This is the author's version of a work that was submitted/accepted for publication in the following source:

This file was downloaded from: http://eprints.qut.edu.au/68932/

© Royal Society of Chemistry

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://doi.org/10.1039/c3cp53690d
Hydroxyl radical formation in the gas phase oxidation of distonic 2-methylphenyl radical cations

Abstract
The reactions of distonic 4-(N,N,N-trimethylammonium)-2-methylphenyl and 5-(N,N,N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O2 to form [M + O2]++ and [M + O2 - OH]++ ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N,N,N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5-H shift in the peroxyl radical forming a QOOH-type intermediate that subsequently eliminates •OH to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O2 reaction, thus serving as a plausible source of •OH radicals in combustion environments.

Keywords
phase, methylphenyl, gas, formation, radical, cations, hydroxyl, 2, distonic, oxidation

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

Authors
Matthew Prendergast, Phillip A. Cooper, Benjamin B. Kirk, Gabriel da Silva, Stephen J. Blanksby, and Adam J. Trevitt

This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/1226
Hydroxyl radical formation in the gas phase oxidation of distonic 2-methylphenyl radical cations†

Matthew B. Prendergast, a Phillip A. Cooper, a Benjamin B. Kirk, ab Gabriel da Silva, c Stephen J. Blanksby,*b and Adam J. Trevitt*a,b

The reactions of distonic 4-(N,N,N-trimethylammonium)-2-methylphenyl and 5-(N,N,N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O2 to form [M + O2]** and [M + O2 – OH]** ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N,N,N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5-H shift in the peroxy radical forming a QOOH-type intermediate that subsequently eliminates *OH to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O2 reaction, thus serving as a plausible source of *OH radicals in combustion environments.

1. Introduction

The study of aryl-radical + O2 reactions is fundamental to understanding combustion chemistry due to the prevalence of aromatic hydrocarbons in liquid transportation fuels. Considerable work has been performed on the phenyl radical (C6H5•) and its reactions with O2.1–10 Notably, phenyl oxidation does not follow the ROO → QOOH isomerisation route often encountered when rationalising hydrocarbon radical oxidation;11 instead, more elaborate peroxy radical isomerisation channels are accessed. For substituted phenyl radicals there remains significant uncertainty around the key mechanisms and dominant reaction products in their oxidation.

Toluene (C6H5CH3) is utilised in transportation fuels at high levels because of its high energy density and research octane number12,13 and is also an intermediate in schemes of polycyclic aromatic hydrocarbon (PAH) and soot formation.14 The primary combustion intermediate associated with toluene is generally considered to be the benzyl radical (C6H5CH2•), rather than methylphenyl radical isomers (C6H4CH3•), due to the relatively large difference in C–H bond dissociation energies for methyl (ca. 90 kcal mol–1) and ring (ca. 113 kcal mol–1) hydrogens.15 Despite the difference in bond dissociation energies, abstraction reactions by reactive free radicals are expected to provide significant yields of methylphenyl radicals; for instance at 1000 K the product branching ratio for methylphenyl and benzyl radicals by *OH abstraction reactions is close to 1:3, increasing to 1:2 at 2000 K.16 The toluene C–CH3 bond scission, yielding the phenyl radical, is also significant during thermal decomposition: 20% at 1200 K, and 40% at 1500 K.17 Likewise, decomposition of poly-methyl substituted benzenes, such as ortho-xylene, can produce methylphenyl radicals.18,19 Isomerisation of the methylphenyl radical to benzyl radical is generally competitive under high-temperature combustion conditions, however lifetimes of methylphenyl species near autoignition temperatures (~1000 K) are such as to permit bimolecular reactions with O2.19,20 Despite their plausible contribution in combustion environments, the methylphenyl + O2 reaction has received relatively little attention. One computational study has suggested that the 2-methylphenyl + O2 reaction is substantially different from that of the unsubstituted phenyl radicals, in which formation of 2-quinone methide + *OH is thought to compete (via a process shown in Scheme 1) with phenylperoxyl-type isomerisation.19 Experimental investigation of the methylphenyl + O2 system can further the current understanding of toluene oxidation. However, identification and characterisation of
reaction intermediates and products remain a challenge. Charge-tagged derivatives of the methylphenyl radicals, i.e. the addition of a substituent with a formal charge, can be employed via mass spectrometry to qualitatively assess dominant reaction processes. Here, we provide the first experimental evaluation of 2-methylphenyl + O2 reaction using the distonic radical ion approach.

Distonic ions are radical ions characterised by the spatial and electronic separation of the radical and charge site. The intrinsic reactivity of the radical may be perturbed to some degree by the presence of a near-by charge studies on distonic radical ions undertaken using mass spectrometry nonetheless provide useful information on the reactions of their neutral counterparts. A distonic radical ion approach has previously been employed to probe the fate of peroxyl radical intermediates; including, pyridinium-2-ethylperoxy radical cation, N,N,N′-trimethylpyridinium-4-peroxyl radical cation in addition to 4-(N,N,N′-trimethylammonium)phenylperoxyl, 3-(N,N,N′-trimethylammonium)phenylperoxyl, and 4-ammoniumphenylperoxyl radical cations. In each case, these distonic studies provided insight into the reactivity of the neutral radical analogue.

In this report we investigate the gas-phase synthesis and oxidation of distonic 2-methylphenyl radical cations. Radicals generated in a linear ion-trap mass spectrometer by both photodissociation (PD) and collision-induced dissociation (CICD) of suitable halogenated precursors are compared and the dehalogenated radical cations are characterised by reactions with O2. CID generated radical cations are found to exhibit low reactivity with O2 on the timescale of the experiment (up to 10 s) suggesting that CID results in concomitant isomerisation, forming an unreactive radical ion isomer. In contrast, the PD generated radical cations readily react with O2 to form the peroxyl radical that is followed by a H-atom shift and •OH elimination, consistent with the formation of charge-tagged 2-quinone methide product. This reaction scheme is supported by quantum chemical calculations.

2. Experimental

2.1 Materials

4-Bromo-3-methylaniline (97%), 3-bromo-4-methylaniline (98%), and methyl iodide (99.5%) were purchased from Sigma Aldrich (Milwaukee, USA). 3-Iodo-4-methylaniline (98%) was purchased from Alfa Aesar (Ward Hill, USA). 4-(Dimethylamino)benzyl alcohol was purchased from TCI Chemicals (Tokyo, Japan). Acetonitrile, ethyl acetate, methanol (HPLC grade), petroleum ether and potassium carbonate (anhydrous) were purchased from Ajax (Sydney, Australia). Industrial grade O2 was obtained from Ajax (Sydney, Australia). Industrial grade O2 was obtained instead of 0.250. Mass spectra presented herein are the average of at least 50 scans. In CID experiments, the normalised collision energy applied was typically 20–30 (arbitrary units) with an activation time of 30 ms set within the control software.

2.2.1 Photodissociation (PD). The modifications to the ion-trap mass spectrometer allowing optical access to trapped ions are similar to those previously reported and are described in detail elsewhere. Briefly, a 10 mm aperture was milled into the removable backplate of the vacuum chamber. A 2.75 inch quartz viewport was mounted over the aperture with a CF flange. At the beginning of a MS ion activation step, the mass spectrometer transmits a TTL-signal to a digital delay generator that subsequently triggers a Nd:YAG laser (operating on the 4th harmonic, = 266 nm) such that only a single laser pulse is generated per duty cycle. The = 266 nm laser pulse (ca. 30 mJ cm−2) is transmitted through the quartz window and 2 mm orifice centred on the back lens of the ion-trap assembly allowing for PD of isolated ionic species.

2.2.2 Ion–molecule reactions. O2 is present in background concentrations due to the use of an atmospheric pressure ionisation source. Typically, N2 is used as the nebulising gas within the ionisation source, however, to increase the background O2 concentration, O2 can be used instead. The O2 concentration (molecule cm−3) within the ion trap region was derived by following the 4-(N,N,N′-trimethylammonium)phenyl radical + O2 reaction kinetics, which has a known second-order rate coefficient (k2nd) of 2.8 × 10−11 cm3 molecule−1 s−1.
The O₂ concentration within the ion trap was measured at 2.2 × 10⁶ molecule cm⁻³ for background O₂ with the standard nitrogen nebuliser gas, and 8.6 × 10⁶ molecule cm⁻³ with O₂ used as the nebuliser gas.

The stoichiometric excess of O₂, by many orders of magnitude, established pseudo-first order kinetic behaviour with reactive ions.⁴⁻³⁹ The temperature within the ion trap was previously measured at 307 ± 1 K (ref. 39 and 40) and is used as the effective temperature for ion–molecule reactions herein. This is consistent with recent measurements by Donald et al. of 318 ± 23 K.⁴¹ Reaction times of 0.030–10 s were achieved by setting the activation time parameter with the control software while the normalised collision energy was maintained at 0 (arbitrary units).⁴² Measured pseudo-first order (k₁) and second-order (k₂nd) rate coefficients were extracted from the slope of a semi-logarithmic plot of normalised abundance against reaction time.

Statistical errors in rate measurements were typically 2σ < 5%, where σ is the standard deviation obtained from the least-squares fit to the pseudo-first order decay. Systematic uncertainty in the ion-trap pressure and O₂ concentration, and the formation of neutrals or ions with a m/z less than the low mass cut-off (ca. 50 Th) result in a upper limit of 50% uncertainty in second-order rate coefficients (k₂nd). Reported reaction efficiencies are calculated from the second-order rate coefficient as a percentage of the reactants’ collision frequency derived from average dipole orientation (ADO) theory.⁴³

2.3 Quantum chemical calculations

Electronic structure calculations were performed using both the M06-2X/6-311++G(d,p) density functional theory⁴⁴ and G3SX(MP3) composite method,⁴⁵ in the Gaussian 09 program.⁴⁶ All stationary points were characterised as either minima (no imaginary frequencies) or transition states (one imaginary frequency). All reported energies are at 0 K and include zero-point energy corrections. The selected theoretical methods are capable of reproducing well-defined test set barrier heights to within 1.5 kcal mol⁻¹, on average.⁴⁷

3. Results and discussion

3.1 Synthesis of distonic 2-methylphenyl radical cations

Two synthetic routes for the production of radical cations within the linear ion-trap mass spectrometer were compared: laser photodissociation (PD) and collision-induced dissociation (CID). Methanolic solutions of the precursor iodide salts were infused via positive electrospray ionisation (+ESI) to yield the M⁺ ions at m/z 228 and 230 for the brominated (4Br3Me and 3Br4Me), and m/z 276 for the iodinated (3I4Me and 4I1Me) precursor ions, as listed in Table 1.

<table>
<thead>
<tr>
<th>Precursor ions [M⁺]</th>
<th>Structure</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Bromo-N,N,N,3-tetramethylbenzenaminium cation (m/z 228 and 230)</td>
<td></td>
<td>4Br3Me</td>
</tr>
<tr>
<td>3-Bromo-N,N,N,4-tetramethylbenzenaminium cation (m/z 228 and 230)</td>
<td></td>
<td>3Br4Me</td>
</tr>
<tr>
<td>3-Iodo-N,N,N,4-tetramethylbenzenaminium cation (m/z 276)</td>
<td></td>
<td>3I4Me</td>
</tr>
<tr>
<td>4-(Iodomethyl)-N,N,N-trimethylbenzenaminium cation (m/z 276)</td>
<td></td>
<td>4I1Me</td>
</tr>
</tbody>
</table>

The dominant product observed after CID of 4Br3Me, 3Br4Me, and 3I4Me was the [M – 15]⁺⁺ ion at m/z 213 and 215 for the brominated species (both Br isotopes), and m/z 261 for 3I4Me. These odd-electron processes are consistent with *CH₃ loss from the trimethylammonium charge tag of the respective M⁺ ions. Minor ion signal at m/z 149 is assigned to ejection of the halogen. In contrast, CID of 4I1Me resulted predominately in the m/z 149 and 134 ions, assigned as loss of I⁺ followed by elimination of a methyl radical from the charge tag, respectively.

Activation of 4Br3Me, 3Br4Me, 3I4Me, and 4I1Me ions by both PD and CID resulted in formation of m/z 149 ions with varying efficiencies. PD of the 4Br3Me, 3Br4Me, and 3I4Me halogenated precursors resulted in significantly higher abundances of the putative distonic radical ion (ca. 25–45%) than CID (ca. <2%). In contrast, CID of the 4I1Me ion resulted in a notably higher abundance of the m/z 149 ion (ca. 90%) than that observed for the PD route (ca. 10%). In each case, the m/z 149 ion population was isolable and probed by reactions with O₂.

3.2 Charge-tagged 2-methylphenyl + O₂

The m/z 149 ions generated by PD and CID of 4Br3Me, 3Br4Me, 3I4Me and 4I1Me were isolated and allowed to react with background O₂ over time periods of 0.030–10 s. Mass spectra measured with a reaction time of 2 s are provided in Fig. 1. Second-order rate coefficients (k₂nd) were derived and are discussed below in Section 3.2.1. Isolation of m/z 149 ions, generated by PD of 4Br3Me, 3Br4Me, and 3I4Me, in the presence of background O₂ resulted in a small [M + 32]⁺⁺ product ion signal at m/z 181, consistent with the formation of a peroxyl radical.
The dominant product observed was the [M + 15]⁺ ion at m/z 164 rationalised by O₂ addition and subsequent *OH elimination, as depicted in Scheme 2. This is consistent with the *OH elimination mechanism proposed in the theoretical study of the analogous neutral 2-methylphenyl radical + O₂ reaction by da Silva et al. 14 (Scheme 1). CID of m/z 164 ions [ESI, † Fig. S2] gives rise to m/z 149, presumably the result of CH₃ (15 Da) loss from the trimethylammonium charge tag. There is also a product ion consistent with CO (28 Da) loss at m/z 136, and another at m/z 121 consistent with both loss of CH₃ and CO. The primary fragmentation pathway for the neutral 2-quinone methide is loss of CO. 48, 49 A more detailed mechanism and energy schematic, including the formation of m/z 164, will be outlined below. The reactions of m/z 149 ions with O₂, after PD of 4IMe, yielded only traces of oxidation products likely the result of contamination by isomeric distonic radical cations as the majority of the m/z 149 species is likely to be the resonance stabilised benzyl radical.

Prolonged isolation (up to 10 s) of m/z 149 ions generated by CID of 4Br3Me, 3Br4Me, and 4IMe under the same experimental conditions [Fig. 1(b), (d) and (h)] did not result in observable [M + O₂]⁺ or [M + O₂ - OH]⁺ product ions, while isolation of m/z 149 ions from CID of 314Me resulted in only low intensity signals at corresponding m/z ratios [Fig. 1(e) with ×5 magnification compared to Fig. 1(f) with ×50]. The low abundance, or even absence, of the respective [M + O₂]⁺ and [M + O₂ - OH]⁺ ions, when compared with analogous PD experiments, suggests that the m/z 149 ions resulting from CID of 4Br3Me and 3Br4Me are less reactive isomeric species born from CID-induced rearrangement. The isomerisation of phenyl-type radical cations upon CID of halogenated precursors has been previously noted. 50, 51 Herein, PD was used for all subsequent experiments.

3.2.1 Reaction kinetics. The reactions of PD generated m/z 149 ions with O₂ were further characterised by second-order rate coefficients (k_{2nd}, cm³ molecule⁻¹ s⁻¹) and reaction efficiencies (Φ), reported in Table 2, derived from measured pseudo-first order rate coefficients at background O₂ ([O₂] = 2.23 × 10⁹ molecule cm⁻³) and increased O₂ concentrations ([O₂] = 8.53 × 10⁹ molecule cm⁻³). The O₂ collision frequency calculated with average dipole orientation (ADO) theory ⁴³ is 5.7 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ for all species of m/z 149. Pseudo-first order kinetic behaviour, as shown by a linear semi-logarithmic plot (Fig. 2), is observed for m/z 149 ions generated by PD of 4Br3Me, 3Br4Me and 314Me, implying that each of these radical ion populations consist of only a single species. ⁵₀, ⁵₁ The general agreement between k_{2nd} values for radical ions generated by PD

Table 2

<table>
<thead>
<tr>
<th>Precursor ions</th>
<th>Distonic radicals</th>
<th>[O₂] (molecule cm⁻³)</th>
<th>k_{2nd} (cm³ molecule⁻¹ s⁻¹)</th>
<th>Φ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Br3Me</td>
<td>4-[N,N,N-Trimethylammonium]-2-methylphenyl</td>
<td>2.23 × 10⁹</td>
<td>2.4 × 10⁻¹¹</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.53 × 10⁹</td>
<td>2.1 × 10⁻¹¹</td>
<td>3.7</td>
</tr>
<tr>
<td>3Br4Me</td>
<td>5-[N,N,N-Trimethylammonium]-2-methylphenyl</td>
<td>2.23 × 10⁹</td>
<td>2.9 × 10⁻¹¹</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.53 × 10⁹</td>
<td>2.6 × 10⁻¹¹</td>
<td>4.5</td>
</tr>
<tr>
<td>314Me</td>
<td>5-[N,N,N-Trimethylammonium]-2-methylphenyl</td>
<td>2.23 × 10⁹</td>
<td>2.8 × 10⁻¹¹</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.53 × 10⁹</td>
<td>2.6 × 10⁻¹¹</td>
<td>4.6</td>
</tr>
<tr>
<td>4IMe</td>
<td>4-[N,N,N-Trimethylammonium]-benzyl</td>
<td>2.23 × 10⁹</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.53 × 10⁹</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

This journal is © the Owner Societies 2013
of 3Br4Me and 3I4Me suggests the identity of the radical formed by λ = 266 nm photolysis is unaffected by the halogen substituent on the radical precursor. Rate coefficients for m/z 149 from PD of 3Br4Me and 4Br3Me reveal a slight, but reproducible, difference in reaction rate where the radical is at the 3- over the 4-position relative to the charge-tag, i.e., k3Br4Me > k4Br3Me. This effect could be due to small differences in the electrophilicity of the two positive distonic radical ions24,52 but overall the reaction efficiencies are very similar to each other and to previous measurements for phenyl-type radicals. For example, the measured reaction efficiencies in Table 2 are similar to those reported by Kirk et al.31 for positively charge-tagged distonic phenyl radicals (about 5%), suggesting, intriguingly, that the methyl substituent, although presenting a new reaction pathway, does not drastically alter the overall reaction efficiency. More discussion on the reaction pathway is provided below.

The m/z 149 species generated by PD of 4IMe, expected to provide a benzylic radical ion for comparison, was unreactive on the timescale of these experiments (0.030–10 s). The addition of O2 to the neutral benzy1 radical is reported to produce a benzy1-peroxyl radical with a reaction exothermicity of 22 kcal mol−1; however, reformation of benzy1 + O2 reactants dominates at low temperatures.53 In the analogous charge-tagged benzy1 radical + O2 reaction, it is expected that upon O2 addition the vibrationally excited charge-tagged benzy1-peroxyl radical will dissociate to regenerate the charge-tagged benzy1 + O2 before being collisionally deactivated in the ion trap or undergoing further unimolecular reaction.

3.2.2 Reaction mechanism. Fig. 3 depicts a potential energy diagram for the addition of O2 to the 5-(N,N,N-trimethylammonium)-2-methylphenyl radical cation (generated by PD of 3Br4Me or 3I4Me). This scheme essentially reproduces the reaction mechanism identified in the analogous neutral system.18 Energies were calculated using the M06-2X/6-311++G(d,p) (black) and G3SX(MP3) (blue) methods, reported in kcal mol−1 relative to the peroxyl radical intermediate. The ensuing discussion will refer to the G3SX(MP3) energies.

The addition of O2 to the charge-tagged 2-methylphenyl radical (I) proceeds without a barrier and results in a charge-tagged methylphenylperoxyl species (II) with 46.4 kcal mol−1 activation. Fig. 3 depicts four low-energy unimolecular reaction pathways available to the charge-tagged 2-methylphenylperoxyl radical. First, the reverse reaction reforms the distonic 2-methylphenyl radical + O2 (I); second, formation of a phenoxy radical + O(3P) (III); third, isomerisation to methyl-oxepinoxyl species (V and VI); and fourth, the generation of charge-tagged 2-quinone methide + *OH (VIII). In the context of
forming new product species, the latter three pathways will be discussed further below.

Formation of 5-(N,N,N-trimethylammonium)-2-methylphenoxyl + O2 (III) occurs via cleavage of the peroxyl RO-O bond. Delocalisation of the unpaired electron is evidenced by a predicted contraction of the C-O bond from 1.392 Å in the peroxyl to 1.235 Å in the phenoxyl, closer to that expected for a CO double bond. The barrier for this process is calculated at 38.8 kcal mol\(^{-1}\) compared with 46.4 kcal mol\(^{-1}\) for the reactants. The O2 loss mechanism would result in a m/z 165 ion corresponding to the 16 Da mass loss. Subsequent CO loss from this phenoxyl radical\(^{14}\) would result in an [M + O2 - O - CO]+ ion at m/z 137. Neither O atom nor CO loss product ions were observed within the detection limits of the experiment pointing to a lack of competitiveness for this pathway. Other accessible pathways outcompete the O2 loss channel as shown by the dominance of alternate product channels in Fig. 1.

The third pathway from II proceeds by ipso addition of the peroxyl radical oxygen to the aromatic ring (TS II → IV, 25.4 kcal mol\(^{-1}\)) resulting in the dioxiranyl intermediate (IV). The sequential transition states, TS1 (37.5 kcal mol\(^{-1}\)) and TS2 (30.7 kcal mol\(^{-1}\)), succeeding the dioxiranyl intermediate, represent a bifurcation\(^{26}\) of the potential energy surface. Following the intrinsic reaction coordinate (IRC) from TS1, reactive species encounter a valley-ridge inflection (VRI) near which the single reaction pathway becomes two. Past the VRI, along the developing ridge, the second transition state (TS2) is located, which connects the charge-tagged 3-methyloxepinoxyl (V) and 7-methyl-oxepinoxyl (VI) species (confirmed by calculation of the IRC for TS2). Ring-opening of the dioxiranyl moiety (TS1), i.e., cleavage of the dioxiranyl O=O bond, has a barrier that is 8.9 kcal mol\(^{-1}\) less than the chemical activation of the system. At these temperatures (ca. 307 K), we do not expect any significant reaction flux through TS1 due to its high energy (37.5 kcal mol\(^{-1}\)), thus these pathways were not extended beyond the methyloxepinoxyl radicals (V and VI). Guided by Kirk et al.,\(^{23}\) it is likely the end-product species could comprise five-membered ring products, such as a charge-tagged methyl-substituted cyclopentadienone species but no such channels were detected in our charge-tagged experiments. This implicates the presence of lower-energy reaction pathways not available to the charge-tagged phenyloxepoxyl radical systems investigated by Kirk et al.

The final pathway considered here leads to charge-tagged 2-quinone methide via H-migration followed by •OH elimination. The 1,5-H shift via TS II → VII proceeds with a 27.2 kcal mol\(^{-1}\) barrier (19.1 kcal mol\(^{-1}\) below the reactants’ energy) and results in a hydroperoxybenzyl radical species (VII), reminiscent of a QOOH combustion intermediate. The formation of this radical is facilitated by close proximity of the labile benzylic methyl hydrogen to the peroxyl group.\(^{18}\) The forward reaction barrier of 9.4 kcal mol\(^{-1}\) for TS VII → VIII is considerably less than that for the reverse reaction (22.7 kcal mol\(^{-1}\)). Thus, H atom migration and •OH elimination is energetically competitive and results in the formation of charge-tagged 2-quinone methide (VIII), consistent with the [M + O2 – OH]+ ion detected at m/z 164, shown in Fig. 1 (left panel).

The G3SX(MP3) and M06-2X methods both predict, based purely on reaction barriers, the dominance of the charge-tagged 2-quinone methide + •OH product channel and the numbers are generally in good agreement. The greatest deviations were observed for TS1 and TS2, with a difference of 6.5 and 7.1 kcal mol\(^{-1}\) (Table S2, ESI†). These are perhaps more peculiar stationary points and could warrant future investigation. Nevertheless, both methods are in agreement that the TS1 barrier is likely to be prohibitively high. The scheme depicted in Fig. 3 supports the notion that H-atom migration followed by •OH elimination is the dominant product channel. This is in agreement with experimental data that shows charge-tagged 2-methylphenyl radicals react with O2 to eliminate •OH, forming the [M + 15]+ ion detected at m/z 164 consistent with the charge-tagged 2-quinone methide.

4. Conclusions

The reaction of two distonic radical ions [4-(N,N,N-trimethylammonium)-2-methylphenoxyl and 5-(N,N,N-trimethylammonium)-2-methylphenyl radicals] with O2 were successfully used to explore the 2-methylphenyl + O2 reaction. Subjecting the halogenated precursors 4Br3Me, 3Br4Me and 3H4Me to PD resulted in exclusive formation of the distonic radical ion targets, while CID of the same precursors led to complications due to isomerisation to an unreactive isomeric species. The distonic 2-methylphenyl radical + O2 reaction gave rise to [M + O2]+ and [M + O2 – OH]+ ions from O2 addition followed by •OH elimination as the dominant oxidation product. Second-order rate coefficients for these reactions were measured between 2.1–2.9 × 10\(^{-11}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) representing reaction efficiencies of ca. 5%. Quantum chemical calculations are in accord with our experimental observations, where H migration and •OH elimination, via the QOOH intermediate, is the minimum energy pathway and should thus dominate product formation. The proposed generation of the charge-tagged 2-quinone methide suggests similar processes may occur in the neutral system and therefore serve as a •OH radical source for further radical chemistry in reactive environments.

Acknowledgements

The authors are grateful for the financial support of the Australian Research Council through the Discovery program (SJB: DP0986738; AJT and GdS: DP 130100862; GdS: DP110103889) and Centre of Excellence For Free Radical Chemistry and Biotechnology (CE0561607). The authors also acknowledge the generous allocation of computing resources by the NCI National Facility (Canberra, Australia) under Merit Allocation Scheme.

References

42 Normalized collision energy is a term used by the instrument vendor as explained here: https://static.thermoscientific.com/images/D13507~.pdf. Zero, on this scale, means that no additional resonant excitation is applied.