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Serum lipophilic antioxidants levels are
associated with leucocyte telomere length
among US adults
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Abstract

Background: To examine the association between serum concentrations of antioxidant and telomere length (TL) in
U.S adults.

Methods: Participants of the National Health and Nutrition Examination Survey (NHANES) with data available on TL
measures from 2001 to 2002 were included. Serum lipophilic antioxidants level was measured using high performance
liquid chromatography with photodiode array detection. We used analysis of co-variance and multivariable-adjusted
linear regression models, accounting for the survey design and sample weights.

Results: Of the 5992 eligible participants, 47.5% (n = 2844) were men. The mean age was 46.9 years overall, 47.2 years
in men and 46.6 in women (p = 0.071). In age, sex, race, education, marital status, adiposity, smoking, C-reactive protein
adjusted linear regressions, antioxidant, serum α-carotene, trans-β-carotene, cis- β-carotene, β-cryptoxanthin and
combined Lutein/zeaxanthin were positively and significantly associated with TL (all p < 0.001).

Conclusions: Our findings support a possible positive association between serum concentrations of lipophylic
antioxidant and TL. The implications of this association deserve further investigation.
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Background
Telomeres are repetitive DNA sequences bound by spe-
cialized interacting proteins that are found at the ends of
chromosomes [1]. Telomeres serve multiple functions:
They maintain chromosome stability and integrity, regu-
late cellular proliferation, and prevent chromosome end
fusions [2]. Telomeres are progressively eroded due to
successive rounds of cell division, and due to such pro-
cesses as oxidative stress [3]. Endogenous (i.e., genetics,
inflammation, and DNA damage) and environmental
(i.e., smoking, alcohol, and life stress) factors are in-
volved in telomere maintenance and regulation [4–7].
Therefore, variation in telomere length (TL) between
individuals of equal chronological age, could be due to
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differences in both genetic factors and environmental
determinants (including adiposity) [4–7].
Shorter leukocyte TL is associated with aging [8, 9]

and age-related diseases, such as cardiac disease [10, 11],
diabetes [12, 13], hypertension [12, 14, 15], cancer [16],
as well as with increased mortality [17]. Shorter LT is
associated with greater oxidative stress [18, 19]. In this
regard, evidence from previous in vitro, in vivo [19], and
clinical studies [10, 12, 20] suggests that an imbalance
between free oxygen radicals and antioxidant concentra-
tion in the cellular environment contributes to telomere
attrition. Epidemiological studies report an inverse associ-
ation between dietary micronutrients and oxidative stress
[21], which suggests that dietary micronutrients may exert
protective effects on TL through anti-oxidative effects.
Antioxidants have attracted attention as an efficient tool
in counteracting oxidative stress [22]. A limited number
of studies have investigated the association between
self-reported dietary antioxidants and TL [23, 24], and
only a handful of studies have evaluated the relationship
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between TL and objectively measured serum levels of
antioxidants; with however, inconsistent findings. A study
examined the association between the plasma levels of
antioxidative micronutrients and the leukocyte telomere
length in 786 elderly adults, who had participated in the
Austrian Stroke Prevention Study and reported a signifi-
cantly protective effect of combined lutein/zeaxanthin on
the telomere length [25]. There is still insufficient evi-
dence regarding the link between serum antioxidant and
TL in subjects.
The aim of this study was to investigate the relationship

between serum antioxidant levels with TL among US
adults. We have hypothesized that subjects with higher
level of the anti-oxidants have longer length of telomere.

Methods
Population
The National Health and Nutrition Examination Surveys
(NHANES) are ongoing, repeated cross-sectional sur-
veys conducted by the US National Center for Health
Statistics (NCHS). NHANES uses a multistage probability
sampling strategy, which oversamples certain subgroups of
the population, including blacks, Mexican-Americans, and
those of lower socioeconomic status. The NCHS Research
Ethics Review Board approved the NHANES protocol and
consent was obtained from all participants. About 5000
subjects participate in NHANES each year, and the data are
reported in 2-year cycles available for public use. Data
collection on demographic, dietary, and behavioural in-
formation occurs through home interview-administered
questionnaires, while anthropometric and biomarker
data are collected by trained staff using mobile exam units.
The interviews consist of questions on socio-demographic
characteristics (age, gender, education, race/origin, and
health insurance) and questions on previously diagnosed
medical conditions. More details on the NHANES protocol
is available elsewhere [26]. Details on the measurement of
C-reactive protein (CRP) concentrations are available else-
where [27]. This study was based on analysis of data from
the 2001–2002 NHANES cycle. Subject less than 18 years,
pregnant and lactating were excluded.
For the assessment of height and weight during the

physical examination, participants were dressed in under-
wear, disposable paper gowns and foam slippers. A digital
scale was used to measure weight to the nearest 100 g, a
fixed stadiometer was used to measure height to the near-
est millimetre. Body mass index (BMI) was calculated as
weight in kilograms divided by the square of height in
metres [27]. Smoking status was self-reported and partici-
pants classified as current smoker or not.

Leucocyte telomere measurements
Aliquots of purified DNA, isolated from whole blood
using the Puregene (D-50 K) kit protocol (Gentra Systems,
Inc., Minneapolis, Minnesota), were obtained from partici-
pants. The leukocyte TL assay was performed using the
quantitative polymerase chain reaction method to meas-
ure TL relative to standard reference DNA (also known as
the [telomere-to–single-copy gene ratio (T/S) ratio) [28].
Of note, this method provides an average TL from leu-
kocytes (92 telomeres for humans). It does not have the
capabilities to detect specific individual TL. Laboratory
personnel were blinded to all other study measurements.
The Centers for Diseases Control (CDC) conducted a
quality control review before linking the TL data to the
NHANES data files. The CDC Institutional Review Board
granted human subject approval for this study [29].

Antioxidants measurements
A blood specimen was drawn from the participant’s
antecubital vein by a trained phlebotomist. Serum con-
centrations of retinol, α and γ-tocopherol, two retinyl
esters, and six carotenoids (α-carotene, trans-β-carotene,
cis β-carotene, β-cryptoxanthin, combined lutein/zeaxan-
thin, and trans-lycopene) were measured using high per-
formance liquid chromatography with photodiode array
detection [26]. Serum β -carotene concentrations predom-
inantly reflect trans β -carotene, which was present in sub-
stantially higher concentrations than cis β -carotene. The
CVs for these micronutrients were 1.9–5.7% for retinol,
1.8–3.9% for α -tocopherol, 1.9–6.2% for γ -tocopherol,
4.2–18.3% for α -carotene, 3.5–6.6% for trans β -carotene,
7.5–65% for cis β -carotene, 3.0–7.1% for β -cryptox-
anthin, 5.5–13.4% for lutein + zeaxanthin, and 3.7–13.1%
for lycopene [26].

Statistical analyses
We conducted analyses in accordance with CDC guide-
lines for analysis of complex NHANES data, accounting
for the masked variance and using the proposed weighting
methodology [30]. We have calculated adjusted (age, gender
and sex) mean of the serum anti-oxidant level across the TL
quarters by analysis of co-variance (ANCOVA). To de-
termine any association between antioxidants and TL,
we used both crude and multivariable-adjusted (age and
sex and race and education and marital status and BMI
and smoking and CRP) linear regression models. All tests
were two sided, and p < 0.05 was the level of significance.
Data were analysed using SPSS complex sample module
version 22.0 (IBM Corp, Armonk, NY). Sample weights
were applied to account for unequal probabilities of selec-
tion, nonresponse bias, and oversampling.

Results
Of the 5992 eligible participants, 47.5% were men. The
mean age was 46.9 years overall, 47.2 years in men and
46.6 in women (p = 0.071). With regard to education,
45.5% had completed more than high school, 23.4% had
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completed high school, while 30.8% had completed less
than high school. Whites (non-Hispanic) represented 50.6%
of the participants, blacks 19.8% and Mexican-Americans
21.7%. With regard to marital status, 51.4% were married,
10.2%were widowed and 7.6% divorced.
Table 1 shows the sex-age-adjusted mean of serum

antioxidant levels across quartiles of TL. Adjusted
mean of α-carotene, trans-β-carotene, cis-β-carotene,
β-cryptoxanthin, combined lutein/zeaxanthin, trans-lyco-
pene, and retinol levels increased as the length of telomere
increased (all p < 0.001). Moreover there was an inverse as-
sociation between γ-tocopherol and TL in crude model,
but after adjustment for potential confounders (age and sex
and race and education and marital status and BMI and
smoking and CRP) the association between γ-tocopherol
and TL was no longer significant. In multiple linear re-
gressions, α-carotene, trans-β-carotene, cis-β-carotene,
β-cryptoxanthin, and combined lutein/zeaxanthin remained
positively associated with TL (all p < 0.001) (Table 2).

Discussion
We investigated the association between serum antioxi-
dants and TL among US adults. We have found a posi-
tive association between serum levels of α-carotene,
trans-β-carotene, cis-β-carotene, β–cryptoxanthin and
combined lutein/zeaxanthin with TL.
Our findings were in line with other studies that have

suggested a positive association with dietary and sup-
plemental α-tocopherol intake [23–25, 31]. Consistent
with our findings, two previous studies observed longer
TL in participants with higher self-reported dietary
β-carotene intake [23–25, 31]. However, for
γ-tocopherol, our data suggested no association, which
Table 1 Age and sex adjusted mean of serum antioxidant across qu

Variables Quarters of telomere length

Q1 Q2

N 1068 1057

TL, Mean ± SEM 0.76 ± 0.02 0.95

α-carotene(umol/L) 0.062 ± .004 0.080

trans-β-carotene(umol/L) 0.29 ± .012 0.35

cis- β -carotene(umol/L) 0.017 ± .001 0.020

β -cryptoxanthin(umol/L) 0.172 ± .005 0.197

g-tocopherol(umol/L) (vitamins E) 5.93 ± .10 5.75

Combined Lutein/zeaxanthin(umol/L) 0.270 ± .005 0.289

trans-lycopene(umol/L) 0.398 ± .006 0.411

Retinyl palmitate(umol/L) 0.085 ± .003 0.081

Retinyl stearate(umol/L) 0.018 ± .001 0.016

Retinol(umol/L) (vitamins A) 2.08 ± .020 2.09

α -tocopherol(umol/L) (vitamins E) 30.88 ± .46 31.39

P-values for linear trend across quartiles of telomere length. Variables were compar
(ANCOVA) test
is in line with the previous study among 786 Austrian
adults [23–25, 31].
The performance of vitamin A and its pro-vitamin

(e.g. β and α-carotene) has rarely been evaluated in rela-
tion to TL. Vitamin A has widespread physiologic roles,
including in immune function, vision, reproduction, and
cell communication. Among the plausible mechanisms
by which vitamin A and its pro-vitamin could influence
TL are its roles in immune function, inflammation, and
the regulation of gene expression and epigenetic modifi-
cations [32, 33]. Two previous studies assessed the asso-
ciations between serum vitamin A and TL [24, 25]. We
observed a significant positive association between TL
with serum β and α -carotene. This is consistent with
the previously reported positive association between
dietary intake of vitamin A and TL in a study of 2284
women [24]. Conversely, plasma vitamin A concentra-
tions were not associated with LTL in a study of 786
adults [25]. Carotenoids are particularly promising anti-
oxidants, because they are capable of exerting antioxi-
dant protection by scavenging singlet molecular oxygen
and peroxyl radicals [34]. Several human studies have
supported carotenoid protection against oxidation and
oxidative stress-induced, age-related conditions [34]. We
hypothesized that protective role of vitamin A and its
procures could be at least partially related to its antioxi-
dant activity.
Also consistent with our findings, the Austrian Stroke

Prevention Study (ASPS) investigated the association of
longer TL with higher plasma lutein, zeaxanthin, and
vitamin C concentrations [25]. Findings of this study in-
dicated that higher lutein and zeaxanthin concentrations
in serum were related to longer TL, though they found
artiles of telomere length

Q3 Q4 P-trend

1068 1066

± 0.01 1.10 ± 0.04 1.41 ± 0.10

± 002 0.084 ± 008 0.087 ± 003 < 0.001

± .01 0.36 ± .01 0.38 ± .01 < 0.001

± .001 0.021 ± .001 022 ± .001 < 0.001

± .005 0.196 ± .005 0.195 ± .005 < 0.001

± .10 5.66 ± .10 5.30 ± .10 < 0.001

± .005 0.295 ± .005 0.297 ± .005 < 0.001

± .006 0.417 ± .006 0.417 ± .006 < 0.001

± .003 0.086 ± .003 0.094 ± .003 < 0.001

± .001 0.017 ± .001 0.019 ± .001 < 0.001

± .018 2.11 ± .018 2.11 ± .018 < 0.001

± .43 31.77 ± .43 31.12 ± .45 < 0.001

ed across quartiles of telomere length using analysis of co-variance



Table 2 Crude and multi-variable (age-sex-race-education-marital status-BMI-Smoking-CRP) association between telomere length
and serum antioxidant

Variables Crude model Multivariable model

β 95% CI β p-value

α-carotene(umol/L) 0.021 (− 0.019,0.113) 0.058 (0.246, 0.807)

trans-β-carotene(umol/L) −0.026 (− 0.037,0.003) 0.060 (0.081,0.251)

cis- β -carotene(umol/L) −0.026 (−0.663, 0.051) 0.061 (1.52,4.59)

β -cryptoxanthin(umol/L) 0.041 (0.016,0.108) 0.049 (0.112,0.501)

g-tocopherol(umol/L) −0.047 (−0.006,-0.001) − 0.016 (− 0.062,0.126)

Combined Lutein/zeaxanthin(umol/L) − 0.023 (− 0.082, 0.010) 0.400 (0.062,0.495)

trans-lycopene(umol/L) 0.142 (0.132, 0.203) 0.017 (−0.066,0.238)

Retinyl palmitate(umol/L) −0.002 (−0.087,0.074) 0.015 (−0.178,0.498)

Retinyl stearate(umol/L) −0.052 (−0.714, − 0.187) 0.004 (− 0.959,1.261)

Retinol(umol/L) − 0.035 (− 0.062,0.040) 0.006 (− 0.039,0.058)

α -tocopherol(umol/L) − 0.050 (− 0.516,0.0129) 0.008 (− 0.002,0.003)

Linear regression, adjusted for age-sex-race-education-marital status-BMI-Smoking-CRP

Mazidi et al. Lipids in Health and Disease  (2018) 17:164 Page 4 of 6
that no other antioxidants (nor the pooled subgroups of
provitamin A, non-provitamin A, vitamin E, and total
antioxidant status of all micronutrients) were associated
with TL. The authors proposed a protective role of these
specific vitamins in telomere maintenance [25]. Further,
the European Prospective Investigation into Cancer and
Nutrition (EPIC) found that a higher consumption of
vegetables was meaningfully associated with higher mean
TL in peripheral lymphocytes. Particularly, β-carotene
consumption significantly increased mean TL [35]. A
recent study by Min, et al. from Japan reported for the
first time a positive association between TL and daily
intake of antioxidant vitamins, particularly among certain
genotypes [31, 35]. Sen et al. investigated the association
between plasma antioxidant levels and leukocyte telomere
length in 786 elderly adults. A significant effect of com-
bined lutein/zeaxanthin on longer telomeres was ob-
served, whereas no other carotenoids were associated with
telomere length [25].
Several potential mechanisms have been proposed for

a positive association between antioxidant levels and TL
[25, 36–38]. It is consistent with our findings that anti-
oxidants would maintain TL [31, 39]. Oxidative stress is
considered to be an important contributing factor for
telomere shortening because of the high guanine content
in telomeres. Oxidative stress is considered to be an
important contributing factor for telomere shortening
because of the high guanine content in telomeres. Guanine
is highly sensitive to reactive oxygen species, resulting in
the production of 8-oxo-7,8-dihydrodeoxyguanosine, which
can lead to DNA strand breaks, resulting in telomeric
attrition [1]. Antioxidant vitamins, including a-tocopherol,
g-tocopherol, and carotenoids, may limit the effects of oxi-
dative stress and possibly slow telomeric attrition. Several
in vitro and in vivo studies have shown that lutein,
zeaxanthin and vitamin C prevent DNA breakage and
modulate DNA repair through their anti-oxidative activity
[25, 36–38]. Moreover, previous clinical investigations
proposed that non-pro-vitamin A carotenoids have greater
protective effects against DNA damage than pro-vitamin
A carotenoids [25, 36]. Other proposed mechanisms,
particularly for the protective effect of lutein, zeaxanthin
and vitamin C, include effects on immune-modulation,
anti-inflammatory activity, modulation of apoptosis, and
lymphocyte proliferation [25, 40, 41]. Several investiga-
tions conducted on other dietary components, including B
vitamins like folate [42–44] point to their role in DNA
methylation and consequently regulation of TL by DNA
methylation [43].
Even though we have adjusted our models for poten-

tial confounders, our results should be considered with
caution as it has been reported higher serum antioxidant
levels with higher intakes of vegetables and fruits, and
also with higher socioeconomic status (SES) [45]. There-
fore, the positive association between certain dietary anti-
oxidants and TL may also be explained by a more healthy
life style/higher SES. It should also be realized that oxida-
tive stress as it occurs with chronic inflammation may
cause consumption of certain serum antioxidants [46] as
well as a reduction of TL, thereby contributing to the
association between certain antioxidants and TL. The
cross-sectional nature of our study does not allow infer-
ences about causality. Circulating levels of nutrients may
be a marker for an overall healthier lifestyle. Although we
accounted for several lifestyle factors, such as BMI, smok-
ing, and physical activity level, it is possible that the inclu-
sion of these covariates did not completely account for
factors that may confound the associations between
vitamins and TL. In the current study we just focused
on Leucocytes TL, more studies on other TL are warranted.
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The strength of the study could be its large sample size and
the high quality of the methods measuring antioxidants
and TL. The NHANES is a large nationally representative
sample of non-institutionalized adults with comprehensive
biomarkers and health information. An additional strength
is the use of objectively measured biomarkers in the ana-
lysis rather than relying on self-reported dietary intake.

Conclusion
In conclusion, results of the present study support the
potential role of dietary antioxidants in preserving TL.
This potential protective role of high antioxidant foods
on TL has clinical implications with respect to biological
aging and non-communicable disease. Further longitu-
dinal studies are needed to confirm our findings, and to
test whether changes in dietary antioxidants would pre-
serve TL over time.
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