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Abstract
There are many benefits of owning a battery electric vehicle, including zero
tailpipe emissions, potential independence from oil, lower fuel costs, and the op-
tion to recharge the battery at home. However, a significant concern about owning
a battery electric vehicle is range anxiety: the fear that the battery will run out of
charge before the driver reaches his or her destination. We address range anxi-
ety by providing a robust optimization framework to give drivers confidence that
they can reach their destinations in a reasonable amount of time with enough
energy in the battery, even when there is uncertainty in travel time and energy
consumption on the roads. The robust optimization appropriately incorporates
uncertainty without significantly increasing the complexity of the problem. This
thesis describes that optimization framework and how to use it on real-world ex-
amples to find appropriate routes, with a central part being the application of
robust optimization to the problem.

We develop an energy model, an optimization-based formulation using ro-
bust optimization, and algorithms to quickly find good routes for battery electric
vehicles. The combination of using robust optimization, the A-Star algorithm to
find shortest paths, and Lagrangian relaxation allows us to solve the problem in
seconds or less. For one example start and destination, our algorithms required
less than 2 seconds for each instance (energy consumption limit). In addition, for
example trips, we compute a Pareto frontier to illustrate the time-energy trade-
off from driving different routes. We use Lagrangian relaxation to provide lower
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bounds and estimates that suggest that our algorithms produce near-optimal so-
lutions. We apply our methodology to example trips in Massachusetts and Michi-
gan to demonstrate its practicality and its potential for real-world use. Future
work could continue to improve the modeling accuracy and include algorithmic
enhancements to further improve running time, especially for larger networks.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations Professor
Co-Director, Operations Research Center

Thesis Supervisor: Thomas Magnanti
Title: Institute Professor
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Chapter 1

Introduction

There are many benefits to owning a battery electric vehicle, including zero

tailpipe emissions, potential independence from oil, lower fuel costs, and the

option to recharge the battery at home. President Barack Obama expressed the

importance of electric vehicles in his State of the Union Address in 2011, “With

more research and incentives, we can break our dependence on oil with biofuels,

and become the first country to have a million electric vehicles on the road by

2015” ([50]).

However, sales of electric vehicles have currently been significantly less than

the one million goal President Obama set for the year 2015. According to the Elec-

tric Drive Transportation Association (EDTA), fewer than 105,000 electric vehicles

have been sold from December 2010 to May 2013 ([15]). The EDTA defines electric

vehicles as plug-in hybrid electric vehicles, range extended electric vehicles, and

battery electric vehicles. A battery electric vehicle is a car that is powered solely by

a battery and does not use gasoline. According to CNBC.com, only 50,000 plug-in
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vehicles have been sold since 2011, and “Supporters of electric cars point out that

many would-be buyers are still dealing with range anxiety, or the feeling that they

are limited to how far they can drive” ([12]). This “range anxiety” is a concern that

must be addressed for battery electric vehicles to become a widely-adopted form

of transportation.

To mitigate range anxiety, we combine principles from engineering and op-

timization techniques to provide a routing solution designed for battery electric

vehicles that solves quickly, which is a requirement for an in-car GPS system. Our

algorithms find fast routes while constraining total energy consumption, and we

account for uncertainty in both time and energy using a robust-optimization ap-

proach. In addition, we illustrate the practicality of these algorithms using real

road network data from the Boston, MA area and a 975,666-arc road network

primarily representing part of Michigan.

We expect there to be uncertainty in both the travel time and energy consump-

tion of a given route. The uncertainty could be due to traffic, weather, an accident,

the behavior of other drivers, complexities of modeling the battery in the vehicle,

and/or other factors. This uncertainty, if not accounted for, could cause a driver

to take a route that would require more energy than is available in the battery, re-

sulting in the driver being unable to reach his or her destination. This is probably

a cause of range anxiety in potential drivers of battery electric vehicles as well.

We incorporate this uncertainty in time and energy using robust optimization.

As the main contribution of this thesis, we provide a practical methodology

to find time and energy efficient routes for battery electric vehicles, with the con-

fidence that the drivers will reach their destinations, even given the uncertainty
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that is on the roads. This includes developing an energy consumption model for a

battery electric vehicle, a robust-optimization-based formulation of the problem,

and algorithms to solve the problem quickly, and gathering the data to apply this

formulation to real-world examples. We feel that our methodology has potential

for real-world use.

First, we describe robust optimization, which is a central technique in this

thesis (Section 1.1). Then, we provide a literature review of what has been done

to solve various routing problems for electric vehicles (Section 1.2) and various

shortest path problems incorporating uncertainty besides using robust optimiza-

tion (Section 1.3).

Our optimization framework has three main components:

• We model the energy consumption of a battery electric vehicle using princi-

ples from engineering, and using analytics to support this model (Chapter

2).

• We use robust optimization to model the optimization problem in a way

that is tractable, when augmented with Lagrangian relaxation (Chapter 3).

• We build upon known algorithms and create additional heuristics to provide

a practical solution methodology (Chapter 4).

We provide examples of applying our methodology on real road networks to

illustrate its effectiveness (Chapter 5). In addition, we provide an extension to

the framework that incorporates traffic signals and traffic conditions, based on

data , and suggest optimization-based formulations that incorporate acceleration
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(the first part of Chapter 6). Finally, we provide suggestions for future work and

conclude (the rest of Chapter 6).

1.1 Robust Optimization
Robust optimization accounts for the fact that parameters in an optimization

problem might change. In the deterministic case, when we solve an optimization

problem, we assume that all of the parameters are fixed. However, Bertsimas et al.

[10] write, “Solutions to optimization problems can exhibit remarkable sensitivity

to perturbations in the parameters of the problem (demonstrated in compelling

fashion in [5]), thus often rendering a computed solution highly infeasible, subop-

timal, or both (in short, potentially worthless).” Robust optimization has become

a very appealing approach to provide solutions that are feasible even if many of

the parameters change (and change significantly). Robust optimization has been

applied in fields as far ranging as finance, statistics, supply chain management,

and engineering. These applications, as well as theoretical developments in robust

optimization, are surveyed in [10].

The general premise of robust optimization is to assume that the parameters

have some uncertainty and that an adversary may select the values of the un-

certain parameters, within certain restrictions. In a robust optimization approach,

an algorithm (or something else) solves the optimization problem and selects a

solution, and then, the adversary sees this solution, and chooses the values of the

uncertain parameters in attempt to make the solution infeasible or as suboptimal

as possible. Perhaps, for example, each of the uncertain parameters are within
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a specific interval. A very conservative methodology would be to assume that

an adversary will set each of the uncertain parameters to the worst-case value.

A more realistic approach is to restrict the adversary to choosing all of the val-

ues of the uncertain parameters to be within some set, called an uncertainty set.

This is the approach taken by robust optimization, and it has been applied to a

wide variety of optimization problems, including linear, quadratic, discrete, and

semidefinite optimization [10].

One benefit of the robust optimization approach is tractability. While there are

other ways to incorporate uncertainty, they typically increase the complexity of

the problem substantially. For example, using random variables to model uncer-

tainty for a shortest path problem increases the complexity from polynomial time

to NP-Hard or #P-Hard (see Section 1.3). On the other hand, robust optimization

is tractable in the sense that many deterministic problems that can be solved in

polynomial time have a robust counterpart that can still be solved in polynomial

time. In addition, the robust counterpart can often be solved quickly in practice.

Bertsimas and Sim [7, 8, 9] provide examples of problems with robust counter-

parts that can be solved in polynomial time and computations to illustrate the

practicality of the robust optimization approach.

Another benefit of robust optimization is the probabilistic guarantees. Suppose

that you would like to model uncertainty as random variables. Even though it

might be hard to solve an optimization problem with random variables, a tractable

approach can be to use robust optimization and then the probabilistic guarantees

from it. Namely, model the problem using robust optimization, solve it, and then

use a bound or result to show that the probability that the solution to the robust
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optimization problem will be feasible is at least some amount. Some probabilistic

guarantees are in Bertsimas and Sim [9] and Bertsimas et al. [10]. While random

variables are not explicitly included in the model, they can be included in the

model by choosing uncertainty sets that have some of the properties of the ran-

dom variables.

Given all of the benefits of robust optimization we feel it is a useful approach

for our problem of finding routes for battery electric vehicles. First, a good so-

lution depends crucially on protecting from uncertainty, due to the requirement

that the vehicle must reach the destination before the battery runs out of charge.

In particular, being stuck on the road due to the battery running out of energy is

a very severe consequence, people would likely be very willing take a more con-

servative route in order to prevent even the possibility such a disaster. Second,

the robust counterpart of the polynomial-time solvable shortest path problem can

be solved in polynomial time (see Bertsimas and Sim [7, 9]). In addition, robust

optimization can be very practical for our problem, as we show later in this thesis.

The details about how we use robust optimization to model our particular prob-

lem is described in Section 3.2, and the algorithms we use to solve it are described

in Chapter 4.

1.2 Electric Vehicles and Related Routing Problems
Touati-Moungla and Jost [46] briefly describe some ways combinatorial optimiza-

tion can contribute to efficient electric vehicle management, and they provide

references to some relevant papers. They discuss the energy shortest path prob-
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lem: find a route that maximizes a vehicle’s state of charge at the destination.

Each edge has a energy consumption/recharge value. The battery cannot have

less than 0 energy at any time, and the battery can recharge to at most its full

state. Artmeier et al. [2], address this problem, giving an O(n3) algorithm and

providing some experimental results based on road network data. Sachenbacher

et al. [39] present an improved algorithm, based on A-star search, that has O(n2)

complexity.

Sweda and Klabjan [42] focus on finding minimum-cost paths for electric ve-

hicles, where the vehicle may stop and recharge the battery at any node (at an

additional cost). They use a dynamic programming approach to solve the prob-

lem over a directed, acyclic network.

Several authors consider vehicle routing problems related to electric vehicles

by incorporating some form of energy consumption into an optimization model.

Worley et al. [51] propose a discrete integer programming formulation for opti-

mally locating vehicle charging stations and routing vehicles, based on the classic

vehicle routing problem framework. Schneider et al. [40] formulate the electric

vehicle routing problem with time windows and recharging stations and propose

a heuristic to solve it that combines a variable neighborhood search algorithm

with tabu search. Mirzaei and Krishnan [32] formulate a location routing prob-

lem and incorporate energy considerations of mass due to the vehicle load and

rolling resistance and solve this formulation on a small example.

MacNeille et al. [30] use a method to estimate energy consumption for bat-

tery electric vehicles using simulation. They also present some qualitative results

describing how energy consumption varies based in different driving conditions,
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such as the road type, vehicle speed, traffic flow rate, and road grade.

Yu et al. [52] provide a method for identifying various driving patterns based

on trip segment clustering, and they apply it to estimate trip energy consumption

on an example.

Gonder [20] and Zhang and Vahidi [53] propose methods to determine the

best utilization strategy for the battery and internal combustion engine when

driving a hybrid electric vehicle to improve fuel economy. Syed et al. [43] pro-

pose an advisory system for a hybrid electric vehicle based on fuzzy logic to

help drivers change their behaviors to achieve greater fuel efficiency for a pre-

determined route.

Quigley [37] suggests some high-level strategies for hybrid vehicle control,

and Tate et al. [44] use a dynamic-programming approach for hybrid-electric ve-

hicle control. In addition, Gong et al. [21] generate Markov chain models from

drive data seeking to understand the relationship between plug-in hybrid electric

vehicle performance and velocity statistical properties.

1.3 Stochastic Shortest Path Problems
While we propose using robust optimization to solve shortest path problems un-

der uncertainty, other researchers have used other methods to incorporate ran-

domness into shortest path problems. We prefer the robust optimization approach

due to its tractability (see Section 1.1). However, we describe various shortest

path problems in which arc weights are random variables: stochastic shortest path

problems.
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The stochastic shortest path problem is to find the shortest path when the

directed graph is given and each arc (i, j) has weight Lij, which is a random

variable. The arc weights might not be independent. In [36], all arc weights are

assumed to come from discrete random variables, each with finitely many values.

As mentioned in [36], there are 3 kinds of the stochastic shortest path prob-

lems:

Shortest Expected Path Problem: In the shortest expected path problem, the trav-

eler has no knowledge about the weights of the network, even while travel-

ing, so the optimal solution is to solve the deterministic shortest path prob-

lem using E[Lij] as the weight of arc (i, j).

Expected Shortest Path Problem: In the expected shortest path problem, the arc

weights are generated randomly and once the instance is generated, the trav-

eler knows what all of the weights of the arcs are. The problem is to deter-

mine the expected shortest-path lengths over all possible instances. Provan

[36] states this problem is NP-hard to do, even when the arcs weights only

take values of 0 or 1, noting that this problem is a network reliability prob-

lem and is surveyed in [4].

Shortest Path With Recourse Problem: In the shortest path with recourse prob-

lem, the traveler knows the weights of the arcs are once he or she is near

them. That is, if the traveler is currently at node v in the graph, he or she

knows the weights of all of the outgoing arcs from v. This problem is to

compute the expected shortest path cost as well as choose a traveling pol-

icy to minimize the traveler’s expected cost of going from the source to the
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destination.

Note: In all cases, the directed graph is already known and is not random.

Provan [36] states that there are two ways shortest path with recourse problems

are differentiated and describes each one:

1. The dependencies of the arc weights:

Arc-Independent Weights: Each arc’s weight is determined independently

of the other arc weights.

Node-Independent Weights: The weights of each of the outgoing arcs from

node i are dependent, but they do not depend on the weights of outgo-

ing arcs from any other node.

Dependent Weights: The weights of the arcs are dependent on some or all

of the other arc weights.

Markov Weights: The arc weights are associated with a Markov process

or Markov chain. Each state is a realization of the weights for all of

the arcs, and each time an arc is traversed, the system moves to a dif-

ferent state. This process can be defined for node-independent or arc-

independent models as well.

2. Whether or not the arc weights change each time the traveler is adjacent to

the arc:

No Reset: The arc weights are fixed once they are seen and do not change

while the graph is being traversed.
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Reset: Each arc weight is redrawn from the corresponding distribution (in-

dependently of its previous value(s)) each time the traveler visits a node

incident to it.

Provan [36] makes several observations:

• The optimal recourse “path” might have cycles (and therefore be a walk),

since repeating arcs can be useful to discover previously unknown weights

on arcs.

• Under the reset assumption, the dependent and node-independent models

regarding the arc weights are identical.

• When the graph is acyclic and weights are arc-independent or node-

independent, the reset and no reset assumptions are basically identical.

Provan [36] also outlines the complexity of various versions of shortest path

with recourse problems:

• Under the no reset assumption, shortest path with recourse with dependent

arc weights is NP-Complete [35]. Provan [36] remarks that the NP-hardness

result applies to node and arc-independent weights.

• When the weights are node-independent and arc-independent for either the

reset or no reset situations, the shortest path with recourse problem over an

acyclic graph can be solved in polynomial time.

• For the no reset situations, the shortest path with recourse problem with

arc-independent weights is #P-hard and can be solved in polynomial space

[35].
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• It is not known whether the node-independent and arc-independent shortest

path with recourse problems under the no reset assumption are in NP or not.

• For situations with dependent weights and no reset, Provan shows that

shortest path with recourse problem is NP-complete for an acyclic graph

with arc weights that are either 0 or 1 (the decision problem is to decide

whether a recourse path with weight 0 exists) [36].

• The shortest path with recourse problem with reset is solvable in polyno-

mial time if cycles are allowed. This is Provan’s main contribution in [36].

However, if we require that the optimal solution is actually a path (without

cycles), then the reduction from [35] shows that shortest path with recourse

under the reset assumption is NP-hard.

• When there are Markov weights, the shortest path with recourse problem

with no reset is NP-hard.

Under the no reset assumption, Polychronopoulos and Tsitsiklis [35] observe

that although the graph is assumed fixed, we can incorporate random arc or node

failures into the model. For example, use a very large arc weight to represent

failure of an arc.

In the proof of Theorem 5 in [35] Polychronopoulos and Tsitsiklis show that

the shortest path with recourse problem with dependent arc weights and the no

reset assumption is at least as hard as the expected shortest path problem.

We can use very large arc weights and the transformation above to model the

expected shortest path problem over a randomly generated graph as a shortest
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path with recourse problem with dependent arc weights and the no attachment

assumption. However, it might be very complicated to calculate the probabilities

that edges are present for the randomly generated graph.

Kulkarni, sometimes with Adlakha, wrote papers, [26, 27, 28, 29], that solve

different network optimization problems over directed graphs when the weights

are independent and exponentially distributed (although the means of the ex-

ponential distributions can vary for each edge). Their work on the shortest path

problem is [26]. The general approach is the following: take advantage of the

memoryless property of exponential distributions and create a continuous time

Markov chain (also known as a Markov process), and then use techniques for

analyzing Markov processes to compute quantities of interest. For example, the

expected length of a shortest path is the expected time until absorption in the

appropriate Markov process. Janson [25] has also used this approach. In addition,

Bailey claims that the extension of the Markov process to phase-type arc weights

is direct ([3]). Ball [4] states that we should see [3] for a unified framework about

this topic.
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Chapter 2

Physics and Data

In this chapter, we propose an energy model, based on standard formulas from

physics and engineering, to use as a base for an optimization framework (Section

2.1). Then, we apply regression to some vehicle drive data, which will show that

our proposed energy model is a reasonable choice (Section 2.2).

2.1 Energy Model: An Engineering-Based Approach
We propose an energy model, E, when traveling over a straight road of length ` at

speed v in a time interval of length ∆t. The standard formulas from physics and

engineering that we use can be found in various sources about electric vehicles,

including Haddoun et al. [22], Husain [24] and Ehsani et al. [14].

The energy model is

E =
v∆t

η

(
1
2

ρCw A f v2 + µmg cos (α) + mg sin (α) + mδ
∆v
∆t

)
+ Pacc∆t, (2.1)
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which consists of accessory loads (Pacc∆t) and the following forces:

• Aerodynamic Drag =
1
2

ρCw A f v2, which is due to the resistance of air when

the vehicle is moving (we assume a headwind velocity of 0).

• Rolling Resistance = µmg cos α, which is resistance where the tires meet the

road surface.

• Climbing/Downgrade Resistance = mg sin α, which is the force required to

go uphill/downhill.

• Acceleration/Deceleration = mδ
∆v
∆t

, which is the force required to change

the speed of the vehicle.

Climbing/Downgrade resistance and acceleration/deceleration can be negative.

The parameters and variables in (2.1) are:

• ρ = air density (kg/m3)

• Cw = coefficient of drag (dimensionless)

• A f = frontal area of the car (m2)

• v = the velocity of the vehicle (m/sec)

• µ = coefficient of friction (dimensionless)

• m = mass of the vehicle (kg)

• g = gravitational constant (m/sec2)

• α = the angle of the road (−π
2 ≤ α ≤ π

2 , in radians)
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• δ = a mass factor (dimensionless). For example, in [49], δ =
4Iw

r2
wm

, where

Iw is the polar moment of inertial of a wheel, and rw is the effective wheel

rolling radius

• ∆t = the change in time (sec)

• ∆v = the change in velocity (m/sec)

• η = an efficiency parameter to account for all complexities of the battery

and various losses when transferring energy from the battery to the wheels

(dimensionless)

• Pacc = the power required to run the the accessory loads, which include

heating or air conditioning, headlights, and the radio (W)

The energy model (2.1) includes some simplifying assumptions, such as loss-

less regenerative braking. Regenerative braking allows an electric vehicle to re-

capture most of the energy that is lost in conventional (gasoline) vehicles when

the brakes are applied. Regenerative braking is very efficient, as specified in a

description on how electric vehicles work, “The Regenerative Braking System in

an all-electric vehicle will be designed to capture over 90 percent of the energy

normally lost and send it back to the battery pack to be stored for later use” ([18]).

2.2 Calibrating the Model Using Regression
We calibrate the energy consumption model using regression, by processing some

vehicle drive data from a particular car into segments and applying linear regres-

sion to estimate the appropriate coefficients.
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We acquired 2 weeks of drive data from a Focus Electric battery electric vehi-

cle driven in California ([17]). The data includes readings every second for energy

consumed, vehicle speed, and GPS coordinates. We combine this information with

elevation data from the US Geological Survey National Elevation Dataset (ob-

tained from the National Map Viewer, http://nationalmap.gov/viewer.html),

which we match to the drive data using the latitude and longitude coordinates

from the GPS readings. In addition, we aggregate data into “segments” where a

vehicle is either accelerating or moving at constant speed.

Recalling the forces used in the engineering-based model, (2.1), we can apply

linear regression to estimate the coefficients β0, β1, β2, β3, and β4, in

E = β0 + β1v3∆t + β2 cos (α)v∆t + β3 sin (α)v∆t + β4
∆v
∆t

v∆t. (2.2)

For 12 hours and 40 minutes of data (4656 segments), we obtained an r-squared

value of 0.92 and the estimates shown in Table 2.1, where all of the coefficients

have statistically significant t-values.

Coefficient Estimate t-Value
β0 11386 8
β1 0.366 20
β2 287 17
β3 13916 107
β4 1955 115

Table 2.1: The estimated values and t-values for the coefficients for the linear

regression, on (2.1), applied to the vehicle drive data.

The high correlation coefficient and statistically significant t-values indicate

http://nationalmap.gov/viewer.html


2.2. Calibrating the Model Using Regression 37

that the energy model provides a good fit for the data. However, the beta coeffi-

cients will depend on the particular vehicle.

Besides using this method to estimate the energy formula coefficients directly,

we can see how well the parameters from a particular vehicle match the model.

One could translate the coefficients in the regression model (2.2) to the vehicle pa-

rameters in the energy model (2.1). This would result in solving 5 equations with

8 unknowns, although some of the solutions might be fairly unrealistic. A better

way to see how well the vehicle parameters match is to apply linear regression to

the energy model

E =

 β0 + β1
1

2η
ρCw A f v3∆t + β2

µmg
η

cos (α)v∆t

+ β3
mg
η

sin (α)v∆t + β4
mδ

η

∆v
∆t

v∆t

 (2.3)

and see how close β1, β2, β3, and β4 each are to 1.0, where we input proprietary

values for Cw, A f , ρ, m, µ, δ, and η into the equation (g is a standard constant).

It is the same energy model as (2.2), and therefore, the quality of the fit from the

regression will be the same. The only things that will change are the values of the

coefficients β1, β2, β3, and β4 (β0 will remain the same).

The 95% confidence interval for the smallest of the estimated values of β1,

β2, β3 and β4 is [0.675, 0.701], and the 95% confidence interval for the largest of

the estimated four values is [1.813, 2.295]. This indicates that the vehicle values

are reasonable, but are not a perfect fit to the model, as the values β1, β2, β3

and β4 are close to 1.0. If the completely accurate and realistic energy model

was exactly equation (2.3), then β1, β2, β3 and β4 would all be 1.0. However, this
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model is a simplification, and therefore we expect there to be some variation in

the coefficients from the regression. The value for β0 would be interpreted as

the estimated energy cost (say in accessory loads) per segment. Since the mean

segment time for the trip in the dataset is 9.8 seconds, this results in an accessory

load (Pacc) of 1162 W, which is a reasonable value.

A regression model with a more clear interpretation of β0 than the model (2.2)

would be to fit energy per unit time, using the same vehicle data:

E
∆t

=

 β0 + β1v3 + β2 cos (α)v

+ β3 sin (α)v + β4
∆v
∆t

v

 . (2.4)

In this case, β0 would be the value of Pacc to use in the problem.

The r-squared value of 0.64 and the negative estimated value of β2 in Table 2.2

indicate that the regression model (2.4) is not as well-suited to the data (the data

was processed to be in segments of varying lengths of time).

Coefficient Estimate t-Value
β0 2020 71
β1 0.0645 25
β2 −116 −43
β3 672 46
β4 137 62

Table 2.2: The estimated values for the coefficients for the linear regression, on

(2.4), applied to the vehicle drive data.
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Chapter 3

Optimization Model

For the optimization model we use the energy function

Eij(vij) =
`ij

η

(
1
2

ρCw A f v2
ij + µmg cos (αij) + mg sin (αij)

)
+ Pacc

(
`ij

vij
+ τij

)
. (3.1)

In equation (3.1), we exclude acceleration from model (2.1) to eliminate the de-

pendence between energy consumption and changes in velocity, since we expect

the total energy consumption from acceleration on a route to be small because

of the high efficiency of regenerative braking. We show, under some simplifying

assumptions, that there is zero net energy consumption due to acceleration over

a path (Theorem 3.1). Besides excluding acceleration, equation (3.1) uses the rela-

tionship between arc length, `ij, and velocity times time in transit, both directly

and through τij, which is an extra cost in time for arc (i, j), to account for stopping

or turns.
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Theorem 3.1 (Ignoring Acceleration Under Some Assumptions). Suppose

that we make the following assumptions regarding acceleration in [0, T]:

• The vehicle starts at velocity 0.

• The vehicle ends at velocity 0.

• At any instant of time, the vehicle can do one of three things:

1. Remain at a constant velocity

2. Increase velocity (accelerate) at a specified rate a > 0

3. Decrease velocity (decelerate) at the rate −a < 0

and the vehicle changes whether it accelerates, decelerates, or remains

at a constant speed a finite number of times (technically, the number of

changes in vehicle acceleration only has to be a set of measure 0).

• Regenerative braking is always 100% effective.

Under these assumptions, for any path and any choice of speeds, the total

energy consumed due to acceleration is 0.

Note that the velocity of the vehicle, v(t), is allowed to be 0 at more times than

just the start and the end of the trip.

Proof of Theorem 3.1. A sketch of the proof is in Figure 3.1.

Suppose that for any fixed path and any choice of velocities, v(t), the vehicle
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t T 0 
0 

t t̂

v(t) v(t̂)v(t) 

Figure 3.1: A Sketch of the Proof of Theorem 3.1: The vehicle spends energy

when accelerating, but will regain it back later when decelerating from the same

speed. For example, the vehicle is accelerating at time t̃ and the matched time it

is decelerating is time t̂.

starts at time t = 0 and ends at time t = T. Then the total energy consumed is

E =
∫ T

0

v(t)
η


1
2

ρCw A f v(t)2 + µmg cos (α(t))

+ mg sin (α(t)) + mδ
dv(t)

dt

+ Pacc

 dt

=


∫ T

0

v(t)
η

 1
2

ρCw A f v(t)2 + µmg cos (α(t))

+ mg sin (α(t))

+ Pacc

 dt

+
∫ T

0

(
mδv(t)

dv(t)
dt

)
dt

 .

Given our assumptions, v(t) is technically not differentiable everywhere within
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[0, T], and we will replace
dv(t)

dt
with the more accurate notation

fa(t) =



a if the vehicle is accelerating at time t

0 if the vehicle is neither accelerating nor decelerating at time t

−a if the vehicle is decelerating at time t

Therefore, proving the desired result means showing that

∫ T

0
(v(t) fa(t)) dt = 0,

since

∫ T

0

(
mδv(t)

dv(t)
dt

)
dt =

∫ T

0
(mδv(t) fa(t)) dt = mδ

∫ T

0
(v(t) fa(t)) dt.

Because the vehicle must accelerate, remain at constant speed, or decelerate,

v(t) is continuous and v(t) fa(t) is bounded and a continuous function of t except

at a finite set of points (or a set of measure 0). Therefore, v(t) fa(t) is Riemann

integrable.

The rest of the proof is as follows. For any time t̃ where the vehicle is currently

at speed ṽ = v(t̃) and is accelerating at rate a, we are going to “match” t̃ with the

first t̂ > t̃ where v(t̂) = v(t̃) and the vehicle is decelerating at time t̂ (and show

that such a t̂ exists). Then, we will partition time into small enough intervals,

assign each of the matched velocities to the appropriate interval, and use the

definition of Riemann integrability to show
∫ T

0 (v(t) fa(t)) dt = 0 (the interval
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containing time t̃ will cancel out the interval containing time t̂).

Consider any time t̃ where the vehicle is currently at speed ṽ = v(t̃) and is

accelerating at rate a. Because v(t) is a continuous function and v(t) is increasing

at time t̃, for some small ε > 0, there is a δ > 0 such that v(t̃ + δ) = ṽ + ε > ṽ.

Since v(t̃ + δ) = ṽ + ε > ṽ, v(T) = 0, and v(t) is continuous, by the intermediate

value theorem, there exists at least one t∗ in [t̃ + δ, T] such that v(t∗) = ṽ. Pick t̂

to be the smallest t∗ in [t̃ + δ, T] that has v(t̂) = ṽ.

Because t̂ is the first time after time t̃ the vehicle reached speed ṽ, the vehicle

must have been decelerating at time t̂. If the vehicle was neither decelerating or

accelerating at t̂, then there would be a δ > 0 such that v(t̂− δ) = t̃ (as the rate of

change at of v(t) at t̂ would have been 0), contradicting the fact that t̂ is the first

time after time t̃ the vehicle reached speed ṽ. If the vehicle was accelerating at time

t̂, then v(t) is increasing at time t̂, and for some small ε2 > 0, there is a δ2 > 0 such

that v(t̂− δ2) = ṽ− ε2 < ṽ. Since v(t̂− δ2) = ṽ− ε2 < ṽ, v(t̃ + δ) = ṽ + ε > ṽ, and

v(t) is continuous, by the intermediate value theorem, there exists at least one t∗

in [t̃ + δ, t̂− δ2] such that v(t∗) = ṽ, which contradicts the fact that t̂ is the first

time after time t̃ the vehicle reached speed ṽ. This argument also shows that there

is no other t in (t̃, t̂) with v(t) = ṽ.

Using the previous argument, we can effectively pair each time the vehicle is

at speed v(t̃) and is accelerating to a time t̂ where the vehicle is decelerating and

at speed v(t̃), and this way of pairing up times ensures that no time t∗ is matched

more than once. We can also use the same argument to pair any time t̂ where the

vehicle is at speed v(t̂) and is decelerating to a time t̃ < t̂ where the vehicle is

accelerating and v(t̃) = v(t̂).
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Partition time into intervals [tk−1, tk) with maximum size

∆t = maxk=1,...,K {tk − tk−1} and represent
∫ T

0 (v(t) f (t)) dt as (using the definition

of the Riemann integral)

∫ T

0
(v(t) fa(t)) dt = lim

∆t→0

K

∑
k=1

(v(t̃k) fa(t̃k) (tk − tk−1))

where:

• K is the number of intervals of the chosen partition of [0, T].

• t̃k is a particular time in the interval [tk−1, tk).

For any partition chosen to compute the integral
∫ T

0 (v(t) fa(t)) dt, select a re-

finement (a finer sub-partition) where for each v(t̃) where fa(t̃) = a, there is

another interval containing t̂ > t̃ where v(t̂) = v(t̃) and fa(t̂) = −a (we can

find the particular t̂ by the previous argument that paired times). Select the re-

finement in this way with the additional requirement that all intervals are of the

same length ∆t (we can do this for small enough ∆t). For convenience in writing

out the sum corresponding to the Riemann integral
∫ T

0 (v(t) fa(t)) dt, let vr be the

rth speed and nr be the number of intervals where v(t̃k) = vr and the vehicle is

accelerating, for r = 1, . . . , R. By the previous argument that paired times when

the vehicle was accelerating and decelerating, there will be nr times (and therefore
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nr intervals) where the vehicle is at speed vr and is decelerating. Therefore,

∫ T

0
(v(t) fa(t)) dt = lim

∆t→0

K

∑
k=1

(v(t̃k) fa(t̃k) (tk − tk−1))

= lim
∆t→0

R

∑
r=1

(nrvra∆t− nrvra∆t)

= lim
∆t→0

R

∑
r=1

(0) = 0.

As a first step to incorporate the energy model (3.1) into the optimization

framework, we discuss a deterministic optimization-based model (Section 3.1.).

Then, we expand the deterministic model to incorporate uncertainty using robust

optimization (Section 3.2). Next, we apply Lagrangian relaxation to the optimiza-

tion model (Section 3.3). Finally, we present a result that shows the equivalence

between two robust optimization formulations (Section 3.4).
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3.1 Deterministic Framework
Our deterministic optimization model is

min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij

s.t. ∑
(i,j)∈A

(
Eij(vij)

)
xij ≤ E0

vij ≤ vij ≤ vij, ∀(i, j) ∈ A

∑
j:(i,j)∈A

xij − ∑
j:(j,i)∈A

xji =



1 if i is the source node

−1 if i is the destination node

0 otherwise

xij ∈ {0, 1}, ∀(i, j) ∈ A.

(3.2)

A is the set of arcs in the network, Eij(vij) is the energy function (3.1), and E0

is the maximum energy consumption, which could be taken or estimated from

the vehicle’s current state of charge.

We will also write “X = set of paths” to represent the constraints for the short-

est path polytope (and requiring xij to be binary):

∑
j:(i,j)∈A

xij − ∑
j:(j,i)∈A

xji =



1 if i is the source node

−1 if i is the destination node

0 otherwise

xij ∈ {0, 1}, ∀(i, j) ∈ A.
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Problem (3.2) is a constrained shortest path problem with the additional re-

quirement of finding velocities, and therefore, we expect it to have many simi-

larities to the constrained shortest path problem. We prove that problem (3.2) is

NP-Hard in Section 3.1.2.

3.1.1 About Constrained Shortest Path Problems

There is quite a bit of literature about the constrained shortest path problem,

although we will not survey it here. The main facts about the constrained shortest

path problem are:

• It is NP-Complete (Garey and Johnson [19]). It is a reduction from partition,

and Garey and Johnson cite a private communication with N. Megiddo in

1977 as the reference for this.

• It can be solved exactly in pseudopolynomial time, such as with dynamic

programming. One source is [23].

• It has a fully-polynomial time approximation scheme (FPTAS) [23].

The algorithms given in Hassin [23] are for acyclic graphs, but the authors

state that the generalization to general graphs is straightforward.

Formally, the decision version of constrained shortest path problem can be

stated as the following.

Definition 3.1 (Constrained Shortest Path Problem (Decision Version)). An in-

stance of the decision version of the constrained shortest path problem is the follow-

ing:
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Input: A directed graph G(N, A), with a source node and sink node, arc costs cij,

and arc times tc
ij. There is a cost limit C and time limit T.

Output: A path from the source and sink node such that the total cost is no more

than C and the total time is no more than T, or a statement that no such

path exists.

�

3.1.2 NP-Hardness of the Deterministic Electric Vehicle Routing

Problem

Problem (3.2) is NP-Hard, as it is a generalization of the NP-Hard constrained

shortest path problem ([19]). Since any constrained shortest path problem can be

transformed into problem (3.2): set vij = vij, for all (i, j) ∈ A, and choose the data

and parameters appropriately.

Here are the formal details for the NP-hardness.

The decision version of the electric vehicle routing problem is in Definition 3.2.

Definition 3.2 (Electric Vehicle Routing Problem (Decision Version)). An in-

stance of the decision version of the electric vehicle routing problem is the following:

Input: A directed graph G(N, A), with a source node and sink node, arc lengths

`ij, extra times τij, energy consumption functions Eij(vij) (per arc) with the

appropriate input constants, and lower and upper bounds on the velocities:

vij and vij. There is a time limit T and energy consumption limit E0.
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Output: A path from the source and sink node and arc speeds vij such that the

total energy consumption is no more than E0, the total travel time is no more

than T, and vij are within the specified velocity bounds, or a statement that

no such path and velocities exist.

�

Theorem 3.2. The decision version of the electric vehicle routing problem

(Definition 3.2) is NP-Complete.

Proof. Proof of Theorem 3.2

The decision version of the electric vehicle routing problem (Definition 3.2) is

in NP, as feasible solutions can be verified in polynomial time. Namely, a path

that requires a travel time at most T and energy consumption at most E0, with the

specified velocities can be described in at most |A| variables for the path and at

most |A| variables for the velocities. The travel time and energy consumption of

the path with velocities can be checked in polynomial time. In addition, we can

check that the velocities are within the specified bounds and that the solution is a

path from the source node to sink node in polynomial time.

Consider an instance of the constrained shortest path problem (a graph G(N, A),

costs cij, times tc
ij, cost limit C, and time limit T). We can transform it into the elec-

tric vehicle routing problem in the following way:

• Keep the directed graph G(N, A) the same, with the same source and sink
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node.

• Set the energy consumption limit to T.

• Set the travel time limit to C.

From the formulation, we have that:

tij(vij) =
`ij

vij
+ τij (3.3)

Eij(vij) =


`ij

η

(
1
2

ρCw A f v2
ij + µmg cos (αij) + mg sin (αij)

)
+ Pacc

(
`ij

vij
+ τij

)
 . (3.4)

Now we select the parameters carefully. We first set the velocity lower bounds

vij = v̂ij and the upper bounds vij = v̂ij, simplify the selection of velocities to one

parameter per arc: v̂ij. With this choice, the parameters that are arc-dependent are

v̂ij, `ij, τij, and αij. We will need to carefully choose the values of at least two of

these (per arc), and we can basically set all of the rest of the parameters as we

choose. Therefore,

• Set Pacc = 0.

• Use any positive values for ρ, Cw, A f , µ, and m. We will set Cw = 2, m = 1/g,

and the rest of the values to 1.

• Set αij = 0, for all (i, j) ∈ A.

• Set v̂ij = 1, for all (i, j) ∈ A.
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• Pick Pacc to be 0, although Pacc only needs to be small enough such that

tc
ij − Pacccij is positive for all (i, j) ∈ A. This ensures that `ij will be positive.

• Set τij = cij − `ij. This is from solving

`ij

v̂ij
+ τij = cij

and using v̂ij = 1.

• Set arc lengths `ij =
(tc

ij)η

2
.

This is from solving

Eij(v̂ij) = tc
ij

⇒


`ij

η

(
1
2

ρCw A f
(
v̂ij
)2

+ µmg cos (αij) + mg sin (αij)

)
+ Pacc

(
`ij

v̂ij
+ τij

)
 = tc

ij

⇒


`ij

η

(
1
2
(1)(2)(1) (1)2 + (1)(1/g)g cos (0) + (1/g)g sin (0)

)
+ 0

(
`ij

1
+ cij − `ij

)
 = tc

ij

⇒
(
`ij

η
(2)
)
= tc

ij

⇒ `ij =
(tc

ij)η

2

• Pick η to be positive, but small enough such that `ij ≤ cij for all (i, j) ∈ A.

η = min(i,j)∈A

{
2cij

tc
ij

}
will suffice. This ensures that τij will be nonnegative

for all (i, j) ∈ A.
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The objective function is then min {∑(i,j)∈A cijxij}, and the energy consumption

constraint is ∑(i,j)∈A tijxij ≤ T.

3.2 Incorporating Uncertainty Using Robust Optimiza-

tion
We describe how to apply robust optimization to find routes for battery electric

vehicles under uncertainty in time and energy. A general description of robust

optimization is in Section 1.1.

We assume that there is an uncertainty in time and energy that is not velocity

dependent, and we use approaches from Bertsimas and Sim [7, 8] to formulate and

solve the corresponding optimization problem. The robust-optimization approach

assumes that each arc (i, j) has an uncertainty in time, ∆tij, and in energy, ∆eij,

where typically 0 ≤ ∆tij ≤ σij and 0 ≤ ∆eij ≤ σ̃ij. A conservative approach

to handling this uncertainty is to assume the worst: a driver (or an algorithm)

selects a path P, and then an adversary controls all of the uncertainty to maximize

∑(i,j)∈P ∆tij and ∑(i,j)∈P ∆eij. The adversary can maximize each sum separately. In

this case, the adversary would set ∆tij = σij and ∆eij = σ̃ij for all arcs (i, j) ∈ P

(this is the same as setting ∆tij = σij and ∆eij = σ̃ij for all arcs (i, j) ∈ A before

a path is selected). A less conservative approach is to restrict the power of the

adversary to select the uncertainties in times and energy within uncertainty sets.

Ut represents the uncertainty set for time and Ue the uncertainty set for energy.

This is the approach we take, and we formulate the robust optimization model as
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min
vij,xij

max
∆t∈Ut

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + ∑

(i,j)∈A

(
∆tij
)

xij

s.t. ∑
(i,j)∈A

(
Eij(vij)

)
xij + ∑

(i,j)∈A
(∆eij)xij ≤ E0, ∀∆e ∈ Ue

vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths,

(3.5)

which can be restated as

min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + max

∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij


s.t. ∑

(i,j)∈A

(
Eij(vij)

)
xij + max

∆e∈Ue

 ∑
(i,j)∈A

(
∆eij

)
xij

 ≤ E0

vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths.

(3.6)

To complete the formulation (3.6), we need to specify the uncertainty sets Ut

and Ue. For example, we could assume the worst-case scenario for time and set

Ut =
{

∆tij|0 ≤ ∆tij ≤ σij
}

. Then max
∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij

 = ∑
(i,j)∈A

(
σij
)

xij, which

is the case when the adversary sets ∆tij = σij for all arcs (i, j) ∈ A. Ue could be

defined similarly. However, we choose more restrictive uncertainty sets to obtain

less conservative solutions to (3.6).

The uncertainty sets we use are:
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Polyhedral Uncertainty: Ut =

{
∆tij|0 ≤ ∆tij ≤ σij, ∑(i,j)∈A

∆tij

σij
≤ Γt

}
, where Γt

is a parameter (assumed integer) that restricts the power of the adversary.

In a network optimization context, this is equivalent allowing the adversary

to set ∆tij = σij for Γt arcs and setting ∆tij = 0 for the rest. For polyhedral

uncertainty,

max
∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij

 = max
{St|St⊂A, |St|≤Γt}

 ∑
(i,j)∈St

(
σij
)

xij

.

Ellipsoidal Uncertainty: Ut =
{

∆tij| ||Σ−1/2
t ∆t||2 ≤ Ωt

}
, where Σt is a diago-

nal matrix with entries σij along the diagonal and zeros everywhere else.

Namely, Σt is an ellipse and its radius is determined by a parameter Ωt. For

ellipsoidal uncertainty,

max
∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij

 = max
{∆tij| ||Σ−1/2

t ∆tij||2≤Ωt}

 ∑
(i,j)∈A

(
∆tij
)

xij

.

The specifications for the kind of uncertainty sets in energy, Ue, is similar, and

they would have parameters for energy instead of time: σ̃ij, Σe, Ωe, and Γe.

The robust optimization formulation (3.6) is more general than the determin-

istic framework, because setting Ut = ∅ and Ue = ∅, produces the deterministic

model (3.2).



3.3. Lagrangian Relaxation 55

3.3 Lagrangian Relaxation
For many of our algorithms, we use the Lagrangian relaxation, which for problem

(3.6) can be stated as:

L(λ) = min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + max

∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij


+λ

 ∑
(i,j)∈A

(
Eij(vij)

)
xij + max

∆e∈Ue

 ∑
(i,j)∈A

(
∆eij

)
xij

− E0


s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths.

(3.7)

Note:

• The Lagrangian multiplier λ is required to be nonnegative.

• Because L(λ) is a lower bound on the objective value of problem (3.6), solv-

ing maxλ≥0 {L(λ)} obtains the best lower bound.

• The solution to maxλ≥0 {L(λ)} is guaranteed to be a path with velocities

within the specified bounds, but it might be infeasible due to a violation of

the energy constraint.

• L(λ) is a piecewise-linear concave function of λ.

• Suppose that x∗ and v∗ are an optimal solution to L(λ). Then a subgradient
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of L(λ) at λ is

∑
(i,j)∈A

(
Eij(v∗ij)

)
x∗ij + max

∆e∈Ue

 ∑
(i,j)∈A

(
∆eij

)
x∗ij

− E0.

We can solve the optimization for L(λ) in the following way:

1. Solve the deterministic case, where there is no uncertainty. The details are

in Section 4.1.2.

(a) The objective function for L(λ) is coupled only by the path variables.

Namely, given any particular choice of path, the problem of finding op-

timal velocities is decomposable into |A| simpler subproblems, which

are easy to solve. It turns out that we can find the optimal velocity for

each arc regardless of the path chosen.

(b) Use the optimal velocities for each arc as input and solve a shortest

path problem to evaluate L(λ).

2. For the cases with uncertainty, use the techniques for deterministic case

(the uncertainty does not depend on the variables vij), and then incorporate

techniques to solve the robust version of a shortest path problem. See Section

4.2.2 for more details for the case of polyhedral uncertainty and Section 4.3.2

for more details for the case of ellipsoidal uncertainty.

We optimize the Lagrangian relaxation using subgradient ascent, as described

in Section 16.3 of Ahuja et al. [1]. To obtain an initial upper bound on the objective

function of the full optimization problem (such as (3.6)), we solve the appropri-
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ate minimize-energy optimization problem (see Sections 4.1.1, 4.2.1, and 4.3.1). If

the optimal minimum energy-solution requires more than the allowed amount of

energy, we know that there is no feasible solution. The traversal time required for

this solution is the value of the upper bound. Update the upper bound with the

objective value (traversal time) of any better feasible solution that is found along

the way. Subgradient ascent is a heuristic method, although Ldet(λ) for any λ ≥ 0

is guaranteed to be a lower bound on the objective value of the optimal solution.

Because the subgradient will rarely be 0, we have added the additional stopping

criteria of terminating the algorithm after a predefined number of iterations (as

mentioned in Ahuja et al. [1]), which we typically set to 10.

The detailed method of subgradient ascent is described below, (applied from

[1]).

1. Initialization:

• λk = 0

• λk = 2

• θk is the stepsize on iteration k to be determined later.

• UB = upper bound on objective value

• Solve the minimum-energy shortest path problem for the appropriate

case. This will always generate a feasible solution, if one exists. The

traversal time required of this solution is a value for UB.

2. Suppose that we can evaluate the value of the Lagrangian function L(λk)

and obtain a subgradient g(λk) at λk. How to do this is explained in the
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sections for each particular formulation (Sections 4.1.2, 4.2.2, and 4.3.2).

3. Subgradient Ascent: Given λk, UB, L(λk), and g(λk) :

• Stepsize θk =
λk (UB− L(λk))

||g(λk)||2

• Update: λk+1 = min {λk + θkg(λk), 0}.

4. Stopping Criterion and Parameter Updates:

• If after a few iterations of finding L(λk) there is consistently no objective

value improvement, decrease λk by a factor of 2: (λk = λk/2)

• Terminate the algorithm when ||g(λk)||2 < ε, for some small ε > 0.

However, since this condition rarely happens, also terminate the algo-

rithm after completing set number of iterations. Return the final value

of λk as λ∗.

• Update UB with the objective value (traversal time) of any better feasi-

ble solution that is found along the way.

5. Error Bounds: Suppose we terminate with λ∗ and a best feasible solution

(v∗, x∗). Then we have

L(λ∗) ≤ OPT ≤ UB

And that the solution (v∗, x∗) has an error of at most

UB− L(λ∗)
L(λ∗)

.
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3.4 Showing Equivalence of Robust Optimization

Problems
In this section, we provide the theorems and proofs that demonstrate that robust

optimization problems such as (3.5) are equivalent when we add the additional

requirement that the adversary modifies the same arcs for both time and energy

(instead of letting the adversary choose the arcs for time and energy separately),

as in problem (3.8), for some fairly general kinds of uncertainty sets Ut and Ue.

Typically Ut and Ue will be the same or related for the equivalence to hold.

min
vij,xij

max
∆t∈Ut
∆e∈Ue

∆tij=0⇔∆eij=0, ∀(i,j)∈A

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + ∑

(i,j)∈A

(
∆tij
)

xij

s.t. ∑
(i,j)∈A

(
Eij(vij)

)
xij + ∑

(i,j)∈A
(∆eij)xij ≤ E0

vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths,

(3.8)

The results in this section are of theoretical interest because they provide in-

sight about the robust optimization modeling framework. The results are based

on the idea that violating one constraint is considered equally as bad as violat-

ing any other constraint. The results emphasize that the robust optimization is

required to protect against all possible scenarios, while the adversary may focus

the uncertainty on violating only one constraint or just in making the solution as

suboptimal as possible (and ignoring the other scenarios that are not beneficial
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to the adversary). In addition, the results show that we may formulate a robust

optimization problem in multiple ways, and we may pick whichever formulation

that we feel is easier to solve or has a more relevant interpretation of the un-

certainty. For example, for the problem of routing battery electric vehicles, the

equivalence means that the robust optimization problem (3.5) is the same if we

add the additional restriction that the adversary chooses either the uncertainty in

time or energy of an arc to be nonzero, it must choose both the uncertainty time

and uncertainty in energy of that arc to each be nonzero.

3.4.1 An Example Equivalence of Coupled and Decoupled Sys-

tem for Projections

First, consider an example. Let U be some (uncertainty) set that contains pairs of

vectors of the form (a1, a2). Consider the projections of U onto a1 and a2:

• U1
proj =

{
a1 s.t. (a1, a2) ∈ U

}
• U2

proj =
{

a2 s.t. (a1, a2) ∈ U
}

Consider two systems

“Independent System”

f1(a1, x) + g1(y) ≤ d ∀a1 ∈ U1
proj

f2(a2, x) + g2(y) ≤ h ∀a2 ∈ U2
proj
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“Coupled System”

f1(a1, x) + g1(y) ≤ d

f2(a2, x) + g2(y) ≤ h

 ∀(a1, a2) ∈ U

Where:

• f1(a, x) and f2(a, x) are functions from R2n → R.

• g1(y) and g2(y) are functions from Rn to R.

• All of the other data are vectors.

In the independent system, the inequalities must hold for all coefficients a

separately in the set U. That is, (a1, a2) need not be in U. Therefore, the coupled

system is contained in the independent system, as (a1, a2) ∈ U implies a1 ∈ U1
proj

and a2 ∈ U2
proj.

Any inequality

f (s, x) + g(y) ≤ d

holds for all vectors s in some set Ũ if and only if it holds for

s∗(x, y) = argmax
s∈Ũ

{ f (s, x) + g(y)}

where s∗(x, y) depends on x and y.
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Let

Ui
EP =


s∗(x, y) ∈ Ui

proj s.t. s∗(x, y) = argmax
s∈Ui

proj

{ fi(s, x) + gi(y)}

for some x and y


∀i = 1, 2

Therefore, we can rewrite the independent and coupled systems as follows:

Equivalent Independent System

f1(a1, x) + g1(y) ≤ d ∀a1 ∈ U1
EP

f2(a2, x) + g2(y) ≤ h ∀a2 ∈ U2
EP

Equivalent Coupled System

f1(a1, x) + g1(y) ≤ d

f2(a2, x) + g2(y) ≤ h

 ∀(a1, a2) ∈ U s.t. a1 ∈ U1
EP or a2 ∈ U2

EP

The equivalent coupled system contains each inequality in the equivalent in-

dependent system and additional (redundant) inequalities, although the (non-

redundant) inequalities might be ordered differently in the two systems.

Therefore, these systems are the same.

3.4.2 General Results

Notation:

• U is some uncertainty set that contains vectors in Rn
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• a and ai are vectors in U, for i = 0, . . . , N

• x and y are vectors in Rn

• X and Y are feasible regions in Rn, where usually x ∈ X and y ∈ Y

• fi(a, x) are functions mapping R2n to R, where a ∈ U and x ∈ X, for

i = 0, . . . , N

• gi(y) are functions mapping Rn to R, where y ∈ Y, for i = 0, . . . , N.

• bi are real numbers, for i = 1, . . . , N

Theorem 3.3. Consider the decoupled and coupled robust optimization prob-

lems:

Decoupled:

min
x∈X
y∈Y

max
a0∈U

f0(a0, x) + g0(y)

s.t. fi(ai, x) + gi(y) ≤ bi ∀ai ∈ U, ∀i = 1, . . . , N

(3.9)

Coupled:

min
x∈X
y∈Y

max
a∈U

f0(a, x) + g0(y)

s.t. fi(a, x) + gi(y) ≤ bi ∀i = 1, . . . , N

(3.10)

The decoupled and coupled robust optimization problems are equivalent.

Namely, they have the same feasible regions and optimal solutions.
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Proof of Theorem 3.3. We first show that the decoupled and coupled problems

have the same feasible region.

Suppose that (x, y) is feasible for the decoupled problem. Then it is also feasi-

ble for the coupled problem, as x ∈ X, y ∈ Y, and because the coupled problem

is the same as adding the restriction a1 = a2 = · · · = aN to the uncertainty set

for the decoupled problem.

Now suppose that (x, y) is not feasible for the decoupled problem. If x /∈ X or

y /∈ Y, then it is infeasible for the coupled problem, so suppose that x ∈ X and

y ∈ Y. Because x ∈ X and y ∈ Y are not feasible for the decoupled problem, there

exists an ai ∈ U such that

fi(ai, x) + gi(y) > bi.

Choosing a = ai ∈ U, along with (x, y) produces the infeasible solution for the

coupled problem, as

fi(a, x) + gi(y) > bi.

Therefore, the feasible regions of the decoupled and coupled problems are the

same. Call this feasible region A.

The decoupled and coupled optimization problems can be written as:
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Decoupled:

min
x∈X
y∈Y

max
a0∈U

f0(a0, x) + g0(y)

s.t. (x, y) ∈ A

(3.11)

Coupled:

min
x∈X
y∈Y

max
a∈U

f0(a, x) + g0(y)

s.t. (x, y) ∈ A

(3.12)

These optimization problems are the same, and therefore have the same opti-

mal solutions.
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Notation:

• ai are vectors with real number entries, with dimension di, for i = 0, . . . , N.

Note that the ai can be of different dimensions

• U is some uncertainty set that contains vectors (of vectors)
(
a0, a1, . . . , an)

• Ui
proj = {ai s.t. there exist a0, a1, . . . , ai−1, ai+1, . . . , aN where

(a0, a1, . . . , aN) ∈ U}. Namely, Ui
proj is the projection of U onto the subspace

spanned by the ai. Here, i = 0, . . . , N

• x and y are vectors in Rn

• X and Y are feasible regions in Rn, where usually x ∈ X and y ∈ Y

• fi(ai, x) are functions mapping Rdi+n to R, where ai ∈ Ui
proj and x ∈ X, for

i = 0, . . . , N

• gi(y) are functions mapping Rn to R, where y ∈ Y, for i = 0, . . . , N

• bi are real numbers, for i = 1, . . . , N
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Theorem 3.4. Consider the decoupled and coupled robust optimization prob-

lems:

Decoupled:

min
x∈X
y∈Y

max
a0∈U0

proj

f0(a0, x) + g0(y)

s.t. fi(ai, x) + gi(y) ≤ bi ∀ai ∈ Ui
proj, ∀i = 1, . . . , N

(3.13)

Coupled:

min
x∈X
y∈Y

max
(a0,a1,...,an)∈U

f0(a0, x) + g0(y)

s.t. fi(ai, x) + gi(y) ≤ bi ∀i = 1, . . . , N

(3.14)

The decoupled and coupled robust optimization problems are equivalent.

Namely, they have the same feasible regions and optimal solutions.

Proof of Theorem 3.4. The proof is similar to the proof of Theorem 3.3 and to the

proof for the example in Section 3.4.1.
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Chapter 4

Algorithms

Our ultimate goal is to solve the electric vehicle routing problem under uncer-

tainty and use techniques from robust optimization to formulate and solve prob-

lem (3.6). The objective, broadly speaking, is to select a route and vehicle speed

to minimize travel time while ensuring that total energy consumption does not

exceed a pre-specified limit.

Our main approach for solving the deterministic and robust problems as fol-

lows:

1. Choose some reasonable solutions to the problem, such as a minimum-time

or minimum-energy solution. Such “candidate solutions” are easy to calcu-

late, although they might not be feasible.

2. Because the mathematical formulation is NP-Hard, we use Lagrangian re-

laxation as a heuristic.

3. In general, solving a Lagrangian relaxation does not guarantee a feasible so-
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lution. However, we guarantee a feasible solution to problem (3.7) by finding

an initial feasible solution using an appropriate minimum-energy solution,

and then keeping track of whether or not the algorithm finds better feasible

solutions in the process of solving the Lagrangian relaxation.

4. We evaluate the quality of the feasible solution by comparing it to the lower

bound provided by solving the Lagrangian. Technically speaking, we get

a lower bound from the Lagrangian when we solve the appropriate sub-

problem optimally. When we solve that subproblem heuristically, as for the

robust optimization case, we are not guaranteed a lower bound from La-

grangian relaxation, and can only use it to get an estimate of a lower bound

on the objective function.

Some additional comments:

• Typically, heuristic methods are applied to each of the steps (depending on

the complexity of the problem), so optimal solutions at each step are not

guaranteed.

• In all of the Lagrangian relaxations and candidate solutions, the optimal

velocity of any arc is independent of the path chosen and the velocities on

other arcs. Therefore, optimal velocities can be found by solving a convex

optimization problem for each arc.

• Solving shortest path problems is a subroutine in all the instances. To solve

it more quickly, we formulate the problem in a way that has nonnegative
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arc weights and use A-star to find a shortest path from a given source to a

given destination.

We first discuss the algorithms for the deterministic model (Section 4.1). We

then present algorithms for the cases involving robust optimization: polyhedral

uncertainty (Section 4.2) and ellipsoidal uncertainty (Section 4.3). Next, we de-

scribe how to use an A-star algorithm to solve the shortest path problems in

various algorithm subroutines more quickly (Section 4.4). We conclude this chap-

ter with pseudo-polynomial algorithms for the electric vehicle routing problem

(Section 4.5).

4.1 Deterministic Model: No Uncertainty
As a preliminary case, we consider the optimization model without uncertainty.

4.1.1 Candidate Solutions

We start by finding three solutions that could be candidates for a feasible or opti-

mal solution:

Minimize Time: We ignore the energy constraint, and minimize the total traver-

sal time. Arc velocities are set to their upper bounds, and the problem be-

comes a shortest path problem with arc costs as traversal times.

Minimize Length: We ignore the energy constraint, and minimize the total length

of the route. This problem becomes a shortest path problem with arc costs

as arc lengths. Because velocity does not matter, arc velocities are set to their

upper bounds.
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Minimize Energy: Instead of using an energy constraint, we minimize the en-

ergy consumption of the route. We can find the arc velocities using the

techniques in the proof of Theorem 4.1 (in Section 4.1.2). We do this by

solving the convex optimization problem minvij≤vij≤vij

{
Eij(vij)

}
. The opti-

mal velocity for arc (i, j) is either vij, vij, or the solution to
∂

∂vij
E(vij) = 0,

which is 3

√√√√η

(
Pacc

ρCw A f

)
. If 3

√√√√η

(
Pacc

ρCw A f

)
is not in

[
vij, vij

]
, then one of the

two endpoints of
[
vij, vij

]
must be optimal. With the optimal velocities as

input, the minimum-energy problem becomes a shortest path problem with

arc costs as energy consumption.

We obtain additional information from the candidate solutions:

Feasible Solution: If the energy limit is less than the energy consumption of the

minimum-energy solution, then the optimization problem has no feasible

solution. Otherwise, the minimum-energy solution is a feasible solution to

the problem.

Unconstrained Optimal Solution: The most energy that could be optimal to con-

sume is the energy required for the minimum-time solution. If this solution

is feasible, then the minimum-time solution is optimal for the deterministic

optimization problem.
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4.1.2 Solving the Lagrangian Relaxation

The Lagrangian relaxation of the deterministic optimization problem is

Ldet(λ) = min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + λ

 ∑
(i,j)∈A

(
Eij(vij)

)
xij − E0


s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths.

(4.1)

There are two parts to solving the Lagrangian relaxation at a fixed value of λ:

finding velocities and finding a path.

Theorem 4.1. The optimal velocity, v∗ij, to problem (4.1), for each arc (i, j),

is the velocity with the smallest objective value chosen from the following 3

choices:

Lower Bound: vij

Upper Bound: vij

Solution to the Unconstrained Case: 3

√√√√η

(
1

λρCw A f
+

Pacc

ρCw A f

)
. This veloc-

ity is a possible solution only if it is in the interval of feasible velocities

[vij, vij].

Proof of Theorem 4.1. For the time being, suppose that we fix any x ∈ X ⊂
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{0, 1}|A|. Then the optimization problem becomes:

min
vij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + λ

 ∑
(i,j)∈A

(
Eij(vij)

)
xij − E0


s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A.

This problem is separable by arc, and reduces to solving |A| problems of the form

min
vij

(
`ij

vij
+ τij

)
xij + λ

(
Eij(vij)xij

)
s.t. vij ≤ vij ≤ vij.

If xij = 0, any arc velocity is optimal (with total cost 0), and therefore the optimal

velocity for xij = 1 will be optimal for all cases. When xij = 1, for the particu-

lar choice of energy function (3.1), this problem becomes (after removing some

constant terms that do not alter the optimal solution):

min
vij

`ij

vij
(1 + λPacc) + λ

(
`ij

η

(
1
2

ρCw A f v2
ij

))
s.t. vij ≤ vij ≤ vij.

(4.2)

This is a convex optimization problem, and we can arrive at the same optimal

solution in two ways:

• Find all possible solutions that satisfy the Karush-Kuhn Tucker conditions,

and select the solution with the smallest objective value.

• Minimize an unconstrained convex function of one variable, the velocity v∗ij,
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by setting the derivative equal to 0:

−`ij
(1 + λPacc)

v2
ij

+ λ

(
`ij

η

(
ρCw A f vij

))
= 0,

which yields v∗ij =
3

√√√√η

(
1

λρCw A f
+

Pacc

ρCw A f

)
. If v∗ij is not in

[
vij, vij

]
, then

one of the two endpoints of
[
vij, vij

]
must be optimal.

If λ = 0, the optimal solution to problem (4.2) is to choose vij = vij.

Since the optimal velocities are valid for all choices of xij, we can fix them at

their optimal value and, the problem becomes a shortest path problem.

While we can find all of the arc velocities first and then solve a shortest path

problem, it is more efficient to find the velocities on an as-needed basis. That is, we

solve the shortest path problem without finding the optimal velocities. Whenever

the algorithm examines an arc, we compute optimal velocity for that arc (using

Theorem 4.1) and use it to evaluate the traversal time and energy consumption

for that arc.

We optimize the Lagrangian relaxation using subgradient ascent, and a sub-

gradient of Ldet(λ) at λ is

∑
(i,j)∈A

(
Eij(v∗ij)

)
x∗ij − E0,

with optimal velocities and path v∗ij and x∗ij.

To guarantee a feasible solution (if one exists), we do the following:

• Check that the minimum-energy solution is feasible. If it is, we use it as an
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initial feasible solution for subgradient ascent. If it is not feasible, then we

say that problem (3.2) has no feasible solution.

• Each time we evaluate Ldet(λ) at some value of λ, we check whether the path

is feasible and has a smaller traversal time (objective value for the original

problem) than the current best feasible solution. If it is better, it becomes the

the current best feasible solution.

4.2 Robust Optimization Model: Polyhedral Uncer-

tainty
To solve robust optimization problems under polyhedral uncertainty, we will need

to be able to incorporate it into the problem in way that is tractable (the main

framework is discussed in Section 3.2). The problem formulation with Lagrangian

relaxation is in Section 4.2.2, and the main idea is to simplify the problem by

applying the techniques in Bertsimas and Sim [7] to

max
∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij

 = max
{St|St⊂A, |St|≤Γt}

 ∑
(i,j)∈St

(
σij
)

xij

.

We use the fact that the set of paths is a subset of {0, 1}|A| to simplify the formu-

lation of polyhedral uncertainty (see the proof of Theorem 4.2 in Section 4.2.2):

max
{St|St⊂A, |St|≤Γt}

 ∑
(i,j)∈St

(
σij
)

xij

 = min
{θt≥0}

 ∑
(i,j)∈A

(
max

{
σij − θt, 0

})
xij + Γtθt

.
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Under this transformation, we will typically use a subroutine to find the value

of the theta variable as part of solving the desired optimization problem. To ex-

plain the solution method for the subroutine, suppose we want to solve the opti-

mization problem with L theta variables:

min
xij,θl

c′x +
L

∑
l=1

 ∑
(i,j)∈A

(
max

(
σl

ij − θl, 0
)

xij

)
+ Γlθl


s.t. θl ≥ 0, ∀l = 1, . . . , L

x ∈ X = set of paths.

(4.3)

For any fixed value of each θl, this optimization problem is a shortest path prob-

lem. When L = 1, Bertsimas and Sim [7] provide ways to solve problems of this

type to optimality. In addition, for the minimum cost flow problem (more general

than the shortest path problem), Bertsimas and Sim [7], showed that an equivalent

objective function is convex in θ. We propose an algorithm that is different than

any of the algorithms in Bertsimas and Sim [7] to provide a good solution even

faster, as well as for L ≥ 1. This heuristic algorithm is algorithm 1.

Proof of optimality in step 2(b) of algorithm 1. Given a fixed xk, representing the

path Pk, problem (4.3) is separable and can be decomposed into L convex opti-

mizations problems, which we can solve for each θl independently of the others:

min
θl

∑
(i,j)∈A

(
max

(
σl

ij − θl, 0
)

xk
ij

)
+ Γlθl

s.t. θl ≥ 0.
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Algorithm 1 Algorithm for solving problem (4.3).

1. Initialization (make an initial guess):

• For each l = 1, . . . , L, guess an initial value for θl, and call this

guess θ0
l . We recommend choosing some θl ∈

[
0, max(i,j)∈A {σl

ij}
]
, be-

cause θl is required to be nonnegative and max
(

σl
ij − θl, 0

)
is 0 for

θl ≥ max(i,j)∈A {σl
ij} (σl

ij − θl ≤ 0 for such a value of θl). The values for

each initial θ0
l can be different.

• Alternatively, one could choose a path x0 ∈ X as an initial guess and

then use that path to set θ0
l using the procedure in step 2 in this algo-

rithm.

2. Repeat until convergence (Until θk
l = θk+1

l for all l = 1, . . . , L):

(a) Input the values of θk
l into problem (4.3) and solve the shortest path

problem to obtain path xk.

(b) Given xk, representing the path Pk, set the values of θl. An optimal value

of θl is the (Γl + 1)th largest value of σl
ij for arcs on the chosen path.

Instead, for the purposes of potentially avoiding degeneracy, choose θl

to be the average between (midpoint of) the (Γl + 1)th largest value of

σl
ij and the (Γl)

th largest value of σl
ij of arcs the path Pk. If Γl = 0, set

θk+1
l = max(i,j)∈Pk {σl

ij}, and if Γl ≥
∣∣Pk
∣∣, set θk+1

l = 0.
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For a fixed value of x (and so a chosen path Pk), the rate of change of the objective

function with respect to θl is

(−1)
(

Number of arcs in path Pk such that σl
ij > θl

)
+ Γl,

and the set of optimal solutions is when this rate of change is 0. The rate of change

is 0 is when there are exactly Γl arcs in in path Pk such that σl
ij > θl. This happens

for any value of θl that is at least the (Γl + 1)th largest value of σl
ij on path Pk

k and

is (strictly) less than the (Γl)
th largest value of σl

ij of arcs the path Pk. As a special

case, if the (Γl + 1)th largest and (Γl)
th largest values of σl

ij on path Pk are the

same, then this value is the (only) optimal value of θl.

To see why the optimal solutions are when the rate of change is 0, one can

take the derivative of the objective function at θl, although technically the ob-

jective function is not differentiable at all values of θl. To be more rigorous, use

subgradients. A subgradient of max
(

σl
ij − θl, 0

)
is −1 if σl

ij > θl, and 0 otherwise,

and the subgradient (derivative) of Γlθl is Γl. The sum of these subgradients is

(−1)
(

Number of arcs in path Pk such that σl
ij > θl

)
+ Γl and it is a subgradient

of the objective function. Also, because Γl and σl
ij are nonnegative, the values of

θl are nonnegative when the rate of change is 0.

The special cases are:

• If Γl = 0, then the subgradient of the objective function is always nonpos-

itive and an optimal solution is to set θl = max(i,j)∈Pk {σl
ij} (any θl at least

max(i,j)∈Pk {σl
ij} would be optimal).

• If Γl ≥
∣∣Pk
∣∣, the subgradient of the objective function is always nonnegative,
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and the optimal solution is to set θ∗l = 0.

The objective value of problem (4.3) is nonincreasing throughout algorithm 1.

To see this, let

Zpoly(x, θ) = c′x +
L

∑
l=1

 ∑
(i,j)∈A

(
max

(
σl

ij − θk
l , 0
)

xij

)
+ Γlθ

k
l

.

Then we have for any integer k ≥ 0,

Zpoly(xk, θk) ≥ min
x∈X

{
Zpoly(xk, θk)

}
= Zpoly(xk+1, θk)

≥ min
θl≥0, ∀l=1,...,L

{
Zpoly(xk+1, θk)

}
= Zpoly(xk+1, θk+1).

4.2.1 Candidate Solutions

Besides the candidate solutions for the deterministic case, we consider two other

candidate solutions:

Minimize Time—Robust Case with Polyhedral Uncertainty: We ignore the en-

ergy constraint, and minimize time, using the polyhedral uncertainty set,

which becomes an optimization problem of the form (4.3). Like the deter-

ministic case, the optimal choice of arc velocities is to set each arc velocity to

its corresponding upper bound (go as fast as possible). We use a one-variable
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version of algorithm 1 to find (heuristically) the value of the theta-variable

and the corresponding path.

In more detail, we want to solve:

min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + max

{S|S⊆A,|S|≤Γt}

 ∑
(i,j)∈S

(
σij
)

xj


s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X ⊂ {0, 1}m

Since time is minimized when going fastest, we will set vij = vij and solve

the optimization problem:

min
xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + max

{S|S⊆A,|S|≤Γt}

 ∑
(i,j)∈S

(
σij
)

xj


s.t. x ∈ X ⊂ {0, 1}m.

(4.4)

Now we can apply the theorems and methods of proof in Section 3 of [7]

to solve the problem (4.4) (see the proof of Theorem 4.2). The result is the

equivalent optimization problem

min
xij,θt

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + ∑

(i,j)∈A
max

(
σij − θt, 0

)
xij + Γtθt

s.t. θ ≥ 0

x ∈ X ⊂ {0, 1}m.

We solve this problem using the heuristic algorithm described in Section
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4.2.2, although it is possible to solve the problem using either of the ap-

proaches from Bertsimas and Sim [7] that were previously described. We

use the A-star algorithm to solve the shortest path problems that are part of

the robust optimization algorithm (see Section 4.4.2).

To compute max{S|S⊆A,|S|≤Γt}

{
∑(i,j)∈S (σij)xij

}
, examine all of the arcs j on

the path xij = 1 and add together the Γt largest values of σij.

Minimize Energy—Robust Case with Polyhedral Uncertainty: We ignore the en-

ergy constraint, and minimize energy, using the polyhedral uncertainty set,

which becomes an optimization problem similar to (4.3). Because the uncer-

tainty does not depend on arc velocity, the optimal choice of arc velocities is

the same as the deterministic case (solve minvij≤vij≤vij

{
Eij(vij)

}
). Then, we

use a one-variable version of algorithm 1 to find (heuristically) the value of

the theta-variable and the corresponding path.

In more detail, we want to solve:

min
vij,xij

∑
(i,j)∈A

Eij(vij)xij + max
{S|S⊆A,|S|≤Γt}

 ∑
(i,j)∈S

(
σ̃ij
)

xj


s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X ⊂ {0, 1}m

(4.5)

Apply the theorems and methods of proof in Section 3 of [7] to obtain the

equivalent optimization problem to problem (4.4) (see the proof of Theorem
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4.2):

min
xij,vij,θe

∑
(i,j)∈A

Eij(vij)xij + ∑
(i,j)∈A

max
(
σ̃ij − θe, 0

)
xij + Γeθe

s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

θe ≥ 0

x ∈ X ⊂ {0, 1}m.

We now select the optimal velocities v∗ij as in the deterministic case (see

Theorem 4.1), and substitute them into the optimization problem to obtain

min
xij,θe

∑
(i,j)∈A

Eij(v∗ij)xij + ∑
(i,j)∈A

max
(
σ̃ij − θe, 0

)
xij + Γeθe

s.t. θe ≥ 0

x ∈ X ⊂ {0, 1}m.

We solve this problem using the heuristic algorithm described in Section

4.2.2, although it is possible to solve the problem using either of the ap-

proaches from Bertsimas and Sim [7] that were previously described. We

use the A-star algorithm to solve the shortest path problems that are part of

the robust optimization algorithm (see Section 4.4.2).

To compute max{S|S⊆A,|S|≤Γe}

{
∑(i,j)∈S (σ̃ij)xij

}
, look at all of the arcs j on

the path xij = 1 and add together the Γe largest values of σij.

As with the deterministic case, the optimal robust minimum-energy solution

is the path with the least (planned or anticipated) energy consumption, which will
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always be feasible, if a feasible solution exists. Also, the anticipated energy of the

optimal robust minimum-time solution is the most energy any optimal solution

would anticipate consuming.

4.2.2 Solving the Lagrangian Relaxation

The full formulation (problem (3.7)) can be transformed into the following equiv-

alent problem in Theorem 4.2. It can be solved using algorithm 2.

Theorem 4.2 (Bertsimas and Sim [7]). Problem (3.7) is equivalent to solving

the following optimization problem:

Lpoly_u(λ) = min
vij,xij,θt,θe

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + λ ∑

(i,j)∈A

(
Eij(vij)

)
xij − λE0

+ ∑
(i,j)∈A

(
max

{
σij − θt, 0

})
xij + Γtθt

+ λ ∑
(i,j)∈A

(
max

{
σ̃ij − θe, 0

})
xij + λΓeθe

s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

θt, θe ≥ 0

x ∈ X = set of paths.

(4.6)

Proof of Theorem 4.2. The techniques for the proof are taken from Bertsimas and
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Sim [7]. As mentioned in Section 3.2,

max
∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij

 = max
{St|St⊂A, |St|≤Γt}

 ∑
(i,j)∈St

(
σij
)

xij

,

which can be written as the linear program

max
zij

∑
(i,j)∈A

σijxijzij

s.t. ∑
(i,j)∈A

zij ≤ Γt

0 ≤ zij ≤ 1 ∀(i, j) ∈ A

and its dual is

min
pij,θt

∑
(i,j)∈A

pij + Γtθt

s.t. pij + θt ≥ σijxij ∀(i, j) ∈ A

pij ≥ 0 ∀(i, j) ∈ A

θt ≥ 0.

(4.7)

Because the primal is feasible and bounded, so is the dual, and they have the
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same objective value. Therefore, problem (3.7) is equivalent to:

min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + λ ∑

(i,j)∈A

(
Eij(vij)

)
xij − λE0

+ min
pij,θt

s.t. pij+θt≥σijxij, ∀(i,j)∈A
pij≥0, ∀(i,j)∈A

θt≥0

 ∑
(i,j)∈A

pij + Γtθt



+ λ max
{Se|Se⊂A, |Se|≤Γe}

 ∑
(i,j)∈Se

(
σ̃ij
)

xij


s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths,

which is the same as

min
vij,xij,pij,θt

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + λ ∑

(i,j)∈A

(
Eij(vij)

)
xij − λE0

+ ∑
(i,j)∈A

pij + Γtθt

+ λ max
{Se|Se⊂A, |Se|≤Γe}

 ∑
(i,j)∈Se

(
σ̃ij
)

xij


s.t. pij + θt ≥ σijxij, ∀(i, j) ∈ A

pij ≥ 0, ∀(i, j) ∈ A

θt ≥ 0

vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths.
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Applying the same technique to max
{Se|Se⊂A, |Se|≤Γe}

 ∑
(i,j)∈Se

(
σ̃ij
)

xij

 yields the

equivalent optimization problem

Lpoly_u(λ) = min
vij,xij,pij,p̃ij,θt,θe

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij

+ λ ∑
(i,j)∈A

(
Eij(vij)

)
xij − λE0

+ ∑
(i,j)∈A

pij + Γtθt

+ λ ∑
(i,j)∈A

p̃ij + λΓeθe

s.t. pij + θt ≥ σijxij, ∀(i, j) ∈ A

pij ≥ 0, ∀(i, j) ∈ A

θt ≥ 0

p̃ij + θe ≥ σ̃ijxij, ∀(i, j) ∈ A

p̃ij ≥ 0, ∀(i, j) ∈ A

θe ≥ 0

vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X = set of paths,

(4.8)

Any optimal solution to problem (4.8) must satisfy:

pij = max
(
σijxij − θt, 0

)
p̃ij = max

(
σ̃ijxij − θe, 0

)
.
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In addition, since xij ∈ {0, 1}, pij and p̃ij become

pij = max
(
σij − θt, 0

)
xij

p̃ij = max
(
σ̃ij − θe, 0

)
xij.

Substituting this back in problem (4.8) yields the optimization problem (4.6).

Algorithm 2 Algorithm for solving problem (4.6).

1. Maximize the lower bound over λ using subgradient ascent. A natural sub-

gradient at λ for optimal values v∗ij, x∗ij, and θ∗e is:

λ

 ∑
(i,j)∈A

(
Eij(v∗ij)

)
x∗ij + ∑

(i,j)∈A

(
max

{
σ̃ij − θ∗e , 0

})
x∗ij − E0

+ λΓeθ
∗
e .

Use the values v̂ij, x̂ij, θ̂e found from the steps below as inputs (for v∗ij, x∗ij,

and θ∗e ) to find a good direction (even though they might not be optimal).

2. Find the optimal velocities in the same way as for the Lagrangian relaxation

for the deterministic case (the uncertainty is not dependent on speed).

3. Use algorithm 1 to find θ̂t, θ̂e, and x̂.
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4.3 Robust Optimization Model: Ellipsoidal Uncer-

tainty
To solve robust optimization problems under ellipsoidal uncertainty, we will need

to be able to incorporate it into the problem in way that is tractable (the main

framework is discussed in Section 3.2). The problem formulation with Lagrangian

relaxation is in Section 4.3.2, and the main idea is to simplify the problem by

applying the techniques in Bertsimas and Sim [8] to

max
∆t∈Ut

 ∑
(i,j)∈A

(
∆tij
)

xij

 = max
{∆tij| ||Σ−1/2

t ∆tij||2≤Ωt}

 ∑
(i,j)∈A

(
∆tij
)

xij

.

Using the Karush-Kuhn-Tucker conditions and solving the maximization prob-

lem, we find that

max
{∆tij| ||Σ−1/2

t ∆tij||2≤Ωt}

 ∑
(i,j)∈A

(
∆tij
)

xij

 = Ωt

√
(dt)′x,

where dt is the vector whose entry for arc (i, j) is σij.

Using this simplification, the basic problem we are solving is of the form

min c′x +
L

∑
l=1

fl

(
(dl)′x

)′
x

subject to x ∈ X ⊆ {0, 1}n

(4.9)

where:

• fl(wl) is concave, for all l = 1, . . . , L.
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• ηl(wl) is a subgradient of fl at wl, for all l = 1, . . . , L.

Definition 4.1 (Subgradient (η(w)) of a Concave Function f (w)). A subgradient

of a concave function f (w) is a function η(w) that satisfies

f (u)− f (w) ≤ η(w)(u− w), ∀u ∈ R

�

A basic fact is that subgradient of a concave function is nonincreasing. Namely,

w1 ≤ w2 ⇒ η(w1) ≥ η(w2).

For fl

(
(dl)′x

)
= Ωl

√
(dl)′x, the subgradient ηl

(
d′x
)

is

ηl

(
(dl)′x

)
=



Ωl

2
√(

(dl)′x
) , if (dl)′x 6= 0

Ωl√
dl

min

, if (dl)′x = 0

where dl
min is the smallest positive element of the vector dl.

Proposition 4.1. The L dimensional vector η(w) = η(w1, w2, . . . , wL) is a sub-

gradient of f (w) = ∑L
l=1 fl(w) at w, where the lth component of η(w) is

ηl(wl).
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Proof of Proposition 4.1. The proof follows from basic facts about subgradients.

Because ηl(wl) is a subgradient of fl(wl) at wl, we have that

fl(rl)− f (wl) ≤ ηl(wl)(rl − wl), ∀rl ∈ L, ∀l = 1, . . . , L

Adding all of the L inequalities yields

L

∑
l=1

fl(rl)−
L

∑
l=1

fl(wl) ≤
L

∑
l=1

ηl(wl)(rl − wl), ∀r ∈ RL,

⇒ f (r)− f (w) ≤ η(w)′(r−w), ∀r ∈ RL

We extend the Frank-Wolfe type algorithm in Section 5 of Bertsimas and Sim

[8] to solve problem (4.9) of L variables. The algorithm is algorithm 3.

Proposition 4.2 (Algorithm 3 Improves the Objective Value At Each Itera-

tion). For any θl ≥ 0, for all l = 1, . . . , L, Let

x0 = argmin
y∈X

{(
c +

L

∑
l=1

θl(d
l)

)′
y

}

x1 = argmin
y∈X

{(
c +

L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
y

}

Then

c′x0 +
L

∑
l=1

fl

(
(dl)′x0

)
≥ c′x1 +

L

∑
l=1

fl

(
(dl)′x1

)
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Algorithm 3 Algorithm for solving problem (4.9).

1. Initialization:

• Select some θl ∈
[
η
(
(dl)′e

)
, η(0)

]
, for all l = 1, . . . , L.

• Let k = 0,

• x0 = argmin
y∈X

{(
c +

L

∑
l=1

θl(d
l)

)′
y

}

2. Until c′xk + ∑L
l=1 fl

(
(dl)′xk

)
= c′xk+1 + ∑L

l=1 fl

(
(dl)′xk+1

)
:

xk+1 = argmin
y∈X

{(
c +

L

∑
l=1

ηl

(
(dl)′xk

)
(dl)

)′
y

}

If L = 1, terminate step 2 once
(

d1
)′

xk+1 =
(

d1
)′

xk, instead of checking

the condition c′xk + f1

(
(d1)′xk

)
= c′xk+1 + f1

(
(d1)′xk+1

)
.

3. Output xk+1.
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Proof of Proposition 4.2.

c′x0 +
L

∑
l=1

fl

(
(dl)′x0

)
= c′x0 +

(
L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x0

+
L

∑
l=1

fl

(
(dl)′x0

)
−
(

L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x0

≥ c′x1 +

(
L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x1

+
L

∑
l=1

fl

(
(dl)′x0

)
−
(

L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x0

= c′x1 +
L

∑
l=1

fl

(
(dl)′x1

)
−

L

∑
l=1

fl

(
(dl)′x1

)
+

(
L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x1

+
L

∑
l=1

fl

(
(dl)′x0

)
−
(

L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x0

= c′x1 +
L

∑
l=1

fl

(
(dl)′x1

)
+

L

∑
l=1

fl

(
(dl)′x0

)
−

L

∑
l=1

fl

(
(dl)′x1

)
+

(
L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x1

−
(

L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x0

≥ c′x1 +
L

∑
l=1

fl

(
(dl)′x1

)
(∗)



94 Chapter 4. Algorithms

The first inequality uses the optimality of x1, and the second inequality (∗) uses

the fact that η
(
(d1)′x0, . . . , (dL)′x0

)
is a subgradient of f

(
(d1)′x0, . . . , (dL)′x0

)
at(

(d1)′x0, . . . , (dL)′x0

)′
.

Justifying (∗) in more detail:



L

∑
l=1

fl

(
(dl)′x0

)
−

L

∑
l=1

fl

(
(dl)′x1

)
+

(
L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x1 −

(
L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
x0


=


f
(
(d1)′x0, . . . , (dL)′x0

)
− f

(
(d1)′x1, . . . , (dL)′x1

)
+

(
L

∑
l=1

ηl

(
(dl)′x0

)
(dl)

)′
(x1 − x0)


=


f
(
(d1)′x0, . . . , (dL)′x0

)
− f

(
(d1)′x1, . . . , (dL)′x1

)
+

L

∑
l=1

(
ηl

(
(dl)′x0

) (
(dl)′x1 − (dl)′x0

))


=



f
(
(d1)′x0, . . . , (dL)′x0

)
− f

(
(d1)′x1, . . . , (dL)′x1

)

+


η1

(
(d1)′x0

)
...

ηL

(
(dL)′x0

)

′

(d1)′x1

...

(dL)′x1

−

((d1)′x0

...

(dL)′x0





≥ 0

Where the inequality is a direct application of the definition of a subgradient for

a convex function.
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4.3.1 Candidate Solutions

We consider two additional candidate solutions:

Minimize Time—Robust Case with Ellipsoidal Uncertainty: We ignore the en-

ergy constraint, and minimize time, using the ellipsoidal uncertainty set,

which becomes the optimization problem

min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + Ω1

√
∑

(i,j)∈A

(
σij
)

xij

s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X ⊂ {0, 1}m,

which is of the form (4.9) with L = 1. Like the deterministic case, the optimal

choice of arc velocities is to set each arc velocity to its corresponding upper

bound (go as fast as possible). We use algorithm 3 to heuristically find a

good path.

In more detail, The subgradient η
(
d′x
)

is

η
(
d′x
)
=


Ω1

2
√(

d′x
) , if d′x 6= 0

Ω1√
dmin

, if d′x = 0

where dmin is the smallest positive element of the vector d. Therefore, the

shortest path problems are of the form miny

{(
c + η

(
d′xk

)
d
)′ y}which have
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arc costs

(
`ij

v∗ij
+ τij

)
+ η

(
d′xk

) (
σij
)

.

When solving this shortest path problem, we can use the same A-star heuris-

tic function as for the deterministic minimum-time problem (Section 4.4.1).

Minimize Energy—Robust Case with Ellipsoidal Uncertainty: We ignore the en-

ergy constraint, and minimize energy, using the polyhedral uncertainty set,

which becomes an optimization problem

min
vij,xij

∑
(i,j)∈A

(
Eij(vij)

)
xij + Ω2

√
∑

(i,j)∈A

(
σ̃ij
)

xij

s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X ⊂ {0, 1}m,

which is of the form (4.9) with L = 1. Because the uncertainty does not

depend on arc velocity, the optimal choice of arc velocities is the same as

the deterministic case (solve minvij≤vij≤vij

{
Eij(vij)

}
). Then, use algorithm 3

to heuristically find a good path.

In more detail, the subgradient η
(
d′x
)

is

η
(
d′x
)
=


Ω2

2
√(

d′x
) , if d′x 6= 0

Ω2√
dmin

, if d′x = 0
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where dmin is the smallest positive element of the vector d.

Therefore, the shortest path problems are of the form

miny

{(
c + η

(
d′xk

)
d
)′ y} which have arc costs

Eij(v∗ij) + η
(
(d2)′xk

) (
σ̃ij
)

.

When solving this shortest path problem, we can use the same A-star heuris-

tic function as for the deterministic minimum-energy problem (Section 4.4.1),

where we make sure to use the equivalent formulation of energy consump-

tion and ignore the constant
mg
η

(ht − hs).

As with the deterministic case, the optimal robust minimum-energy solution

is the path with the least (planned or anticipated) energy consumption, which will

always be feasible, if a feasible solution exists. Also, the anticipated energy of the

optimal robust minimum-time solution is the most energy any optimal solution

would anticipate consuming.
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4.3.2 Solving the Lagrangian Relaxation

The full formulation (problem (3.7)) can be transformed into the following equiv-

alent problem below (as described in Section 4.3):

min
vij,xij

∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij + Ωt

√
∑

(i,j)∈A

(
σij
)

xij

+ λ

 ∑
(i,j)∈A

(
Eij(vij)

)
xij + Ωe

√
∑

(i,j)∈A

(
σ̃ij
)

xij − E0


s.t. vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X ⊂ {0, 1}m.

(4.10)

It can be solved using algorithm 4.

4.4 Using A-Star
The A-star algorithm is a search algorithm that guarantees optimality, provided

that an appropriate heuristic function g(i) is chosen. An appropriate g(i) is an

underestimate of the shortest path distance from node i to node t satisfying the

condition

g(i) ≤ g(j) + cij, ∀(i, j) ∈ A.

• In the language of artificial intelligence: A-star uses a consistent and admis-

sible heuristic g(i), and the label of node i is the current shortest distance

from s to node i plus g(i).
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Algorithm 4 Algorithm for solving problem (4.10).

• Maximize the lower bound over λ using subgradient ascent. A natural sub-

gradient at λ for optimal values v∗ij and x∗ij is:

∑
(i,j)∈A

(
Eij(v∗ij)

)
x∗ij + Ωe

√
∑

(i,j)∈A

(
σ̃ij
)

x∗ij − E0.

Use the values v̂ij, x̂ij found from the algorithm below as inputs (for v∗ij and

x∗ij) to find a good direction (even though they might not be optimal).

• We solve for the optimal velocities as in the deterministic case, as the uncer-

tainty does not depend on arc velocity. Technically, we need to compute the

velocities only once for each value of λ, as the optimal velocities remain the

same throughout each iteration of algorithm 3.

• Apply algorithm 3 for L = 2 to obtain a good (but not necessarily optimal)

path x̂.



100 Chapter 4. Algorithms

• In the language of network optimization: A-star is Dijkstra’s algorithm on

a graph where g(i) is a (well-chosen) dual feasible solution and the graph

uses the reduced costs with dual variable g(i) for each node i.

A-star stops once the true shortest path distance from s to t is known (that is,

when node t is permanently labeled). See [38] for more information about the

A-star algorithm, and see Sections 4.4.1 and 4.4.2 for our choice of the function

g(i).

Using these modifications substantially speeds up the shortest path computa-

tion. First, eliminating negative arc weights allows us to use algorithms like Dijk-

stra’s algorithm (which requires non-negative arc weights), instead of needing to

use an algorithm like the first-in-first-out label-correcting algorithm in Chapter 5

of Ahuja et al. [1] to account for negative arc weights. Second, because we only

care about finding a path from the source to sink (instead of finding shortest paths

from one source to all other nodes), we can stop the algorithm once an optimal

path from the source to destination is found, even if the algorithm did not look at

all of the arcs in the network. Using A-star helps guide the algorithm to check the

arcs that are more likely to be on an optimal path from the source to the destina-

tion, which more quickly finds the optimal path and prevents the algorithm from

checking some unnecessary arcs.

4.4.1 Deterministic Case

The first step is to reformulate the problem to eliminate negative arc weights

(and keep all of the arcs in the network). While the time component is always
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nonnegative, the energy consumption might be negative due to elevation (going

downhill). Therefore, the total energy consumption on any path P from source s

to sink t is

∑
(i,j)∈P

Eij(vij) =

∑
(i,j)∈P

(
`ij

η

(
1
2

ρCw A f v2
ij + µmg cos (αij) + mg sin (αij)

))

+ ∑
(i,j)∈P

Pacc

(
`ij

vij
+ τij

)

=

∑
(i,j)∈P

(
`ij

η

(
1
2

ρCw A f v2
ij + µmg cos (αij)

))

+ ∑
(i,j)∈P

`ij

η

(
mg sin (αij)

)
+ ∑

(i,j)∈P
Pacc

(
`ij

vij
+ τij

)
.

The first summation is always nonnegative, as cos(αij) is nonnegative for

−π/2 ≤ αij ≤ π/2. We simplify the second summation. The road grade αij can be

computed as arcsin

(
hj − hi

`ij

)
, where hi is the elevation of node i. The calculation

arcsin

(
hj − hi

`ij

)
is exact or a close approximation for small angles, depending

on whether `ij is interpreted as the hypotenuse or base of a right triangle for the
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trigonometric calculations. Using this computation,

∑
(i,j)∈P

`ij

η

(
mg sin (αij)

)
= ∑

(i,j)∈P

`ij

η

(
mg sin

(
arcsin

(
hj − hi

`ij

)))

= ∑
(i,j)∈P

`ij

η

(
mg

(
hj − hi

`ij

))

=
mg
η ∑

(i,j)∈P

(
hj − hi

)
=

mg
η

(ht − hs) .

Hence,

∑
(i,j)∈P

Eij(vij) = ∑
(i,j)∈P

(
`ij

η

(
1
2

ρCw A f v2
ij + µmg cos (αij)

)
+ Pacc

(
`ij

vij
+ τij

))

+
mg
η

(ht − hs) .

As a result, the Lagrangian relaxation model for finding a path from s to t with
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nonnegative arc weights for the deterministic case is:

L(λ) = min
vij,xij



∑
(i,j)∈A

(
`ij

vij
+ τij

)
xij

+ λ ∑
(i,j)∈A


`ij

η

(
1
2

ρCw A f v2
ij + µmg cos (αij)

)
+ Pacc

(
`ij

vij
+ τij

)
 xij

− λE0 − λ
mg
η

(ht − hs)


vij ≤ vij ≤ vij, ∀(i, j) ∈ A

x ∈ X ⊂ {0, 1}m.

To solve this problem, we apply the same method as in Section 4.1.2, and we

find the arc velocities v∗ij on an as-needed basis. Namely, we compute v∗ij only

when computing the cost of arc (i, j) (technically, we need to compute v∗ij only

once per arc per value of λ).

To compute vij, we use Theorem 4.1 as before, because
mg
η

(ht − hs) does not

depend on vij.

We now need to compute the heuristic function g(i) for the objective function

for the shortest path problem:



∑
(i,j)∈A

(
`ij

v∗ij
+ τij

)
xij

+ λ ∑
(i,j)∈A


`ij

η

(
1
2

ρCw A f

(
v∗ij
)2

+ µmg cos (αij)

)
+ Pacc

(
`ij

v∗ij
+ τij

)
 xij


.
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To compute this heuristic function, we underestimate time and energy sepa-

rately. For a constant speed, both time and energy increase as the distance traveled

increases; therefore, we estimate g(i) based on the minimum possible distance

from node i to t. If we have x and y distances in meters (by using a map pro-

jection), the geometrical distance between node i and node t can be computed

using the Pythagorean theorem. Otherwise, we can use the haversine formula

to compute the distance between two points with given latitude and longitude

coordinates (for example, Sinnott [41]). This geometrical distance, `g(i), is an un-

derestimate of the shortest path distance from node i to t.

Estimate for Time: To obtain a lower bound on time (as an estimate), we use the

maximum possible velocity, vg
time. We also underestimate the time due to

stops and turns. We assume for this heuristic that no time is lost due to

stopping or turns.

Estimate for Energy: As described when finding the deterministic minimum-

energy candidate solution in Section 4.1.1, the (unconstrained) velocity at

which energy is minimized is

vg
en = 3

√
ηPacc

ρCD A f
.

Let αhg be the value of α with the smallest value of cos (α) from all of the

arcs in the data.
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Therefore, the heuristic function for A-star that we suggest is

g(i) = `g(i)

 1
vg

time
+ λ


1
η

(
1
2

ρCw A f
(
vg

en
)2

+ µmg cos (αg)

)
+ Pacc

(
1

vg
en

)

 . (4.11)

We now prove that g(i) in (4.11) is consistent: g(i) ≤ g(j) + cij, ∀(i, j) ∈ A.

Proof. The proof follows from the triangle inequality of geometric (“straight line”)

distances and the fact that g(j) is an underestimate for the true cost from going

from node j to the end:

g(i) = `g(i)

 1
vg

time
+ λ


1
η

(
1
2

ρCw A f
(
vg

en
)2

+ µmg cos (αg)

)
+ Pacc

(
1

vg
en

)



≤
(
`g(j) + `ij

) 1
vg

time
+ λ


1
η

(
1
2

ρCw A f
(
vg

en
)2

+ µmg cos (αg)

)
+ Pacc

(
1

vg
en

)



= g(j) + `ij

 1
vg

time
+ λ


1
η

(
1
2

ρCw A f
(
vg

en
)2

+ µmg cos (αg)

)
+ Pacc

(
1

vg
en

)



≤ g(j) + `ij

 1
v∗ij

+ λ


1
η

(
1
2

ρCw A f

(
v∗ij
)2

+ µmg cos (αij)

)
+ Pacc

(
1

v∗ij

)



= g(j) + cij.

In the second-to last step of the proof, we used the fact that vg
time and vg

en and



106 Chapter 4. Algorithms

αg underestimate the total deterministic time and energy, respectively, compared

to using any other arc speed and arc angle.

4.4.2 A-Star Heuristic Function for Robust Cases and Candidate

Solutions

We can use the heuristic function in (4.11) for the robust optimization problems.

In addition, we modify the heuristic slightly to find various candidate solutions:

Minimize Time: Use only the travel time part of g(i).

Minimize Energy: Use only the part of g(i) that estimates energy.

Minimize Length: g(i) = `g(i).

In the last step of the proof of consistency for the deterministic case, = is

replaced by ≤ for the robust cases, as we add a nonnegative term to the second

to last line to obtain the cost for each particular robust optimization formulation

(0 is used as the underestimate for the robust part of the cost).

For the candidate solutions, a similar proof can be carried out, using the fact

that we separately underestimate time, energy, and length (and use 0 for the parts

that are not optimized for each candidate solution).

4.5 Pseudo-Polynomial Time Algorithms
In this section, we present two pseudo-polynomial time algorithms for certain

variations of the electric vehicle routing problem. One is a dynamic programming

algorithm and one uses an expanded network. While these algorithms might not
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be as practical as the other algorithms in this chapter, they show that the elec-

tric vehicle routing problem is weakly NP-Hard, and that the decision version is

weakly NP-Complete (the proof of NP-Hardness is in Section 3.1.2).

Both algorithms assume that vij ∈ Vij for all (i, j) ∈ A, where Vij is a set

of velocities for arc (i, j), and V is the set of velocities for all of the arcs. This

means that the energy consumed when traveling over each arc is one of |V|+ 1

possibilities, where the plus 1 is for an energy consumption of ∞ (indicating that

it is not feasible to take an arc). Therefore, without loss of generality, we will

assume that the set of possible energy consumptions over arc (i, j) is Ẽij and that

the set of all possible energy consumptions in total is Ẽ.∣∣Ẽ∣∣ can be exponential in |N|, where N is the set of nodes, even for small

values of |V|. For example, if |V| = 2, for a single path with |N| = n nodes, then∣∣Ẽ∣∣ could be as large as 2n−1.

If the traveller can use different velocities over each arc, say in the velocity set

Vij, then we take V = ∪(i,j)∈AVij and set the energy consumption of arc (i, j) to be

Eij(v) if v ∈ Vij and ∞ otherwise.

4.5.1 Dynamic Programming Algorithm

We use a dynamic programming approach as in Section 2.1 of Bertsekas [6]:

State (i, ẽ):

• i is the node we are currently at, i = 1, . . . , N

• ẽ is the remaining energy available, ẽ ∈ Ẽ.
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Stage (k): The maximum number of arcs remaining to get from node i to node

t = N (at most N − k arcs were used so far). Note that we can stay at node i

when going from stage k to stage k + 1.

Cost to Go Function Jk(i, ẽ): Jk(i, ẽ) is the minimum cost of a path from node i to

node t = N using at most N − k arcs with ẽ energy remaining.

We can now write the cost to go function.

Initial Conditions:

JN(i, ẽ) = ∞, i 6= t, ẽ ∈ Ẽ

Jk(i, ẽ) = ∞, ẽ /∈ Ẽ, k = 0, 1, . . . , N

JN(t, ẽ) = 0, (i = t), ẽ ∈ Ẽ

Bellman Equation:

Jk(i, ẽ) = min

 min
j∈{j:(i,j)∈A}

vij∈Vij
ẽ−Eij(vij)≥0

{
`ij

vij
+ τij + Jk+1

(
j, ẽ− Eij(vij)

)}
, Jk+1(i, ẽ)


i = 1, 2 . . . , N, k = 0, 1, 2, . . . , N − 1, ẽ ∈ Ẽ

This is Jk(i, ẽ) = the minimum of using arc (i, j) to go to node j from node

i (at velocity vij), or staying at node i (and allowing the path to use one less

arc).
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Here: Eij(vij) is the energy function (3.1):

Eij(vij) =
`ij

η

(
1
2

ρCw A f v2
ij + µmg cos (αij) + mg sin (αij)

)
+ Pacc

(
`ij

vij
+ τij

)
.

Optimal Cost: The optimal cost of a least-cost path from i to node t = N using

at most ẽ units of energy is

J∗(i, ẽ) = J0(i, ẽ)

Complexity: This dynamic program has N
∣∣Ẽ∣∣ states, N + 1 stages, and each mini-

mization requires checking up to N |V| terms (there are at most

|{j : (i, j) ∈ A}|+ 1 terms in the minimization for node i).

4.5.2 An Expanded Network Approach

We can expand the network using a dynamic flows approach as in Section 19.6 of

Ahuja et al. [1].

Network: A description of the expanded network is below.

• G = (N, A) is the original directed graph as before.

• G′ = (N′, A′) is the new expanded graph.

• For each node i in G, make
∣∣Ẽ∣∣ copies of it, where iẽ is in G′ if and only

if ẽ ∈ Ẽ. iẽ is the node representing that we are at node i in G and we

have ẽ units of energy left to get to the final destination.
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• Include an arc (iẽ, jẽ′) in G′ if and only if there is an arc (i, j) in G

and there is some velocity vij ∈ Vij such that ẽ− ẽ′ units of energy are

consumed. Give this arc cost cij =
`ij

vij
+ τij.

• Include a source node s′ and a sink node t′ in G′.

• Include an arc (s′, 1E0) in G′ with cost 0.

• For each ẽ ∈ Ẽ, make an arc (Nẽ, t′) in G′ with cost 0.

Getting an Optimal Path: Solving a static shortest path problem over G′ will give

a minimum cost path. Then, an optimal path in G is to take the nodes in the

path in G′, omitting s′, t′, and ignoring the values of ẽ on the nodes. Because

the only outgoing arc from s′ is (s′, 1E0), we will use at most E0 units of

energy.

Note that a path in the expanded network corresponds to a walk in the

original network. However, a path in the expanded network will correspond

to a cycle in the original network only if there is a negative-cost cycle in the

original network.

Complexity: There are (N
∣∣Ẽ∣∣+ 2) nodes and at most |A| |V|

∣∣Ẽ∣∣ arcs in G′. If we

use a heap implementation of Dijkstra’s algorithm, the total complexity is

O
(
|A| |V|

∣∣Ẽ∣∣+ N
∣∣Ẽ∣∣ log (N

∣∣Ẽ∣∣)). However, because this graph is a directed

acyclic graph, we can solve this problem using the algorithm for shortest

path in acyclic graphs, which implies a complexity of O
(
|A| |V|

∣∣Ẽ∣∣).
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Chapter 5

Data and Computations

In this chapter, we apply the algorithms in Chapter 4 to real-world examples.

First, we describe the data we use to construct the problem instances (Section

5.1). Then, in Section 5.2, we describe the method for doing the computations

and show the results based on example trips in Massachusetts (Section 5.2.1) and

Michigan (Section 5.2.2).

5.1 Data
We use three types of data:

• Road network data that we extract from the Esri StreetMap North America

data for ArcGIS Desktop 10.1 ([45]). It is from the detailed streets data file.

• Elevation data from the U.S Geological Survey ([48]), obtained from the

seamless viewer (http://nationalmap.gov/viewer.html). It is the “National

Elevation Dataset 1/3 Arc-Second (NED 1/3)” and has approximately a 10-

http://nationalmap.gov/viewer.html
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meter resolution (10 meters by 10 meters raster cells).

• Map data, which is used as a basemap for some of the pictures. It is from

the Esri World Street Map basemap ([16]).

For most of the coefficients in the energy model, we use proprietary numerical

values provided by Ford (reasonable, but not exact, values for most coefficients

can also be found in the literature). Estimates were made for the other parameters

in the problem when the appropriate data was not available.

We apply uncertainty to the arcs in the following way:

Time: σij = 0.2

(
`ij

vij
+ τij

)
Energy: σ̃ij = 0.2Eij(vij)

5.2 Computations
The computations were implemented in Java and used the Java Universal Net-

work/Graph Framework (JUNG) (http://jung.sourceforge.net/index.html),

and pictures of the routes were drawn using Unfolding for Eclipse (http://

unfoldingmaps.org) with the OpenStreetMap map provider ([34]).

Some insights illustrated by the computations in Sections 5.2.1 and 5.2.2 are:

• We can compute a Pareto frontier, illustrating a time-energy tradeoff be-

tween various paths. Sometimes, changing routes save a significant amount

of energy while requiring only a little more time.

• Applying the estimates from Lagrangian relaxation suggests that the solu-

tions from our algorithms are near-optimal, if not optimal.

http://jung.sourceforge.net/index.html
http://unfoldingmaps.org
http://unfoldingmaps.org
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• The computations run quickly. This is primarily due to our application of

Lagrangian relaxation, particular choice of algorithms to solve the robust

optimization problems, and our use of A-star to solve the shortest path prob-

lems that arise during the computations.

• Using robust optimization protects the driver from uncertainty. In particular,

there will be plenty of energy to make it to the destination, even under

uncertainty, and the tradeoff will be only a modest amount of time.

To produce the computations, we first computed the minimum time and min-

imum energy solutions (incorporating the relevant uncertainty). The total energy

consumed (anticipated energy consumed, when solving the robust optimization

problems) of the minimum energy solution was set as the lower energy limit, and

the energy consumed (anticipated energy consumed, when solving the robust op-

timization problems) by the minimum time solution was set as the upper energy

limit. We then solved 60 instances (one for each particular energy limit), varying

the energy limit in equal amounts from the lower limit to the upper limit.

5.2.1 A Trip from Belmont, MA to MIT

We apply the algorithms for polyhedral uncertainty to an example trip from Bel-

mont, MA to MIT. The underlying network has 38,713 nodes and 80,711 arcs.

The computations illustrate that we can compute a Pareto frontier represent-

ing the time-energy tradeoff of various routes. The trip time and energy con-

sumption shown in the Pareto frontier in Figure 5.1 are the trip times and energy

consumption that the algorithm for robust optimization anticipates (assuming a
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worst-case scenario within the restrictions from the uncertainty sets). An exam-

ple of the time-energy tradeoff is illustrated by paths 5 and 6 in Figure 5.1. Path

6 (the robust minimum-time path) has an anticipated travel time of 20 minutes

and 38 seconds, and would require (an anticipated) 1.76 kWh. If the driver would

be willing to use path 5 and take an additional 21 seconds (1.7% more time),

the (anticipated) energy consumption would be reduced by 0.30 kWh (16.8%). As

shown in Figure 5.2, the routes on the Pareto frontier (Figure 5.1) are different,

although some routes have substantial overlap. The multiple points on the Pareto

Frontier that correspond to one path indicate that changing the vehicle speeds

on the arcs also affects the total energy consumption, such as path numbers 1,

3, and 5 in Figure 5.1. Generally, going faster will save time and require more

energy, and this change might be significant. For example, going faster on path 1

from energy-optimal velocities to maximum velocities leads to a 2 minute 40 sec-

ond (anticipated) decrease in time (10.3%) at an additional (anticipated) energy

consumption of 0.03 kWh (2.6%).

As shown in Figure 5.1, the Lagrangian relaxation does a good job of estimat-

ing the Pareto Frontier for the robust case, under polyhedral uncertainty. While

the lower estimates are technically not lower bounds for the robust optimization

cases, as we use heuristics to solve the (minimization) subproblem, they still sug-

gest that the solutions returned by the algorithm are quite good. The estimates

from Lagrangian relaxation form a curve that seems to very closely fit to the

feasible solutions. In addition, the percentage gap between the estimate and the

(anticipated) travel time of the best feasible solution found was often less than

5% and sometimes near 0%, although it was as high as 16% for one instance. As
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shown in Figure 5.1, there is a significant difference in the (anticipated) travel

time of the best feasible solution compared to the estimate from the Lagrangian

relaxation when the energy limit is very low. For the deterministic case, we solve

the (minimization) subproblem to optimality, and the Lagrangian relaxation pro-

vides a true lower bound on the objective value of the main optimization prob-

lem. The feasible solutions on the Pareto frontier and the close fit of the bounds

from Lagrangian relaxation indicate that the solutions our algorithms find are

near-optimal (see Figure 5.11). Like the robust case, the bounds from Lagrangian

relaxation seem to almost fit a curve to the feasible solutions in the plot. The per-

centage gap between the lower bound from Lagrangian relaxation and the travel

time of the best feasible solution found is often less than 5% and sometimes near

0%, although it was as high as 20% for one instance. As shown in Figure 5.11,

there is a significant difference in the travel time of the best feasible solution com-

pared to the estimate from the Lagrangian relaxation when the energy limit is

very low.

The algorithm runs in less than 2 seconds of CPU time for each of the instances,

as shown in Figure 5.3. The algorithms were run on a MacBook Pro with a 2.0

GHz Intel Core i7 processor (4 cores) and 8 GB 1333 MHz DDR3 RAM, where the

maximum heap size was set to 3 GB.

We also conducted simulations that highlight the advantage of using a robust

formulation. Under some randomness, the deterministic solution might require

more than the available energy for the driver to reach the destination, although it

is faster than the robust solution. For example, Figures 5.4 (energy) and 5.5 (time)

show the results from a simulation for the case when the energy limit is set to be
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Figure 5.1: Left: The Pareto frontier, excluding candidate solutions, for the trip

from Belmont, MA to MIT, using robust optimization under polyhedral uncer-

tainty and allowing for 10 iterations of subgradient ascent. Right: The estimates

of the robust Pareto frontiers suggest that our algorithm provides near-optimal

solutions.
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Figure 5.2: The paths produced for the trip from Belmont, MA to MIT using

the robust optimization framework for polyhedral uncertainty, illustrated over

OpenStreetMap data ([34]) using Unfolding for Eclipse.

1.53 kWh. While the path found by solving the deterministic case consumes too

much energy in 38% of the trials, the robust route has enough energy for all of the

trials. While the robust route (computed under polyhedral uncertainty) requires

more time, the difference of the means of the simulated travel times is about 0.37

minutes (about 22 seconds).
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Figure 5.3: The CPU running times, in seconds, for the trip from Belmont, MA to

MIT, for polyhedral uncertainty.
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1.17 1.25 1.35 1.42 1.52 1.63
Energy Consumption (kWh)

38%

Limit: 1.53 kWh 

Robust Deterministic 

Figure 5.4: The Power of Robustness (1): The distribution of simulated trip energy

consumption from Belmont, MA to MIT shows that incorporating robustness en-

sures that the vehicle can reach its destination when the energy limit is 1.53 kWh.

In the deterministic case, the vehicle does not have enough energy to reach the

destination 38% of the time.
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17.96 18.35 18.65 19.02 19.35 19.68
Trip Time (min)

Robust Deterministic 

Figure 5.5: The Power of Robustness (2): According to the simulated travel time

distributions for the trip from Belmont, MA to MIT, the time sacrificed is small

(the difference of the means of the simulated travel times is about 0.37 minutes)

compared with the increased confidence of reaching the destination using at most

the allowed amount of energy.
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We can also conduct similar computations for the deterministic case and for

ellipsoidal uncertainty, which produce similar results.

The computations for ellipsoidal uncertainty are in Figures 5.6, 5.7, and 5.8.

If we conduct simulations with underlying uncertainty, the robust formulation

under ellipsoidal uncertainty also effectively protects against uncertainty, for a

reasonable cost in time (the difference of the means of the simulated travel times

is about 0.36 minutes), as shown in Figures 5.9 and 5.10. Figures 5.9 and 5.10

are very similar to Figures 5.4 and 5.5 because the algorithms for polyhedral and

ellipsoidal uncertainty find the same route for the energy limit of 1.53 kWh.

The computations for the deterministic case are shown in Figures 5.11, 5.12,

and 5.13.
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Figure 5.6: Left: The Pareto frontier, excluding candidate solutions, for the trip

from Belmont, MA to MIT, using robust optimization under ellipsoidal uncer-

tainty and allowing for 10 iterations of subgradient ascent. Right: The estimates

of the robust Pareto frontiers suggest that our algorithm provides near-optimal

solutions.
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Figure 5.7: The paths produced for the trip from Belmont, MA to MIT using the

robust optimization framework for ellipsoidal uncertainty, illustrated over Open-

StreetMap data ([34]) using Unfolding for Eclipse.
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Figure 5.8: The CPU running times, in seconds, for the trip from Belmont, MA to

MIT for ellipsoidal uncertainty.
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1.17 1.25 1.34 1.43 1.52 1.63
Energy Consumption (kWh)

37%

Limit: 1.53 kWh 

Robust Deterministic 

Figure 5.9: The Power of Robustness (1): The distribution of simulated trip energy

consumption from Belmont, MA to MIT shows that incorporating robustness (un-

der ellipsoidal uncertainty) ensures that the vehicle can reach its destination when

the energy limit is 1.53 kWh. In the deterministic case, the vehicle does not have

enough energy to reach the destination 37% of the time.
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Figure 5.10: The Power of Robustness (2): According to the simulated travel time

distributions for the trip from Belmont, MA to MIT, the time sacrificed is small

(the difference of the means of the simulated travel times is about 0.36 minutes)

compared with the increased confidence of reaching the destination using at most

the allowed amount of energy.
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Figure 5.11: Left: The Pareto frontier, excluding candidate solutions, for the trip

from Belmont, MA to MIT, for the deterministic case, and allowing for 10 iter-

ations of subgradient ascent. Right: The estimates of the robust Pareto frontiers

suggest that our algorithm provides near-optimal solutions.
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Figure 5.12: The paths produced for the trip from Belmont, MA to MIT using

the deterministic framework, illustrated over OpenStreetMap data ([34]) using

Unfolding for Eclipse.
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Figure 5.13: The CPU running times, in seconds, for the trip from Belmont, MA

to MIT for the deterministic case.
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Figure 5.14: Left: The Pareto frontier, excluding candidate solutions, for the trip in

Michigan, using robust optimization under polyhedral uncertainty and allowing

for 10 iterations of subgradient ascent. Right: The estimates of the robust Pareto

frontiers suggest that our algorithm provides near-optimal solutions.

5.2.2 A Longer Trip in Michigan, with a Larger Network

We apply the algorithms to an example trip in Michigan from Lansing, MI to

Dearborn, MI for a larger network, which has 409,054 nodes and 975,666 arcs. In

general, we obtain similar results as for the example trip from Belmont, MA to

MIT, although running times are longer due to the greater distance traveled and

larger network. Figures 5.14, 5.15, and 5.16 illustrate the results for polyhedral

uncertainty.

We can also conduct similar computations for the deterministic case and for

ellipsoidal uncertainty, which produce similar results. The computations for ellip-

soidal uncertainty are in Figures 5.17, 5.18, and 5.19, and the computations for the

deterministic case are in Figures 5.20, 5.21, and 5.22.
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Figure 5.15: The paths produced for the trip in Michigan using the robust opti-

mization framework for polyhedral uncertainty, illustrated over OpenStreetMap

data ([34]) using Unfolding for Eclipse.
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Figure 5.16: The CPU running times, in seconds, for the trip in Michigan, for

polyhedral uncertainty.
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Figure 5.17: Left: The Pareto frontier, excluding candidate solutions, for the trip in

Michigan, using robust optimization under ellipsoidal uncertainty and allowing

for 10 iterations of subgradient ascent. Right: The estimates of the robust Pareto

frontiers suggest that our algorithm provides near-optimal solutions.

Figure 5.18: The paths produced for the trip in Michigan using the robust opti-

mization framework for ellipsoidal uncertainty, illustrated over OpenStreetMap

data ([34]) using Unfolding for Eclipse.
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Figure 5.19: The CPU running times, in seconds, for the trip in Michigan for

ellipsoidal uncertainty.
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Figure 5.20: Left: The Pareto frontier, excluding candidate solutions, for the trip

in Michigan, for the deterministic case, and allowing for 10 iterations of subgra-

dient ascent. Right: The estimates of the robust Pareto frontiers suggest that our

algorithm provides near-optimal solutions.

Figure 5.21: The paths produced for the trip in Michigan using the determin-

istic framework, illustrated over OpenStreetMap data ([34]) using Unfolding for

Eclipse.
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Figure 5.22: The CPU running times, in seconds, for the trip in Michigan for the

deterministic case.
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Extensions, Future Work, and

Conclusion

In this chapter, we propose extensions, describe additional future work, and then

conclude the thesis. We first describe a way to incorporate traffic signals and

traffic conditions into the optimization framework, and apply our algorithms to an

example with traffic lights and some traffic data in Cambridge, MA (Section 6.1).

Then, we propose an optimization-based formulation that explicitly incorporates

acceleration (Section 6.2). After that, we describe additional future work (Section

6.3). And finally, we conclude this thesis (Section 6.4).

6.1 Extension: Traffic Signals and Traffic Conditions
We obtain data with traffic signals in Cambridge, MA ([11]), which is shown in

Figure 6.1, and additional network data from the Massachusetts Department of

Transportation (MassDOT) ([31]) to incorporate into our analysis. In particular,
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we use the MassDOT data’s average annual daily traffic count for each road or

highway as an estimate for real-time traffic information that might be available for

each arc in the graph. We break the traffic counts into 4 categories, as illustrated

in Figure 6.2, and adjust the lower and upper velocity bounds for the arcs based

on these counts:

• Minimal (0–5,765 ADT): 0% change in speed

• Low (5,766–25,786 ADT): 20% reduction in speed

• Medium (25,787–83,659 ADT): 40% reduction in speed

• High (83,660 and higher ADT): 60% reduction in speed.

In addition, we assume that each stoplight requires the driver to wait a random

time that is uniformly distributed over 0 to 30 seconds. This translates to adding

the mean of 15 seconds to τij to the arcs with the stoplights, and adding another 15

seconds to σij (the appropriate parameters for energy consumption are modified

accordingly, based on this change).

The network has 9334 nodes and 17,575 arcs. The traffic signal data does not

include stop signs. Incorporating this additional data changes the route taken,

as shown in Figure 6.3. In particular, the top route in Figure 6.3 is on a street

with traffic signals, and when these signals are incorporated into the data, the

algorithm picks the bottom route in Figure 6.3 that avoids some of the traffic

signals (stop signs were not included in the data). In both cases, only one route

from MIT to Harvard Square is on the Pareto frontier. For example, when there

are no traffic signals and minimal traffic conditions, the robust-minimum-time
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Sources: Esri, DeLorme, NAVTEQ, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong),
Esri (Thailand), TomTom, 2012

Figure 6.1: A smaller road network, combined with the locations of 250 traffic

signals in Cambridge, MA from the Cambridge Department of Transportation

([11])



140 Chapter 6. Extensions, Future Work, and Conclusion

Sources: Esri, DeLorme, NAVTEQ, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong),
Esri (Thailand), TomTom, 2012

MassDOT Network
Average Annual Daily Traffic (ADT)

0 - 5765
5766 - 25786
25787 - 83659
83660 - 187376

Figure 6.2: Average Annual Daily Traffic Count data from the Massachusetts De-

partment of Transportation ([31])
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path anticipates 6 minutes and 25 seconds and 0.4662 kWh under uncertainty,

and under the deterministic setting, it would require 5 minutes and 50 seconds

and 0.4199 kWh. However, with traffic signals and traffic conditions, the robust-

minimum-time path anticipates 10 minutes and 4 seconds and 0.5706 kWh under

uncertainty, and under the deterministic setting, it would require 8 minutes and

21 seconds and 0.4867 kWh. This is a substantial increase in time, and is due to

the incorporation of traffic congestion and the additional time spent waiting at

stoplights.
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Figure 6.3: The path produced for a trip in Cambridge, MA changes due to traffic

and traffic signals. In particular, the bottom path avoids some of the traffic signals.

In particular, the path on the top is produced when traffic signals and traffic

conditions are not considered, while the path on the bottom takes these things

into account. Both paths were found using the robust optimization framework for

polyhedral uncertainty and are illustrated over OpenStreetMap data ([34]) using

Unfolding for Eclipse.
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6.2 Extension: Incorporating Acceleration

6.2.1 Energy and Time Formulas

Accelerating or Decelerating Only

In terms of forces and integrals, the energy model (2.1) in Section 2.1 becomes:

F(t) =
1
2

ρCw A f v2(t) + µmg cos (α(t)) + mg sin (α(t)) + mδ
dv
dt

E =
∫ T0

0

1
η

Fv(t)dt + PaccT0,

where T0 is the total time.

Suppose that the vehicle accelerates from velocity v0 to v f at a rate a > 0 at a

constant road grade α. Then results from using basic mechanics imply:

• The time it takes to accelerate is tv f =
v f − v0

a
. Integrating with respect to

time:

dv(t)
dt

= a

⇒ v(t) = a ∗ t + v0

⇒ tv f =
v f − v0

a

• The vehicle will travel a distance of
v2

f − v2
0

2a
while accelerating. The time

required to accelerate to velocity v f is tv f =
v f − v0

a
. During this time, a
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distance of xv f is traveled, which is

xv f =
1
2

at2
v f + v0tv f

⇒ xv f =

(
v f − v0

)2

2a
+ v0

(v f − v0

a

)
⇒ xv f =

v2
f − v2

0

2a

• As we will show next, the vehicle will consume a total energy of

E =



1
ηa

(
1
8

ρCw A f v4
f +

1
2
(µmg cos α + mg sin α) v2

f

)
+

1
2η

mδv2
f

− 1
ηa

(
1
8

ρCw A f v4
0 +

1
2
(µmg cos α + mg sin α) v2

0

)
− 1

2η
mδv2

0

+ Pacc

(v f − v0

a

)


.

Note. If the vehicle is decelerating, namely, going from velocity v0 to v f < v0 at

a rate of a < 0, then all three prior formulas are the same (the integration for

computing the energy is a little different, but the result is the same).

To obtain the energy, we integrate with respect to time from t = 0 to T =
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v f − v0

a
.

E =



∫ v f−v0
a

0

1
η

 1
2

ρCw A f (v0 + at)3

+ (µmg cos α + mg sin α + mδa) (v0 + at)

 dt

+ Pacc

(v f − v0

a

)


E =


1

ηa

∫ v f

v0

(
1
2

ρCw A f u3 + (µmg cos α + mg sin α + mδa) u
)

du

+ Pacc

(v f − v0

a

)


[u = v0 + at, du = adt]

E =


1

ηa

(
1
8

ρCw A f u4 +
1
2
(µmg cos α + mg sin α + mδa) u2

)∣∣∣∣v f

v0

+ Pacc

(v f − v0

a

)


E =



1
ηa

(
1
8

ρCw A f v4
f +

1
2
(µmg cos α + mg sin α + mδa) v2

f

)
− 1

ηa

(
1
8

ρCw A f v4
0 +

1
2
(µmg cos α + mg sin α + mδa) v2

0

)
+ Pacc

(v f − v0

a

)



E =



1
ηa

(
1
8

ρCw A f v4
f +

1
2
(µmg cos α + mg sin α) v2

f

)
+

1
2η

mδv2
f

− 1
ηa

(
1
8

ρCw A f v4
0 +

1
2
(µmg cos α + mg sin α) v2

0

)
− 1

2η
mδv2

0

+ Pacc

(v f − v0

a

)


Formulas when Traveling at a Constant Velocity after Accelerating

If the vehicle is traveling at a constant velocity vc for a time T0, at a constant road

grade α, then we have the following results:
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• The vehicle will travel a distance of vcT0 (distance equals speed times time).

• The vehicle will consume a total energy of

E =
1
η

(
1
2

ρCw A f v3
c T0 + µmg cos (α)vcT0 + mg sin (α)vcT0

)
+ PaccT0.

To obtain this result, apply the energy model (2.1) in Section 2.1, using ∆t =

T0 and ∆v = 0.

Using these results and the ones in Section 6.2.1, suppose that the vehicle

wishes to travel a distance of `, starts at velocity v0, accelerates at a rate a > 0 to

velocity v f , and then travels the rest of the distance at velocity v f . Then:

• The total travel time is

v f − v0

a
+

`−
v2

f − v2
0

2a
v f

=
v f − v0

a
+

2a`+ v2
0 − v2

f

2av f

=
`

v f
+

1
a

(
v f

2
− v0 +

v2
0

2v f

)

=
`

v f
+

(
v f − v0

)2

2av f
.

• The total energy consumed is

E =



− 1
8aη

ρCw A f

(
v2

f − v2
0

)2
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+

(
v f − v0

)2

2av f

)


.
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If the vehicle is decelerating, namely, going from velocity v0 to v f < v0 at a

rate of a < 0, then the same formulas hold.

The algebra for the energy consumption is below:

E =





1
ηa

(
1
8

ρCw A f v4
f +

1
2
(µmg cos α + mg sin α) v2

f

)
+

1
2η

mδv2
f

− 1
ηa

(
1
8

ρCw A f v4
0 +

1
2
(µmg cos α + mg sin α) v2

0

)
− 1

2η
mδv2

0

+ Pacc

(v f − v0

a

)


+

1
2η

ρCw A f v3
f

(
2a`+ v2

0 − v2
f

2av f

)

+
1
η
(µmg cos (α) + mg sin (α)) v f

(
2a`+ v2

0 − v2
f

2av f

)

+ Pacc

(
2a`+ v2

0 − v2
f

2av f

)



.



148 Chapter 6. Extensions, Future Work, and Conclusion

This is the same as

E =



1
ηa

(
1
8

ρCw A f v4
f

)
+

1
2η

mδv2
f

+
1

2η
ρCw A f v2

f

(
2a`+ v2

0 − v2
f

2a

)

− 1
ηa

(
1
8

ρCw A f v4
0

)
− 1

2η
mδv2

0

+
1

2aη
(µmg cos α + mg sin α) v2

f

− 1
2aη

(µmg cos α + mg sin α) v2
0

+
1

2aη
(µmg cos (α) + mg sin (α))

(
2a`+ v2

0 − v2
f

)
+ Pacc

(
`

v f
+

(
v f − v0

)2

2av f

)



.

Which is:

E =



− 1
8aη

ρCw A f

(
v4

f − 2v2
0v2

f + v4
0

)
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+

(
v f − v0

)2

2av f

)


.

This is the same as

E =



− 1
8aη

ρCw A f

(
v2

f − v2
0

)2
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+

(
v f − v0

)2

2av f

)


.
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If v0 = v f in the prior time and energy formulas, then a can be any value and

we will obtain the time and energy consumption for the case of no acceleration.

6.2.2 Optimization-Based Formulations

It is possible to directly incorporate acceleration into a mathematical model. How-

ever, incorporating acceleration means that the travel time over a segment de-

pends on the final velocity of the previous segment, which makes the optimiza-

tion problem more difficult. Here we describe some possible optimization-based

formulations that include acceleration.

In this section, we assume that the vehicle can accelerate or decelerate to v f

before traveling a distance of `. Mathematically, we are assuming that

` ≥
v2

f − v2
0

2a
.

This is with no loss of generality since we can add this as a constraint in the

mathematical program and we can select v f to be as close to or as far away from

v0 as we would like.

One Arc Formulation

We need to solve three problems and select the solution out of the three with the

lowest objective value:

• Accelerate from v0 to v f > v0 at rate a > 0.

• Decelerate from v0 to v f < v0 at rate of acceleration a < 0.
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• Choose a constant speed v0 = v f .

To illustrate the one arc formulation, consider the case when we are accelerating

at rate a > 0.

min
v0,v f ,a

`

v f
+

(
v f − v0

)2

2av f

s.t.



− 1
8aη

ρCw A f

(
v2

f − v2
0

)2
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+

(
v f − v0

)2

2av f

)


≤ E0

v ≤ v0 ≤ v f ≤ v

v2
f − v2

0

2a
≤ `

0 < a ≤ Raccel.
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We can set u = 1/a to obtain the problem (6.1).

min
v0,v f ,u

`

v f
+ u

(
v f − v0

)2

2v f

s.t.



− u
8η

ρCw A f

(
v2

f − v2
0

)2
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+ u

(
v f − v0

)2

2v f

)


≤ E0

v ≤ v0 ≤ v f ≤ v

u

(
v2

f − v2
0

2

)
≤ `

u ≥ 1/Raccel.

(6.1)

The corresponding problem for deceleration at a rate a < 0 is:

min
v0,v f ,a

`

v f
+

(
v f − v0

)2

2av f

s.t.



− 1
8aη

ρCw A f

(
v2

f − v2
0

)2
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+

(
v f − v0

)2

2av f

)


≤ E0

v ≤ v f ≤ v0 ≤ v

v2
f − v2

0

2a
≤ `

Rdecel ≤ a < 0.
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By substituting û = −1/a, we obtain the problem

min
v0,v f ,û

`

v f
− û

(
v f − v0

)2

2v f

s.t.



û
8η

ρCw A f

(
v2

f − v2
0

)2
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+ u

(
v f − v0

)2

2v f

)


≤ E0

v ≤ v f ≤ v0 ≤ v

− û

(
v2

f − v2
0

2

)
≤ `

û ≥ −1/Rdecel.

(6.2)

When v0 and v f are fixed, the formulations (6.1) and (6.2) are both linear

optimization problems (select the formulation that is appropriate for the choice

of vi).

The problem with no acceleration (or deceleration) is a much simpler problem;

it is a subproblem of formulations (6.1) and (6.2) for the case when v f = v0 (and
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just ignore u):

min
v

`

v

s.t.


+

1
2η

ρCw A f v2`

+
`

η
(µmg cos (α) + mg sin (α))

+ Pacc

(
`

v

)


≤ E0

v ≤ v ≤ v.

(6.3)

Suppose that we require that |a| ≤ R, instead of using the acceleration bounds

for Raccel and Rdecel. We can combine problems (6.1) and (6.2) in the following
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way:

min
v0,v f ,u,y

`

v f
+ (2y− 1)u

(
v f − v0

)2

2v f

s.t.



− u
8η

ρCw A f

(
v2

f − v2
0

)2
+

1
2η

ρCw A f v2
f `

+
`

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
f − v2

0

)
+ Pacc

(
`

v f
+ (2y− 1)u

(
v f − v0

)2

2v f

)


≤ E0

v ≤ v0 ≤ v

v ≤ v f ≤ v

v f − v0 ≤ vy

v0 − v f ≤ v(1− y)

(2y− 1)u

(
v2

f − v2
0

2

)
≤ `

u ≥ 1/R

y ∈ {0, 1},

(6.4)

where u =
1
|a| and we use the binary variable

y =


1 if v f ≥ v0

0 if v f ≤ v0

We can determine the value of a from the values of u and y. When v f = v0, it does

not matter which value y takes.
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One Path Formulation

Suppose that the driver is about to traverse a given path P, where the initial

speeds at each node i, vi, are already decided. At what rate should the driver

accelerate or decelerate from vi to vj (and then travel the remaining distance at

speed vj) on each arc (i, j) ∈ P to minimize time, subject to a total budget for

energy consumption? This question can be formulated as a linear program, based

on the formulation (6.4):

min
uij

∑
(i,j)∈P

(
`ij

vj
+ (2yij − 1)uij

(
vj − vi

)2

2vj

)

s.t. ∑
(i,j)∈P



−
(2yij − 1)uij

8η
ρCw A f

(
v2

j − v2
i

)2
+

1
2η

ρCw A f v2
j `ij

+
`ij

η
(µmg cos (α) + mg sin (α)) +

1
2η

mδ
(

v2
j − v2

i

)
+ Pacc

(
`ij

vj
+ (2yij − 1)uij

(
vj − vi

)2

2vj

)


≤ E0

(2yij − 1)uij

(
v2

j − v2
i

2

)
≤ `ij, ∀(i, j) ∈ P

uij ≥ 1/Rij, ∀(i, j) ∈ P.

(6.5)

The notation for (6.5) is:

• uij =
1∣∣aij
∣∣ , where aij is the rate of acceleration or deceleration for arc (i, j).

• yij =


1 if vj ≥ vi

0 if vj < vi

is a data point that indicates whether the car needs to accelerate (1) or de-
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celerate (0) from vi to vj. Therefore, aij =
(2yij − 1)

uij
.

Things to note:

• (2yij− 1)uij

(
v2

j − v2
i

2

)
≤ `ij is the requirement that the driver cannot travel

more than length `ij when accelerating or decelerating on arc (i, j).

• We assume that there are no stops or turns along the way.

• The formulation for deceleration is similar.

General Path Formulation

We can extend the formulation (6.4) to the case when we optimize over a path as

well.

The initial velocity for arc (i, j) is the final velocity of the previous arc, which

is

v0,i =


∑

k:(k,i)∈A
xkivki i 6= s

0 i = s

where the xki ensure that we use the velocity of the arc that was actually traveled.

We start off with an initial velocity of 0 at the source node, s.

We assume that we choose the rate of acceleration on each arc to be aij.

Let uij =
1∣∣aij
∣∣
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Let

yij =


1 if vij ≥ v0,i

0 if vij ≤ v0,i

Let M = max(i,j)∈A
{

vij
}

.
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The formulation is:

min
vij,v0,i,uij,yij,xij

∑
(i,j)∈A

(
`ij

vij
+ (2yij − 1)uij

(
vij − v0,i

)2

2vij

)
xij

s.t. ∑
(i,j)∈A



−
(2yij − 1)uij

8η
ρCw A f

(
v2

ij − v2
0,i

)2

+
1

2η
ρCw A f v2

ij`+
1

2η
mδ
(

v2
ij − v2

0,i

)
+

`

η
(µmg cos (α) + mg sin (α))

+ Pacc

(
`

vij
+ (2yij − 1)uj

(
vij − v0,i

)2

2vij

)


xij ≤ E0

v0,i = ∑
k:(k,i)∈A

xkivki, ∀i ∈ V, i 6= s

v0,s = 0

vij ≤ vij ≤ vij, ∀(i, j) ∈ A

vij − v0,i ≤ Myij, ∀(i, j) ∈ A

v0,i − vij ≤ M(1− yij), ∀(i, j) ∈ A

(2yij − 1)uij

(
v2

ij − v2
0,i

2

)
≤ `ij, ∀(i, j) ∈ A

uij ≥ 1/Rij, ∀(i, j) ∈ A

yij ∈ {0, 1}, ∀(i, j) ∈ A

x ∈ X ⊂ {0, 1}|A|.

(6.6)

One could probably simplify the formulation (6.6) somewhat by substituting v0,i

into the expressions in the formulation and use the fact that xij ∈ {0, 1} implies

xij = x2
ij = x3

ij = x4
ij = x5

ij.
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If we would like to require that we stop at the final destination, we would add

the constraints vit = 0 for all (i, t) ∈ A, where t is the sink node. In this case

we would be forcing the vehicle to decelerate to 0 and decelerate for the whole

traversal of that arc.

6.3 Additional Future Work
Besides the extensions in Sections 6.1 and 6.2, future work could continue to im-

prove the modeling accuracy and include algorithmic enhancements to further

improve running time, especially for larger networks. Possible ways to improve

modeling accuracy are to incorporate driver behavior and to do additional calibra-

tion of the data and parameters used (based on real-world drives, for example).

Additional algorithmic enhancements might include parallelization, and further

improvements to solving the shortest path problem.

Incorporating driver behavior in to the optimization framework might im-

prove modeling accuracy, as we expect an aggressive driver to consume more

energy, but require less drive time. Currently, our model assumes that the driver

will drive at the specified speeds vij, and at most the upper bounds vij (which can

be seen as a speed limit). However, given a particular speed limit and route, dif-

ferent people will drive a specified route in different ways. A conservative driver

will tend to accelerate and decelerate slowly, smoothly, and as little as possible.

This driving behavior requires less energy, but more time than for an aggressive

driver. However, some drivers wish to reach their destination faster, and drive

more aggressively. We expect a more aggressive driver to:
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• Go faster (on average) than the speed limit or a speed that an optimization

algorithm suggests.

• Accelerate and decelerate more sharply and more often.

We would like to account for various kinds of aggressive driving, although we

neither support any driving behavior that violates state or federal laws nor driv-

ing behavior that is unsafe. A possible way to account for driver behavior is to

assume that more aggressive drivers will drive faster (for example, increase the

velocity bounds by a factor) and consume more energy than the conservative

driver. Because we discourage unsafe driving, it might be prudent not to decrease

the driving time due to more aggressive driver behavior and to set energy con-

sumption on each arc to be the maximum of the energy consumption due to

conservative and due to aggressive driving behavior.

In addition to considering driver behavior, we would like to consider more

realistic driving assumptions than having vehicles travel at a constant speed vij

along each arc (i, j) (besides extra time for stops and turns). This leads to consid-

ering more realistic drive cycles, where a drive cycle is the velocity of a vehicle

as a function of time during the entire drive. Various industry-standard drive

cycles can be found in United States Environmental Protection Agency [47]. Ve-

locity can change quickly in a realistic drive cycle, as illustrated by the plot of

the industry-standard FTP-75 drive cycle (Figure 6.4). The FTP-75 drive cycle is

commonly used to test mileage on gas vehicles (DieselNet [13], which references

Appendix I, pages 543–610, of [33]). Incorporating more realistic drive cycles such

as the FTP-75 would improve the accuracy of energy consumption.
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Figure 6.4: Driver velocity can change quickly, as illustrated by this plot of the

FTP-75 drive cycle.

Although we feel our algorithms run quickly, more improvement might be

possible. First, most of the algorithms do not incorporate parallelization. It might

be worth considering how to take advantage of multiple processors in all steps in

the algorithm. Second, it might be possible to speed-up the shortest path calcu-

lation, perhaps by using a more refined A-star heuristic function or considering

other variations of Dijkstra’s algorithm.
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6.4 Conclusion
We provided an optimization framework for quickly finding routes for battery

electric vehicles, and applied it to problems based on road network data. The main

routing problem we solved was to minimize the travel time, given a requirement

on the total energy consumption, and uncertainty in both time and energy. The

optimization framework included a model for energy consumption of a battery

electric vehicle (Chapter 2), an optimization-based formulation of the problem

(Chapter 3), and algorithms to solve it (Chapter 4). We then used those algorithms

on road network data of Massachusetts and Michigan to show that our algorithms

could find good routes quickly (Chapter 5). After demonstrating the potential

effectiveness of our methodology, we proposed some extensions (Sections 6.1 and

6.2) and additional ideas for future work (Section 6.3).

A key to the success of the optimization framework was incorporating a ro-

bust optimization methodology. Incorporating uncertainty can usually make an

optimization problem much more difficult to solve, as in the case of incorporating

randomness into a shortest path problem using a stochastic shortest path frame-

work (Section 1.3). Stochastic shortest path problems are hard to solve (NP-Hard

or #P-Hard) because of the use of random variables. Instead of using random

variables, robust optimization uses a minimax approach with uncertainty sets. By

selecting the right uncertainty sets, such as polyhedral and ellipsoidal uncertainty

sets, the optimization problem incorporating uncertainty is still very manageable.

To be able to solve the main optimization problem efficiently, we leveraged

the particular structure of the problem, and we were willing to use heuristics.
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One use of the structure was taking advantage of the particular uncertainty sets

for polyhedral and ellipsoidal uncertainty, which was a benefit of using robust

optimization. We also used the fact that our problem was a path problem. We

refined our algorithms to specifically solve a path problem on a network, defined

by roads and intersections on a map.

Besides solving an optimization problem quickly, a contribution of this the-

sis was gathering many sources of data together and applying developed opti-

mization algorithms to real-world data. We used vehicle data from Ford Motor

Company to validate a proposed energy model, which was based on principles

and formulas from physics and engineering. We obtained road network data from

Esri (using ArcGIS), and combined it with elevation data from the US Geologi-

cal Survey. In addition, we obtained data with traffic signals in Cambridge, MA,

and network data from the Massachusetts Department of Transportation, which

included average annual daily traffic counts to show how one might be able to

further extend the work. Assembling this data together provided the examples to

demonstrate the applicability of the work.
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