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a b s t r a c t

Sensitivity analysis aims at quantifying influence of input parameters dispersion on the output dispersion

of a numerical model. When the model evaluation is time consuming, the computation of Sobol' indices

based on Monte Carlo method is not applicable and a surrogate model has to be used. Among all

approximation methods, polynomial chaos expansion is one of the most efficient to calculate variance-

based sensitivity indices. Indeed, their computation is analytically derived from the expansion

coefficients but without error estimators of the meta-model approximation. In order to evaluate the

reliability of these indices, we propose to build confidence intervals by bootstrap re-sampling on

the experimental design used to estimate the polynomial chaos approximation. Since the evaluation of

the sensitivity indices is obtained with confidence intervals, it is possible to find a design of experiments

allowing the computation of sensitivity indices with a given accuracy.

1. Introduction

Performing global sensitivity analysis is often a major step in

uncertainties propagation studies. It helps to understand how

uncertainties of a quantity of interest could be explained and

reduced. Different types of sensitivity analysis can be performed

(see [21]). This paper focuses on variance-based ones, computed

by polynomial chaos expansion. Sensitivity indices, coming from

variance decomposition (ANOVA), are relevant informations as

they allow one to quantify effect of a variable (alone or in inter-

action with one or more variables) but require estimate of many

partial variances (see [21] for a description of sensitivity indices).

When these partial variances cannot be expressed analytically,

which is often the case in industrial applications, a Monte Carlo

based method, developed in [23], leads to an approximation of

these indices. If the computation of the model is time consuming

(finite element models for example), Monte Carlo simulations

become unrealistic and a common way to tackle this problem is

the use of a meta-model. In this case, the idea is to replace the true

model by an analytical one as precise as possible and then to use it

in the Monte Carlo methodology. This involves two types of error:

a meta-modelling error coming from the difference between the

true model and its approximation and a sampling error due to

the Monte Carlo methodology, used for the sensitivity indices

computation.

An efficient way to compute sensitivity indices is to use an

approximation of the model by polynomial chaos expansions

(PCEs). Indeed, [26] shows that sensitivity indices are analytically

calculated with the coefficients of that expansion. Then, the two

types of error, given earlier, are reduced to the meta-modelling

error only. Hence, it is of great importance to quantify and control

it. The quality of meta-models is usually defined as the difference

between the true model and the meta-model. This difference can

be expressed using several error criteria like coefficient of deter-

mination, Mallows Cp, cross-validation, etc. Numerous methods

propose iterative constructions of meta-models based on one (or

several) of these criteria. For example, in [20], a quadratic surface

response is built based, first, on the minimization of the sum of

squared error, then in four different error criteria (Mallows Cp, AIC,

BIC, adjusted coefficient of determination) and finally on leave-

one-out validation. Concerning sensitivity analysis, [4] proposes an

innovative construction of sparse PCE and selects the best PCE

thanks to a corrected leave-one-out error. All these methodologies

are efficient but do not take into account the aim of the meta-

model. Moreover, it is difficult to link a global criterion error to the

error on sensitivity indices computed from the meta-model.

Finally, it is difficult to target a global error criterion value that

allows a level of confidence on sensitivity indices. This problem

also arises in reliability analysis and many authors propose error

measurements and adaptive algorithms based on the probability
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of failure obtained by meta-models and not only on global meta-

modelling error. For example, in [11], the authors use a complete

quadratic response surface as a meta-model and build confidence

intervals by Jack-knife re-sampling around the design point. In

[16], a bootstrap re-sampling on the failure probability is used to

construct an optimized PCE. Confidence interval constructed by

bootstrap re-sampling is also widely used in global sensitivity

analysis. Plischke et al. [17] use bias-reducing bootstrap on

variance-based and density-based sensitivity indices computed

by sampling. Castaings et al. [5] use bootstrap on density-based

sensitivity indices computed by different sampling strategies. In

the field of sensitivity analysis performed by meta-models, [13]

uses reduced-basis meta-models to estimate variance-based sen-

sitivity indices and combine the property of reduced-basis meta-

model and bootstrap re-sampling to compute confidence intervals.

Storlie et al. [25] compares several types of meta-models and also

uses bootstrap re-sampling on this meta-models to obtain con-

fidence intervals.

This paper proposes to take advantage of the PCE in the

estimation of variance based sensitivity indices. Then, in order to

know if this approximation is accurate enough to estimate partial

variances, a way to construct confidence intervals by bootstrap re-

sampling is presented. In the first part of this paper, some

important features about PCE and the determination of sensitivity

indices are recalled. One important point deals with the method

used to construct the polynomial basis. A quite recent methodol-

ogy based on the Least Angle Regression (LAR) algorithm and

developed in [3] is used. The second part presents an application

of bootstrap re-sampling [10] to the computation of sensitivity

indices, when they are estimated by PCE. Some results about the

determination of confidence intervals are recalled and an algo-

rithm is presented which is set up to build a design of experiments

allowing one to obtain sensitivity indices with a given level of

confidence. Finally, this methodology is tested, first, on academic

cases (Ishigami and g-Sobol' functions) and, second, is used for a

sensitivity analysis on a finite element model of satellite TARANIS,

designed by the Centre National d'Etudes Spatiales (France).

2. Determination of sensitivity indices by polynomial chaos

expansion

2.1. Approximation of a stochastic model by a PCE

Let us consider a numerical model yðXÞ, that depends on a

random vector X¼ fX1;…;Xng of n independent random variables,

defined by the joint probability density function (PDF), say

f XðxÞ ¼∏n
i ¼ 1f X i

ðxiÞ. It is shown [24] that any second-order random

variable can be expanded into a polynomial decomposition as

yðXÞ ¼ ∑
1

i ¼ 0

CiϕiðX1;…;XnÞ ð1Þ

where fϕigiAN
is an adequate orthogonal polynomial basis, with

respect to the joint PDF, and fCigiAN are unknown coefficients. In

practice, decomposition Eq. (1) is truncated to a finite number of

terms, say P, according to

yðXÞ ( byðXÞ ¼ ∑
P)1

i ¼ 0

CiϕiðX1;…;XnÞ ¼ ∑
P)1

i ¼ 0

CiϕiðXÞ ð2Þ

This paper only deals with the so called non-intrusive methods

which do not need a modification of the numerical code comput-

ing the output Y. They are simple to implement and do not ask

special form of Y, except that E½Y2+o1.

The next subsections present the construction of a basis ϕi

" #

and the computation of the coefficients Ci.

2.2. Construction of the candidate basis

It is shown in [27] that classical univariate polynomial bases

should be used for usual distributions (see Table 1). Then the

orthogonal multivariate polynomial basis is obtained from the

product of each univariate polynomial. This approach is chosen

because only usual distributions are used. In other cases, the

simplest solution consists in an iso-probabilistic transformation

of the input variables into standard normal ones [14].

The multivariate polynomial basis in Eq. (1) is composed of an

infinity of terms. As seen in Eq. (2), this basis is truncated to a

finite number of terms, say P. In the following, polynomials are

ranked by order (first polynomials are univariate of degree one,

then multivariate using two variables of degree one, then the

univariate at degree two, etc.).

The simplest way to truncate the basis is then to choose the P

first polynomials. For example, the number P of polynomials

necessary to reach a maximal order p is P ¼ ðnþpÞ!=ðn!p!Þ, where

n is the number of random variables. This strategy is efficient for

problems of small dimension and responses that can be approxi-

mated by low degree polynomials. When it is not the case, the

number of terms becomes important and leads to conditioning

problems. Considering this issue, considerable research efforts

were done during the last years to create efficient selection

algorithms, leading to sparse bases in regression area and parti-

cularly in PCE area [2]. They will be detailed in Section 2.3.2.

2.3. Computation of the coefficients

2.3.1. Ordinary least square

Coefficients Ci are determined by minimizing the quadratic

norm of the error ɛy ¼ Y)ΦC, between some exact values yðXÞ

estimated at N different points (experimental design of size N)

concatenated into vector Y, and their estimation by the truncated

polynomial expansion, concatenated into vector ΦC, where C is

the vector of unknown coefficients Ci in Eq. (2) andΦAM
N;P is the

matrix of regressors. Column vectors of matrix Φ are evaluations

of polynomials ϕi, iA ½0; P)1+, at the N points of the experimental

design. The least-square minimization criterion leads to

C¼ ðΦtΦÞ)1Φt
Y: ð3Þ

2.3.2. LAR

Let us now introduce classical notations for sparse basis. First,

the multi-index is α¼ fα1⋯αi⋯αng, and A is the family of multi-

indices α. From now, polynomial ϕ
α
is the one acting on variables

Xi at power αi, for iA ½1;n+. Its total degree is jαj ¼∑n
i ¼ 1αi. With

such notations, the polynomial chaos expansion of a stochastic

model yðXÞ (see Eq. (2)) reads

yðXÞ ( byðXÞ ¼ ∑
αAA

CαϕαðXÞ: ð4Þ

Given a full candidate basis B of maximal degree p, with

p¼maxjαj and cardðBÞ ¼ ðnþpÞ!=ðn!p!Þ, a polynomial chaos expan-

sion is said sparse if cardðAÞocardðBÞ. As the expansion coeffi-

cients are determined by regression, several tools, initially set-up

Table 1

Univariate orthogonal polynomials for usual ran-

dom variables.

Random variable Orthogonal polynomials

Gaussian Hermite

Uniform Legendre

Beta Jacobi

Gamma Laguerre



in this area, can be used to select relevant polynomials. In this

study, we shall use the Least Angle Regression (LAR) algorithm,

introduced in [9], and already used in [1] to polynomial basis

selection. Let us now recall some important features of this

algorithm. First of all, the LAR returns a collection of meta-

models that are less and less sparse (the last iteration is the

classical least-square solution) in cardðBÞ iterations. The meta-

model, which is selected in this collection, is determined by

estimation of a given indicator. This point will be discussed later

on. So the LAR algorithm proceeds as follows:

- Set all coefficients Cα to 0.
- Find the polynomial that is the most correlated with the

response, say ϕj1
.

- Take the largest possible step in the direction of ϕj1
until

another polynomial, say ϕj2
, has as much correlation with the

current residual.
- Define the equiangular direction between ϕj1

and ϕj2
and take

the largest step in this direction, until a new predictor has as

much correlation with the residual, and so on.

Note that, in [1], the LAR is only used for variable selection and

coefficients Cα are calculated by least-square method for each

sparse basis.

Here, once the LAR algorithm returned the P meta-models, one

has to choose the best one according to an error criterion. Several

regression error measurements have been tested in the literature,

see for example [3] and the discussion in [9]. We recall two of

them, used in next sections: the classical coefficient of determina-

tion R2 and the leave-one-out error Q2.

2.4. Regression error measurement

2.4.1. Coefficient of determination R2

The coefficient of determination is defined as

R2 ¼ 1)
∑N

i ¼ 1ðyi) byi Þ2

∑N
i ¼ 1ðyi)yÞ2

;

where yi and byi are respectively evaluations of the real model and

of the meta-model at points xi, while

y ¼
1

N
∑
N

i ¼ 1

yi:

This coefficient measures the generalization error, i.e. the part of

variance of the real model explained by the meta-model [6]. A

major drawback of this coefficient is that it only takes into account

the points of the experimental design. Moreover, it tends to one

when the number of polynomials in the meta-model increases,

which makes it irrelevant to find over-fitting phenomena. To take

into account the number of terms in the meta-model, other

indicators are available, for example Mallows's Cp [15].

Considering these drawbacks, coefficient R2 has to be used with

care and its value has to be compared with other indicators that

are less sensitive to over-fitting, e.g. the leave-one-out error.

2.4.2. Leave-one-out error

Leave-one-out is a particular case of cross-validation, where

the size of validation set is one. The idea is to leave one point out

of the design of experiments, to create a meta-model on this new

design, then to evaluate the residual at the left point and, finally, to

loop on each point of the original design of experiments. This

methodology can be quantified through the following formula,

where byð) iÞ
stands for the value at xi of the meta-model built on

the experimental design in which point xi has been removed

Q2
¼ 1)

∑N
i ¼ 1ðyi)byð) iÞ

Þ

∑N
i ¼ 1ðyi)yÞ2

:

As for the R2 coefficient, the leave-one-out coefficient can be

penalized by the number of terms in the meta-model. Such a

penalized Q2 is used for the selection of the meta-model within

the collection obtained by the LAR algorithm (see [3] for more

details).

2.5. Construction of the design of experiments

The construction of an experimental design consists in choos-

ing a method to sample in the space of input variables in order to

compute the N exact values yðXÞ used in the least-square problem.

In our study, we mainly used Monte Carlo sampling which is a

random sampling in the joint PDF of the input variables. A

comparison with Latin Hypercube Sampling (LHS) is performed

Section 4.1.3. LHS design of experiments splits the input space into

equiproportional subspaces and allows only one sample per sub-

space which leads to a better filling of the space.

2.6. Post processing

2.6.1. Statistical moments

Once the PCE is built (i.e. once the basis is chosen and the

coefficients are computed) statistical moments are computed

analytically. As the decomposition functions ϕ
α
have nice proper-

ties of orthogonality and zero mean, it can be shown (see [26])

that

E½byðXÞ+ ¼ C0;

and

Var½byðXÞ+ ¼ ∑
αAA

C2
α
E½ϕ

2
α
ðXÞ+:

2.6.2. Sensitivity analysis

The idea, pointed out in [26], is to identify the polynomial

chaos expansion with an ANOVA decomposition (see [18] for

example). For this purpose, Eq. (4) is rewritten according to

byðXÞ ¼ y0þ ∑
N

i ¼ 1

∑
αA Li

Cαϕα
ðXiÞþ ∑

N)1

i1 ¼ 1

∑
N

i2 ¼ i1 þ1

∑
αA Li1 ;i2

Cαϕα
ðXi1 ;Xi2 Þ

þ⋯þ ∑
N) sþ1

i1 ¼ 1

⋯ ∑
N

is ¼ is) 1 þ1

∑
αALi1 ;…;is

Cαϕα
ðXi1 ;…;Xis Þ

þ⋯þ ∑
αA L1;…;N

Cαϕα
ðX1;…;XNÞ; ð5Þ

where Li1 ;…;is represent sets

Li1 ;…;is ¼ α¼ ðαkÞk ¼ 1;…;n

αkAN
n; kA ði1;…; isÞ

αk ¼ 0; k=2ði1;…; isÞ
:

, )

:

(

Then the identification with the ANOVA decomposition is straight-

forward. Moreover, sensitivity indices, or Sobol' indices [22],

derived from this decomposition, can be computed with coeffi-

cients of the sparse polynomial chaos decomposition [4],

bS i1 ;…;is ¼
∑αA Li1 ;…;is

C2
α
E½ϕ

2
α
ðXi1 ;…;Xis Þ+

Var½byðXÞ+
: ð6Þ

The most common sensitivity indices are the first order ones and

the total ones. The first order sensitivity index of variable Xi, called

Si, gives the part of the output variance explained by the random-

ness in the sole input variable Xi. According to the above notation,



its approximation reads

bS i ¼
∑αA LiC

2
α
E½ϕ

2
α
ðXiÞ+

Var½byðXÞ+
:

Total sensitivity indices of an input variable Xi, called STi, takes into

account all interactions between Xi and all other variables. Its

estimate by polynomial chaos expansion is given by

bSTi ¼
∑
αA Lþ

i
C2
α
E½ϕ

2
α
ðXiÞ+

Var½byðXÞ+
;

where Lþ
i is the set Lþ

i ¼ αAA=αia0
" #

. Let us remark that,

according to Eqs. (5) and (6), if there is no interaction in the

model, the sum of first order indices is one and total index STi is

equal to first order index Si for every variable Xi.

This section shows how the quality of sensitivity indices is

linked to the quality of the approximation by the meta-model.

Nevertheless, accuracy needed for sensitivity analysis is strongly

dependent on its aim (variable selection, variable ranking, variance

reduction). So it seems difficult to use a global quality criterion

(like R2 or Q2 described before) to reach the level of accuracy

needed for sensitivity analysis. For example, in [4], the authors

propose to target Q2
A ½0:990;0:999+ to have a correct approxima-

tion of sensitivity indices. In order to have a goal-oriented

information, we propose here to use bootstrap re-sampling on

the design of experiments to build confidence intervals on

sensitivity indices approximated by PCE.

3. Bootstrap re-sampling applied to polynomial chaos

expansion

3.1. Construction of confidence intervals by bootstrap re-sampling

Bootstrap [10] is a re-sampling method which aims at deter-

mining confidence intervals on a quantity of interest using only

one design of experiments. It is well suited when the computation

of this quantity is time-consuming and use of replicates is then

impossible. The main idea is to create several new designs of

experiments, say B, by drawing with replacement in the first one

(source design) and, then, to use these new designs to get an

empirical distribution of the statistic variables calculated on these

designs. This methodology has already been applied on several

surrogate models, as in [13,11].

Here, we are interested in sensitivity indices, denoted as collec-

tion S. PCE of the response of interest gives an estimator of these

indices, denoted as bS. For every new design Dk (k¼ 1;…;B), the

methodology of sparse PCE described in Section 2 is used, leading to

sensitivity indices collections bSk for design Dk (it should be noted that

in order to avoid ill-conditioning of regression matrix Φ defined in

Eq. (3), the size of the design of experiments is three times higher

than cardðAÞ, see [19]). After the computation of the B sensitivity

indices collections (one per re-sampled design), empirical confidence

intervals are built. Let bS
n

i and VarbS i be the estimators of the mean

and variance of the empirical distribution of the B collections of

indices bS ik. Different types of confidence intervals can be obtained

from bootstrap re-sampling.

- The first one is called standard interval,

Si7u½1)α=2+

ffiffiffiffiffiffiffiffiffiffiffiffi
VarbS i

q
; iA ½1;…;n+;

where u½1)α=2+ is the 1)α=2 quantile of the standard normal

distribution. This confidence interval is based on an asymptotic

approximation of the bootstrap distribution by a normal one.

- The second one is the percentile bootstrap. Confidence interval is

bS i½α=2+rSirbS i½1)α=2+; iA ½1;…;n+;

where bS i½α=2+ and bS i½1)α=2+ are the α=2 and 1)α=2 empirical

quantiles.

This interval does not need any hypothesis on bS i distribution, but
needs a lot of re-sampling B (higher than 500, see [16]) in order to

approximate these quantiles with a sufficient precision. The setting

of this parameter is going to be discussed in Section 4.
- The last one is the bias corrected and accelerated bootstrap

(BCa), as first introduced in [8]. The main idea is to assume that

normality of the bootstrap distribution can be achieved by

some transformation. In the following we only describe the

construction of the intervals. For details on the theoretical

basis, the reader is referred to [8] and also to [7] for a review on

bootstrap confidence intervals. BCa confidence intervals are

bS i½α1 +rSirbS i½α2 +; iA ½1;…;n+;

where bS i½α1 + and
bS i½α2 + are the α1 and α2 empirical quantiles of

the bootstrap distribution. α1 and α2 are defined by

α1 ¼Φ u0þ
u0þuα=2

1)aðu0þuα=2Þ

) *

and

α2 ¼Φ u0þ
u0þu1)α=2

1)aðu0þu1)α=2Þ

) *

where Φ is the standard normal cumulative distribution function,

uα=2 ¼Φ)1
ðα=2Þ and u1)α=2 ¼Φ)1

ð1)α=2Þ. u0 is called the bias-

correction and it is defined by u0 ¼Φ)1
ðcardðbS ikobS iÞÞ; kA ½1;B+.

a is called the acceleration and it is linked to an idealized

transformation of the bootstrap distribution to normality. This

parameter is not known in practice but it is shown in [8] that a

correct approximation of a is

a( ba ¼
∑N

j ¼ 1ð
bS iðÞ)bS i) jÞ

3

6f∑N
j ¼ 1ð

bS iðÞ)bS i) jÞ
2g

3=2
ð7Þ

where bS i) j is the estimation of Si removing the jth point of the

design of experiments, and bS iðÞ is the mean of the N bS i) j values.

This interval is supposed to be more accurate as it takes into

account some characteristic of the empirical distribution. It should

be noted that it is a correction of the percentile bootstrap. Indeed if

the correction terms u0 and a are null, then BCa is equal to

percentile bootstrap.

In the following numerical examples, we mainly used percen-

tile bootstrap. BCa procedure is illustrated but it should be noted

that the computation of the acceleration is time consuming.

Hypothesis of normality for standard interval is too restrictive

and never verified in practice. This is the reason why we will not

use this one.

Considering informations given by these confidence intervals,

we now propose a sequential strategy to create a design of

experiments which eventually provides a required accuracy on

the sensitivity indices.

3.2. Sequential construction of an optimized design of experiments

Here an application of bootstrap re-sampling is presented in

order to minimize the number of points in the design of experi-

ments, so as to get sensitivity indices from PCE with a fixed level of

confidence. The algorithm described here is inspired from a

previous work [16], using bootstrap re-sampling in a similar way

on reliability indices. Our methodology, summarized in Fig. 1, is

split in five main steps:



1. An experimental design of size N is used to build a polynomial

chaos meta-model. Parameters for PCE construction are the degree

p of the candidate basis B and the maximal size of the polynomial

basis selected by the LAR algorithm, i.e. cardðAÞrN=3. Note that

this last condition is due to the sparse nature of the selected meta-

model. This can be adjusted according to the penalization coeffi-

cient applied to leave-one-out error Q2, used in selection process.

In our studies, during bootstrap re-sampling, all the PCEs are

sparse enough to reach this condition. If it is not the case, one can

increase the penalization coefficient. At first iteration, N is initi-

alized by the user as well as the estimation pest of p.

2. B bootstrapped samples are used to construct the 95% con-

fidence intervals (CIs) as presented in the previous section. This

number B depends on the complexity of the response. Discus-

sion about the choice of this parameter is presented later on.

Three different confidence intervals being described in Section

3.1, the difference between them will be also discussed.

3. As far as convergence criterion is concerned, we choose to stop

the algorithm at the iteration for which all CIs sizes have reached

a given range ½bS i½α=2+; bS i½1)α=2++ for α¼ 0:05, which is formulated

as a function of the maximum mean value of sensitivity indices

(let us recall that, if there is no interaction, the sum of the first

order sensitivity indices is equal to one). Once again, this

convergence criterion will be discussed in the next section.

4. If the convergence criterion is not reached, nadd new points are

added to the experimental design and a new iteration starts. The

value of nadd is a compromise between the computation time of

a single model evaluation and the computation time of one

algorithm iteration (B PCE constructions). If nadd is too small,

most of the time is spent during bootstrap iteration. If it is too

large, the algorithm converges in less iterations but the final

experimental design could be far from an optimal one. If the

convergence criterion is reached, one obtains sensitivity indices

with enough confidence, using an optimal experimental design.

Sampling schemes that can be used to build and increase the

experimental design are discussed in the following.

5. The last point deals with degree p of the candidate basis B. If it

is too low, the convergence will never be reached and, if it is

too high, cardðBÞ is large which makes the LAR algorithm time

consuming. A way to increase it, if necessary, is described in the

next section.

In conclusion this strategy leads to a PCE allowing to compute

sensitivity indices with a given accuracy. It should be noted that

this algorithm relies on the fact that PCE converges to the quantity

of interest when the number of polynomials in the expansion and

the degree of the candidate basis increase.

4. Numerical examples

This section discusses the choice of parameters in the method

presented above. Let us first recall that these parameters are:

- The number of bootstrap samples B.
- The methodology used to create the design of experiments and

to increase its size.
- The degree p of the full candidate polynomial basis B and,

possibly, the way to increase it.
- The type of confidence interval (BCa or percentile bootstrap).
- The convergence criterion based on the confidence intervals size.

All these points are enlightened through the example of the

Ishigami function.

4.1. Application to Ishigami function

4.1.1. Presentation

The Ishigami function [21] is a well-known test case for

sensitivity analysis because, among its three parameters, two have

close first order sensitivity indices and one appears only in

interaction. It is defined by

Y ¼ sin X1þ7 sin 2 X2þ0:1X4
3 sin X1;

where variables Xj have uniform distribution over the range

½)π; þπ+. Sensitivity indices may be computed analytically as

presented in Table 2.

In the following, all results are obtained by the methodology

presented in Section 3.2.

4.1.2. Number of bootstrap samples B

Here, our goal is to check classical recommendation on the

number of bootstrap samples B. Usually, building a 95% confidence

interval by percentile bootstrap or BCa requires between 500 and

1000 bootstrap re-sampling [10]. As BCa is only a correction of

percentile bootstrap, all the following CI are constructed by

percentile bootstrap. In order to fix the size of re-sampling, we

propose to increase it from 100 to 1000 and to observe the

variation of the lower and upper sensitivity indices CI boundaries

for α¼ 0:05. This is performed using a sparse PCE of the function

with a full candidate basis B of degree p¼10.

Fig. 2 shows the evolution of bSX1½0:05=2+ (first order sensitivity

index of variable X1, lower CI boundary), and Fig. 3 shows
bSX1 ½1)0:05=2+ (the upper CI boundary). In both cases, a comparison

is made for several sizes of design of experiments.

Fig. 1. Sequential construction of the experimental design leading to sensitivity

indices with a fixed level of confidence.

Table 2

Ishigami function—sensitivity indices.

Variable Analytical values

Si ST i

X1 0.3138 0.5574

X2 0.4424 0.4424

X3 0.0 0.2436



Such a comparison was done for the three variables and the

same two conclusions can be drawn:

1. The bigger the design of experiments is, the faster is the

convergence as a function of B. This allows one to be confident

in the fact that number B can be fixed, in a conservative way, at

the first iteration.

2. Even for small design of experiments sizes, an admissible

convergence in B is reached as soon as B¼700. So, this value

will be kept in the following.

4.1.3. Choice of the methodology to create the design of experiments

As an iterative algorithm is proposed to increase the experi-

mental design, the position of the samples in the input variables

space has to be discussed. Several experimental design strategies

are possible namely Monte Carlo sampling (random sampling

using the joint PDF of the input variables) or Latin hypercube

sampling (LHS).

Bootstrap re-sampling is usually performed on random experi-

ments. Nevertheless, the next section gives a comparison between

results obtained with a Monte Carlo design of experiments and a

LHS one. In this last case, note that a new LHS experimental design

is built at each iteration. Like in the previous section, sensitivity

indices are obtained by sparse polynomial chaos expansion with a

full candidate basis of degree p¼10 and confidence intervals are

built with 700 bootstrap repetitions with percentile bootstrap

method.

Fig. 4 shows the evolution of the first order sensitivity indices

(bSX1
; bSX2

; bSX3
) versus the experimental design size for a Monte

Carlo experimental design, whereas Fig. 5 presents the same

results obtained with a LHS experimental design at each iteration.

Legend Direct PCE estimation stands for sensitivity indices com-

puted by PCE built on all the design of experiments. Finally, the

values of R2 and Q2 (see Section 2.3) versus the size of the

experimental designs are also given in Table 3.

A similar study was carried out on total sensitivity indices and

led to the same conclusions. First, we can observe that the meta-

models, built on the whole experimental design, are generally

more accurate with less points when a LHS experimental design is

used, as shown by R2 and Q2. It should also be noted that, for

Fig. 2. Evolution of bSX1 ½0:05=2+ vs. number of bootstrap samples B and size of the

experimental design N.

Fig. 3. Evolution of bSX1 ½1)0:05=2+ vs. number of bootstrap samples B and size of the

experimental design N.

Fig. 4. Evolution of first order sensitivity indices—Monte Carlo experimental

design.

Fig. 5. Evolution of first order sensitivity indices—LHS experimental design.



N430, R2 and Q2 are quite different (especially for Monte Carlo

design of experiment) which reveals the interest of the compar-

ison between several indicators. Nevertheless, both design strate-

gies lead to similar confidence interval convergence in a very close

number of iterations. Finally, this numerical example does not

allow to conclude on the interest of using LHS in our context.

4.1.4. Polynomial basis degree

We recall (see Section 2.1) that the polynomial chaos expansion

is based on a projection of the stochastic response onto a family of

polynomials contained in a full candidate basis B, made of all

suitable polynomials up to a degree p. This section is devoted to

the choice of this degree p. In the previous examples, a large value

of p was chosen because:

1. It is known that degree 7 is necessary to properly approximate

the Ishigami function (see [26]).

2. The function has only 3 input parameters. So the time spent by

the LAR algorithm remains reasonable.

Considering these two points, it is clear that, in an industrial

case with many variables (greater than 10 for example), the size of

the candidate basis B can make the LAR algorithm time consum-

ing. Moreover choosing the degree a priori needs an expert

judgment and, if it may be realistic in most of the cases, it could

be sometimes difficult to evaluate the degree of the stochastic

response. In order to tackle this problem, two different approaches

are proposed and tested here.

1. If it is possible to have an accurate estimate of degree p (it is

called pest) that is necessary to well approximate the response,

and if the number of variables is not too important, one can

choose p¼ pestþδp where δp is equal to 1, 2 or 3.

2. If the number of input parameters is important, we propose to

choose p¼ pest , even if this value is hazardous. Then, the degree

is increased following this empirical rule: if, after a few

iterations (in practice four iterations appears as a good guess),

the maximal confidence interval size is not divided by two,

degree p of the candidate basis B is increased by one.

As previously, these two strategies are illustrated on Ishigami

function. For strategy ♯1, p is chosen equal to 10 and, for strategy

♯2, pest is chosen equal to 5 and 3. Fig. 6 gives the results obtained

by the first strategy for which R2 and Q2 values obtained with

direct PCE construction are given by Table 3 (Monte Carlo column).

Figs. 7 and 8 correspond to the second one for pest ¼ 5 and pest ¼ 3

respectively and R2 and Q2 values obtained with direct PCE

construction are given by Table 4. In both cases, the experimental

design is built by Monte Carlo sampling, confidence intervals are

Table 3

Direct PCE estimation, R2 and Q2 values—first order sensitivity indices, Monte Carlo

experimental design and LHS experimental design.

Monte Carlo LHS

ExD size R2 Q2 ExD size R2 Q2

10 0.982 0.955 10 0.987 0.943

20 0.957 0.906 20 0.889 0.657

30 0.800 0.651 30 0.996 0.953

40 0.712 0.564 40 1.000 0.997

50 0.971 0.867 50 1.000 0.996

60 0.987 0.972 60 1.000 0.994

70–120 1.000 1.000 70–130 1.000 1.000

Fig. 6. Evolution of total sensitivity indices—first strategy—p¼10.

Fig. 7. Evolution of total sensitivity indices—second strategy—initial value of

pest ¼ 5—p increases by 1 at each vertical line.

Fig. 8. Evolution of total sensitivity indices—second strategy—initial value of

pest ¼ 3—p increases by 1 at each vertical line.



obtained by the percentile method with B¼700 and we look for

the total sensitivity indices.

The comparison between the results of these two strategies

allows us to show that, even if the expert judgment is bad (as in

the second strategy), an increase of the degree based on the size of

the confidence interval leads to convergence. Nevertheless, if pest is

far from the final value of p, the convergence becomes longer as

illustrated by the case pest ¼ 3.

In conclusion, this section shows the importance of comple-

mentarity between a correct degree p for the candidate basis B and

enough points in the design of experiments. It also shows the

capability of the method to converge even if the degree pest is

chosen far from what would be needed.

4.1.5. Type of confidence interval

Section 3.1 introduced three different bootstrap confidence

intervals. We recall that the standard interval is based on an

asymptotic approximation of the bootstrap distribution by a

normal one. Despite the fact that [12] shows the asymptotic

normality of Sobol' index estimator computed by Monte Carlo or

by a convergent meta-model, the standard interval is not studied

here because the hypothesis of normality of the bootstrap dis-

tribution is never verified in practice (rejection of the assumption

by the Kolmogorov normality test). In fact, as we proposed an

adaptive design of experiment, at first iterations this asymptotic

results are not yet verified and this type of CI is not adapted.

So this section discusses the difference between percentile

bootstrap and the bias corrected and accelerated bootstrap (BCa).

First of all, some remarks have to be done on correction terms in

the BCa method. These terms are numerically instable for small

size of design of experiments (first iterations of the proposed

methodology). For example the acceleration terms a (see Eq. (7))

needs the calculation of statistics bS i) j (evaluation of the sensitivity

indices removing the jth sample point from the experimental

design) and for small design of experiments, it happens that the

best PCE is a constant. Then the sensitivity indices cannot be

calculated and bS i) j has no sense. The results for small design of

experiments are not relevant and must be canceled from the

conclusion. The last remark concerns the computational cost of the

BCa. The calculation of the acceleration term is not negligible

because of the terms bS i) j.

In order to compare the two types of confidence intervals, the

example presented in Fig. 8 is considered. Total sensitivity indices

are computed by a sparse PCE, the first degree p is chosen equal to

3, the experimental design is built by Monte Carlo sampling and

the number of bootstrap samples is B¼700. Fig. 9 presents results

obtained with BCa method. As previously, the R2 and Q2 values of

the PCE built on the experimental design at each iteration are

provided in Table 5. It should be noted that these values are quite

similar with the ones in Table 4 as the same Monte Carlo sampling

is used. Only the evolution of the degree p is different.

This figure clearly illustrates the stability problem of the BCa
method for small design of experiments. Then, compared to Fig. 8

(same condition but CI constructed by percentile method), con-

vergence is reached with a smaller design of experiments (150

points instead of 180) and final confidence intervals are centered

on the theoretical values.

Finally, percentile and BCa methods give almost the same

results at the last iteration but BCa converges faster and it is more

accurate in this example. Nevertheless, considering the instability

problems for small design of experiments and the computational

cost of this method, we will use the percentile method in the

following example and compare with the BCa method only in the

industrial application.

Table 4

Direct PCE estimation, R2 and Q2 values—total sensitivity indices—pest ¼ 5 and

pest ¼ 3.

pest ¼ 5 pest ¼ 3

ExD size p R2 Q2 ExD size p R2 Q2

10 5 0.480 0.171 10 3 0.480 0.171

20 5 0.714 0.543 20 3 0.000 )0.108

30 5 0.929 0.794 30 3 0.373 0.195

40 5 0.797 0.692 40 3 0.561 0.309

50 6 0.973 0.934 50 4 0.820 0.699

60 6 0.988 0.974 60 4 0.863 0.784

70 6 0.988 0.976 70 4 0.812 0.760

80 6 0.992 0.983 80 4 0.810 0.764

90 6 0.991 0.985 90 4 0.991 0.985

100 6 0.991 0.986 100 4 0.894 0.854

110 6 0.991 0.985 110 4 0.865 0.839

120 6 0.996 0.994 120 4 0.861 0.837

130 7 0.996 0.993 130 5 0.990 0.984

– – – – 140 5 0.989 0.984

– – – – 150 5 0.985 0.981

– – – – 160 5 0.985 0.981

– – – – 170 6 0.989 0.984

– – – – 180 6 0.989 0.985 Fig. 9. Evolution of total sensitivity indices—initial value of pest ¼ 3—p increases by

1 at each vertical line—BCa method.

Table 5

Direct PCE estimation, R2 and Q2 values—total sensitivity indices—pest ¼ 3, BCa
method.

ExD size p R2 Q2

10 3 0.480 0.171

20 3 0.000 )0.108

30 3 0.373 0.195

40 3 0.561 0.309

50 4 0.820 0.699

60 4 0.863 0.784

70 4 0.812 0.760

80 4 0.810 0.764

90 5 0.909 0.871

100 5 0.894 0.854

110 5 0.865 0.839

120 5 0.861 0.837

130 6 0.990 0.984

140 6 0.989 0.984

150 6 0.985 0.981



4.1.6. Convergence criterion

As defined in Section 3.2, convergence is reached when all the CIs

sizes are less than x percent of the maximum bootstrap mean of the

sensitivity indices. This part deals with the choice of parameter x.

As an example, all previous figures were obtained with x¼ 10%.

The choice of value x must be made according to the goal of the

sensitivity analysis. If it only aims at ranking variables with a poor

accuracy, a large value of x can be chosen (like 20 or 30).

Conversely, if the sensitivity study has to be accurate (in order to

work on variance reduction of some variables for example), value

of x must be small (like 5 or 10).

Anyway, convergence is also depending on the maximum

bootstrap mean of the sensitivity indices. It is impossible to know

this value a priori but, as the sum of all first order sensitivity

indices is one if there is no interaction, orders of magnitude given

above will lead to correct results in almost every case. Problems

will occur when the model has many variables of equal sensitivity

indices or when the variables have their major effects in interac-

tion. Then, a solution consists in following the convergence graph

at each iteration and in deciding manually when to stop.

4.1.7. Conclusion

The previous numerical experiments on Ishigami function help

us to draw some general conclusions on the methodology. First,

Section 4.1.2 justifies the arbitrary choice B¼700, as it shows that,

when the experimental design size increases, CIs boundaries

become less sensitive to the value of B. Then, even if LHS leads

to a better Q2, numerical tests using LHS to build and increase the

design of experiments are not enough discriminatory (in terms of

CIs size) to conclude about the efficiency of such method in our

study. The choice of the basis degree p is, in an industrial context,

linked to previous knowledges in the area. Anyway, Section 4.1.4

presents a simple way to increase this degree and find the correct

one within a few iterations. Finally, Table 6 gives some numerical

comparison between the theoretical values and the results of the

proposed algorithm. It allows one to be confident in the capability

of the method. These results are obtained at last iteration of the

algorithm with the following parameters: B¼700, p¼10, design of

experiments built and increased by Monte Carlo sampling, con-

vergence criterion fixed to 10%.

Considering all points discussed in this section, the methodol-

ogy is now applied to the g-Sobol' function [21] with 8 parameters

then to an industrial case.

4.2. Application to g-Sobol' function

This function reads

Y ¼ ∏
8

i ¼ 1

j4Xi)2jþai
1þai

;

where every Xi has a uniform distribution between 0 and 1.

Parameters ðaiÞ1r ir8 take their values in f0;1;4;5;9;99;99;99g.

Theoretical sensitivity indices are given in Table 7.

Our methodology is applied in order to determine the first

order sensitivity indices. Parameters of the method, discussed in

Section 4, are set up as follows:

- Number of bootstrap samples: B¼700.
- Experimental design built by Monte Carlo sampling.
- Degree of the polynomial basis B: p¼5.
- Type of confidence interval: percentile
- Convergence criterion: maxðIC sizesÞo0:1maxðE½bS i+Þ.

Table 6

Ishigami function—comparison between theoretical and numerical sensitivity

indices.

S bS ½α=2+ bS
n bS ½1)α=2+

ST bST½α=2+ bS
n

T
bST½1)α=2+

X1 0.3138 0.3099 0.3143 0.3189 0.5574 0.5432 0.5561 0.5602

X2 0.4424 0.4396 0.4435 0.4565 0.4424 0.4400 0.4441 0.4572

X3 0.0000 0.0000 0.0000 0.0001 0.2436 0.2319 0.2421 0.2451

Table 7

g-Sobol function—first order and total sensitivity indices.

Variable Si ST i

X1 0.7165 0.7875

X2 0.1791 0.2423

X3 0.0237 0.0343

X4 0.0072 0.0105

X5;6;7;8 0.0001 0.0001

Fig. 10. Evolution of first order sensitivity indices—p¼5.

Table 8

Direct PCE estimation, R2 and Q2 values—total

sensitivity indices—pest ¼ 5.

ExD size R2 Q2

40 0.843 0.788

70 0.940 0.919

100 0.986 0.977

130 0.991 0.981

160 0.978 0.971

190 0.985 0.978

Table 9

g-Sobol function—comparison between theoretical and numerical first order

sensitivity indices.

Variable Si Lower CI boundary bS
n

i
Upper CI boundary

X1 0.7165 0.7000 0.7496 0.7919

X2 0.1791 0.1162 0.1504 0.1794

X3 0.0237 0.0069 0.0172 0.0301

X4 0.0072 0.0000 0.0038 0.0095

X5;6;7;8 0.0001 0.0000 0.0000 ½0:0001–0:0009+



Fig. 10 shows the evolution of confidence intervals versus the

number of iterations. As previously, R2 and Q2 values are also given

by Table 8. Table 9 gives a numerical comparison between

theoretical values and estimations of the first order sensitivity

indices obtained at last iteration.

This case shows that, when some variables have a major impact,

it is not necessary to have a perfect approximation of the function to

obtain accurate results on sensitivity indices. For example, the

accuracy, related to results given in Table 9, is enough to select,

rank variables and even to have correct relative importance

information. Let us also remark that R2 ¼ 0:985 and Q2
¼ 0:978 at

the end of iterations. So an adaptive method, guided by values of R2

and Q2 (targeting R2
40:99 or Q2

40:99 for example), would lead

in this case to a kind of over quality in the meta-model.

5. An industrial application: TARANIS

5.1. Context of the study

This example takes place in a reliability analysis of a satellite

structure called TARANIS developed by CNES (Centre National

d'Etudes Spatiales). Fig. 11 shows the finite element model used for

calculations (about 380,000 degrees of freedom). The aim of this

work was to study the reliability under static load of the satellite

using second order surface response (see [19]). Several methods

were used to select the most relevant variables for every response

and it appeared that 14 variables were sufficient.

More precisely, we focus here on one particular quantity of

interest which is the maximum Von Mises stress in a particular

panel under the following loading case: 9.75 g following X,

)3.68 g following Y and 3.68 g following Z where g¼ 9:81 m s)2

is the gravity intensity.

The selected 14 variables are described in Table 10. All prob-

ability densities are supposed to be Gaussian, means and variation

coefficients (VCs) being given in Table 10. For this study, we aim at

estimating the total sensitivity indices of every variable.

Following [19], a global sensitivity analysis was carried out

using the calculation of sensitivity indices by Monte Carlo method

on the surface response. This one was built using an experimental

design of 186 points. Then, 2,000,000 Monte Carlo simulations of

the surface response were necessary to obtain the sensitivity

indices. Results are presented in Table 11, Column R-S. It can be

noticed that the sum of all indices is close to one, which means

there is almost no interaction between variables.

5.2. Results obtained with bootstrap re-sampling and polynomial

chaos expansion

The algorithm presented in Section 3.2 is applied to the study

of the total sensitivity indices of the 14 variables introduced

previously. The parameters of the method are

- Number of bootstrap samples: B¼700.
- Experimental design built by Monte Carlo sampling.

Fig. 11. (i) Finite element model of Taranis structure, (ii) Minus X panel.

Table 10

Gaussian variables for the TARANIS model.

Variable Short name Mean VC (%)

Acceleration following X grav_X )9.75 g 4

Acceleration following Y grav_X )3.68 g 4

Acceleration following Z grav_X )3.68 g 4

Thickness of the lower skin, panel )Z pmz_tck_inf_skin 0.6 mm 6

Thickness of the upper skin, panel )Z pmz_tck_sup_skin 0.6 mm 6

Thickness of the honeycomb, panel )Z pmz_tck_honey 17.6 mm 6

Young modulus of the skins, panel )Z pmz_E_skins 72.e6 MPa 4

Thickness of the lower skin, panel þZ ppz_tck_inf_skin 0.6 mm 6

Thickness of the upper skin, panel þZ ppz_tck_sup_skin 0.6 mm 6

Thickness of the honeycomb, panel þZ ppz_tck_honey 17.6 mm 6

Young modulus of the skins, panel þZ ppz_E_skins 72.e6 MPa 4

Young modulus of the panel )X panel pmx_E 72.e6 MPa 4

Thickness of orange stiffeners in Fig. 11(ii), panel )X pmx_tck_or_stif 18 mm 6

Thickness of black stiffeners in Fig. 11(ii), panel )X pmx_tck_bl_stif 9.2 mm 6



- Convergence criterion: maxðIC sizesÞo0:1maxðE½bS i+Þ.
- Type of confidence interval: percentile.
- Degree p of the polynomial basis B: three choices are tested.

First, p¼2 and it may increase; second, p¼3 and it cannot

increase; finally, p¼4 and it cannot increase.

Fig. 12 gives the evolution of the sensitivity indices when p¼2,

the vertical lines meaning an increase of one in the maximal

degree of the candidate basis. Figs. 13 and 14 depict this evolution

for p¼3 and p¼4 respectively.

These figures exhibit an interesting phenomenon. If the degree

p of the full candidate basis B is high (Fig. 14), at first iterations,

100 points are necessary to reach correct CIs sizes. This shows that,

if the candidate basis size is too large, the selection algorithm is

disturbed and this leads to large CIs. Anyway, as a severe

convergence criterion is chosen (x¼10), all choices converge

between 160 (p¼3) and 190 (p¼2–5). But if the convergence

Table 11

Comparison between surface response method and bootstrap re-sampling on sensitivity indices computed by PCE.

p¼2 to p¼5

Variable R-S B-Inf Mean B-Sup

ppz_tck_sup_skin 0.3047 0.2782 0.2903 0.3041

ppz_tck_inf_skin 0.2786 0.2674 0.2806 0.2937

ppz_E_skins 0.0577 0.0516 0.0582 0.0654

grav_Z 0.2174 0.2128 0.2255 0.2379

grav_Y 0.1286 0.1209 0.1302 0.1397

p¼3

B-Inf Mean B-Sup

ppz_tck_sup_skin 0.2803 0.2929 0.3071

ppz_tck_inf_skin 0.2652 0.2783 0.2917

ppz_E_skins 0.0490 0.0555 0.0627

grav_Z 0.2162 0.2272 0.2388

grav_Y 0.1176 0.1264 0.1349

p¼4

B-Inf Mean B-Sup

ppz_tck_sup_skin 0.2802 0.2936 0.3075

ppz_tck_inf_skin 0.2656 0.2792 0.2929

ppz_E_skins 0.0488 0.0557 0.0627

grav_Z 0.2128 0.2247 0.2371

grav_Y 0.1198 0.1295 0.1386

BCa, p¼2

B-Inf Corrected 50% quantile B-Sup

ppz_tck_sup_skin 0.2822 0.2961 0.3081

ppz_tck_inf_skin 0.2730 0.2846 0.3004

ppz_E_skins 0.0508 0.0540 0.0610

grav_Z 0.2079 0.2162 0.2280

grav_Y 0.1208 0.1285 0.1382

Fig. 12. Evolution of total sensitivity indices—p increases by 1 at each vertical line.
Fig. 13. Evolution of total sensitivity indices—p¼3.



criterion is relaxed at x¼20, the first choice (p¼2–5) converges

faster than the two others.

Finally, the BCa method for the construction of sensitivity

indices is also tested, with p¼2, all other parameters remaining

the same. Fig. 15 presents this case.

The comparison between Fig. 15 (using BCa) and Fig. 12 (using

percentiles) reveals almost no difference between the two con-

struction methods for the confidence intervals. This seems to show

that for smooth responses, the BCa method gives no advantage

compared to the percentile one. Table 11 summarizes all results.

A comparison with the results obtained by the response surface

method allows one to be confident in the capability of the method

for solving industrial problems, as both methods lead to the same

conclusion. Moreover confidence intervals, that are built by boot-

strap re-sampling, also contain results given by the response

surface method, which show the relevance of these intervals.

6. Conclusion

The methodology proposed in this paper aims at combining

advantages of PCE with bootstrap re-sampling for the determination

of sensitivity indices of industrial models with a given degree of

confidence. First of all, an efficient computation of sensitivity indices

is obtained thanks to the PCE construction presented in [3]. Then, in

order to evaluate confidence intervals for these estimated sensitivity

indices, bootstrap re-sampling is applied to the design of experi-

ments that is used to build the PCE. New PCE are constructed on each

bootstrap sample, which leads to a collection of sensitivity indices

and, finally, to empirical confidence intervals for every sensitivity

index. Moreover, the iterative procedure introduced in Section 3.2

guides the construction of an adaptive experimental design to reach

an accuracy objective, expressed on the sensitivity indices and not on

the quality of the meta-model. Finally, this leads to an optimized

design of experiments for the determination of sensitivity indices.

Comparisons with classical meta-model error estimators show that,

in some cases, confidence intervals on sensitivity indices are accurate

enough whereas global error estimators on meta-model are bad (for

example, see values of Q2 and R2 in the g-Sobol function compared to

the size of confidence intervals). This reveals the interest of a

sensitivity-indices-oriented methodology.

Nevertheless, this algorithm requires to set up five parameters.

Their influence is discussed along Section 4 and allows to draw

some conclusions:

- The number of bootstrap re-sampling B has to be sufficient to

guarantee the convergence of the empirical confidence inter-

vals. A convergence analysis as a function of B was carried out

and the choice B¼700 appears to be a good one. This analysis

also indicates that it is a conservative way to choose B.
- To create and increase the design of experiments, we use

Monte Carlo sampling and LHS. It seems that LHS do not

improve efficiency of the method.
- The degree p of the full candidate polynomial basis B has to be

chosen in priority according to previous knowledge. If it is not

possible, it seems that an acceptable choice for most elastic

stress analysis problems is p¼3. Anyway, a method to increase

this degree, linked to the size of confidence intervals, is tested

and always leads to correct results in the presented applica-

tions. Note that, if it seems comfortable to choose an a priori

high degree, it may perturb the PCE construction and slow

down the convergence, as shown by the industrial application.
- Confidence intervals are mainly constructed using the percen-

tile method. In the case of the Ishigami function the BCa
method converges faster but this conclusion is not confirmed

by the industrial example. To conclude, in our application area,

it seems that the BCa procedure is not recommended as its

numerical cost is important (compared to percentile method)

and improvement in the convergence is not guaranteed.
- A convergence criterion, based on the size of the confidence

intervals, has to be chosen according to the aim of sensitivity

analysis. As seen in Section 4, one must keep in mind that a low

convergence criterion can lead to an important number of

iterations. A safer way is then to start from a high value, to

observe results and then to restart the algorithm from this new

starting point with a lower convergence criterion if previous

results are not accurate enough.

Finally, let us discuss the numerical cost of the methodology.

The number of evaluations of the numerical model used to build the

PCE (i.e. the size of the final design of experiments) is supposed to

be almost optimized for the aim of the PCE. Nevertheless, using a

LHS design of experiments generally decreases the number of

points needed to build PCE with a given accuracy on a global error

criterion. The fact that our methodology is not sensitive to this LHS

property seems to be due to bootstrap re-sampling. The computa-

tional time devoted to bootstrap re-sampling, is a function of the

number B of samples and the complexity in the construction of the

Fig. 14. Evolution of total sensitivity indices—p¼4.

Fig. 15. Evolution of total sensitivity indices—p¼2, BCa.



PCE (number of input variables, size of the candidate polynomial

bases), as B new PCE are built. In comparison with the solutions

used in [20] and [13], where the polynomial basis does not change

and only coefficients of the expansion are recalculated (least square

minimization), our methodology is more expensive (B basis selec-

tions instead of 1) but it allows to take into account variations in the

polynomial selection process.
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