
 

 

 

 

 

 

 

 

Investigation of Primary and Secondary Organic Aerosols 

by Advanced Mass Spectrometric Techniques 

and Chemometric Approaches 

 

 

 

 

Kumulative Dissertation 

zur Erlangung des akademischen Grades 

doctor rerum naturalium (Dr. rer. nat.) 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität Rostock 

 

 

vorgelegt von 

Hendryk Czech 

aus Rostock, geboren am 12. Januar 1988 in Rostock 

 

 

 

 

Rostock, September 2017 

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2018-0048-4



 
  

Dissertation, 2017  ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gutachter: 

1. Gutachter: 

Prof. Dr. Ralf Zimmermann 

Institut für Chemie, Universität Rostock 

2. Gutachter 

Prof. Joakim Pagels, PhD 

Ergonomics and Aerosol Technology, Lund University, Schweden 

3. Gutachter 

Prof. Wolfgang F. Rogge, PhD 

School of Engineering, University of California, Merced, USA 

 

Datum der Einreichung:  29. September 2017 

Datum der Verteidigung: 05. Dezember 2017 

  



 
  

Dissertation, 2017  iii 

Die vorliegende Arbeit entstand in der Zeit von Oktober 2013 bis September 2017 am Lehrstuhl 

für Analytische Chemie der Universität Rostock im gemeinsamen Massenspektrometrie-Zentrum 

der Universität Rostock und des Helmholtz Zentrums München.  



 
  

Dissertation, 2017  iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   To measure is to know. 

   - William Thomson, 1st Baron Kelvin 

The classification of facts, the recognition of their sequence and relative 

significance is the function of science, and the habit of forming a judgment 

upon these facts unbiased by personal feeling is characteristic of what 

may be termed the scientific frame of mind. 

- Karl Pearson 

An approximate answer to the right problem is worth a good deal more 

than an exact answer to an approximate problem. 

- John Tukey 
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ABSTRACT 

Deutsch 

Primäre und sekundäre Verbrennungsaerosole wurden in verschiedenen Studien der 

Emissionsquellenzuordnung als Hauptursache für Luftverschmutzung identifiziert. Die chemische 

Zusammensetzung der Emissionen sowie das Bildungspotenzial von sekundärem Aerosol sind 

wichtig, um effiziente Maßnahmen zur Emissionsreduktion zu entwickeln und ihre Auswirkungen 

auf Klima und Gesundheit einschätzen zu können. In jüngster Vergangenheit sind Emissionen 

von Schiffen und aus der häuslichen Holzverbrennung stärker in das öffentliche Interesse 

gerückt, welche im DACH-Project „WooShi – WOOd combustion and SHIpping” in 

Zusammenarbeit der Universität Rostock, dem Helmholtz-Zentrum München und dem Paul 

Scherrer Institut in Villigen (Schweiz) mit Unterstützung des Helmholtz Virtual Institute for 

Complex Molecular Systems in Environmental Health (HICE) und der Universität von Ostfinnland 

untersucht wurden. 

Der Einsatz neuer Verbrennungstechnologien durch verbesserte Sekundärluftzufuhr oder 

automatisch arbeitende Verbrennungsöfen, welche auch durch gesetzliche Beschlüsse wie die 

„Energiewende“ in Deutschland vorangetrieben werden, reduziert Emissionen aus der häuslichen 

Holzverbrennung beträchtlich. Allerdings ist noch unbekannt, ob die Emissionsprofile erhalten 

bleiben und in Studien zur Emissionsquellenzuordnung und zur Bestimmung relativer Anteile an 

der Gesamtbelastung weiterhin verwendet werden können. Des Weiteren ist zu klären, ob die 

verringerten primären Emissionen auch im direkten Zusammenhang mit einer Verringerung der 

sekundären Partikelbildung aus der Gasphase stehen.  

Obwohl Schiffsemissionen in derselben Größenordnung wie Emissionen aus dem 

Straßenverkehr eingeschätzt werden, sind sie bis auf die gasförmigen Hauptbestandteile des 

Abgases (CO2, CO, SO2 und NOx) und einigen Summenparametern der emittierten Partikel 

(Partikelmasse, partikulärer organischer und elementarer Kohlenstoff) deutlich weniger in der 

Literatur beschrieben. 2015 entschied die Internationale Seeschifffahrtsorganisation den 

Schwefelgehalt im Kraftstoff (FSC) der Schiffe in Schwefelemissionsüberwachungsgebieten 

(SECAs) auf 0,1% zu begrenzen, was in diesen Gebieten zu einem Wechsel von Schweröl mit 

einem mittleren FSC von 2,7% zu Diesel-ähnlichen Kraftstoffen wie marinem Gasöl führte. 

Mit dem Hintergrund verbesserter Verbrennungstechnologien und neuer Gesetzgebung wurden 

kohlenstoffhaltige Emissionen aus einem modernen Scheitholzofen, einem Pellet-Heizungskessel 

und einem marinen Hilfsmotor mit hochentwickelten massenspektrometrischen Methoden 

untersucht, welche u.a. die Ein-Photon- und resonanzverstärkte Mehrphotonenionisierung 

kombiniert mit der Flugzeitmassenspektrometrie umfasste. Insbesondere die Zusammensetzung 

der organischen Emissionen sowie der Einfluss des Kraftstoffs und die sich zeitlich ändernden 

Verbrennungs- und Motorbedingungen auf die Emissionen wurden mit statistischen Ansätzen 

versucht zu identifizieren und deren Auswirkungen auf zukünftige Emissionsquellenzuordnungen 
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abzuschätzen. Zusätzlich zu den primären Emissionen wurden die sekundäre organische 

Partikelbildung (SOA) in einer Alterungskammer sowie einem Strömungsrohrreaktor simuliert. 

Die Ergebnisse die Studie ergaben neue charakteristische und statistisch signifikante 

Markerverbindungen für Schiffsemissionen, welche sowohl innerhalb als auch außerhalb SECAs 

Gültigkeit besitzen und in der Literatur noch nicht beschrieben wurden, sowie aktualisierte 

Emissionsprofile verbunden mit verminderter SOA-Bildung für häusliche Holzverbrennung nach 

dem heutigen Stand der Technik. 

 

English 

Primary and secondary aerosols from combustion processes were identified by emission source 

apportionment as key sources for air pollution. In this context, emission profiles and knowledge 

about secondary aerosol formation are essential to develop efficient abatement strategies and to 

assess feedbacks on climate and human health. Recently, emissions from ship traffic and 

residential wood combustion gained emerging public attention and were subject of this thesis in 

the framework of the DACH-project “WooShi – WOOd combustion and SHIpping” in a 

collaboration between the University of Rostock, Helmholtz-Zentrum München and Paul Scherrer 

Institute in Villigen (Switzerland), with support from the Helmholtz Virtual Institute of Complex 

Molecular Systems in Environmental Health (HICE) and the University of Eastern Finland. 

Ongoing advances in wood combustion technology, also driven by legislation such as 

“Energiewende” in Germany, through improved secondary air supply and automatically-fired 

appliances considerably decreased emissions from residential heating. However, consequences 

of the emission profile and therefore the identification and quantification of wood combustion in 

source apportionment are unknown. Furthermore, it is still pending if reduced primary emissions 

lead to proportional reduction in secondary emissions by gas-to-particle conversion. 

Total emissions from ship traffic were estimated to be comparable to emissions from road 

vehicles, but are poorly described in the literature apart from main gaseous components of the 

exhaust (CO2, CO, SO2 and NOx) and particle-related quantities (particulate matter, organic 

carbon, black carbon). In 2015, ship emissions were tackled by the International Maritime 

Organisation through limiting the fuel sulphur content (FSC) to 0.1% in sulphur emission control 

areas (SECAs), which caused switching from heavy fuel oil with 2.7% FSC on average to diesel-

like fuel, such as marine gas oil.  

On account of these changing emissions by improved technologies and new legislation, 

carbonaceous emissions from a modern masonry heater, a pellet boiler and a marine auxiliary 

engine were investigated by advanced mass spectrometric techniques, including single-photon 

and resonance-enhanced multi-photon ionisation time-of-flight mass spectrometry. The focus was 

put on analysing the complex organic composition as well as the identification of effects of fuel 

components, temporarily changing burning and engine conditions on the emissions by several 

chemometric approaches and the relevance for prospective source apportionment. Additionally, 
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the potential of secondary organic aerosol (SOA) formation was examined in simulation studies 

using a smog chamber and a potential aerosol mass flow reactor. 

The results of this study revealed characteristic and statistically significant organic marker 

substances for ship emissions inside and outside SECAs, which have not been considered in the 

literature, and updated emission profiles associated with lower SOA formation for modern 

residential wood combustion appliances. 
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1 Introduction: atmospheric aerosols 

Aerosols are generally defined as a suspension of liquid or solid particles in a gas, with aerodynamic 

particle diameters in the range of 10-9 – 10-4 m, where the lower limit is given by molecules and 

molecular clusters and the upper limit is determined by rapid sedimentation of large particles or 

small droplets. Although clouds also comply to the definition, they are usually considered separately 

[9]. In atmospheric science, the term aerosol actually refers to suspended particles including the 

condensed matter, which is also called particulate matter (PM). Typical considered fractions of PM 

appear below the upper limits of 0.1 µm (PM0.1, ultrafine particulate matter), 1 µm (PM1), 2.5 µm 

(PM2.5, fine particulate matter) and 10 µm diameter (PM10, coarse particulate matter), but PM of the 

same aerodynamic diameter can appear in different shape and morphology, dependent on its origin 

[10]. 

Although the results of the publications included in this thesis focus on combustion emissions, a brief 

introduction is given into most important atmospheric (tropospheric) processes to put the emission 

studies into a broader environmental context. 

1.1 Sources and sinks 

The sources for atmospheric aerosol can be classically divided into naturally occurring and 

anthropogenic or primary (directly emitted) and secondary (generated by atmospheric processing of 

precursors) ones. 

The dominant sources of naturally occurring 

aerosol are sea spray and soil eruptions, but 

also wildfires and volcanic activity as well as 

biologically-driven emissions of microorganisms, 

pollen, plants and plant debris. Anthropogenic 

aerosol is emitted from land-based, maritime, 

railroad and air traffic, domestic and large-scale 

stationary energy generation from the 

combustion of fossil and non-fossil fuels, 

industrial production, food cooking and road 

dust [11]. Regarding mass, natural sources 

account for the majority of atmospheric aerosol, 

but the contribution of anthropogenic aerosols to 

total ambient concentration can substantially 

increase locally, especially in urban areas, 

where traffic, industry and energy production are concentrated [12]. 

The lifetime of an aerosol particle in the atmosphere covers the range from hours to weeks, 

depending on its properties [13, 14], which may change in atmospheric transformation concerning 

size, structure and composition, as well as involved deposition mechanisms. Atmospheric aerosols 

can act as cloud condensation nuclei (CCN) and initiate cloud formation by water uptake. During 

Fig. 1 Overview of primary PM and vapour 

emissions and their main sinks of dry 

(sedimentation) and wet deposition (in-cloud and 

below-cloud scavenging) (adapted from [1]). 
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precipitation, the aerosol inside clouds fall onto the Earth’s surface (in-cloud scavenging), but also 

scavenges other aerosol as well (below cloud scavenging), which is the most important aerosol sink 

and known as “wet deposition” [12]. A sink of lower global relevance is the dry deposition. In 

particular, small aerosols succumb to Brownian diffusion and impaction on larger aerosols, droplets 

or other obstacles if they cannot follow the streamlines of the gas flow. On contrast, aerosols of 

larger size already deposit because of gravitationally sedimentation [15]. Therefore, the 

meteorological events of rain and wind velocity are key parameters for aerosol deposition and can 

rapidly and substantially reduce PM concentrations in highly polluted areas [16, 17] (Fig. 1). Typical 

concentration of PM2.5 ranges between 1 µg m-3 and 100 µg m-3 equivalent to 102 to 105 particles 

per cm3 [9], but peak concentrations in mega cities can even reach concentrations of 400 µg m-3 [17, 

18]. 

1.2 Chemical composition and classification 

The chemical composition of ambient aerosols can be generally described by an organic and 

inorganic fraction, whereby the latter one is mainly comprised of sulphate, nitrate, ammonium and 

chloride [19]. However, the proportions of these fractions can vary considerably at different sites 

because of diverse emission source contributions and solar radiation available for photochemistry. 

Nevertheless, further inorganic aerosol constituents, such as alkali and transition metals, can also 

provide valuable information about the aerosol source in spite of their low concentrations. 

1.2.1 Carbonaceous aerosol 

The individual studies in this thesis predominantly deal with the fraction of organic aerosol (OA) and 

aim to identify characteristic emission profiles and possibly new marker substances. Often only 

carbon as essential element for organic compounds is measured as organic carbon (OC), which can 

be converted by a source-specific factor to OA (also called organic matter (OM)), thereby accounting 

for further elements H, O, N and S [20]. An analytical challenge is the separation of OC and 

elemental carbon (EC), which refers to almost pure graphite-like carbon in soot particles [21], by 

thermal-optical carbon analysis (TOCA, see also section 3.4.2). In particular, the ratio OC/EC 

provides useful information about the aerosol origin [22]. Other frequently used terms for 

carbonaceous PM constituents are black carbon (BC) and brown carbon (BrC), representing 

together light-absorbing carbon (LAC).  

 

Fig. 2 Classification of carbonaceous aerosol by thermo-chemical or optical properties (left, adapted 

from [9]) and wavelength dependency of absorption for components of light-absorbing carbon (LAC). 
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Often BC and EC are used interchangeable, but by definition, BC is determined by optical 

measurements whereas EC refers to thermal-optical methods. BrC can be simply described as 

carbon of UV-light-absorbing organic compounds, whose absorption spectrum strongly increases 

towards shorter wavelengths compared to the more uniformly absorbing BC (Fig. 2). The light 

attenuation of aerosols by scattering can be fitted by a power law 

𝜏 = 𝛽 ∙ 𝜆−𝛼      (1.1) 

where τ denotes the aerosol optical depth and λ the wavelength to characterise PM size distribution 

and concentration by Ångström exponent α and Ångström (turbidity) coefficient β, respectively [23]. 

If only absorption is considered, α becomes the Ångström absorption exponent, which is close to 

unity for BC, but can reach values up to 6 for biomass combustion [24]. Apparently, this concept 

works only for a mixture of several components since single species do not necessarily show s 

steady decline in absorption towards longer wavelengths, but characteristic absorption bands [25]. 

1.2.2 Organic aerosol (OA) 

Constituents of OA are commonly classified based on combined oxidation state/emission source, 

volatility range or traditional organic compound classes. The first classification originates from data 

interpretation of aerosol mass spectra (AMS, see also section 3.4.4.) from ambient air. It comprises 

of hydrocarbon-like organic aerosol (HOA), biomass burning organic aerosol (BBOA) and oxidised 

organic aerosol (OOA), which are associated with the sources fossil-fuel combustion, biomass 

combustion and secondary organic aerosol (SOA) formation [26]. Furthermore, HOA and BBOA are 

emitted by primary sources and are combined to primary organic aerosol (POA). A physical 

classification of OA constituents was proposed by the group of Neill M. Donahue based on certain 

volatility bins from saturation vapour pressures and consequential gas-particle partitioning [27]. The 

gas-particle portioning coefficient ζ for a compound i is defined as 

𝜉𝑖 = (1 +
𝐶𝑖
∗

𝐶𝑂𝐴
)
−1

     (1.2) 

where Ci* denotes the effective saturation concentration (Ci* = γ∙Ci, with γ being the activity 

coefficient) of a single compound and COA defines the total mass concentration of organic aerosol. 

𝐶𝑂𝐴 = ∑ 𝐶𝑖𝜉𝑖𝑖       (1.3) 

Later on, this one-dimensional volatility basis set was extended to a second dimension by 

incorporation of the oxygen content (by oxygen to carbon ratio O:C) of the OA. [28]. On that account, 

five volatility fractions of OA called volatile (VOC), intermediate-volatile (IVOC), semi-volatile 

(SVOC), low-volatile (LVOC) and extreme low-volatile organic compounds (ELVOC) were defined, 

linked to the average carbon oxidation state and combined with OA fractions from AMS mass 

spectra to LV- and SV-OOA (Fig. 3 [29]). Traditionally ELVOC was included in LVOC and IVOC was 

split between SVOC and VOC. However, in the studies of this thesis these new definitions are 

applied, which sum the total organic components of the gas phase to organic vapours. 
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Fig. 3 Two-dimensional volatility basis set of saturation concentration C* and average carbon 

oxidation state 𝑶𝑺̅̅ ̅̅ 𝑪 derived from molecular ratio oxygen to carbon (O:C) [4], adapted from [29]. 

1.3 Organic markers in combustion aerosol 

1.3.1 Defining markers and tracers 

An earlier approach on the molecular level goes back to the work of Bernd R. T. Simoneit and co-

workers, who stuck to the classical chemical compound classes and examined OAs of several 

primary emission sources down to the molecular level [30-34]. This type of classification does not 

involve the total OA composition anymore as can be seen from the still substantial amount of 

“unresolved complex mixture” (UCM) in their publications, but aims to figure out the most important 

components for discrimination between sources. However, for a view of source specific OA 

constituents on a molecular level, it is necessary to introduce the term “marker” and “tracer” in 

atmospheric science. 

“By definition, an atmospheric tracer is ‘an entity which preserves its identity as it moves with the air 

from a known source, where the tracer is created or otherwise introduced into the atmosphere, to a 

known sink where it is destroyed or removed from the atmosphere’” [35]. In contrast, markers refer 

to compounds which are uniquely emitted by a specific source. Consequently, tracers cannot be 

found in OA because sinks of organic compounds on particles are manifold, which counteract the 

requirement of preservation [35]. Both tracers and markers can be utilised to calculate the 

contribution of single emission sources receptor models, such as positive matrix factorisation or 

chemical mass balance. 

1.3.2 Established organic markers for CA 

In the following table (Table 1), frequently used compound classes and markers for emission source 

apportionment are introduced. Although some compounds and whole classes are not restricted to a 

specific source, such as polycyclic aromatic hydrocarbons (PAH) and alkanes, they have been 

proven useful in diagnostic ratios (DR). DR refers to a ratio of two compounds giving an upper or 

lower limit, which is not breached by a certain type of emission. Therefore, this approach may allow 

rapid identification of dominating emission sources. For example, the ratio of anthracene to 

phenanthrene exceeds 0.1 for OA formed by pyrosynthesis in combustion while for petrogenic 

origins (unburned fuel) 0.1 denotes an upper limit [36]. However, this concept has been also 

criticised since compounds involved in a DR often haven different degradation kinetics in the 
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atmosphere and bias the results [37]. Especially for markers in the particle phase, kinetics of 

heterogeneous reaction are distinctly affected by the particle composition [38]. 

Table 1 Organic markers from the incomplete combustion of fossil and biomass fuels 

Compound class Example Structure Origin 

Polycyclic 

Aromatic 

Hydrocarbons 

(PAH) 

naphthalene 

phenanthrene 

benz[a]pyrene 
 

- any combustion emissions 

- formed by HACA, aromatisation of  

  precursors or cleavage of 

substituents 

Alkanes 

pristane 

triacontane 

hopane 
 

- fossil fuels 

- plant wax 

Anhydrous Sugars 

levoglucosan 

mannosan 

galactosan 
 

- combustion of cellulose and hemi- 

  cellulose 

 

Phenolic Species 

guaiacol 

coniferyl alcohol 

sinapyl alcohol 
 

- combustion of lignin from coniferous  

  and deciduous wood 

Resinoic Acids 
abietic acid 

pimaric acid 
 

- combustion of coniferous wood 

Phytosterols 
betulin 

glochidone 
 

- combustion of specific wood types 

 

In the more volatile fraction of organic emissions (organic vapours) from combustion, less potential 

molecular markers have been found compared to the particle phase. So far, only acetonitrile was 

accepted as marker for biomass burning, but has been proven to be less suitable for residential 

wood combustion in urban areas [39]. However, compounds without marker status in all volatility 

ranges, including VOCs [40], can be principally involved in emission source apportionment when 

taking the entire emission pattern into consideration by multivariate statistics or chemical mass 

balances. 

1.3.3 Origin of markers from fuel composition and processing 

Emission patterns can be explained by combustion conditions, such as temperature, as well as fuel 

properties and composition. The combustion process can be broadly divided in two categories: 

combustion of liquid and gaseous fuels in internal combustion engines and solid fuel combustion, 

such as biomass combustion in stoves. 

Generally, for fuel combustion in engines, the fuel is premixed with air or directly injected and ignited 

by sparks (spark-ignition engine) or self-ignition (diesel engine). Regardless the possible variations 

for combustion engines and conditions, temperatures about 1500°C to 2000°C are achieved inside 

the combustion chamber [41], thus the main elements of common fuels, C and H, are efficiently 

converted into CO2 and H2O. However, trace concentrations (compared to the main combustion 

products) of organics from VOCs to ELVOCs and soot particles can be detected, which either 

survive the combustion process as unburned fuel or are formed during the combustion. The general 

reason for this phenomenon is a deficit in oxygen availability, which can also locally appear in diesel 
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engines despite their categorical operation on excess oxygen (λ > 1). For engine-based combustion 

at high temperatures, the formation of organic compounds by pyrosynthesis [42] affects the emission 

pattern substantially. As previously mentioned, PAHs are found in almost every combustion process. 

At temperatures above 500°C, C-H and C-C bonds break and free radicals are formed, which 

combine to acetylene. By further condensation aromatic ring structures start to grow and form 

initially PAH, which are thermodynamically stable and resistant to thermal degradation, and finally 

soot. This mechanism is formally known as Hydrogen-Abstraction-Carbon-Addition (HACA) [43]. 

Since the fuel-air mixture is exposed to high temperatures, but relatively short residence times inside 

the combustion chamber, not only thermodynamic products, but also kinetic reaction products are 

formed in noticeable yields. Again considering the isomers phenanthrene and anthracene, the first 

one denotes the thermodynamically more stable compound due to more intact aromatic rings in all 

resonance structures. Anthracene is hardly detected in the fuels, but formed during combustion, 

which allows the separation of the emission source by DR. 

In contrast to engine emissions, the combustion of biomass, including wood, occurs at lower 

temperatures below approximately 1000°C [44, 45], so HACA plays a minor role for organic 

emissions. On that account, the emissions are dominated by the fuel rather than pyrosynthesis. 

Generally, the composition of wood and woody biomass can be almost completely described by the 

polymers lignin and the carbohydrates cellulose and hemicelluloses. While cellulose is solely 

comprised of alpha-1,4-condensed glucose units, other monosaccharides, such as mannosan or 

galactosan, can be constituents of hemicelluloses. Lignin consists of different phenolic species and 

is responsible for the variable degree of lignification of plants. Low temperature combustion, i.e. 

smouldering, breaks the chemical bonds between these monomers with low efficiency for further 

combustion to CO2 and H2O. For the carbohydrates, these monomers are anhydrous sugars, such 

as levoglucosan, which has been established since its introduction as a universal marker for 

biomass combustion in general [46]. Lignin thermally decomposes in phenolic species, whereby the 

substituents of the aromatic ring allow differentiation between angiosperms, gymnosperms and 

gramineae, which is approximately equivalent to hardwood, softwood and grasses [30]. The higher 

the combustion temperature, the lower is the yield of these characteristic (woody) biomass 

combustion markers because of ongoing thermal degradation, e.g. from levoglucosan to furans or 

lignin monomers to low-substituted phenols [47-49]. Apart from the three biopolymers, 

miscellaneous organic constituents of wood can be phytosterols or resins. The molecular 

composition of these classes can even provide the origin of the CA to the point of wood species. 

They belong to the class of LVOCs and are usually emitted by evaporation during an early stage of 

the combustion [8]. Many of them decompose before evaporation by releasing H2, H2O (elimination) 

or CO2 (decarboxylation), forming alteration products. Nevertheless, similar information can be 

obtained from those species due to conservation of the fundamental molecular structure. 
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1.4 Atmospheric aerosol transformation 

1.4.1 Atmospheric oxidising agents and products 

As pointed out in section 1.3.1., organic emissions released to the atmosphere do not remain stable, 

but undergo chemical reactions (“ageing”) with atmospheric oxidising agents OH radicals, O3 and 

NO3 radicals [50-52]. During daytime, OH radicals are produced by photolysis of O3 at wavelengths 

below 355 nm and subsequent reaction of the formed O(1D) with water vapour [50]. Tropospheric O3 

involved in the ageing process results from the photolysis of NO2 by UV light or oxidation of VOC by 

OH radicals with several partial reactions, which involves the photolysis of NO2 as well and lead to 

near-ground O3 formation [53, 54]. However, NO2 is also oxidised by OH radicals to HNO3, which is 

a sink for NO2. At night, O(1D) is not generated from photolysis, so O3 undertake the oxidation of 

NO2, but to nitrate radicals. All of the three atmospheric oxidising agents are naturally in equilibrium 

to each other in complex reaction cycles, which further involves CO, NO and HO2 as well [53]. 

However, OH radicals, O3 and nitrate radicals are regarded as the key drivers for atmospheric 

conversion of organic emissions. The main difference between OH and NO3 radicals compared to O3 

refers to the structural requirements of the reaction partner. While OH and NO3 radicals are able to 

react with constituents of VOC and OA emissions, O3 requires a double bond to attack and form the 

primary ozonide [55]. Consequently, ozone is not directly involved in the degradation of saturated 

organic compounds, such as alkanes and halocarbons [56], but affect the oxidation product 

distribution [57]. 

 

Fig. 4 Atmospheric conversion of primary combustion aerosol by gas-particle partitioning, 

homogeneous and heterogeneous oxidation. 

OA constituents over the full volatility range undergo atmospheric oxidation. If bond cleavage is 

avoided, the addition of functional groups is associated with a decrease in volatility, which leads to 
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nucleation or condensation on existing particles by molecular interactions. Additional generated 

mass by gas-to-particle conversion in a homogeneous reaction refers to secondary organic aerosol 

(SOA) or secondary inorganic aerosol (SIA), such as the oxidation of NH3 and NOx to nitrate [58]. In 

contrast, gained particle mass by oxidation of particle constituents in a heterogeneous reaction 

strongly depends on the particle composition [59, 60] and is referred to aged primary organic aerosol 

(aged-POA) [61]. However, further homogeneous reactions take place in the liquid phase of a 

particle between its constituents, forming not only highly oxidised, but also high-molecular weight 

compounds. Typical compound classes of SOA and aged-POA cover carbonyls, acids as well as 

organic nitrates and sulphates depending on the oxidising agents involved [62, 63] and also 

contribute to the fraction of BrC [64]. Since SOA and aged-POA have higher functionality and 

polarity than their precursors, they are hygroscopic and act as more effective cloud condensation 

nuclei (CCN) [65]. 

1.4.2 Simulation of atmospheric transformation in batch and flow reactors 

The atmospheric fate of organic emissions can be studied in two different types of reactor. The first 

is called “smog chamber” and basically consists of a Teflon bag and UV-lamps around to simulate 

the influence of solar radiation. After the chamber was filled with a realistically-diluted emission, the 

ageing of the aerosol can be monitored in real-time, either at daytime with UV-lamps switched on or 

night-time with external feed of O3. However, since the volume of many smog chambers is not large 

enough to neglect losses of particles at the wall, this effect has to be corrected by a non-reactive 

particle emission constituent, such as BC. A limitation of this approach is the minimum ratio of VOCs 

to NOx to start the ageing process. Relatively high amounts of NOx consume atmospheric oxidising 

agents, disturb their equilibria [53] and therefore suppress SOA formation. Furthermore, a low ratio 

of primary VOCs to OA requires high sensitivity for measuring changes in particle mass. To 

overcome these issues and to enable the SOA formation at unfavourable conditions, a second 

instrumental approach was developed. 

The smog chamber may be regarded as a batch reactor, the second instrument for simulating 

ageing, called Potential Aerosol Mass (PAM), refers to plug flow reactors [66-68]. It consists of a 

single glass cylinder which is also equipped with UV-lamps to start photochemistry from an external 

feed of O3. The resulting OH generation can be controlled by adjusting the humidity of the aerosol. In 

contrast to the smog chamber, the PAM flow reactor is capable to age aerosol concentrations higher 

than in ambient air, but expose the aerosol to higher concentrations of OH radicals. Therefore, a 

maximum enhancement ratio of OA, i.e. the potential aerosol mass can be determined. Depending 

on the UV-lamp intensity, the short residence time inside the PAM flow reactor of approximately one 

minute is regarded as equal to atmospheric ageing of days with daily OH exposure of 

1.5∙106 molecules cm-3 h [69]. On the one hand, it has been criticised that this type of ageing is very 

artificial and questionable to compare with real atmospheric process, but on the other hand it offers a 

possibility to study the atmospheric fate of emission sources with unfavourable properties for smog 

chamber experiments [70]. 
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1.5 Impact of combustion aerosol 

1.5.1 Greenhouse effect and radiative forcing 

Primary emissions from combustion contain several organic and inorganic greenhouse gases, which 

absorb infrared (IR) solar radiation leading to a net warming effect on climate. CO2, CH4, N2O and 

fluorinated gases including hydro- and perfluorohydrocarbons as well as SF6 are regarded as key 

greenhouse gases emitted by human activity, while the first three ones are emitted by several 

combustion processes [71]. In contrast, for the determination of the net effect of atmospheric 

particles on radiative forcing and consequently on climate, more processes and particles properties 

have to be considered. Particles directly interact with incident solar radiation through reflection, 

diffraction, refraction, absorption and re-radiation (Fig. 5). Depending on the ratio between particle 

size d and light wavelength λ, the scattering can be physically described by the laws of geometrical 

optics (d >> λ), Mie scattering (d ≈ λ) or Rayleigh scattering (d << λ) [72]. In addition to d and λ, the 

chemical composition of the particles and therefore the absorption properties affect interactions with 

light. Colourless particles cover a higher degree of reflection, thus scattering solar radiation back to 

space and causing negative feedback on global warming. In contrast, BC has been identified as 

substantially light-absorbing constituent of atmospheric particles and counteracts the negative 

feedback [73]. The ratio of absorption to reflection, referred to the term albedo, is high for BC 

particles, which turns BC into the most important anthropogenic emission after CO2 [74]. 

 

Fig. 5 Light-particle interaction of a single particle (left) and scattering of solar radiation by clouds 

dependent on droplet size and composition (right). 

Moreover, also the fraction of BrC (see section 1.2.1.) covers a positive radiative forcing by 

absorption [75], which represents approximately 25% of the total downward UV attenuation [21]. 

However, particles also indirectly affect radiative forcing by acting as CCN. The ability to initiate 

cloud formation also depends on the chemical composition of the particle and thus its hygroscopicity. 

On the one hand, clouds reflect incident solar radiation and prevent absorption, dependent on the 

droplet size and composition. One the other hand they also diminish the energy radiation emitted 

from Earth [76]. In total, the feedback of clouds on global warming is regarded as to be negative [77]. 

1.5.2 Human health 

The second motivation for the investigation of combustion aerosols is the severe impact on human 

health. Inorganic gaseous emissions CO and NOx as well as many VOCs, such as 1,3-butadiene, 

benzene and naphthalene, are known for their deleterious effect on human health through inhalative 



Focus: wood combustion and shipping (WOOSHI) 
  

Dissertation, 2017  10 

uptake [78, 79]. Bad air quality by high levels of PM are often caused by activity from traffic, industry 

and residential heating, especially in urban areas and megacities [18, 80, 81], and can lead to 

several fatal diseases [82] Two of the most well-known examples for bad air quality are “London 

Smog” in the year 1952 [83] and the “Harvard Six Cities Study”, which firstly exhibited an inverse 

relation between products of incomplete combustion in urban air and life expectancy [84]. In the 

programme "The Clean Air for Europe” [85], a map was created for Europe showing the reduction in 

life expectancy because of PM, [86-89]which highlights the described situation in built-up and 

industry areas, e.g. northern Italy and the Ruhr region in Germany (Fig 6). However, it must be noted 

that PM is not generally harmful to human health, but may be dependent on its physical properties 

(size, shape, surface and morphology) and chemical composition. An obvious example is the fairly 

high concentration of sea salt aerosol in climatic health-resorts at coast. If PM is inhaled, it enters 

the respiratory tract, but penetrates it to different depths. Therefore, not the total inhaled PM reaches 

the alveolar region of the lung, which carries out the gas exchange between air and blood. 

Generally, PM in the size ranges between 2.5 µm and 1 µm as well as below 100 nm efficiently 

deposit in the respiratory tract [90], which explains the classification given in section 1. While the 

deposition of particles in the micrometre range takes already place in the pharynx and larynx, PM0.1 

most effectively deposits in the alveoli. Especially PM emissions from combustion aerosols cover 

this size range and contain several chemical species, such as PAH and metals, which can enter the 

human body and are known for their acute and long-term toxicity [91, 92]. 

 

Fig. 6 Reduction of life expectancy in Europe caused by exposure of ambient PM (left, taken from 

[85]) and size dependence of PM deposition in human airways (centre). Especially ultrafine PM with 

aerodynamic diameter below 100 nm reaches the alveolar region (right, adapted from [90]) in which 

the gas exchange takes place. 

2 Focus: wood combustion and shipping (WOOSHI) 

The experiments were designed for the DACH-project WOOSHI (“Wood combustion and shipping”) 

funded by German Research Foundation (DFG) and Swiss National Science Fund (SNF). 

Collaborators of the project are located at University of Rostock, Helmholtz-Zentrum München and 

Paul-Scherrer Institute in Villigen, Switzerland. Additionally, some of the experiments were carried 
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out together with the Helmholtz Virtual Institute of complex molecular systems in environmental 

health (HICE). 

Although wood combustion and ship emission are very different in many senses, they gained more 

public attention for their effect on air quality and climate. Furthermore, both emission sources are 

changing due to new legislation and improved combustion technology. 

2.1 Ship traffic and sulphur emission control areas (SECA) 

During the oil crises of the 70s and the associated increase of the oil price, the usage of marine fuels 

shifted from middle distillates of the crude oil refinery, such as marine diesel oil (MDO) or marine gas 

oil (MGO), towards cheaper heavy fuel oils (HFO), also called residual fuel oil. The latter refers to 

the vacuum residue of the crude oil refinery blended by lighter refinery products, such as kerosene, 

to meet a certain maximum viscosity. Those HFOs are rich in sulphur and heavy metals which end 

up as significant constituents in emitted PM2.5 after combustion. Especially for harbour cities or 

highly frequented ship traffic routes, HFO-derived PM2.5 has been identified as an important 

perpetrator of increased mortality by cardiopulmonary diseases and lung cancer on global down to 

local scale [93, 94]. 

In order to tackle air pollution by ship traffic, the Marine 

Environmental Protection Committee of the International Maritime 

Organisation decided to restrict the marine fuel-sulphur content 

(FSC) in international waters from 3.5% to 0.5% (from 2020 on) 

and from 1% to 0.1% in sulphur emission control areas (SECA, 

from 2015 on), which comprises coastal regions of Europe and 

North America, respectively. Therefore, the consumption of marine 

fuels in SECAs returned to predominantly marine distillates since 

exhaust after-treatment such as sulphur scrubbers are not 

economic at low oil prices [95]. Although MGO or MDO are 

subjected to the same FSC limitation as HFO, they have 

intrinsically lower FSCs because sulphur is concentrated in the 

heavier fraction of the fuel [96]. 

Generally, the number of studies investigating primary ship 

emissions is remarkably low compared to other emission source, 

such as land-based traffic or wood combustion, and mainly focus 

on cumulative parameters (e.g. PM, BC, OC), main gaseous 

combustion products (CO2, CO, NOx, SOx) and inorganic particle 

constituents [97-100]). Thus, emission factors for ships are 

demanded for the calculation of global emission inventories. Especially the composition of organic 

emissions on a molecular level was investigated only in few studies before this project had been 

started in 2013 [101-103]. For source apportionment studies, some of the emitted species have been 

proved useful for the identification of ship emissions in ambient air, such as the ratio of V to Ni and 

high concentrations of SO2 and sulphate, but unfortunately they are restricted to ingredients of HFO 

Fig. 7 Satellite image of Pacific 

Ocean and Californian coast 

illustrating cloud formation on 

frequented ship routes. 

Primary and secondary 

sulphate from HFO 

combustion act efficiently as 

cloud condensation nuclei 

(CCN)[5]. 
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and likely work less efficiently or even not at all. Studies of ambient air measurements predicted and 

confirmed a reduction in PM after the introduction of SECAs [104, 105]. However, despite “cleaner” 

fuels an in vitro study by Oeder et al. (2015) [106] demonstrated that also emissions from a marine 

engine even operating on ultra low-sulphur diesel (ULSD, 10 ppm FSC), i.e. marine fuel with lowest 

available FSC. induces effects on human lung cells concerning energy metabolism, protein 

synthesis, and chromatin modification. 

In contrast to biological responses, an opposite trend was found for the effect of ship emissions on 

climate. Despite the high emissions of greenhouse gases, the net effect of HFO combustion on 

radiative forcing is negative, i.e. HFO combustion emissions cool the climate. This finding can be 

explained, but also weakened by including atmospheric chemistry and physics. Outstanding high 

anthropogenic emissions of SO2 have only an atmospheric half-life between 4 and 28 days below 

10 km altitude with respect to oxidation by OH radicals [107]. The resulting sulphates nucleate to 

hygroscopic particles and contribute to cloud formation, which is commonly regarded as cooling 

effect due to enhanced back-scattering of solar radiation to space. Clouds along the main ship 

routes are known as “ship tracks” [108] and are even visible on satellite images (Fig. 7). Therefore, 

despite general reduced emissions by distillate marine fuels which are limited in FSC and 

consequently SO2 emissions as well, a total warming effect was obtained in simulation studies [104]. 

However, climate effects of HFO and distillate marine fuels converge to each other on longer time-

scales towards warming because of shorter atmospheric half-lives for PM compared to CO2 and 

tropospheric O3 [109, 110]). 

Considering the high relevance and complexity of this aerosol emission type, three further questions 

need to be answered: 

(1) What is the molecular composition of organic ship emissions and are emission factors 

relevant for global emission inventories? 

(2) How does the emission profile change from HFO to MGO combustion and which compounds 

can be used to track MGO combustion in marine engines? 

(3) Is SOA formed from primary ship emissions and, if yes, what are its components? 

On that account, primary emissions from a marine engine, located at the Faculty of Mechanical 

Engineering and Marine Technology of the University of Rostock, operating on HFO, MGO and 

ULSD under various engine conditions were studied. 

2.2 Advanced combustion technology for residential wood combustion 

In many countries of Europe as well as in North America, the residential combustion of biomass, in 

particular wood, as a renewable energy source is encouraged by legislation, such as 

“Energiewende” in Germany to decrease the dependence on fossil fuels and contribution to global 

warming due to a favourable carbon footprint. Installations of small-scale wood combustion 

appliances have been subsidised and can be classified into batchwise-fired logwood stoves and 

continuously-/automatically-fired pellet burners and boilers. Especially the logwood stoves have 

http://www.sciencedirect.com/science/article/pii/S1352231017303187?via%3Dihub#bib8
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been characterised as high emission sources for various pollutants, including BC, several metals, 

particle-bound and volatile organic compounds. Automatically-fired appliances often have lower 

emissions by one order of magnitude [8, 111, 112]. In regions with substantial residential wood 

burning, decreased air quality was observed related to high PM levels [113-115]. In several studies, 

wood smoke was proven to cause severe biological effects in exposure experiments with cells, 

animals and humans [116-119]). 

To tackle this issue, combustion technologies of small-scale wood combustion appliances are 

continuously developed to decrease emissions of various pollutants and increase energy 

conversion. One strategy to reduce emissions is the implementation of air staging technology in 

secondary air supply [120], which became an established technique for modern wood combustion 

appliances [121]. In air staging, a secondary combustion zone is generated and supplied with 

secondary air through many channels. Hence, VOC and PM emissions are substantially reduced for 

both logwood stoves and pellet boilers [122, 123], but two questions remain unclear: 

(1) Does the emission profile (“fingerprint”), i.e. the relations between pollutant concentrations, 

remain stable and can be identified in emission source apportionment studies? 

(2) Does the reduction in primary emissions also accompany lower secondary particle 

formation? 

On that account, the emission profiles of organic vapours and PM2.5 from a modern wood stove and 

pellet boiler as well as their secondary aerosol formation potential were investigated in a 

measurement campaign at the Fine Particle and Aerosol Technology laboratories of the University of 

Eastern Finland. 

3 Methodology 

3.1 Aerosol sampling 

First, the combustion aerosol, e.g. from the tailpipe or chimney, passed a temperature-insulated pre-

cyclone to remove coarse particles with an aerodynamic diameter larger than 2.5 µm at a 

temperature of approximately 300 °C to minimise losses. Subsequently, a porous tube ejector 

system (Venacontra, DAS, Finland) [124] diluted the emissions by a factor from 10 to 40 upon 

simultaneous cooling to room temperature for particle collection on quartz fibre filters (QFF). The 

dilution ratio was monitored by CO2 measurements in the raw exhaust and after dilution, which was 

adjusted by critical orifices. On-line photoionisation mass spectrometry for gas phase analysis 

sampled directly from the raw exhaust while particles were removed by a cylindrical glass fibre filter. 

Stepwise heating of the sampling line from glass fibre filter at 220°C to 250°C in front of the ion 

source avoid condensation. 

3.2 Ionisation techniques 

For mass spectrometric analysis of a sample, atoms or molecules are converted into ions, separated 

according to the mass-to-charge ratio m/z and detected by secondary electron multipliers. Different 
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ionisation techniques are available, which are classed as either soft or hard by means of generating 

predominantly molecular ions or fragment ions. In the following, the most common hard ionisation 

technique electron ionisation and two laser-based soft photoionisation techniques are introduced. 

3.2.1 General aspects of ionisation 

The generated ions from molecules, atoms or clusters can carry positive or negative charges, but 

this section considers only positive ionisation, which is proceeded by electron removal from an 

analyte. For this pupose, a minimum energy has to be supplied to the analyte which is known as 

ionisation energy (IE). More precisely, the IE is defined as the energy necessary to convert an 

analyte in its electronic and vibrational ground state to an analyte ion, which is also in its ground 

state (adiabatic IE), by ejection of an electron. Principally, electrons can be removed from σ-bonds, 

π-bonds and lone pairs of electrons, while the latter ones are the most favoured.  

The ionisation process is allowed to be described only with consideration of the electrons without the 

nucleus due to the Born-Oppenheimer approximation and Franck-Condon principle. Electronic 

transitions occur at much faster time-scales than nuclei require reaching equilibrium positions. 

Hence, it is assumed that the bond length remain constant during ionisation. The probability of a 

(vertical) transition leading to ion formation is highest for the maximum interference of the electronic 

wave functions of ground state and ionised state, i.e. transitions with similar nucleus distances r for 

both states, while the probability distribution of possible transitions are expressed by Franck-Condon 

factors. Regardless Franck-Condon factors, the larger the difference between r0 and r1 of a transition 

is, the higher is the probability that the dissociation barrier is exceeded, which finally lead to 

fragmentation. 

3.2.2 Electron Ionisation (EI) 

Electron ionisation (EI) represents the most commonly used approach for ionisation in organic mass 

spectrometry, especially for gas chromatography mass spectrometry (GCMS) applications, in which 

the analytes are already vaporised for ionisation. However, because of the higher relevance of 

photoionisation for the presented studies, EI is rather superficially considered in the following 

paragraphs. 

The underlying principle of EI is the interaction of high energy electrons with valence electrons of the 

analytes. First, electrons are emitted from a heated tungsten filament and subsequently accelerated 

by a voltage of 70 V. Thus, they obtain a kinetic energy of 70 eV, which is far above the typical IEs 

from 7 to 15 eV of organic compounds. In the ion source, accelerated electrons orthogonally hit the 

molecular beam from the inlet or interface of the GC and generate ions. Due to a large transfer of 

excess energy on the analyte, EI causes not only molecular, but many fragment ions, which 

classifies EI as hard ionisation technique. Primarily generated molecular ions are in excited 

vibrational and rotational states, which may cause several bond cleavages through relaxation [125]. 

The fragmentation is advantage and disadvantage at the same time: On the one hand, induced 

fragmentation gives structural information about the analyte and can be further exploited for 

identification or multivariate calibration for quantification. Due to the plateau of ionisation cross 

section in the range of 60-80 eV, EI at 70 eV offers highest ionisation efficiency and reproducible 
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mass spectra [126], which allows the comparisons of mass spectra acquired at different instruments 

and databases. On the other hand, many of the fragments are not specific to a compound class and 

in particular ineffective for the identification of analytes from a homologue series when the molecular 

ion is absent, especially in the analysis of complex mixtures. Moreover, EI includes the ionisation of 

the main air components as well as typical GC carrier gases (He, H2 and N2), which limits trace 

analysis through extension of the dynamic range of a mass analyser to higher concentration. On 

these accounts, soft and more selective ionisation techniques, such as photoionisation techniques, 

are demanded and introduced in the following section. 

3.2.3 Photoionisation (PI) 

In contrast to EI, photoionisation (PI) belongs to the class of soft ionisation techniques because the 

(total) photon energy is close to the typical IEs of analytes, so that the abundance of molecular ions 

greatly exceeds the fragmentation. For the ionisation, light sources are required which either provide 

photons with sufficient energy to cross the ionisation energy of an analyte or sufficient density to 

induce multi-photon processes. Moreover, it can be distinguished between continuously emitting 

light sources, which are usually characterised by lower power densities, and pulsed light sources. 

From a technical point of view, lasers and lamps have been successfully applied as light sources for 

photoionisation. In the following, the Nd:YAG laser is introduced, which have been used in this study 

for single-photon (SPI) and resonance-enhanced multi-photon ionisation (REMPI). 

3.2.3.1 Nd:YAG laser as light source for PI 

Laser stands for light amplification by stimulated emission 

of radiation and provides coherent and intensive light with 

low divergence and small band width. In particular, 

Nd:YAG laser refers to 4-level solid state lasers, which are 

widely applied in natural science, medicine and technique 

[127]. Electrons of the laser medium, consisting of an 

yttrium aluminium garnet host lattice, in which Y3+ is 

partially replaced by Nd3+, are excited from ground state 

(E1) to higher electronic and vibrational states (E4) by 

radiation from a xenon-filled flash-lamp (optical pumping). 

Those vibrational states have usually short lifetimes, so 

that electrons promptly reach the lower energy state E3, 

accompanied by fluorescence or non-radiative transitions. For Nd:YAG lasers, the lifetime of E3 

substantially exceeds E4, so the electron population is accumulated in E3. If the excited state of 

lower energy E2 also has a lower lifetime, a permanent population inversion required for the 

stimulated emission is generated (Fig. 8). 

The high intensities are achieved by continuous repetition of the process (laser oscillation) inside the 

Perot-Fabry resonator, which is basically comprised of a mirror for full reflection and semi-

transparent mirror with the laser medium in between. Emitted photons are reflected by the mirrors 

and meanwhile hit the laser medium, inducing electron excitation and the emission of additional 

Fig. 8 Energy scheme of a 4-level laser, 

such as Nd:YAG lasers. The dark grey 

arrow shows emitted fundamental  

laser radiation with the photon energy 

E3 – E2. 
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photon, which is called the stimulated emission. The semi-transparent mirror enables to partly use 

the generated radiation for applications. However, only photons of parallel motion to the resonator 

axis can contribute to light amplification. Hence, the laser beam leaving the resonator exhibits low 

divergence and small band width of a wavelength equal to the energy difference between E3 and E2, 

which is 1,064 nm for an Nd:YAG laser and referred to the fundamental radiation [128]. 

Despite the highest power of 7 W at 1,064 nm of the applied Nd:YAG laser, the photon energy is 

equivalent only to 1.17 eV, which is far beyond the appropriateness for ionisation. Therefore, the 

high laser intensity is exploited in anisotropic crystals or isotropic gases for frequency multiplication, 

i.e. shortening of the wavelength to generate photons of higher energy. High radiation intensities 

negate the linear relation between polarisation response P and the strength of the electric field E of 

the valence electrons, and also induce inharmonic oscillations. If the linear relation between P and E 

𝑃 = 𝛼 ∙ 𝐸      (3.1) 

with α as susceptibility for the anisotropic medium, is developed in a series expansion 

𝑃 = 𝛼 ∙ 𝐸 + 𝛽 ∙ 𝐸2 ∙ 𝛾 ∙ 𝐸3+. ..     (3.2) 

terms of higher order can exceed the first term, which still describe the linear relation. In case of 

anisotropic crystals, photon frequencies can be doubled (second harmonic generation, SHG) or 

even matched to provide photons of 266 nm (fourth harmonic generation, FHG, 4.66 eV photon 

energy) for REMPI or 355 nm (third harmonic generation, THG, 3.51 eV photon energy) [129]. The 

latter wavelength is further tripled (THG2) by passing a cell filled with xenon to provide 118 nm for 

SPI. Due to self-absorption of solid anisotropic media, frequency multiplication below 190 nm is 

restricted to gases. In a simpler concept of energy conservation, two or three photons are combined 

to one photon with the energy of the two or three initial photons. However, the conversion yield for 

those processes decreases strongly towards shorter wavelengths, with 30 % efficiency for SHG and 

0.01 % for THG2 [130]. 

3.2.3.2 Single-photon ionisation (SPI) 

In single-photon ionisation (SPI), the ionisation of a molecule or atom 

is carried out by absorption of only one photon of energy greater than 

the ionisation energy (Fig. 9). The deployed wavelength of 118 nm is 

equivalent to photon energy of 10.49 eV. Considering typical ionisation 

energies for organic molecules between 7 and 12 eV, the majority of 

compounds, but also some inorganic compounds, such as H2S and 

NO, are principally accessible. In contrast, main components of air (N2, 

O2, H2O, Ar, CO2), but also frequently used GC carrier gases (He and 

H2, cannot be ionised because of too high ionisation energies. 

Moreover, mainly molecular ions can be expected due to small 

differences between photon and ionisation energy, leading to small 

excess energy and low potential for fragmentation [131]. However, 

fragmentation and also the probability for successful ionisation of a 

Fig. 9 In SPI, the 

absorption of one VUV-

photon causes the 

ionisation. 
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molecule (in the following referred as photoionisation cross sections, PICS) depend on the 

functionality and compound class, but also on the wavelength. A PICS range of approximately one 

order of magnitude has been reported between single aromatic and aliphatic hydrocarbons at 

118 nm [132]. 

3.2.3.3 Resonance-enhanced multi-photon ionisation (REMPI) 

In contrast to the universal ionisation technique SPI, resonance-

enhanced multi-photon ionisation (REMPI) is regarded as a selective 

ionisation technique for aromatic compounds if performed with UV-

photons, which are often provided by the FHG of an Nd:YAG laser 

(266 nm), KrF excimer laser (248 nm) or ArF excimer laser (193 nm). 

In the first step, an UV-photon is absorbed by a molecule, which 

becomes excited to an intermediate state. If the lifetime of this 

intermediate state is long enough, a second photon can be absorbed 

that the energy of the two photons can exceed the ionisation energy 

(Fig. 10). From this scheme it can be seen that the selectivity of 

REMPI is controllable by several parameters, such as photon 

wavelength(s), pulse duration and light intensity, and linked with UV-

spectroscopy. Thus, the selectivity for aromatics does not hold in 

general, but for 266 nm and laser intensities between 106 and 

108 W cm-2. Generally, REMPI processes are labelled by [m+n], where 

m photons excite the analyte and n photons lead to ionisation. Thus, 

the applied REMPI technique refers to the simplest case of [1+1]-REMPI although higher processes 

are also possible [133].  

3.3 Mass analysers 

3.3.1 Time-of-flight mass spectrometer (TOFMS) 

In a TOFMS, ions which have been generated at a defined point of time are accelerated by an 

applied high voltage U. Subsequently, the ions pass through a free drift tube of the distance s and hit 

the detector. In case of single-charged ions, the drift time t depends on the mass m because under 

the same kinetic energy, i.e. the same acceleration voltage, heavier ions need longer t for the drift 

path s. 

Independent from the ionisation technique, the electric charge q of an ion with the mass m is equal 

with the number z of elementary charges e: 

𝑞 = 𝑧 ∙ 𝑒      (3.3) 

The energy of the electric field Eel caused by the acceleration voltage U can be expressed as  

𝐸𝑒𝑙 = 𝑞 ∙ 𝑈 = 𝑧 ∙ 𝑒 ∙ 𝑈      (3.4) 

while Eel is converted into kinetic energy Ekin of the ions: 

Fig. 10 In REMPI, the 

absorption the first UV-

photon excites the analyte 

while the second UV-

photon causes the 

ionisation. 
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𝐸𝑒𝑙 = 𝐸𝑘𝑖𝑛 =
1

2
∙ 𝑚 ∙ 𝑣2      (3.5) 

Suppose that the generated ions are at rest, the ion velocity can be described as 

𝑣 = √
2∙𝑒∙𝑧∙𝑈

𝑚
      (3.6) 

By substitution of v = s t-1 and a constant drift path s, the equation is reconverted to demonstrate the 

proportional relation between the drift time t and square root of m/z, which is considered for the 

mass calibration of the instrument: 

𝑡 =
𝑠

√2∙𝑒∙𝑈
∙ √

𝑚

𝑧
      (3.7) 

Furthermore, it can be seen that due to the direct proportional relation between the drift path s and 

the flight time t, longer drift paths s enables to maximise difference in arrival times Δt between two 

ions and consequently the mass resolution of the instrument. Therefore, isobaric compounds, i.e. 

compounds with the same nominal mass, but different sum formula, can be separated. However, the 

theoretical Δt between two ions is not reached, i.e. the mass resolution is affected by basically three 

reasons [125]: 

(1) Independent from the ionisation technique, the ionisation volume (e.g. the laser spot) is 

not infinitesimal, so generated ions differ in starting points for acceleration to the drift path and 

consequently in energy due to different distances to the acceleration electrodes (extractor and 

repeller). Ions with starting points closer to the repeller undergo higher acceleration voltage, so they 

will overtake ions with higher distance to the repeller. The associated velocity distribution broadening 

of ions increases with time and renders the advantage of longer flight paths less effective. However, 

at a certain spot in the drift path these ions have a minimum of difference in distance (space focus) 

in which the detector should be located, but in such a setup the spatial focus would appear too close 

to the ion source and would result in insufficient mass separation.  

(2) The generated ions cover an isotropic velocity distribution, which is caused by the kinetic 

energy of the neutral molecules or atoms and space-charge effects. Thus, an ion can initially move 

diametrically to the electric extraction field before its sense of direction is changed towards the 

detector that it requires a so-called “turn-around-time”. 

(3) Ions are generated during a non-infinitesimal period of time that some ions are earlier 

accelerated than others. 

By implementation of a two-stage ion extraction invented by Wiley and McLaren [134], the spatial 

focus of the ions can be shifted to higher applicable drift paths through adjusting the first and second 

extraction voltage according to the Wiley-McLaren criterion 

𝑠 = 2𝑥1 ∙ √𝑘3
2

(
1−𝑥2

(𝑘+√𝑘)∙𝑥1
)    (3.8) 

with s is the flight path, x1 is the distances between first extractor and ionisation zone, x2 is the 

distances between first and second extractor, and k is the ratio of the first and second acceleration 
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voltages for a space focus equal to the flight path s. Therefore, the space focus compensates the 

energy uncertainty for an optimal k for the fixed drift path s. 

A second improvement on the mass 

resolution was achieved by the 

application of a two-stage Reflectron, 

which was developed by Boris A. 

Mamyrin [135]. The Reflectron consists 

of two consecutive electric fields, which 

firstly decelerate and a subsequently 

accelerate the ions in the opposite 

direction. Ions of higher kinetic energy 

penetrate deeper into the Reflectron than 

ions of lower energy. Thus, the broadening of the ion package after the Wiley-McLaren space focus 

can be corrected with additional doubling of the drift path, which allowed during the time of the 

invention already mass resolutions > 10,000. However, the overall mass resolution of a TOFMS with 

both Wiley-McLaren ion optic and Reflectron is limited by the Liouville theorem, which states that the 

volume of a closed system in phase space is constant. Consequently, a complete correction of the 

spatial and energy uncertainty cannot be achieved at the same time, but can be approached by 

applying preferably high voltages. 

In order to enhance the quality of the spectra, the ions were extracted by pulsed extractor and 

repeller voltages with a delay of 100 ns between laser shot and extraction. Thereby, electrons which 

were simultaneously generated to the (positive) ions were allowed to leave the ion source due to 

their order of magnitude higher velocity (Born-Oppenheimer approximation). In a continuous electric 

extraction field, electron would be accelerated in the direction of the repeller electrode and cause 

additional fragment ions, which reduces the advantages of molecular ion yields in soft 

photoionisation, but also the reproducibility of EI spectra. 

In TOFMS, ions of different m/z arrive with high frequency at the detector, thus it has to comply with 

fast responsiveness. The micro channel plate (MCP) refers to a commonly used detector which is 

composed of many parallel-connected secondary electron multipliers with a channel diameter 

between 10 and 25 µm. Each channel is capable to generate secondary electrons from impinging 

ions at the channel wall, which are amplified and induce a measurable voltage drop. To prevent that 

ions pass the channels without collision, they are tilted a few degrees away from orthogonal impact 

angle. Often two or three standard MCPs were combined to a chevron plate or z-stack, which 

achieve amplifications up to 106 and 108, respectively, using voltages in the kilovolt range [125]. 

3.3.2 Quadrupole (QMS) 

Quadrupole are known as compact, cheap, robust and the most frequently used mass analysers in 

mass spectrometry [128]. It consists of four parallel cylindrical rods, which are linked and arranged in 

a square. One pair of two opposing rods is linked with the positive pin of an adjustable direct current 

supply while the remaining pair is linked with the negative pin. Additionally, alternating voltages, 

Fig. 11 Scheme of a time-of-flight mass spectrometer 

with Wiley-McLaren ion optic and Reflectron. 
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which are phase-shifted by 180°C, are applied between each pair of rods. Thus, an alternating 

positive and negative electrical field is generated relative to the centreline, which forces cations to 

the centreline (positive field) or to the rods (negative fields), and enables to filter single m/z or to 

scan a full mass spectrum in the sub-second range. Usually, ions are detected by secondary 

electron multiplier (SEM), or more precisely by channel electron multipliers (CEM), which amplifies 

impinging ions as a single channel of an MCP described in section 3.3.1.1. Compared to TOFMS, 

quadrupole operate substantially slower, but are regarded as more robust. For the analysis of few 

single compounds, the quadrupole is preferred, whereas for rapid analysis of ions with several m/z 

or monitoring of fast dynamic processes, TOFMS offers better performance. 

 

Fig. 12 Disposal of electrodes in a quadrupole mass spectrometer and possible ion flight path (left) 

and channeltron detector for secondary electron multiplication. 

3.4 Instrumentation for aerosol analysis 

3.4.1 On-line PI-TOFMS 

Two identical TOFMSs (compact time-of-flight II, 

Firma Stefan Kaesdorf, Geräte für Forschung und 

Industrie, Germany) were equipped with Nd:YAG 

lasers (Spitlight400, Innolas, Germany; Big Sky 

Ultra, Quantel, France) for on-line monitoring of 

organic vapours, which includes the VOCs, IVOCs 

and the gas-phase of SVOCs, and few volatile 

inorganic compounds using SPI and REMPI in 

parallel [136, 137]. On-line instrumentation is 

especially demanded for the investigation of 

dynamic processes, e.g. batchwise wood 

combustion, but can also yield in low limit of 

detections (LOD), which decreases with the square 

root of the number of averaged mass spectra. 

The TOFMSs were connected to the raw or diluted 

exhaust of an emission source by heated transfer 

lines at minimum 220°C and a support flow of 

Fig. 13 Instrumental setup of on-line 

photoionisation time-of-flight mass 

spectrometry (PI-TOFMS, shown for SPI) for 

the analysis of organic vapours in real-time. 

The addition of isotope-labelled toluene to the 

raw exhaust enables semi-quantification of 

selected analytes. 
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2.5 l min-1. After removal of particles by a glass fibre filter, the remaining organic vapours were 

mixed with an internal standard of triply deuterium-labelled toluene (D3-toluene, m/z = 95; toluene 

methyl-D3, 98% purity, Cambridge Isotope Laboratories, Inc.) for a final concentration between 100 

and 1000 ppb and subsequent ionisation and detection. With the knowledge of PICS relative to 

toluene, semi-quantification was possible. 

For the investigation of the composition of coffee roasting off-gas, a second TOFMS (custom-made, 

Firma Stefan Kaesdorf, Geräte für Forschung und Industrie, Germany) was equipped with an 

Nd:YAG laser (Continuum Surelite III, Santa Clara, USA) and optical parametric oscillator (OPO, 

GWU Lasertechnik, Erftstadt, Germany) to perform SPI at 118 nm and REMPI at 227 nm, 248 nm 

and 266 nm. 

3.4.2 Thermal-optical carbon analysis (TOCA) and hyphenation to PI-TOFMS 

Thermal/optical carbon analysis (TOCA, DRI Model 2001a) coupled to photon ionisation time-of-

flight mass spectrometry (PI-TOFMS) refers to an untargeted technique and enables to quantify 

organic (OC) and elemental carbon (EC), but also to investigate the molecular composition of the 

thermal sub-fractions related to OC. The TOCA consists of an oven surrounding a quartz cross, 

laser diodes of seven wavelengths, detectors for laser reflectance and transmittance, an MnOx 

catalysts (oxygenator), a Ni catalyst adsorbed on silica (methanator) and a flame ionisation detector 

(FID). A punch of 0.5 cm2 from the QFF sample is placed into the oven by a push rod and heated in 

He according to the ImproveA protocol, defining four thermal subfractions of OC (OC1 – OC4) [138]. 

During thermal analysis of the sample, material from the filter evolves and becomes oxidised inside 

the oxygenator at 900°C. Subsequently, the formed CO2 is mixed with H2 and converted to CH4 

inside the methanator unit at 420°C. Finally, the carbon is quantified by an FID, which is known for 

its carbon sensitive and selective detection. 

After OC4 (580°C), the atmosphere is changed 

to 2% O2 in He to oxidise EC from the filter to 

CO2, which is analogously quantified. However, 

thermally unstable or low-volatile organic 

compounds decompose before evaporation 

and may form pyrolytic organic carbon (OCpyr), 

which cannot be distinguished from original EC 

on the filter. Therefore, the initial laser 

transmittance (LT, for low loaded QFFs) and 

laser reflectance (LR, for heavy loaded QFFs) 

of the filter sample are measured at 635 nm 

and continuously monitored during the entire 

analysis. When OCpyr is formed, LT and LR 

decrease compared to their initial values since 

additional OCpyr additionally absorbs 635 nm 

light. In EC1, LR and LT re-increase due to 

Fig. 14 Instrumental setup of the thermal-optical 

carbon analyser (TOCA) coupled to 

photoionisation time-of-flight mass spectrometry 

(PI-TOFMS). Besides organic carbon (OC) and 

elemental carbon (EC), the evaporation of single 

analytes over four OC fractions can be monitored. 
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simultaneous oxidation of OCpyr and true EC. After LR and LT have reach their initial level, the 

quantified carbon belongs to OCpyr, whereas further quantified carbon accounts for true EC. 

Approximately 8 % of the total flow enters the TOFMS through a deactivated transfer capillary (inner 

diameter of 320 µm), which is connected to the carbon analyser oven by a modified quartz cross 

stepwise heated from 230 °C to 245 °C to prevent condensation [139, 140]. Evolving compounds 

entering the ion source are ionised and analysed by PI-TOFMS as described in section 3.2.3.  

and 3.3.1. Thus, a molecular fingerprint of the four subfractions from OC1 to OC4 can be obtained. 

3.4.3 In-situ derivatisation thermal desorption gas chromatography mass spectrometry 

(IDTD-GCMS) 

The in-situ derivatisation thermal desorption gas 

chromatography mass spectrometry (IDTD-

GC/MS) consists of a conventional GC oven 

(Agilent 6890 gas chromatograph, Agilent, USA) 

with a EI-TOFMS (Pegasus III TOFMS, LECO, 

USA), but advanced sample injection system, 

which enables to simultaneously investigate 

polar and non-polar constituents of PM from filter 

samples [6]. Polar compounds may have too low 

volatility for GC analysis or may decompose 

during the GC run, which can be overcome by 

derivatisation of hydroxyl and carboxyl groups. 

Polar compound classes of interest include 

anhydrous sugars, aliphatic alcohols, phenolic 

species, fatty acids and resin acids. For the 

analysis, a filter aliquot damped by N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) is placed in the injector, which constantly heated to 300°C 

to accelerate the reaction rate and shorten the analysis time. He as carrier gas, which is mixed with 

additional MSTFA, passes the injector to desorb PM constituents and ensure complete 

derivatisation. Other non-polar analytes, such as PAHs, are not affected by the derivatisation. The 

resulting silyl ether (from alcohols) and esters (from carboxylic acids) can be easily identified by EI 

fragments of m/z 73, corresponding to trimethylsilyl group, as well the characteristic isotopic 

distribution of Si. 

3.4.4 Aerosol mass spectrometry (AMS) and soot-particle aerosol mass spectrometry 

(SP-AMS) 

The aerosol mass spectrometer (AMS) was first introduced in 2000 [141] and enables the on-line 

investigation of the bulk composition of submicron particles in the aerodynamic diameter range of 

75 nm to 650 nm. It basically consists of three main sections, starting with the aerosol sampling unit 

(including aerosol inlet and aerodynamic lens), through which particles are sampled under 

atmospheric pressure, transferred to vacuum conditions and focused to generate a particle beam. In 

Fig. 15 Instrumental setup of the in-situ 

derivatisation thermal desorption gas 

chromatography mass spectrometry (IDTD-

GCMS) with addition of derivatisation agent 

(MSTFA) and highlighted construction of the 

injector (taken from [6]).  



Methodology 
  

Dissertation, 2017  23 

the particle sizing unit, a mechanical spinning chopper wheel allow only small portions of particles to 

pass. From the flight time of the particle packages to the particle composition detection unit, a size 

distribution is obtained, which can be refined for chemical species. After the flight path, particles hit 

the porous tungsten vaporiser of 600°C in a pressure of 10-5 Pa, so non-refractory particle 

components are volatilised, subsequently ionised by EI, separated and detected by a mass 

spectrometer [142], in this study a high resolution TOFMS (HR-TOF-AMS, Aerodyne Research Inc., 

USA). The total content of particle-bound organics derived from AMS are called organic matter 

(OM), which is quantified together with nitrate, ammonium, sulphate and chloride by a fragmentation 

table together with particle properties including elemental ratios (O:C, H:C), ratio of organic matter to 

organic carbon (OM/OC), and mean carbon 

oxidation state (𝑂𝑆̅̅̅̅ 𝐶) [143]. 

In addition to the AMS, the soot-particle 

aerosol mass spectrometer (SP-HR-TOFAMS, 

Aerodyne Research Inc., USA) is equipped 

with laser vaporiser (Nd:YAG laser, 1064 nm) 

to partially volatilise refractory components of 

the particles. With only the laser vaporiser on, 

the SP-AMS is selective for near infra-red light-

absorbing particles, such as refractory black 

carbon (rBC) and metal nanoparticles, which 

are ionised by EI as described in the previous 

paragraph [144]. 

3.5 Statistical data analysis 

3.5.1 One-way Analysis of Variance (ANOVA1) and Kruskal-Wallis test (H-test) with 

Bonferroni correction for multiple testing 

The one-way Analysis of Variance (ANOVA1) refers to the generalisation of the Student’s t-test for k 

instead of only two groups. Basically, ANOVA1 compares the variances of a variable within the k 

groups with the variances between the groups by calculating the sum of squares (SS) 

𝑆𝑆𝑏 = ∑ 𝑛𝑗 ∙ (𝑦̅𝑗 − 𝑦̅)
2𝑘

𝑗=1      (3.9) 

𝑆𝑆𝑤 = ∑ ∑ (𝑦𝑖,𝑗 − 𝑦𝑗̅)
2𝑛𝑗

𝑖=1
𝑘
𝑗=1      (3.10) 

for nj observations in each of the k groups where 𝑦̅ denotes the mean of the total distribution and 𝑦̅𝑗 

refers to the mean of the jth group. Subsequently, an F-test is performed by calculating the ratio of 

SSb and SSw corrected by the degrees of freedom dfb = k-1 and dfw = k∙(nj-1): 

𝐹 =

1

𝑑𝑓𝑏
∙𝑆𝑆𝑏

1

𝑑𝑓𝑤
∙𝑆𝑆𝑤

      (3.11) 

Fig. 16 Instrumental setup of the Aerodyne aerosol 

mass spectrometer (AMS) comprising of aerosol 

inlet with aerodynamic lens system, particle flight 

path, thermal vaporiser, filament for EI and time-of-

flight mass spectrometer. 



Methodology 
  

Dissertation, 2017  24 

Finally, the obtained F-value is compared to the critical values from the F-distribution (Fcrit) at 

common significance level α of 0.05, which represents probability of 5% for a random error (Type I 

error). The assumption, i.e. null hypothesis H0, for ANOVA is that the group means are equal, which 

is tested against the alternative hypothesis H1 of unequal means. If the calculated F exceeds Fcrit, 

the null hypothesis is rejected, so there is a significant difference between the group means. 

However, it cannot be determined which two or more group means are different. If t-tests are 

performed for each possible combination c of the k groups, α would increase exponentially because 

the probability p of making a Type I error is 

𝑝 = 1 − (1 − 𝛼)𝑐     (3.12) 

since for each new test there implies a new probability of Type I error. For the example of 5 groups 

and thus 10 possible combinations, p increases to 0.401 for all group comparison although each 

comparison has only a Type I error of 0.05. This phenomenon is called α-error accumulation. 

To identify different group means, there are several possibilities to adjust α for appropriate multiple 

testing (posthoc analysis), which are regarded as liberal or conservative in terms of rejecting H0. 

Conservative posthoc tests are not recommended for high numbers of k, but n all studies presented 

here, the k did not exceed 11, so the conservative Bonferroni posthoc correction was applied. The α 

adjustment was performed according to the equation 

𝛼𝑎𝑑𝑗 =
𝛼𝑠𝑖𝑛𝑔𝑙𝑒

𝑐
      (3.13) 

where αadj is the new significance level and αsingle the significance level for a single comparison of 

two groups [145]. 

Technically speaking, ANOVA1 is only allowed to be carried out if normal distribution and variance 

homogeneity is given between the distributions of the k groups. However, it has been shown that 

ANOVA performs generally robust with not-normally distributed data [146]. In contrast, different 

variances of the groups substantially affect the results of ANOVA. In this case, the non-parametric 

Kruskal-Wallis test (H-test) [147] was performed, which does not make any assumption about the 

distribution. First, the metrically scaled variable is transferred to an ordinal scale by replacing the 

exact values by their ranks. For no ties (i.e. no equal values), the test statistic H is calculated 

according to 

𝐻 =
12

𝑁(𝑁+1)
∑

𝑅𝑗
2

𝑛𝑗
− 3(𝑁 + 1)𝑘

𝑗=1      (3.14) 

where N denotes the total number of observations in all groups k, nj is the number of observations in 

one group and Rj refers to the sum of the ranks in the jth group. The H value is compared to critical 

values (Hcrit), which follow a χ2-distribution, under the same H0 and α follow by posthoc analysis 

equal to ANOVA. 

3.5.2 Non-negative matrix factorisation (NMF) 

Non-negative matrix factorisation (NMF) was applied to examine the temporal evolution of variables 

(i.e. m/z, compound classes) and to pool them into classes. Generally, NMF partitions iteratively a 
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non-negative m-by-t matrix M into an m-by- k matrix W (hereinafter referred to as factor loadings) 

and a k-by-t matrix H (hereinafter referred to as scores). The variable k refers to the rank of the NMF 

solution but can be practically regarded as the number of processes to identify and has to be 

predefined [148]. In this context, the matrix dimension m stands for m/z and t for the total time. In the 

presented studies, the rank of the NMF solution was preset based on previous knowledge about the 

investigated processes or the physical reasonability of the result. 

Factor loadings W and scores H are computed by an alternating least-squares (ALS) algorithm to 

minimise the cost function 

𝑓(𝑊,𝐻)𝑘 = ‖𝑀 −𝑊𝐻‖𝐹
2     (3.15) 

where ‖𝑋‖𝐹
2  computes the Frobenius-norm of a non-negative matrix X. Consequently, the product of 

W and H is an approximation of the original data matrix M. Because the iteration starts with random 

initial values W0 and H0 for W and H, the NMF may lead to different solutions when repeated if the 

algorithm converges in a local minima for f(W,H)k. To improve reproducibility of NMF, initial values 

for W0 and H0 are optimised by a multiplicative update algorithm [149] which is slower, but more 

sensitive for initial value optimisation [148], before running the ALS algorithm [150]. The temporal 

evolution of the k processes are illustrated by calculating the relative proportions ht in % of the 

absolute score values Ht for each of the k element at any point of time ti.  

ℎ𝑡 =
𝐻𝑡

∑ 𝐻𝑡,𝑖
𝑘
𝑖=1

∙ 100%     (3.19) 

Please note that in atmospheric sciences, the NMF is also called positive matrix factorisation (PMF) 

and refers to the ALS algorithm by Paatero & Tapper (1994) [150], which is one of the most 

commonly used receptor model for source apportionment [151]. 

3.5.3 Principal component analysis (PCA) 

Suppose a data set of m variables (e.g. m/z, chemical compounds) and n observations (e.g. 

samples, point in time) organised in an n-by-m data matrix M, which equals n observations in an m-

dimensional space. Principal component analysis (PCA) aims to project the data for in a space of 

lower dimension by retaining as much information as possible, i.e. to explain as much variance as 

possible of M. Therefore, relations between observations as well as responsible variables can be 

explored.  

First, variables are centred or standardised to obtain the m-by-m covariance or correlation matrix C. 

Subsequently, the m-by-m eigenvector matrix L and m-by-m eigenvalue matrix V of C are computed 

by singular value decomposition: 

𝐶 = 𝐿𝑆2𝐿𝑇 = 𝑍𝑉𝑍𝑇     (3.20) 

where Z is an m-by-m orthogonal matrix, S is an m-by-m diagonal matrix with the non-zero singular 

values on its primary diagonal. If the eigenvector in each column of L are organised in reversed 

order, L becomes the loadings matrix and eigenvectors the principal components (PC). PCs are 

orthogonal to each other, i.e. linearly uncorrelated, and defined by a linear combination of the 

original variables, ordered by descending amount of explained variance. From the primary diagonal 
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of V, containing the non-negative eigenvalues of decreasing magnitude (v1 ≥ v2 ≥ … vm ≥ 0), the 

explained variance of each PC can be obtained by relating each eigenvalue v to sum of eigenvalues: 

𝑣𝑎𝑟𝑖 =
𝑣𝑖

∑ 𝑣𝑖
𝑚
𝑖=1

      (3.21) 

To investigate the relations between the observations n, the n-by-m score matrix S is calculated 

according to 

𝑀 = 𝑆𝐿𝑇      (3.22) 

Often two or three PCs explain at least 60% of the total variance, thus reducing the complexity of a 

data sets and enable visualisation of the data in two- or three-dimensional space [152, 153]. 

3.5.4 Projection-on-latent-structures (PLS) regression 

In contrast to PCA, which models only the variance of one matrix, PLS regression aims to find a 

relation to between two matrices X (predictor variables) and Y (response variable), e.g. to predict 

properties of a sample from an analytical measurement. The underlying models can be described as 

𝑋 = 𝑇𝑘𝑃𝑘
𝑇 + 𝐸       (3.23) 

𝑌𝑒𝑠𝑡 = 𝑇𝑘𝑄 + 𝐹       (3.24) 

where Yest refers to the estimated dependent response variable, T represents the score matrix, PT
k 

denotes the transposed loadings matrix for X, Q is the loadings matrix for Y and E and F stand for 

the residuals with k as the number of latent variables (PLS components). 

The prediction of the response variable Ypred for a measurement xi is computed by 

𝑌𝑝𝑟𝑒𝑑 = 𝑥𝑖𝑏       (3.25) 

where b refers to the computed vector of PLS regression coefficients by non-linear iterative partial 

least square algorithm (NIPALS) 

𝑏 = 𝑊(𝑃𝑇𝑊)−1𝑄 (7)     (3.26) 

where W represents the weights of the loading matrix [154]. 

With PLS regression, properties Y of a sample which are difficult to determine can be derived from a 

PLS regression model create by simpler measurements, e.g. the prediction of cytotoxicity of river 

water with water-extract analysis by GC/MS [155] or the ratio of aliphatic to aromatic compounds in 

crude oil by Fourier-transform IR spectroscopy [156]. 

4 Results and discussion 

4.1 Primary aerosol emissions from a marine auxiliary engine 

Despite the high relevance of emissions from ship traffic for climate and human health, the number 

of studies is much lower than for other common anthropogenic sources, such as wood combustion 

or road traffic. There are several issues to overcome to analyse ship emissions directly on-board. 

The Faculty of Mechanical Engineering and Marine Technology of the University of Rostock owns an 
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80 kW marine auxiliary engine for research, which enables to examine relatively fast changes in 

engine conditions or fuel changes. 

4.1.1 Chemical composition of carbonaceous particulate emissions 

Almost each study on primary ship emissions focus on PM2.5, PM2.5-related quantities (OC, EC, 

BC) and major combustion gas emissions (CO2, CO, NOx), but the composition of organic emissions 

were poorly investigated before. On that account, a detailed molecular characterisation of OA from 

ships were carried out by on-line AMS and TOCA-SPI/REMPI-TOFMS analysis of filter samples 

taken from repeated 2 h engine cycle (ISO 8178-4 E2 including engine loads of 100%, 75%, 50% 

and 25%). The experiments were performed with HFO and DF in order to investigate changing 

emissions in the context of SECAs [157]. 

First, basic EFs including PM2.5, OM, EC, BC and sulphate were compared to available literature 

data to ensure comaparability of the small-scale engine with main engine of higher power output, 

which resulted in good agreement despite additional variances from molecular fuel composition and 

specific engine conditions. Switching from HFO to DF led to reduced PM2.5 emissions by 

appproximately 80% from 510 mg kWh-1 to 110 mg kWh-1, which could be attributed to lower 

emissions of OC (OM) and heavy metals, such as oxides of V and Ni. Suprisingly, both soot-related 

emissions of EC and BC were insignificantly different between HFO and DF. However, other light-

absorbing carbonaceous species, i.e. BrC emissions, accounted for approximately 20%  

(65 mg kWh-1) of the OM emissions from HFO combustion (320 mg kWh-1), but was negligible for DF 

use. Therefore, there is evidence that POA emissions from ships operating on HFO are a relevant 

source of BrC in addition to BBOA, which will be discussed in detail in a prospective manuscript 

[158]. Moreover, average carbon oxidation states (OSc) were calculated according to Kroll et al. 

(2011) [4] based on O:C and H:C from AMS analysis and appeared between -1.6 and -1.1, which fits 

to molecular structures of high aromaticity found in fuels and on particles [159]. 

The molecular composition of OM was investigated more in detail by TOCA-SPI/REMPI-TOFMS, 

which heats the filter samples towards target temperatures according to the ImproveA protocol [138] 

with heating rates up to 5 °C s-1. Fractions of OC1 and OC2 were combined to “thermodesorption” 

(OC12, 25°C – 280°C) and OC3 and OC4 to “pyrolysis” (OC34, 280°C – 580°C) due to predominant 

events of evaporation and decomposition, respectively. 

Evolved gas analysis by SPI-TOFMS revealed that most abundant peaks belong to fatty acid methyl 

ester (FAME) of oleic, linoleic and palmitinic acid (m/z 296, 294 and 270), which were attributed to 

unburned biodiesel produced from transesterification of rapeseed oil. The biodiesel can account for 

up to 7%-vol and has been demonstrated to efficiently reduced soot-related emissions from diesel 

engines [160]. Furthermore, naphthalic anhydride and a variety of alkanes were detected in the SPI 

spectrum of thermodesorption, while the homologue alkylation series of phenanthrene (m/z 178) was 

the dominant peaks in the REMPI spectrum of OC12. In contrast, HFO thermodesorption SPI and 

REMPI spectra were dominated by homologue alkylation series of phenanthrene, but also by 

dibenzothiophene (starting from m/z 184) and chrysene (starting from m/z 228). Alkylated 

phenanthrenes and chrysenes are generally abundant in crude oil-based fuels due to oil precursors 
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from biomass, such as di- and triterpenoids [161, 162], while dibenzothiophenes were identified as 

most abundant sulphur-species in vacuum gas oil [163]. Both SPI and REMPI spectra of OC34 did 

not enable to suggest specific compounds, but to gain insights into larger molecular structure by 

thermal fragments as well as to discriminate between fuels by fingerprints, which can be applied in 

source apportionment. Two apparent differences can be found in OC34 between the fuels. First, for 

HFO peaks up to m/z 400 were still detectable in the REMPI spectrum despite a general shift 

towards smaller m/z during pyrolysis, indicating large aromatic structures present in the HFO or 

cracking and aromatisation of substituted cyclic structures, e.g. of asphaltenes. Second, only for 

HFO sulphur-containing thermal fragments were observed, such as hydrogen sulphide (m/z 34), 

methane thiol (m/z 48) and carbon disulphide (m/z 76), which is consistent with the fact that the 

majority of sulphur is located in the low-volatile fraction of HFO [96]. From the analysis of particle 

and fuel, similar mass spectra were obtained, indicating that unburned fuel is a major contributor to 

organic emissions.  

 

Fig. 17 SPI (left) and REMPI (right) mass spectra of thermodesorption-like OC12 (25°C – 280°C, 
figures a and b) and pyrolysis-like OC34 (280°C – 580°C, figures c and d) of DF particles (blue) and 
HFO particles (red). 

4.1.2 Markers in the fraction of aromatic VOCs and IVOCs emissions from SECA-

compliant and non-SECA-compliant fuels 

Before this project was started, the available literature on VOC and IVOC emissions from ship was 

negligible. The aromatic fraction of VOCs and IVOCs from HFO and MGO combustion at constant 

engine loads were studied by on-line REMPI-TOFMS and combined with previously published on-

line REMPI-TOFMS data with various and also dynamic engine conditions in terms of engine load 

and crank angle [164, 165]. Hence, a wide range of realistic emission scenarios was covered for 

three different HFOs and one MGO, which represent non-SECA- and SECA-compliant fuels. In order 

to find molecular markers, diagnostic ratios or latent variables suitable to identify ship emissions in 
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ambient air, further published on-line REMPI data of realistic emissions from road traffic, small non-

road engines and domestic wood combustion [166-168] was also included and examined by several 

statistical techniques. Due to the high time resolution of the REMPI-TOFMS data, not only mean 

emission profiles, but also the variance of dynamic combustion processes can be taken into 

consideration.  

 

Fig. 18 PCA biplots, combining scores (samples, coloured) and loadings (m/z, black), of REMPI 

spectra from ship and non-ship emissions outside (top) and inside SECAs (bottom). Black ellipses 

denote the 95% confidence interval. For better visualisation only the most relevant m/z are included. 

In PCA, ship emissions from both HFO and MGO combustion could be separated from land-based 

emissions by the scores of first principal component, explaining 46.4% and 43.2% of the total 

variance, while the second principal component explains mainly variation within the respective 

combustion. Alkylated phenanthrenes and especially naphthalene were responsible for the grouping 

of the different combustion sources and seems to be potential markers for ship emissions. 

Generally, high combustion temperatures inside the piston enhances the relevance of HACA 

formation mechanism for PAHs and derivatives, but it seems that in particular for heavy-duty 

engines, the fuel slip becomes more important and leads to emission patterns which are known from 

crude oil and its refinery products. Truck emissions appeared as most interfering emission source 
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with ship emissions, especially for MGO combustion, which can be explained by the fuel slip and 

additionally by the very similar boiling point range of MGO and DIN EN 590 diesel from the fuel 

station. In order to prove statistical significance, Kruskal-Wallis test with subsequent Bonferroni 

adjustment of the α-level was performed between HFO and MGO combustion emissions. It turned 

out that C2- to C7-naphthalenes, fluorenes, dibenzofurans and phenanthrenes were significantly 

enhanced in HFO combustion emissions by factors from two to eleven. Some oxy-PAHs, such as 

anthrone and 9H-fluoren-9-one, were also significantly increased in HFO combustion emissions, but 

because of further environmental sources, such as atmospheric ageing, they were not considers as 

markers. However, for MGO only C3-naphthalene and C3-phenanthrene appeared statistically 

significant. Moreover, the ratio of C2- to C1-naphthalene were found to be a simple quantity to 

discriminate between ambient air pollution mainly caused by ship emissions and ambient air 

pollution by other emission sources. Neither for HFO nor for MGO the range between the first and 

the fourth quintile of this ratio did not interfere with the other investigated emission sources. Thus, 

this ratio can be applied independently from fuel as DR inside and outside SECAs. Furthermore, 

both alkylated naphthalenes are similarly degraded by OH radicals in the atmosphere [38], so the 

ratio remains stable, which is often an issue with DR [37]. 

Measurements of the alkylated naphthalenes can be carried out by off-line sampling, but it is 

supposed that complete spectra REMPI-TOFMS can provide more reliable assessments. In addition 

to its low limits of detection, low interferences with non-anthropogenic emission sources are 

expected, which originates from its ionisation selectivity. Aromatic rings, which are necessary to fulfil 

the ionisation requirements, are opened and derivative by atmospheric oxidising agents. Therefore, 

reaction products from atmospheric oxidation of aromatic primary VOC and IVOC emissions have 

lower PICS or do not fulfil ionisation criteria anymore. 

4.1.3 Prediction model to quantify the contribution of ships in simulated REMPI spectra 

of mixed anthropogenic emission sources 

For a proof of concept in predicting the contribution of ships to ambient air pollution, 5% of all REMPI 

mass spectra of ship emissions from one fuel as well as 5% of all REMPI spectra from non-ship 

emissions were randomly selected and weighted averaged with a predefined weight for the ship 

emissions Φsim. Thus, REMPI spectra of ambient air are simulated with consecutive Φsim steps of 

0.01 with 1000 repetitions, which were finally used for PLS regression. Each of the two resulting 

prediction model comprises of two PLS components, explain more than 97% of the total variance 

(R2) and feature root mean square error (RMSE) of 0.0329 (HFO) and 0.0488 (MGO), respectively. 

Furthermore, R2 and RMSE from 5-fold cross validation and external validation agreed well with the 

calibration function, which confirms that the model is neither over- nor underfitting the data. 

Following the definition of the limit of detection, lower and upper boundaries, defining the work range 

of the model, were derived from the point of intersection between 3-fold standard deviation at 

Φsim = 0 and the calibration function (Fig 19). 

The relevance of single variables (i.e. m/z) is determined by calculating the variable importance in 

projection (VIP), which considers the abundance of variable in each PLS component as well as its 
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contribution the overall explained variance. As a rule of thumb, squared VIPs above unity are 

important for the model, squared VIPs below unity less. MGO emission contribution was less 

precisely predicted than HFO because of higher similarity between MGO and land-based emissions, 

which can be attributed to a lower number of VIPs than for HFO. However, in both ship emissions 

C2-naphthalene were identified to support the discrimination from land-based emissions, which 

emphasises its use together with the less important C1-naphthalene in the proposed DR. Altogether, 

the results from three complementary statistical techniques suggest alkylated 2- and 3-ring PAHs 

are much more emitted by ships than land-based emissions sources and may enable reliable 

identification and quantification of ship emissions in source apportionment. 

 

 

Fig. 19 Prediction model for the contribution of ship emissions Φ based on mixed combustion 

emission sources from a simulation. Top: PLS regression of Φsim and for Φpred from the training data 

sets for HFO (left) and MGO (right) with ±s (dark grey) and ±3s (light grey) as well as related upper 

and lower boundaries for Φsim (blue); dashed lines illustrate the 1:1 diagonal. Bottom: Squared 

scores of the variable importance in projection (VIP) denoting the most relevant m/z for the PLS 

regression model. 

4.1.4 Development of direct infusion REMPI-MS to analyse medium and heavy marine 

fuels from the liquid phase 

Unburned fuel was identified as substantial contributor to particulate emissions from marine engines 

[169]. The marine fuels DF and in particular HFO have high double bond equivalents, which gives 

evidence for high aromaticity of the fuels [159]. REMPI-TOFMS is regarded as a valuable analytical 
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technique to characterise this type of fuel due to its high selectivity for aromatic compounds and 

generation of molecular ions, which simplifies the interpretation of mass spectra from complex 

mixtures [133]. However, the sample introduction is often performed by heating, e.g. by coupling 

thermal gravimetry (TG) to REMPI-TOFMS, which can alter the sample through decomposition 

[170]. On that account, the instrumental setup of Schepler et al. (2013) [171] with a direct liquid 

interface and quasi-simultaneous ionisation by SPI/EI was further developed to enable REMPI. The 

ionisation was switch from a continuously light-emitting VUV-lamp to a pulsed Nd:YAG laser 

(Minilite I, Continuum, California, USA), which required new synchronisation between light source 

and quadrupole. Sample introduction was realised by manual injection valve (VICI AG International, 

Switzerland) with an external 20 µL loop, which transfers the sample via a capillary of 25 µm inner 

diameter about 1 mm away from the repeller. The reduced pressure inside the ion source and 

heating of the repeller to 280°C support the coincident desolvation and nebulisation of the eluent 

(Fig. 20, left). Therefore, fuel samples are exposed to lower thermal stress, which avoids 

decomposition. Additionally, the accessible volatility and consequently the m/z range are increase, 

which enables a broader investigation of fuel composition. Apart from different DFs and HFO, crude 

oils of different origins were analysed to cover the entire volatility range of liquid petroleum products. 

Hence, the average m/z of the REMPI mass spectrum at 280°C repeller temperature could be 

shifted from 191 to 254 compared to the sum of TG-REMPI-TOFMS mass spectra from room 

temperature to 280°C of North Sea crude oil (Fig 20, right). 

 

Fig. 20 Left: Instrumental setup of the direct infusion resonance-enhanced multi-photon ionisation 

mass spectrometry (DI-REMPI-MS) for the investigation of liquid samples under low thermal stress. 

The electron gun from the previous setup of Schepler et al. (2013) [171] was discarded. Right: 

Comparison of DI-REMPI-MS and thermal gravimetry with evolved gas analysis by REMPI-TOFMS 

of North Sea crude oil. DI-REMPI-MS extends the accessible m/z range compared to the sum of TG-

REMPI mass spectra from room temperature to 280°C. Thus, complex heavy petroleum products, 

including marine fuels, can be investigated by soft REMPI-MS. 

4.2 Secondary emissions from a marine auxiliary engine 

The SOA formation from the primary marine auxiliary engine emissions were studied by ageing in a 

mobile smog chamber with a volume of 12 m3 [172]. As pointed out in section 1.4.2., emissions from 

diesel engine may feature low ratios of VOCs to NOx, which hampers SOA formation. Hence, diesel 

cars with relatively high NOx emissions contribute negligibly to ambient SOA [173], whereas low 



Results and discussion 
  

Dissertation, 2017  33 

NOx-emitting combustion aerosol sources, such as wood burning or spark-ignition engines, cover 

high SOA formation potential [173-176]. Additionally, ships emissions have also been characterised 

as high emitter of PM, but relatively low concentrations of VOCs, and combine the two introduced 

unfavourable conditions. Unfortunately, the increase of OA mass during ageing was lower than wall 

losses determined by continuous BC measurements. Hence, SOA formation potential might be low 

and aged-POA exhibits larger relevance. However, the majority of ship emissions are released in 

international waters and are transported over long distances, which is associated with higher 

exposure to atmospheric oxidising agents, until they reach mainland or inhabited areas. Therefore, 

more artificial ageing by PAM flow reactors seems to be justified. Very recently, Simonen et al. 

(2017) [177] demonstrated increasing PM mass and shifts in PM mass distribution over aerodynamic 

diameters on a conference poster for HFO and DF, but the chemical speciation and role of organic 

aerosol constituents is still pending. 

4.3 Primary emissions from two modern small-scale wood combustion 

appliances 

The following section deals with primary and secondary emissions from a modern masonry heater 

(MMH) and a pellet boiler (PB), which are both equipped with state-of-the-art combustion technology 

by means of air staging. So far, these appliances are representative for residential heating with wood 

fuels in Scandinavia, but can are supposed to replace conventional wood stoves, pellet burners and 

boilers industrialised countries in the future. Furthermore, changing emission patterns of complex 

composition in logwood combustion is still an analytical challenging for instrumentation and data 

analysis. 

The experiments with the MMH comprise of six consecutive logwood batches of 2.5 kg (beech, birch 

and spruce wood), which were burned for 35 min, and an additional char-burning phase of 30 min for 

a total experimental duration of 4 h. Integrated emission data of the PB were obtained from 4 h 

sampling of constant operation at nominal load with commercial softwood pellets. Additionally, 

emissions from the starting phase, birch bark pellets and the effect of reduced secondary air supply 

were investigated. 

4.3.1 Time-resolved analysis of volatile emissions 

Wood stoves are usually operated by ignition of small amounts of wood and subsequent batchwise 

refilling with logs. Since temperature inside the combustion chamber steadily increases, new 

introduced batches lead to different quantitative emissions. However, even within a batch the 

logwood passes different combustion stadia leading to different emission patterns, which can be 

simply described the composition of three carbon-containing main combustion gases CO, CO2 and 

VOCs (measured as OGC), but also by particle composition [168] . However, the changing 

composition of VOCs over different combustion stadia has not been described. On that account, a 

similar approach to Elsasser et al. (2013) [168] by means of NMF was applied on SPI mass spectra 

for every 4 h experiment with the MMH, leading to three identified combustion stadia from the 

normalised NMF scores, referred to “ignition”, “stable combustion” and “ember” (Fig 21).  
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Fig. 21 NMF results (relative factor contribution and factor loadings) of SPI mass spectra from one 
logwood combustion experiment and prove of consistency for all combustion experiments by PCA of 
NMF factor loadings. 

The temporary order of the phases are clearly visible as well as the decreasing contribution of 

“ignition” and increasing contribution of “ember” because at higher temperatures inside the 

combustion chamber, the wood turns faster into charcoal. The NMF loadings contain representative 

patterns for the three combustion stadia. To include all combustion experiments in the evaluation of 

the combustion stadia, NMF loadings were normalised and examined by PCA. The PCA scores 

illustrate similar compositions of the combustion stadia from different wood fuels. Usually it is 

assumed that during ignition, monomers of the wood biopolymers are released because of low 

temperature pyrolysis. However, the NMF loading “ignition” contains moderately unsaturated 

hydrocarbons (e.g. propene, butadiene and cyclopentadiene) and alkenyl-substituted benzenes (e.g. 

styrene) from secondary decomposition, whereas early stage decomposition products with oxygen-

containing functionalities appear in NMF loadings of “stable combustion”. Those compounds include 

anhydrous sugars, furan derivatives and carbonyls from carbohydrate decomposition as well as 

substituted phenols from lignin. This can be explained by a shortly false NMF factor assignment 

during the first two minutes in which “ignition” and “stable combustion” are switched, predominantly 

associated with burning of the kindlings, but return into the correct assignment after ignition of the 

entire first batch. This phenomenon occurs only at the first ignition because the MMH generates 

sufficient heat that new batches do not pass low, but already pyrolysis at higher temperatures. This 

observation is attributed as a feature of the combustion technology and property of the MMH. When 

burning wood turns into glowing embers, the emission spectrum shifts towards higher 

polyunsaturated compounds formed by pyrosynthesis, such as benzene and vinylacetylene, which 

agrees well with results from charcoal burning [178]. 
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Regarding the six consecutive batches of logwood in the MMH, it was found that the majority of the 

organic emissions, represented by the signal intensities of SPI mass spectra, appeared during the 

first two batches and accounted for at least 50% of the total 4h emissions. This result was further 

statistically supported by single Grubbs and double Grubbs outlier test at a significance level of 5%. 

In case the null hypothesis of the single Grubbs outlier test was not rejected, the double Grubbs 

outlier test was perform, which is able to detect two outliers simultaneously. Except birch wood 

which also showed significantly enhanced intensities for the second and third batch, the majority of 

even numbered m/z were significantly higher than in the subsequent batches. 

In contrast to logwood stove, PBs are usually operated at constant load because they do not refer to 

room space heating appliances, but heating by warm water supply. Nevertheless, the time-resolution 

of the SPI-TOFMS can be exploited to decrease limits of detection by averaging or to examine rarer 

appearing events, such as ignition or unfavourable combustion conditions, or the effect of low-quality 

fuels. During ignition, highest volatile emissions could be observed, which comprise of typical wood 

combustion products from low-temperature pyrolysis. However, during stable combustion very low 

intensities were detected solely for unsaturated hydrocarbons, such as benzene and propene, and 

acetaldehyde. A reduction in secondary air caused dynamic and substantially increased emissions 

of benzene and 2- to 4-ring PAHs, which was used in PAM flow reactor study to mimic pellet boilers 

of older generation. Also the feed of low-quality birch bark pellets led to higher benzene and PAH 

emissions, which was linked to higher aromaticity of the wood fuel, but to higher carbonyl emissions 

as well. 

4.3.2 Emission factors (EFs) and PAH toxicity equivalents (PAH-TEQ) from 4 h 

combustion experiments 

Emission factors (EF) were related to the heating value of the wood fuels according the Finnish 

Standard Association method SFS 5624. Generally, the MMH of this study emitted more than one 

order of magnitude lower OGC and 50% lower particles than conventional wood stoves without air 

staging technology, which is attributed to a reduction in organic matter. However, emissions of EC 

were not affected. Regarding the molecular composition of the emissions, primary decomposition 

products and thus wood combustion markers were more reduced than products from secondary 

reactions and pyrosynthesis, which is discussed in previous section. Major differences in EFs 

between the wood types were only observed for primary decomposition products for lignin pyrolysis, 

which enables to distinguish between hard- and softwood combustion, as well as evaporating 

resinoic acids and phytosterols. Despite slightly different experimental designs and combustion 

conditions, the results of key quantities, such as OGC, OC, EC and CO, were comparable with 

previously published studies of the same MMH [122]. Moreover, emissions from a MMH by with the 

same combustion technology but different manufacturer appeared in the same order of magnitude. 

Hence, it can be concluded that the emission characteristics are not only a feature of the 

investigated MMH, but a general feature of logwood stoves with air staging technology. Regarding 

the PB, carbonaceous emissions, including OM and EC, were even one additional order of 

magnitude lower than the high efficient logwood stoves when operated under stable nominal load. 
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Therefore, organic compounds typically linked to wood combustion appeared below the limit of 

quantification. However, some evidence was found that the quality of the pellets is inversely 

correlated with several volatile emissions. 

As health effects of the emissions are one of the main motivations for this study, the mutagenic 

potential of the particle emissions were estimated by the concept of PAH toxicity equivalents. Each 

PAH-EF is multiplied with a compound-specific factor which describes the mutagenic potential 

relative to benzo[a]pyrene. From Fig 22, it can be observed that MMH and PB with air staging not 

only emit lower amounts of PAHs, but also lead to particle emissions of lower mutagenic potential 

compared to conventional wood combustion appliances [8]. However, despite lower mutagenic 

potential of the particulate PAHs, an overall reduction in toxicity cannot be concluded because 

especially phenolic compounds are regarded to be responsible for the generally lower toxicity of 

wood combustion emissions than the summed toxicity of each single constituent suggests. 

 

 

 

4.3.3 Effect of slow ignition of logwood on EFs and emission patterns 

Although it was taken great care of reproducible experiments, logwood combustion exhibits large 

emission variability and a hardly controllable progress after ignition. By chance, two combustion 

experiments turned into temporary smouldering after ignition of the first batch, indicated by an 

intermediate drop in the usual bell-shaped curve of the flue gas temperature. This combustion event 

of was even noticeable in the integrated 4 h EFs. Approximately 70% of the total OGC was release 

during the first batch of spruce log combustion with 2-fold to 5-fold increased EFs for single VOCs 

compared to regular spruce log combustion. In particular, EFs of primary decomposition products, 

such as coniferyl aldehyde or levoglucosan, were elevated by one order of magnitude. However, 

also differences were found between smouldering of spruce and birch logs. The analysis of particle 

from birch log combustion revealed a shift towards larger PAHs than the regular birch experiments, 

but no significantly increased EFs of primary decomposition products. Despite the agreement of 

spruce wood smouldering emissions with current knowledge from literature, the reasons for the 

observation of this birch wood experiment are speculative. Nevertheless, it has been generally 

observed that birch wood ignites much faster than spruce, perhaps because of the macrostructure of 

the birch [179] or essential oils in the birch bark which might accelerates the expansion of the flames 

and raise the temperature of the combustion chamber. Further investigations are necessary to clarify 

ignition properties of different wood species. 

Fig. 22 Toxicity equivalent (TEQ) of particle-

bound PAHs related to heating value of the 

different wood fuels; error bars represent 

minimum and maximum EFs. Results appear in 

the same order of magnitude as other modern 

masonry heaters from Tschamber et al. (2016)a 

[7], but significantly lower than conventional 

wood stoves and pellet boilers published by 

Orasche et al. (2012)b [8]. 
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Apart from the polymeric components, wood contains phytosterols and resin acids, which are 

specifically emitted by certain wood species and allow statements about the predominantly used 

firewood in aerosol research of ambient air. Many of those molecules belong to the fraction of 

LVOCs, but contain functional groups, such as hydroxyl and carboxylic functions, which are prone 

for decomposition upon thermal stress. During smouldering, the combustion temperature remains 

relative low, so phytosterols and resin acids evaporate and condensate on existing particle during 

dilution and cooling in the atmosphere. In contrast, proper ignition increases the heat transfer to the 

logwood that phytosterols and resin acids eliminate small molecules, such as CO2, H2 or H2O, or 

become partly oxidised, such as 7-oxodehydroabietic acid. Regarding EFs, smouldering not only 

shifts the distribution of these wood constituents and thermal alteration products, but is also able to 

increase their emissions up to two orders of magnitude. 

4.3.4 Implications for source apportionment of modern wood combustion appliances 

The three presented studies about primary wood combustion emissions of appliances with modern 

combustion technology point out changes in widely accepted emissions profiles for wood 

combustion. Higher combustion efficiency is associated with lower emissions of wood-related 

primary decomposition products, but constant emissions for general combustion products, such as 

PAHs. Consequently, frequently used diagnostic ratios of wood combustion emissions, which 

include primary decomposition products such as phenolic species and anhydrous sugars, may 

become invalid in the future when conventional wood stoves are subsequently replaced. This aspect 

holds especially for automatically appliances, such as PBs, for which those molecular markers could 

hardly be detected. Therefore, the risk of identification wood combustion as different emission in 

source apportionment studies can be expected to increase through incorrect PMF factor 

interpretations. However, even more crucial would be the effect in chemical mass balances (CMB) to 

quantify source contributions, whose results strongly depends on the accuracy of the emission 

profile inputs. 

4.3.5 Statistical concepts from wood combustion for process control: application on 

coffee roasting 

The combination of NMF and further statistical analysis of NMF loadings and scores was applied to 

on-line monitoring of coffee roasting, which is also known to pass different roasting phases. 

Components of the roasting off-gas evolved from evaporation of bean constituents (e.g. caffeine), 

caramelisation, Maillard and Strecker reactions [180]. Research on on-line and real-time monitoring 

of coffee roasting is demanded because industrially roasted coffee should be produced in time-

effective manner, i.e. short roast times, but acceptable and reproducible taste. Real-time prediction 

of the roast degree using proton-transfer reaction (PTR) mass spectrometry and principal 

component regression was already achieved [181] , but prediction of taste has been only 

demonstrated for off-line analysis [182]. On that account, the dynamic changes of the molecular 

composition of two coffee cultivars (Arabica, Robusta) from Mexico and Vietnam were investigated 

at three different roasting profiles and four different photoionisation wavelengths (SPI: 118 nm; 

REMPI: 227 nm, 248 nm and 266 nm). Similar to the burning phases of logwood (section 4.3.1.), 
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roasting off-gas components have different temporal evolutions, which were grouped into four 

roasting phases “evaporation”, “early roast”, “late roast” and “overroast”. For each photoionisation 

wavelength, similar molecular patterns were observed for each roasting phase and proven to be 

consistent between repeated roast experiments by PCA. Moreover, five pairs of m/z were selected 

based on Fisher ratio to derive linear classifier function from linear discriminant analysis (LDA). 

Therefore, transitions of roasting phases can be 

detected in a real-time measurement if the 

intensity threshold given by the classifier 

function is exceeded. Despite different 

ionisation selectivity, all photoionisation 

wavelengths exhibited best performance in 

predicting NMF phase limits between later 

roasting phases “early roast” to “late roast” and 

“late roast” to “overroast” because of low 

intensities and peak number during 

“evaporation”. 

4.4 Secondary emissions from modern small-scale wood combustion 

appliances 

4.4.1 Ageing of primary emissions from logwood combustion in a smog chamber 

New particle formation through atmospheric (photo)oxidation of organic vapours were found to be 

substantial for logwood combustion and open biomass burning [175, 183, 184], However, similar to 

the characterisation of emissions from new combustion technology there is still a demand for 

estimating SOA formation potential, which can finally lead to additional OA emissions by a factor of 

2.5 after 2 days of OH exposure [176]. Primary emissions from a MMH fuelled with one batch of 

spruce logwood were aged under dark, UV or dark with subsequent UV conditions in ILMARI smog 

chamber of 29 m3 to cover oxidising agent exposure at different daytimes. Moreover, fast and slow 

ignition of the logwoods was carried out in order to achieve different ratios of VOCs to NOx. 

 

In all ageing experiments, the initial OA mass, measured by SP-AMS was enhanced by 60% to 

165% after oxidising agent exposure equivalent to approximately 12 h. Higher VOC emissions from 

slow ignition were directly related to higher SOA formation. Compared to old stove, the absolute 

SOA formation was one order of magnitude lower (old: 880 mg kg-1), but appeared with 91 to 

237 mg kg-1 in the same range as a conventional stove (100 mg kg-1) [175]. However, it must be 

  

Fig. 23 Application of NMF on SPI mass spectra 

of coffee roasting off-gas to identify four roasting 

phases. 

Fig. 24 SOA formation from spruce logwood 

combustion after slow and fast ignition in a smog 

chamber. First, the smog chamber was filled and 

stabilised (S) followed by ozone addition (“dark 

ageing”, D) and subsequent UV ageing (UV, left) 

or prompt UV ageing (right). 
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noted that in Heringa et al. (2011) [175] the equivalent ageing time was only 5 h and SOA-EFs are 

related to flaming phases. Hence, lower primary emissions are also associated with lower SOA 

formation. 

Both dark and UV ageing led to substantial SOA formation and aged-POA within few hours, while 

less than 25% of the initial POA mass remained unoxidised. For the first time, UV ageing was 

carried out subsequent to dark ageing, which additionally increased OA mass by almost 100% 

(Fig 24). However, the composition of the formed SOA is fundamentally different due to different 

concentrations of atmospheric oxidising agents. By applying PMF on the SP-AMS spectra, three 

SOA factors could be obtained which represent ageing products for each of the considered oxidising 

agents. Additionally, two factor of POA were obtained, which either contain primary species reacting 

with all oxidising agents (double bond containing species, BBOA) or only with OH and NO3 radicals 

(saturated compounds, HOA). During dark ageing, O3 and NO3 oxidise the aerosol, leading to SOA 

and aged-POA with lower average carbon oxidation state than from ageing with OH radicals [185] 

and substantial formation of organonitrates, which were derived from a high ratio of NO+ to NO2
+ in 

the SP-AMS spectrum. ON formation was previously observed in ambient air studies [186, 187], but 

can now be linked to ageing of wood combustion emissions.  

4.4.2 Ageing of primary emissions from pellet combustion in a PAM flow reactor 

Few experiments with PB emissions in a smog 

chamber revealed that no SOA was formed, 

which was later confirmed in a more 

comprehensive study by Kari et al. (2017) [188] 

and also agrees with previously published SOA 

yields from a pellet burner [175]. On that 

account, a PAM flow reactor which is capable to 

expose the combustion aerosol to higher OH 

concentration was used, but also led to only 

insignificant increase in OA mass for the PB 

operating under optimised conditions (OPT). 

Nevertheless, oxygen-to-carbon ratios (O:C) 

were distinctly enhanced, indicating relevance of 

heterogeneous oxidation reactions and the 

formation of aged-POA. However, the 

equivalent concentration of carbonate carbon to 

OC and EC contributes to peaks at m/z 44 

(CO2
+) and m/z 30 (CO+), which may bias the 

result of OM and explain O:C as well as average 

carbon oxidation states [4] outside the range of 

typical values observed in ambient air. To 

simulate PB of older technology, the secondary 

Fig. 25 Van Krevelen diagram of aged (red) and 

non-aged OA (blue) from optimized combustion 

conditions (OPT, circles) and reduced 

secondary air supply (RSA, squares). Solid 

purple lines belong to slopes indicating main 

functionalisation of OA [2], where the black lines 

represent slopes from non-aged to aged OA 

(-0.44 ± 0.07 for OPT and -0.47 ± 0.10 for RSA). 

The grey area refers to the triangular space of 

f44 vs. f43 in which ambient OA was found to be 

usually located [3], converted into the H:C vs. 

O:C dimension. Dashed lines are average 

carbon oxidation states (𝑂𝑆̅̅̅̅ 𝐶) [4]. 
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air supply was reduced by approximately 30% (reduced secondary air, RSA). Hence, organic 

emissions increased, especially volatile and intermediate-volatile aromatic hydrocarbons, which are 

considered as potent precursors for SOA formation [189]. In contrast to the PB at full secondary air 

supply, OA mass was doubled associated with increased relative amounts of the fragment ions 

C2H3O+ (m/z 43), CO2
+ (m/z 44) and C2H4O2

+ (m/z 60), which belong to typical SOA compound 

classes of non-acid oxygenates, carboxylic acids and long-chain carboxylic acids. 

The obtained increases of OA mass were converted in to SOA-EFs and compared with the single 

precursor approach by Bruns et al. (2016) [189]. For OPT, experimental SOA-EFs covered 30% of 

SOA-EFs obtained from single precursors, while for RSA it was even only 10%. Slopes close to 0.5 

in the Van-Krevelen diagram indicate that C-C-bond cleavages occurred during ageing, leading to 

reaction products of higher volatility than the primarily emitted precursors, which may explain the 

large discrepancies between the different approaches. Altogether, the overall formation of SOA was 

low for both OPT and RSA compared to SOA formation from logwood stoves and expected to be 

negligible with ongoing advances in combustion technology. 

5 Summary and outlook 

Although the vast majority of aerosol originates from natural sources, combustion aerosols play a 

key role for climate and air pollution. In particular, emissions from ship traffic and wood combustion 

gained increasing public attention during the last decade and were investigated within the framework 

of the DACH-project WOOSHI (“WOOd combustion and SHIpping”). One focus of this study was put 

on the identification of marker substances by chemometric approaches, which allows the detection 

and quantification of emission sources by receptor models, such as positive matrix factorisation and 

chemical mass balance. 

In 2015, the fuel sulphur content (FSC) of marine fuels was restricted to 0.1% in coastal areas of 

Europe and North America (sulphur emission control area), which forces the ship owners to switch 

from heavy fuel oil (HFO) with an average FSC of 2.7% to marine gas oil (MGO) or diesel fuel (DF). 

In particular the composition of the organic emissions from both HFO and MGO/DF is unknown, 

which was examined by advanced mass spectrometric techniques. In accordance with the high 

contribution of unburned fuel to the total emissions, mass spectra of particulate organic matter 

revealed the dominance of homologue series of several compound classes, such as alkylated PAHs, 

alkylated heterocycles and alkanes. A shift to organic compounds of higher volatility when going 

from HFO to DF was also observed as well as a general reduction in organic emissions could be 

observed with DF, but emissions of soot particles measured as elemental carbon (EC) remained 

stable. Furthermore, evidence was found that ships are a substantial emitter of brown carbon. 

Consequences for direct effects on climate by affecting radiative forcing will be discussed in a future 

publication. Since markers for ship emissions are based on HFO emissions, complementary 

multivariate statistical analyses were performed with emission profiles of aromatic  

(intermediate-)volatile organic compounds from ships, road traffic and residential heating in a meta-

analysis. Alkylated PAHs were found to discriminate well between land-based and ship emissions 
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with high statistical significance, independently from the used marine fuel, while the ratio of C2- to 

C1-naphthalene as an easy-to-use metric allows a first estimation of high ship impact on air pollution. 

In an ageing experiment with a mobile smog chamber, no significant increase in organic aerosol 

mass was detected, thus further investigations involving potential aerosol mass flow reactors are 

recommended. 

Contrary to ships, primary wood combustion emissions are comparably well investigated, but have 

changed with ongoing advances in combustion technology, such as secondary air supply by air 

staging or automatically-fired pellet boilers. Appliances with such new combustion technology burn 

efficiently while reducing organic emissions. Especially the release of primary decomposition 

products from carbohydrates and lignin is decreased. Hence, simple approaches based on ratios of 

phenolic species to organic carbon (OC) or OC to EC for identifying the fraction of wood combustion 

in ambient air are heavily biased, in particular for pellet boilers. Inorganic PM constituents or latent 

variables from multivariate statistical analyses containing several organic PM constituents may 

provide more reliable results. Additionally, burning conditions in terms of proper ignition and burning 

stadia were found to considerably affect the emission profile and results from PMF or CMB. 

Besides reduction in primary emissions, the potential of secondary organic aerosol (SOA) formation, 

investigated with smog chamber and flow reactor, also declines with advances in combustion 

technology. However, it still exhibits a substantial increase of additional organic aerosol for the 

modern logwood stove by gas-to-particle conversion and heterogeneous oxidation. Simulation of 

nighttime atmospheric processing suggests a substantial contribution of logwood combustion SOA to 

ambient organonitrate concentrations. For the pellet boiler emissions, the SOA formation was 

negligible even at high exposures of OH radicals although increases in average carbon oxidation 

state indicated heterogeneous oxidation. 

Altogether, this thesis explored the chemical composition of the rarely investigated but relevant 

emissions by ship, considered advances in wood combustion technology and gave valuable 

implications for the identification and quantification of wood combustion and ship traffic in source 

apportionment. The results emphasise the necessary connection between primary and secondary 

emissions as well as combustion, atmospheric, biological and mathematical science to understand 

complex effects and consequences from changes of the atmospheric composition on the total 

environment. 
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