=(X-p(1)).^2+(Y-p(2)).^2+(Z-p(3)).^2-p(4)^2; 
 
c(1,:)=[p(1),p(2),p(3),p(4)];            %  the original centre of the cup 
 
R1=abs(sqrt((data0(:,1)-p(1)).^2+(data0(:,2)-p(2)).^2+(data0(:,3)-p(3)).^2)-p(4)); 
[R1max,pos1]=max(R1)              % the sphericity of the surface fitting 
 
% second surface fitting 
 
s1=0.37;        % threshold for the data selection for the second surface fitting 
k1=1; 
[m1 n1]=size(data0); 
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      for i1=1:m1 
           if R1(i1,1)<s1; 
                     data1(k1,:)=data0(i1,:); 
                     k1=k1+1; 
           end 
      end 
 
f=@(p,data1)(data1(:,1)-p(1)).^2+(data1(:,2)-p(2)).^2+(data1(:,3)-p(3)).^2-p(4)^2; 
p=nlinfit(data1,zeros(size(data1,1),1),f,[0 0 0 1]')                   %Surface fitting 
hold on 
 
V2=(X-p(1)).^2+(Y-p(2)).^2+(Z-p(3)).^2-p(4)^2; 
 
c(2,:)=[p(1),p(2),p(3),p(4)]; 
 
R2=abs(sqrt((data1(:,1)-p(1)).^2+(data1(:,2)-p(2)).^2+(data1(:,3)-p(3)).^2)-p(4));  
[R2max,pos2]=max(R2)                     % the sphericity of the surface fitting 
 
% to decide the wear depths and directions, and choose the worn surface data 
 
rt=11; 
kd=round(rt)+1; 
 
x2=x1(:)-p(1); 
y2=y1(:)-p(2); 
z2=z1(:)-p(3); 
 
[theta,phi,r]=cart2sph(x2,y2,z2); 
 
pene=r(:)-p(4); 
[maxpene,pos]=max(pene)  
angle=(theta(pos))*180/pi 
 
      for s=1:length(r) 
                 R(s)=p(4); 
      end 
 
[mtheta,mphi]=meshgrid(linspace(min(theta),max(theta),200),linspace(min(phi),max
(phi),200)); 
 
mr=griddata(theta,phi,r,mtheta,mphi,'v4'); 
mR=griddata(theta,phi,R,mtheta,mphi,'v4'); 
err=mr-mR; 
 
[s1 s2]=size(err); 
 
      for s1=1:s1 
            for s2=1:s2 
                   if err(s1,s2)<0; 
                             err(s1,s2)=0; 
                  end 
            end 
      end 
 
[mx,my,mz]=sph2cart(mtheta,mphi,mr); 
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surf(mx,my,mz,err); 
colormap(jet); 
shading interp; 
xlabel('X'),ylabel('Y'),zlabel('Z'); 
axis([-kdkd -kdkd -kd 0]); 
set(gca,'XTick',[-kd:4:kd],'YTick',[-kd:4:kd],'ZTick',[-kd:2:0]); 
view(-12,42); 
colorbar('YTick',0:0.2:2.0); 
 

% to choose worn surface data and fitting the worn area 
 
R=abs(sqrt((x1(:)-p(1)).^2+(y1(:)-p(2)).^2+(z1(:)-p(3)).^2)-p(4));  
 
deviation=0.1; 
s4=1; 
 
      for s3=1:length(R) 
                if R(s3)>deviation 
                             w(s4,1)=x1(s3); 
                             w(s4,2)=y1(s3); 
                             w(s4,3)=z1(s3); 
                             s4=s4+1; 
                end 
      end 
 
f=@(p,w)(w(:,1)-p(1)).^2+(w(:,2)-p(2)).^2+(w(:,3)-p(3)).^2-p(4)^2; 
p=nlinfit(w,zeros(size(w,1),1),f,[0 0 0 1]')  
 
[wX,wY,wZ]=meshgrid(linspace(-18,18),linspace(-18,18),linspace(-18,-5,50)); 
Vw=(wX-p(1)).^2+(wY-p(2)).^2+(wZ-p(3)).^2-p(4)^2; 
 
plot3(w(:,1),w(:,2),w(:,3),'o'); 
isosurface(wX,wY,wZ,Vw,0); 
alpha.5;camlight;axis equal;gridon;view(3); 
title(sprintf('(x-%f)^2+(y-%f)^2+(z-%f)^2=%f',p(1),p(2),p(3),p(4)^2)) 
 
grid on; 
figure; 
 
plot3(x1,y1,z1,'o'); 
isosurface(wX,wY,wZ,Vw,0); 
grid on; 
figure; 
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