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The aim of therapeutic dendritic cell (DC) vaccines in cancer immunotherapy is to acti-
vate cytotoxic T cells to recognize and attack the tumor. T cell activation requires the
interaction of the T cell receptor with a cognate major-histocompatibility complex-peptide
complex. Although initiated by antigen engagement, it is the complex balance between
co-stimulatory and co-inhibitory signals on DCs that results inT cell activation or tolerance.
Even when already activated, tumor-specificT cells can be neutralized by the expression of
co-inhibitory molecules on tumor cells. These and other immunosuppressive cues in the
tumor microenvironment are major factors currently hampering the application of DC vac-
cination. In this review, we discuss recent data regarding the essential and complex role
of co-inhibitory molecules in regulating the immune response within the tumor microen-
vironment. In particular, possible therapeutic intervention strategies aimed at reversing or
neutralizing suppressive networks within the tumor microenvironment will be emphasized.
Importantly, blocking co-inhibitory molecule signaling, often referred to as immune check-
point blockade, does not necessarily lead to an effective activation of tumor-specificT cells.
Therefore, combination of checkpoint blockade with other immune potentiating therapeutic
strategies, such as DC vaccination, might serve as a synergistic combination, capable of
reversing effector T cells immunosuppression while at the same time increasing the effi-
cacy ofT cell-mediated immunotherapies.This will ultimately result in long-term anti-tumor
immunity.
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INTRODUCTION
The goal of cancer immunotherapy is to activate, or reactivate, the
immune system in cancer patients for therapeutic benefit. This is
a challenging endeavor, as escape from immunosurveillance is an
essential requirement for tumor progression. Early tumors can be
eliminated or contained by the immune system but, by a process
involving immunoediting, tumor cells can eventually escape this
detection (1). They do so by hiding from immune detection, block-
ing the function of immune cells, and/or by influencing immune
cells to induce tolerance to the tumor and even to produce tumor
growth enhancing factors. Despite this escape from immunosur-
veillance, there is ample evidence indicating that it is possible
to induce specific anti-tumor immune responses either naturally
(spontaneous) or therapeutically. This requires a number of dis-
crete steps. Firstly, dendritic cells (DCs) must take up and present
antigens derived from the tumor, which can be encountered in situ
or delivered to the DCs ex vivo as part of a therapeutic vaccine. This
has to be coupled to an activation or maturation signal to the DC.
Next, these mature tumor antigen presenting DCs migrate toward
the lymphoid organs, where they have to induce antigen-specific
T cell responses that target the tumor (2, 3). Efficient anti-tumor
responses are believed to require CD8+ cytotoxic (killer) T cells,

but recent data indicate that induction of CD4+ T helper cells
also contribute to clinical efficacy (4). Conversely, DCs may also
trigger antibody and natural killer (NK) cell responses, which can
contribute to anti-tumor immunity (5, 6).

Priming of naïve T cells into antigen-specific effector T cells by
DCs requires four signals (Figure 1): (I) engagement of a T cell
receptor (TCR) with a peptide-major-histocompatibility complex
(MHC) on the DC and (II) the right balance between expression
of co-stimulatory molecules that activate T cell proliferation and
co-inhibitory molecules that attenuate T cell activation on both
cell types. (III) A third signal is provided by cytokines secreted
by the DCs, which promote T cell differentiation and polarization
toward specific effector T cell phenotypes. Finally (IV), DCs reg-
ulate the induction of specific chemokine receptors and integrins
on T cells to direct migration toward specific tissues (2, 7–10).

The above-described induction of T cell-mediated anti-tumor
immunity can be exploited therapeutically in several ways, the
two most popular being DC vaccination strategies and adoptive T
cell transfer. These intervention strategies are referred to as cell-
based immunotherapy and both rely on the isolation of autologous
immune cells from a patient followed by ex vivo manipulation and
then re-infusion into the patient. In recent years, much progress
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FIGURE 1 | Dendritic cell vaccination is counteracted by host
immunosuppressive mechanisms. Monocytes or natural occurring dendritic
cells are isolated from the peripheral blood of the patient, loaded with tumor
antigens, and subsequently matured. These activated DCs are re-infused into
the patient and migrate to the lymph node to encounter and interact with
naïve T cells in order to induce the activation of effector T cells. DC-mediated T
cell activation is regulated by four signals: (I) interaction between TCR on T

cells and MHC:peptide complex, (II) co-stimulation via CD28 and CD80/86
expressed on T cells and DCs respectively, (III) secretion of pro-inflammatory
cytokines such as IFNs and IL-12, and (IV) release of DC-processed
metabolites. These activated CD8+ cytotoxic T cells and CD4+ T helper cells
migrate to the tumor site where they are eventually neutralized by the
immunosuppressive nature of the tumor microenvironment due, for instance,
to the expression of co-inhibitory molecules.

has been made in this field: tumor antigens, DCs, and T cells, as
well as adjuvants have been optimized, leading to an increase in
the number of patients with an anti-vaccine immune response.
However, despite these improvements, the clinical responses are
still limited. This is most likely caused by the establishment of an
immunosuppressive tumor microenvironment. As such, to further
improve immunotherapeutic approaches, strategies to neutral-
ize immunosuppression are required. A promising strategy, and
the main subject of this review, involves the manipulation of co-
stimulatory and co-inhibitory molecules to change the balance

within the tumor microenvironment from an immunosuppressive
state into an immunostimulatory state.

We will first discuss the current state of DC vaccination, fol-
lowed by how these therapies could be affected by the immunosup-
pressive tumor microenvironment. Subsequently, we will review
current strategies for reversing the immunosuppressive state of
the tumor microenvironment, which are in clinical or pre-clinical
stage. We will conclude by discussing the merits of combining
DC vaccination with blockade of immune checkpoints in cancer
treatment.
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DENDRITIC CELL VACCINES
Dendritic cells are the most potent antigen presenting cells (APCs)
and provide a key functional link between innate and adoptive
immune responses. In their immature state, they take up and
process antigens in the peripheral blood and tissue, then undergo
maturation and migrate to lymphoid organs where they present
the antigens to naïve T cells (11). These mature DCs, now express-
ing high levels of cell surface MHC class I and II molecules, can
activate both naïve CD8+ cytotoxic T cells and naïve CD4+ T
helper cells (12–14) in a process dependent on the upregulation
of co-stimulatory molecules such as CD40, CD80, CD86, and
OX40L on the APC surface (7, 15). These molecules interact with
corresponding ligands expressed on T cells (Figure 1), with the
interaction between CD86 on DCs and CD28 on T cells being the
most significant to trigger T cell activation and expansion (16, 17).
Conversely, T cells and DCs also express co-inhibitory molecules,
such as the receptors programed cell death-1 (PD-1) and the cyto-
toxic T lymphocyte-associated antigen-4 (CTLA-4) expressed on
T cells and the ligands PD-ligand 1 (PD-L1) and PD-ligand 2 (PD-
L2) present on DCs. The interaction between these co-inhibitory
molecules can inhibit T cell priming and activation and the deli-
cate balance between co-stimulation and co-inhibition determines
the fate of a T cell response. The expression and regulation of
these proteins on DCs and T cells have been recently reviewed (2).
During the process of co-stimulation, DCs secrete cytokines that
regulate the differentiation of naïve T cells into different subsets
of effector T cells, in particular CD4+ T helper cells. This process
results in the differentiation toward a Th1, Th2, Th9, Th17, or reg-
ulatory T cell (Treg) phenotype (18). Lastly, environmental cues
from the DCs, such as DC-processed metabolites, provide T cells
with a signal to home, and migrate to certain tissues (19).

Therapeutic DC vaccination strategies against cancer aim to
exploit the ability of DCs to prime antigen-specific T cells, in
order to induce a T cell-mediated, specific, immune response that
targets and destroys the tumor. DCs, for example naturally occur-
ring blood DCs or ex vivo generated monocyte-derived DCs, are
provided with tumor-specific antigens, either by loading them ex
vivo with the tumor peptides and then injecting the cells back into
the patient or by targeting them in vivo (3, 20–22). At first, DC vac-
cination protocols mainly focused on targeting cytotoxic CD8+ T
cells, but it has become clear that CD4+ T cells not only augment
the induction and proliferation of these CD8+ T cells, but also
participate in the elimination of tumor cells and maintenance of
long-term immunity. Thus an efficient vaccine should be able to
induce both CD8+ and CD4+ T cells. Vaccination with MHC class
I/II-loaded DCs has been shown to both increase the frequency of
tumor-specific CD8+ T cells and co-activate CD4+ T cells, thereby
further improving clinical responses (4, 23).

Recently, the first commercial DC vaccine, Sipuleucel-T, was
approved by the FDA for the treatment of prostate cancer. In
a phase III clinical trial, Sipuleucel-T showed an increase of
4.3 months in median survival and 33% reduction in the risk
of death (24). Nevertheless, despite the significant benefit in
median survival, satisfying clinical effects in terms of solid anti-
tumor immune responses were only observed in a minority of
patients, strongly suggesting that further optimization is war-
ranted (25). Other trials also underscore the potential of DC

vaccination in metastatic cancers, especially in melanoma. In this
setting, it was shown that autologous DCs loaded with tumor
antigens are safe and capable of inducing tumor antigen-specific
immune responses in a substantial part of the vaccinated patients
(26). Despite these growing successes, DC vaccination has not yet
proven to be a method superior to other protective immunity
stimulating vaccine strategies (27, 28). Anti-tumor responses are
hampered by the tumor microenvironment which seems to be
very immunosuppressive, especially in patients with a high tumor
load (20, 29).

IMMUNOSUPPRESSIVE TUMOR MICROENVIRONMENT
Although DC vaccination succeeds in activating the immune sys-
tem, resulting in the presence of tumor-specific T cells, the clinical
success of these treatments is still limited. The lack of clini-
cal efficacy can be mostly attributed to an immunosuppressive
tumor microenvironment, which is very successful in attenu-
ating T cell-mediated responses. The tumor microenvironment
consists of tumor cells, fibroblasts, endothelial cells, and infiltrat-
ing immune cells together with extracellular matrix components.
Infiltrating immune cells can be either beneficial or detrimental
depending on the nature of the infiltrating cells. The presence of
tumor-infiltrating lymphocytes (TILs) has been associated with
improved survival of patients with prostate, breast, colorectal,
ovarian cancer, or melanoma (30–33). On the other hand, the
presence of Tregs or myeloid-derived suppressor cells (MDSCs),
which can inhibit anti-tumor immune responses, is associated
with decreased survival (34–36). Furthermore, tumor cells express
a number of proteins on their cell surface capable of inactivating
tumor-specific T cells, as detailed below. Therefore, immunother-
apy strategies aimed at inducing T cell-mediated anti-tumor
immunity need to include an approach to break tolerance to the
tumor.

INHIBITORY CHECKPOINT RECEPTORS AND LIGANDS
T cell functions, both priming and effector, can be attenuated by
inhibitory checkpoint receptors and ligands expressed by T cells
themselves, DCs and other immune cells, or tumor cells. The most
important co-inhibitory checkpoint receptors are CTLA-4 and
PD-1, in combination with the PD-1 ligands, PD-L1 (B7–H1),
and PD-L2 (B7-DC), all belonging to the B7 receptor superfam-
ily. Other B7 family members, such as B7–H3 and B7–H4, and
the unrelated receptors herpes virus entry mediator (HVEM),
inhibitory receptor Ig-like transcript-3 and -4 (ILT3 and 4), T
cell immunoglobulin mucin protein-3 (TIM-3), and lymphocyte
activation gene-3 (LAG-3) are also involved in inhibiting T cell
function (2) (Figure 2).

Cytotoxic T lymphocyte-associated antigen-4
Cytotoxic T lymphocyte-associated antigen-4 is a homolog of the
co-stimulatory molecule CD28 and it is exclusively expressed on
CD4+ and CD8+ T cells after activation. Tregs represent an excep-
tion, as they constitutively express CTLA-4. In contrast, CD28 is
constitutively expressed on all T cell subsets regardless of activa-
tion (37–39). CD28 and CTLA-4 are closely related in structure
and both bind to the ligands CD80 and 86 present on APCs, such
as DCs, macrophages, and B cells (10). Although the expression
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FIGURE 2 | Stimulatory and inhibitory molecules expressed in the
tumor microenvironment targeted for therapeutic intervention.
Schematic visualization of stimulatory and inhibitory receptors expressed
on T cells and on various tumor cells. Specific monoclonal antibodies are in
development that either function as agonists, enhancing T cell activation, or
antagonist, blocking T cell inhibitory molecules. *(ClinicalTrials.gov identifier:
NCT00658892).

of CTLA-4 on the cell surface is low compared to CD28, it has a
higher affinity for the ligands (37, 40). CTLA-4 receptor ligation
leads to inhibition of T cell proliferation, cell cycle progression,
and IL-2 synthesis (41, 42). Its cell surface expression is induced
by CD28 ligation, implying that it serves as an internal check-
point, downregulating CD28 stimulation and thereby attenuating
immune responses (43). Despite its apparent role in attenuating
T cell activation, CTLA-4 seems to be required for effective anti-
tumor immunity, as this molecule also affects T cell polarization.
In vivo studies have shown that CTLA-4-deficiency in mice causes
severe lymphoproliferative disorders, promoting a Th2 phenotype
(44) while a Th1 phenotype is required for efficient anti-tumor
immunity (45, 46).

PD-1/PD-L1 and PD-L2
Another inhibitory member of the B7 receptor family is PD-1.
This receptor is more widely expressed than CTLA-4, being found
on CD4+ and CD8+ T cells (including Treg cells), B cells, mono-
cytes, and at lower levels on NK cells (47, 48). Its major function is
limiting autoimmunity and T cell activity in peripheral tissues in
response to infection (49,50). Tumor cells can exploit these charac-
teristics by inducing expression of PD-1 on tumor-specific T cells,
thus suppressing their effector function and eventually leading to
T cell exhaustion and immune resistance in the tumor microenvi-
ronment (51, 52). Two ligands are known to interact with PD-1:
PD-L1 (53) and PD-L2 (54). PD-L1 is expressed on resting and
activated T cells, B cells, DCs, mast cells, macrophages, endothelial
cells, tumor cells, and other cells within the tumor microenvi-
ronment (55–57). This tumor-associated PD-L1 expression was
reported to increase apoptosis of infiltrating T cell (52, 58). Inter-
estingly, PD-L1 does not only interact with the PD-1 receptor,
but also with CD80 expressed on T cells, inhibiting T cell activa-
tion, and cytokine production (59). PD-L2 has a higher affinity
for PD-1 than PD-L1, and although its expression was thought to
be restricted to APCs, it has been shown to be expressed by nor-
mal and cancer-associated fibroblasts, a specific subset of B cells,
activated T cells and tumor cells (60). PD-L1 expression on tumor
cells is associated with aggressive tumor behavior, poor prognosis,
and elevated risk of death, while for PD-L2 such correlations were
not significant (60, 61).

B7–H3 and B7–H4
Two additional B7 family co-inhibitory ligands are B7–H3 and
B7–H4. The receptors for these molecules have not been identi-
fied yet, but they are expected to be expressed by activated T cells
(62). B7–H3 is constitutively expressed on a wide variety of tissues,
and its expression on leukocytes is dependent on inflammatory
cytokine stimulation (63). In contrast, expression of B7–H4 is
more restricted, being found on T cells, B cells, monocytes, and
DCs after activation (64). Many human cancers express B7–H3 and
B7–H4, which is generally associated with poor prognosis (65, 66).
Furthermore, B7–H3 seems to be upregulated on endothelial cells
of the tumor vasculature and on tumor-associated macrophages
(TAMs) (67).

Other co-inhibitory molecules
Other co-inhibitory receptors, which can be exploited by tumors
to dampen anti-tumor immune responses, are HVEM, ILT3 and
4, TIM-3, and LAG-3. HVEM is expressed by immature DCs
and interacts with its ligands “B and T lymphocyte attenuator”
(BTLA), LIGHT, and CD160, all expressed on T cells (68). HVEM
interaction with BTLA inhibits T cell responses, promotes T cell
survival, and mediates Treg suppression (2). BTLA and CD160
compete for the same cysteine rich domain of HVEM with a
similar affinity, but a different dissociation rate, suggesting a dom-
inant inhibitory role for CD160 (69). It seems that HVEM ligation
of BTLA inhibits immune responses against tumor cells, while
LIGHT exerts pleiotropic effects to increase this response (70).

Ig-like transcript-3 and -4 are inhibitory receptors both
expressed by monocytes, macrophages, and DCs (71, 72). The
corresponding ILT3 ligand is not yet known, but since ILT3 can
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directly suppress T lymphocyte function, it is likely to be expressed
on T cells (73, 74). In several cancers, ILT3 has been found to medi-
ate the immune escape mechanism by impairing T cell responses
(75). Furthermore, ILT4-expressing DCs block efficient CTL dif-
ferentiation, a mechanism that is used by tumors, which upregulate
ILT4 to evade the immune system (76).

T cell immunoglobulin mucin protein-3 is a checkpoint recep-
tor expressed by IFN-γ-secreting CD4+ T helper and CD8+ cyto-
toxic T cells. When interacting with its ligand, galectin-9, it triggers
cell death and terminates immune responses driven by these T
cells. The most important role of TIM-3 in anti-tumor immunity
involves T cell exhaustion and stimulation of MDSC-mediated
suppression of T cell responses (77).

Lymphocyte activation gene-3, a CD4 homolog, is an
activation-induced cell surface molecule that binds with high
affinity to MHC class II on APCs. LAG-3 is expressed by T cells,
NK cells, B cells, and plasmacytoid DCs. By binding to its ligand,
it inhibits T cell expansion and controls the size of the mem-
ory T cell pool (78). When upregulated on Tregs, LAG-3 can
modulate suppressive Treg function (79). Furthermore, LAG-3
plays important role in both the homeostatic maintenance and
activation-induced expansion of DCs (80). Co-expression of LAG-
3 and PD-1 on tumor-infiltrating CD8+ T cells, induced by either
tumor-derived APCs or cytokines secreted in the tumor microen-
vironment, contribute to the establishment, and maintenance of
an immunosuppressive tumor microenvironment (81).

Taken together, these data show that tumors have evolved
intriguing mechanisms to exploit the balance between co-
stimulation and co-inhibition by skewing this toward co-
inhibition and thus dampening anti-tumor immune responses.
In fact, this has become a crucial aspect of immunosuppression in
the tumor microenvironment, effective against both natural and
induced anti-tumor immunity.

CLINICAL INTERVENTION
Strategies to break or neutralize the aforementioned inhibitory
mechanisms present in the tumor microenvironment are currently
being developed. This can be accomplished by either decreas-
ing activity of suppressive molecules or by increasing activity of
stimulatory molecules. Monoclonal antibodies are being produced
that bind to co-stimulatory/co-inhibitory receptors and their lig-
ands, and thereby either antagonizing those that suppress immune
responses or activating others that amplify immune responses. A
number of these are now being tested in the clinic (Figure 2).

TARGETING CO-STIMULATOR MOLECULES WITH AGONISTIC
ANTIBODIES
As the effector T cells in the tumor microenvironment seem to be
immunosuppressed, a logical step would be to develop antibodies
that can (re)activate T cell responses in the microenvironment.
In this setting, the most attractive target seems to be the co-
stimulatory molecule CD28. Agonistic antibodies targeting CD28
were developed and entered clinical testing. However, a trial in
which an agonist anti-CD28 monoclonal antibody (TGN1412)
was tested has since become a cautionary tale to the power of
the immune system. This antibody led to an unexpected release
of cytokines (cytokine storm) in the volunteers, causing severe

toxicities (82). This incident highlighted the potential dangers of
agonistic antibodies and severely decreased the interest in further
developing these strategies for many years. Recently, this interest
has been re-kindled and a number of agonistic antibodies are being
explored. In particular, members of the tumor necrosis factor
receptor (TNF-R) family have emerged as targets for enhanc-
ing tumor-specific responses. This includes CD27, GITR, 4-1BB,
CD30, and OX-40, which are expressed on tumor-specific T cells,
and antibodies targeting these molecules are under investigation
in several (pre)clinical studies (83). Among these, only anti-4-1BB,
and anti-CD30 antibodies had success in clinical trials as mono-
therapies. A phase II study with anti-4-1BB treatment showed
promising results, but was eventually terminated due to, unex-
pectedly high, grade 4 hepatitis (84). A recent phase III study of
anti-CD30, brentuximab vedotin, as treatment of relapsed patients
with Hodgkin lymphoma resulted in a 71% objective response rate
(85). CD40, another TNF-R family member, which is expressed
on APCs, muscle cells, fibroblasts, and basophils is also being
explored as a potential target for immunotherapy (86). Several
phase II trials for the treatment of myeloma and diffuse large
cell lymphoma are currently testing the efficacy of the humanized
anti-CD40 antibody dacetuzumab (10). Also, a new, fully human,
anti-CD40 monoclonal antibody was evaluated in a phase I trial
and considered safe for further clinical development (87). So, the
development of agonistic antibodies is in progress, but the ques-
tion remains if such indiscriminate activation of T cells will lead
to efficient anti-tumor immune responses, or whether the risk of
severe adverse effects or autoimmune activation will prove to be
too high.

TARGETING CO-INHIBITORY MOLECULES WITH ANTAGONISTIC
ANTIBODIES (BLOCKADE OF IMMUNE CHECKPOINTS)
CTLA-4 blockade
Just like agonistic antibodies might lead to non-specific activation
of the immune system and cause more harm than good, so too was
blockade of CTLA-4 questioned initially (Figure 3). Most CTLA-
4 expressing T cells are not tumor-specific and ctla-4 KO mice
exhibited a lethal autoimmune and hyperimmune phenotype, pre-
dicting immune toxicity in human CTLA-4 blockade (88, 89).
However, when CTLA was only partially blocked with antibodies,
severe toxicity was prevented and significant anti-tumor responses
were observed in mice (90). These pre-clinical results led to the
development of two, fully human, anti-CTLA-4 monoclonal anti-
bodies for the treatment of several cancers, including melanoma
and renal cell carcinoma (10): ipilimumab, an IgG1 antibody with
plasma half-life of 12–14 days (Bristol–Myers Squibb) and treme-
limumab, an IgG2 antibody with a plasma half-life of 22 days
(Pfizer).

Ipilimumab was tested in a phase II trial but failed to reach its
endpoint of tumor regression. Regardless, it was still tested in a
large phase III trial and became the first drug to demonstrate sur-
vival benefit in patients with advanced melanoma in a randomized
trial. Metastatic melanoma patients were treated with ipilimumab,
with or without a glycoprotein 100 (gp100) peptide vaccine, or
with gp100 alone (91). Patients treated with ipilimumab, with or
without gp100, had a 3.5-month survival benefit compared to the
group treated with gp100 alone (91). In a second randomized
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FIGURE 3 | CytotoxicT lymphocyte-associated antigen-4 blockade
restoresT cell activation. After recognition of MHC:peptide complex by the
TCR, the second signal for T cell activation is provided by binding of CD80 or
86 to CD28 on the T cells. This interaction leads to cell surface expression of
CTLA-4, which has a higher affinity for CD80/86, thus interrupting the

activation signal. Additionally, the signal delivered via CTLA-4 down-regulates
T cell function and inhibits excessive expansion of activated T cells.
Anti-CTLA-4 monoclonal antibodies bind to CTLA-4, and block the interaction
with CD28, which is again free to interact with CD80/86, prolonging T cell
activation and amplifying T cell-mediated immunity against tumors.

trial, the combination of ipilimumab with standard dacarbazine
treatment showed an increase in overall survival of 2.1 months
compared to dacarbazine alone (11.2 vs. 9.1 months). Addition-
ally, there was an increase in patients with at least 3 years survival
(20.8 vs. 12.2%) (92). In contrast, tremelimumab did not show
any significant improvement in survival of patients with metasta-
tic melanoma when tested in a phase III trial in comparison with
standard chemotherapy. As a result the development program was
abruptly terminated (93).

Although showing promising results, the use of CTLA-4 block-
ade still presents many challenges for the clinic. There is a signif-
icant rate of adverse reaction caused by the treatment, with up
to one third of the patients experiencing immune-related seri-
ous adverse effects (irSAEs) up to grade 3 or 4, ranging from
dermatitis to severe chronic colitis or acute hepatitis (94–96). Fur-
thermore, the efficacy of CTLA-4 blockade as a single treatment
seems to be limited to intrinsically immunogenic tumors such as
melanoma (97, 98).

PD-1 pathway blockade
In contrast to CTLA-4 blockade, PD-1 blockade was expected
to be less toxic, based on the different phenotype associated to
PD-1 knockout mice. Whereas ctla-4 KO mice died from a lethal
lymphoproliferative disorder at a very young age, some colonies
of pd-1 KO mice lived over a year before expressing lupus-like
symptoms (49, 88).

The first fully human anti-PD-1 IgG4 antibody, nivolumab
(MDX1106) was tested in a phase I clinical trial. The trial was
conducted on patients with different solid tumors and showed

promising results, as it was relatively well tolerated (14% grade 3–4
irSAE) and showed anti-tumor activity (99). Long-term follow-up
on three patients that participated in the phase I trial (melanoma,
renal cell carcinoma, and colorectal cancer) showed the presence
of memory T cells that mediated a persistent anti-tumor immune
response in the absence of continued therapy, indicating long-
term clinical benefit of PD-1 blockade (100). A subsequent, dose-
escalating, phase I trial, conducted in melanoma patients, also
showed that nivolumab was well tolerated. Immune-related toxic-
ities were mild, less frequent (21% grade 3–4 irSAE), and less severe
than those observed with ipilimumab (101–103). This antibody is
now being tested as first-line treatment in a phase III trial com-
pared to dacarbazine for treatment of metastatic melanoma (Clini-
calTrials.gov identifier: NCT01721772). Two other anti-PD-1 anti-
bodies were tested in clinical trials: lambrolizumab (MK3475)
and pidilizumab (CT-011). Lambrolizumab was shown to have
a response rate of 38% in patients with melanoma, and induced a
durable progression-free survival rate of longer than 7 months and
low grade toxic effects (104). Pidilizumab was tested in hematopoi-
etic malignancies, where anti-tumor activity was observed in one
patient with follicular lymphoma and one with acute myelogenous
leukemia (105). These results seem to indicate that PD-1 blockade,
like CTLA-4 blockade, can overcome immunosuppressive mech-
anisms present in the tumor microenvironment and reactivate
pre-existing tumor-specific T cells.

The ligands of PD-1, PD-L1, and PD-L2, which are expressed
on both tumor and normal cells within the tumor microenviron-
ment (55–57, 60), are also interesting targets for immunotherapy
(Figure 4). A recent clinical trial of the anti-PD-L1 antibody,
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FIGURE 4 | Programed cell death-1 pathway blockade promotes
tumor-specificT cell activation and elimination of tumor cells. The PD-1
pathway operates on two different levels, regulating both T cell activation by
DCs and the effector function of antigen-specific T cells. PD-1 pathway
blockade by monoclonal antibodies directed against PD-1, or its ligands,
promotes T cell activation by shifting the balance of signals delivered by the

DC from suppressive to activating. In the tumor microenvironment,
tumor-specific T cells recognize tumor cells but are subsequently inactivated
by the expression of PD-L1 or PD-L2 on the tumor cell, inducing tolerance and
anergy. When rescued, by blocking the PD-1 pathway, T cells recognize
antigen in the periphery and, in the absence of PD-1 engagement, they
assume full effector function and eliminate tumor cells.

BMS-936559, showed durable tumor regression and prolonged
stabilization of the disease, with only 9% of patients experi-
encing grade 3 or 4 irSAE (106). PD-L2 blockade is currently
being evaluated in a clinical trial but results are not yet avail-
able (ClinicalTrials.gov identifier: NCT00658892). Nonetheless, it
appears that targeting PD-L1 and PD-L2 may be a strategy to limit
off-target toxicity, while still combating the immunosuppressive
tumor microenvironment.

B7–H3/H4 blockade
Both B7–H3 and B7–H4 receptors are expressed in tumors of
prostate, non-small-cell lung, pancreatic, gastric, and skin cancer
(107). In a non-small-cell lung cancer study, high B7–H3 or B7–H4
expression correlated with lymph node metastasis (108). In spite of
being expressed on tumor cells, the role of B7–H3 as an inhibitory
molecule is still not clear. Some studies have shown that expression
of B7–H3 on tumor cells or tumor vasculature is associated with
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an increased risk of death (109), while others have shown that B7–
H3 expression is associated with prolonged patient survival and
TIL infiltration (110). In mouse models, B7–H3 overexpression
on tumor cells was shown to favor tumor regression (107). How-
ever, it has also been reported that antagonistic antibodies could
enhance in vitro T cell proliferation (111). Altogether, the uncer-
tainty on the exact function of B7–H3 makes its implication in
cancer therapy rather difficult. Notwithstanding, a B7–H3 target-
ing antibody has been developed, which mediates potent cellular
toxicity against a broad range of tumor cell types, and is currently
being tested in a clinical trial (112). B7–H4 seems to have a clearer
role in inhibiting T cell functions (113), and in vitro models have
shown that antibody-mediated blockade of B7–H4 could restore
anti-tumor T cell responses, making it an interesting target for
clinical application (114).

Blockade of other immune checkpoints
Up till now, clinical intervention strategies have focused pri-
marily on the B7 family, as highlighted above; other immune
checkpoint pathways are not as well established and therefore
research has been limited to pre-clinical, in vitro studies or mouse
models. Nonetheless, these may prove to be important therapeu-
tic targets in the future. The interaction of HVEM with several
ligands, such as BTLA, CD160, and LIGHT, makes the balance
between co-stimulatory and co-inhibitory signals rather complex.
It also seems that signaling is bidirectional, depending on the
specific combination of interactions. Therefore, immune check-
point blockade in this pathway is not as straightforward as with
other molecules (68, 96). Further delineation of the complex
HVEM/BTLA/CD160/LIGHT pathway is required to elucidate the
possibilities in immune blockade therapies.

The inhibitory receptors ILT3 and 4 also play an important
role in the regulation of the immune response. In patients with
melanoma, and carcinomas of the colon, rectum, and pancreas,
ILT3 was reported to mediate immune escape mechanism, result-
ing in largely unsuccessful immune therapies (75). Soluble ILT3
protein induces differentiation of CD8+ T cell and impairs T cell
responses (75, 115). This could be restored by anti-ILT3 antibody
or depletion of the soluble ILT3 from the serum. Thus, blocking
ILT3 may prove to be an important adjuvant in immunotherapy.
ITL4 upregulation on DCs was reported to cause blockade of cyto-
toxic T cell differentiation (76). Blockade of this receptor would
therefore also be useful to augment DC function and enhance
immune responses to cancer.

On the other hand, blockade of TIM-3 seems more feasi-
ble, as anti-TIM-3 displayed modest prophylactic and therapeutic
activity against a small fraction of sarcomas in a mouse model.
Furthermore, IFN-γ production from CD8+ cells, but not from
CD4+ cells, was shown to be critical for the anti-tumor effect of
the anti-TIM-3 treatment (116). TIM-3 blockade seems to mainly
stimulate anti-tumor responses via NK cell-dependent mecha-
nisms, while blockade of another family member, TIM-4, induces
CD8+ cytotoxic T cells (117).

COMBINATORIAL IMMUNOTHERAPIES
Up till now, immune checkpoint blockade has mostly been devel-
oped as monotherapy with marginal efficacy, but the use of these

immune checkpoint blockades in combinatorial regimens might
improve clinical efficacy. Although these therapies could be com-
bined with the usual suspects, radio- and chemo-therapy, the most
benefit might reside in the combination with other immunother-
apeutic approaches. However, extra care is warranted, as manip-
ulation of the tightly controlled balance of immune activation vs.
inhibition could be dangerous.

COMBING IMMUNE CHECKPOINT BLOCKADES
As CTLA-4 blockade and PD-1 pathway blockade target different
mechanisms of T cell inactivation, there is a rational for expecting
synergy when combining both these immune checkpoint block-
ades. Taking the high prevalence of irSAEs associated with these
treatments when used as monotherapy into account, combining
them is a risky proposition at best. Nevertheless, this combination
treatment (anti-CTLA-4 mAb, ipilimumab and anti-PD-1 mAb,
nivolumab) was tested in a recent, dose-escalating, phase I trial,
and the results were very promising. The highest dose showed a
53% objective response and all patients had at least 80% tumor
shrinkage. As might be expected, immune toxicity was higher than
with monotherapy but this was a small increase compared to the
increase in clinical response (118). Although the patient numbers
in this trial were small, there was clear synergistic effect when com-
bining these two immune checkpoint blockades. This is currently
being confirmed in a phase III trial.

Programed cell death-1 pathway blockade in combination with
other co-inhibitory molecules has also proven to be potentially
useful. Blockade of the HVEM ligand, BTLA, in combination with
PD-1 and TIM-3 blockades enhanced IL-2-producing CD8+ T
cell expansion in an in vitro melanoma model (119). Also, when
anti-PD-1 and anti-TIM-3 antibodies are combined, a significant
decrease of tumor size was found, compared to PD-1 blockade
alone (99). Since LAG-3 and PD-1 are co-expressed on CD4+ and
CD8+ T cells, several combinatorial therapies have been explored.
Frequency and effector function of CD8+ T cells were increased
after LAG-3 and PD-1 blockade in a mouse model of epithelial
ovarian cancer (81). Additionally, another in vivo study, applying a
dual anti-LAG-3/anti-PD-1 antibody therapy showed a markedly
improvement of the overall condition of mice challenged with
tumor, that were resistant to single antibody treatment (120).

COMBINING CTLA-4 BLOCKADE WITH DC VACCINATION
The main problems encountered with anti-CTLA-4 treatment are
the resistance of advanced tumors, due to a strong tumor-induced
T cell tolerance, which may be partially PD-1 pathway mediated,
and a lack of tumor specificity (121). Thus, a novel and potentially
successful strategy would be the combination of DC vaccination
with CTLA-4 blockade. This is supported by several pre-clinical
tumor models, showing that CTLA-4 blockade on its own is not
very potent in triggering a specific anti-tumor response, but when
combined with agents that prime immune responses, such as DC
vaccination, it might become very effective. In a study using a
EL4 lymphoma mouse model, the administration of a single dose
DC vaccination in combination with anti-CTLA-4 monoclonal
antibody resulted in the rejection or retarded tumor growth in
60% of the challenged tumor mice, while either the vaccine or
CTLA-4 blockade were ineffective when administered alone (122).
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The combination of CTLA-4 blockade and vaccination with B16
or SM1 cells, genetically modified to express GM-CSF, showed
enhanced efficacy and tumor regression when administered in
a B16 melanoma model and SM1 mammary carcinoma model,
respectively. In the same experimental set up, monotherapy was
again ineffective (123, 124). Taken together, these data suggest
that CTLA-4 blockade in combination with DC vaccination could
break tolerance to tumor-specific antigens, resulting in tumor
clearance, and long-term host immunity after tumor re-challenge.

COMBINING PD-1 PATHWAY BLOCKADE WITH DC VACCINATION
In parallel with therapies which combine CTLA-4 blockade with
DC vaccination, strategies for interfering with PD-1 pathway to
enhance DC vaccination are being explored in pre-clinical studies.
Administration of poly(I:C), a TLR3 agonist, as a tumor vaccine
adjuvant was shown to selectively upregulate PD-L1 expression on
mouse CD8α+ DCs. Although the CD8α+ DCs were able to pro-
mote cross-priming of CD8+ T cells, there was a lack of expansion
of the primed tumor antigen-specific CD8+ T cells. This resulted
in a failure to establish an anti-tumor immune response, suggest-
ing that TLR3-induced PD-L1 expression on DCs may act as a
negative regulator of CD8+ T cells expansion. Thus, blockade of
PD-L1 on poly(I:C)-activated DCs might improve the anti-tumor
efficacy of DC-based vaccines (125). In fact, in a B16 murine
melanoma model treated with tumor peptide-pulsed DCs, con-
current systemic administration of anti-PD-L1 antibody resulted
in a higher number of melanoma peptide-specific CD8+ T cells.
Surprisingly, in spite of the increased number of tumor-specific T
cells, there was no significant reduction in tumor growth (126).
Additionally, blockade of PD-1/PD-L1 immune checkpoint in a
murine breast cancer model was shown to effectively augment DC
function in the stimulation of tumor-specific T cell mediated cyto-
toxicity, leading to efficient induce anti-tumor immunity (127).
Together, these studies support blocking of the PD-1 pathway as a
means to enhance the efficacy of DC vaccination.

COMBINING CTLA-4 BLOCKADE WITH OTHER CANCER TREATMENTS
Combining CTLA-4 blockade with other immunotherapeutic
approaches or targeted therapies is also proven to be benefi-
cial in several mouse models and has also entered clinical trials.
The combination of the GM-CSF-engineered allogeneic vaccine
GVAX with ipilimumab showed an improved overall survival
of 29.2 months in patients with metastatic castration-resistant
prostate cancer, but also displayed increased toxic effects when
compared to therapy with either agent alone (128). In a recent
phase I trial, ipilimumab was combined with the BRAF inhibitor
vemurafenib in melanoma patients with the V600E BRAF muta-
tion. However, the study was closed due to unforeseen hepatotoxi-
city, again highlighting the need for extreme care when combining
these treatment modalities (129). In a long-term study, patients
with metastatic melanoma treated with ipilimumab and IL-2
showed a 17% complete response rate, which is promising but
still needs to be verified in a randomized trial (130).

DISCUSSION AND FUTURE PERSPECTIVE
Although cancer immunotherapy development is now flourish-
ing and recognized as a novel important treatment modality by

oncologists, it had a rough start, as most immunotherapeutic
agents were not effective in early trials (131). Over the years,
the field of immunotherapy has evolved and matured. Growing
knowledge about the immunosuppressive tumor microenviron-
ment has provided some new promising checkpoint targets, as
described above. This has all resulted in FDA-approved treat-
ment modalities such as ipilimumab and Sipuleucel-T. Notably,
the introduction of ipilimumab to the clinic has provided a boost
to cancer immunotherapy, particularly keeping in mind that ipil-
imumab is the first anti-cancer treatment approved that does not
target the tumor but rather targets the immune system. However,
despite having clear therapeutic benefits and showing the possi-
bility of long-term survival, there are still some challenges ahead.
The first problem is the observed spectrum of toxicity or irSAEs,
causing inflammatory and autoimmune reactions. This was to be
expected on the basis of the pre-clinical mouse models, but is
nonetheless a serious problem. In clinical trials, up to 25–30% of
patients treated with ipilimumab suffer from grade 3 to 4 SAEs,
including dermatitis, colitis, and hypophysitis (94). Unfortunately,
there is no correlation between anti-tumor effect and the severity
of these side effects, meaning that the patients experiencing these
irSAE do not necessarily benefit from an anti-tumor effect. In this
regard, blockade of PD-1 or PD-L1 has proven to be a much milder
treatment alternative. In theory, blockade of CTLA-4 seems to be
more effective than PD-1 pathway blockade, as it might lead to the
activation or induction of new tumor-specific T cells, in addition
to (re)activation of pre-existing tumor-specific T cells. However,
both CTLA-4 and PD-1 pathway blockade seem to have similar
clinical efficacy, but PD-1 pathway blockade is reported to have
significantly fewer instances of irSAE.

A second drawback of immune checkpoint blockade is the lack
of specificity. These treatment modalities are designed to “release
the brakes” on the immune system, leading to indiscriminate
immune activation, which is the cause of the irSAEs. This also
means that only patients that already have pre-existing, naturally
induced, tumor-specific T cells, which are being suppressed by
these immune checkpoints, will benefit. Although CTLA-4 block-
ade is thought to be able to activate new tumor-specific T cells,
this has never been proven in humans, and up till now this therapy
seems to be the most effective in immunogenic tumors. Further-
more, a recent study has shown that patients whose tumors had
higher expression of genes involved in immune function before the
start of the treatment responded better to ipilimumab. Further-
more, expression of genes associated with T cell responses were
increased after ipilimumab therapy. These findings support the
concept that ipilimumab may be more efficacious in subjects who
have pre-existing natural, albeit ineffective, anti-tumor immune
responses (97).

Combining non-toxic DC vaccination with immune check-
point blockade might be a good combination, exploiting the
advantage of DC vaccination: the induction of tumor-specific
T cells to compensate for the lack of specificity in checkpoint
blockade. Conversely, this combination might also compensate
for the lack of potency of the DC-induced tumor-specific T cells,
by blocking the expression of inhibitory molecules in the tumor
microenvironment (Figure 5). A recent phase II trial, assessing
safety and dosage, showed that the combination of DC vaccination
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FIGURE 5 | Combining DC vaccination with immune checkpoint
blockade. DC vaccination of cancer patients leads to the induction of
tumor-specific T cells that migrate to the tumor microenvironment. PD-1

pathway blockade synergistically potentiates the effects of DC vaccination by
blocking PD-1/PD-L1 induced immunosuppression leading to enhanced tumor
cell killing.

with dose escalation of the CTLA-4 blocking antibody, treme-
limumab, resulted in objective and durable tumor regressions,
while irSAE were limited to grade 3 (132, 133). This indicates
that this combination regiment in practice does not lead to extra
toxicity compared to CTLA-4 blockade and might be even less
toxic. Although not directly compared, or in combination with
DC vaccination, recent results in clinical trials indicate that PD-
1 pathway blockade are more active and less toxic than CTLA-4
blockade. This might be due to the more tumor-specific mode of
immune activation. Additionally, PD-1 blockade might also pro-
vide the possibility of using biomarkers to select patients that will
respond. In the nivolumab trial, 9 out of 25 patients with PD-L1
expression in the tumor responded to treatment while none of
the 17 patients whose tumor did not express PD-L1 responded.

Additionally, a recent study identified increased PD-1 expression
on tumor-specific CD8+ T cells in melanoma patients, indicat-
ing that the PD-1 pathway is actively contributing to suppressing
immune response in melanoma patients. Together, these results
warrant for a phase I/II trial combining DC vaccination with PD-1
pathway blockade where patients are selected for increased PD-
1 expression on CD8+ T cells or expression of PD-L1 by their
tumor (103, 134).

Finally, it should be mentioned that also other options exist
to combat inhibitory molecule expression within the tumor
microenvironment. Recent studies have indicated that chemother-
apeutic drugs can potentiate the immune system via the so-
designated “off-target effects” (135). For example, platinum-based
chemotherapeutics were shown to downregulate PD-L1 on DCs

Frontiers in Immunology | Tumor Immunity December 2013 | Volume 4 | Article 417 | 10

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vasaturo et al. Improving DC vaccination with checkpoint blockade

while also downregulating PD-L2 on both DCs and tumor cells.
This resulted in enhanced T cell activation and increased tumor cell
recognition (136, 137). Chemotherapy may therefore also poten-
tiate the effect of immunotherapy by improving DC maturation
and function and eliminating suppressive cells (138).

In summary, cell-based immunotherapeutic approaches, such
as DC vaccination, are promising strategies for cancer treatment.
After years of optimization, these therapies are succeeding in
inducing tumor-specific T cells in cancer patients. Unfortunately,
so far this was insufficient to produce clear clinical benefits, albeit
long-lasting responses were seen in a small proportion of the
patients. A major factor hampering these novel therapies is the
immunosuppressive tumor microenvironment. When migrating
to the tumor site, tumor-specific T cells end up in an environment
specialized in suppressing anti-tumor immune responses. Tumor
cells accomplish this in large part by exploiting immune check-
points, designed to dampen immune responses after infection and
prevent autoimmunity. Recent antibody-based immunotherapeu-
tic approaches, specifically designed to block these T cell inhibitory
pathways, facilitate effector T cells to attack the tumor. The main
drawback of checkpoint blockade antibodies is their lack of speci-
ficity, especially since it is not possible to determine in advance if
tumor-specific T cells are present.

In this review, we highlighted the crucial role of the intri-
cate regulatory molecular networks governing T cell activation
and effector function, immune checkpoints, in the context of
anti-tumor immunity and how these mechanisms are hijacked by
tumors in order to suppress immune responses. More importantly,
we discussed the use of immune checkpoint blockades as can-
cer treatment and provided a rationale for combining these with
DC vaccination as a potentially superior alternative to blocking
multiple immune checkpoints. Altogether, our growing knowl-
edge about the immunosuppressive tumor microenvironment,
and especially how it can be manipulated in a therapeutic setting,
has opened up a fantastic opportunity to synergistically combine
checkpoint blockade, especially PD-1 pathway blockade, with DC
vaccination or adoptive T cell transfer. This will result in a powerful
combination regiment leading to tumor clearance and immuno-
logical memory, which can mediate long-lasting tumor regression.
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