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Linear wave equations on flat band networks host compact localized eigenstates (CLS). Nonlinear
wave equations on translationally invariant flat band networks can host compact discrete breathers -
time-periodic and spatially compact localized solutions. Such solutions can appear as one-parameter
families of continued linear compact eigenstates, or as discrete sets on families of non-compact dis-
crete breathers, or even on purely dispersive networks with fine-tuned nonlinear dispersion. In all
cases, their existence relies on destructive interference. We use CLS amplitude distribution prop-
erties and orthogonality conditions to derive existence criteria and stability properties for compact
discrete breathers as continued CLS.

INTRODUCTION

In recent years, flat band tight binding networks gained
interest in the fields of ultra cold atomic gases, condensed
matter and photonics, among others [1]. One of the es-
sential features of the corresponding eigenvalue problem
of these linear wave equations is the presence of eigen-
states which are strictly compact in space. These modes
are coined compact localized states (CLS), and their exis-
tence is due to destructive interference which suppresses
the dispersion along the network. The CLS introduce
macroscopic degeneracy in the energy spectrum of the
network, which results in one (or more) momentum inde-
pendent (or dispersionless) bands in the spectrum, hence
called flat bands. The CLS can be found irrespective to
the dimensionality of the network. CLSs can be classi-
fied according to the number U of unit cells they occupy.
Class U = 1 CLSs form an orthogonal basis of the flat
band Hilbert space, since the compact states do not over-
lap. Moreover, the flat band can be freely tuned to be
gapped away from dispersive bands, or to resonate with
them. Class U ≥ 2 CLSs instead typically form a non-
orthogonal basis, and the flat band is gapped away (or
at most touching) from dispersive bands.

Introduced by Sutherland [2] and Lieb [3] in the 1980’s,
and then generalized by Mielke and Tasaki in the 1990’s
[4, 5], flat band lattices and their perturbations provide
an ideal test-bed to explore and study unconventional
localization and innovative states of matter [6–8]. The
effects of different types of perturbations have been stud-
ied in several examples of flat band networks [9, 10], as
well as the effects of disorder and nonlinearity and in-
teraction between them [11]. Further studies focused on
non-Hermitian flat band networks [12], topological flat
Wannier-Stark bands [13], Bloch oscillations [14], Fano
resonances [15], fractional charge transport [16] and the
existence of nontrivial superfluid weights [17]. Chiral
flat band networks revealed that CLS and their macro-
scopic degeneracy can be protected under any perturba-
tion which does not lift the bi-partiteness of the network
[18]. The engineering of CLS has been longly attempted

[19, 20], and it has been recently solved for U = 1 lat-
tices [21] and for the U = 2 CLS in a two-band problem
[22]. Experimentally, compact localized states have been
realized using ultra cold atoms [23], photonic waveguides
networks [24–26] exciton-polariton condensates [27, 28]
and superconducting wires [29, 30] (for a recent survey
on the state of the art, see Ref.[1]).

Nonlinear translationally invariant lattices admit a
class of time-periodic solutions localized in real space
(typically exponentially), called discrete breathers [31,
32]. The precise decay in the tails depends on the band
structure of small amplitude linearized wave equations.
For analytic band structures (usually due to short range
- e.g. exponentially or faster decaying - connectivities on
the lattice), the discrete breather tails decay exponen-
tially. For non-analytic band structures (usually due to
long range - e.g. algebraically decaying - connectivities
on the lattice), the tails decay algebraically as well. In
the absence of linear dispersion, but presence of nonlin-
ear dispersion, tails decay superexponentially. For short
range connectivities, but with acoustic parts in the band
structure, and with broken space parity, the ac parts
of the discrete breather tails decay exponentially, while
the dc part (static lattice deformation) will decay alge-
braically [31, 32].

A natural question then arises whether discrete
breathers can have strictly zero tails, and turn into com-
pact excitations. For instance, traveling solitary waves
with compact support have been found in the frame
of spatially continuous partial differential equations by
Rosenau and Hyman in the Korteweg-deVries model [33].
In discrete systems, spatially compact time-periodic so-
lutions have been found by Page in a purely anhar-
monic one-dimensional Fermi-Pasta-Ulam-like chain in
the limit of non-analytic compact (box) interaction po-
tential [34]. Moreover, Kevrekidis and Konotop reported
on compact solutions in translationally invariant one-
dimensional lattices in the presence of non-local nonlinear
terms [35]. In this work, we consider flat band networks
as the underlying support for compact time-periodic ex-
citations.

The existence of compact discrete breathers in nonlin-
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ear flat band networks was observed in Ref. [36, 37]. Fur-
thermore, the coexistence between nonlinear terms and
spin-orbit coupling has been discussed in the framework
of ultra-cold atoms in a diamond chain [38]. Perchikov
and Gendelman studied compact time-periodic solutions
in a one-dimensional nonlinear mechanical cross-stitch
network [39]. In this case the above mentioned destruc-
tive interference translates into several time-dependent
forces acting on masses in the mechanical network in such
a way that the sum of all forces vanishes, leading to a
compactification of the vibrational excitation.

In this work, we present a necessary and sufficient con-
dition for the existence and continuation of time-periodic
and compact in space solutions (herewith called com-
pact discrete breather) on flat band networks with local
nonlinearity. The existence and continuation condition
applies irrespective of the dimensionality of the lattice
and the class U of linear CLS. Then, we discuss the
linear stability of compact discrete breathers. For or-
thogonal CLSs in U = 1 networks, the only source of
instability are resonances with extended states. For class
U ≥ 2 networks instead, the non-orthogonality between
linear CLSs induces additional potential local instabili-
ties due to CLS-CLS interaction. Resonances with dis-
persive states lead to radiation and potential complete
annihilation. Resonances with neighboring CLSs in gen-
eral simply yield local instabilities which do not annihi-
late the excitation. The study of the nonlinear stability
has been performed numerically, and standard techniques
of perturbation theory have been applied to substantiate
the numerical findings. The present work is structured as
follows: in Sec.I we will present the flat band networks;
then in Sec.II we introduce the nonlinear terms in flat
band model equations, and discuss the continuation cri-
teria of linear CLS to compact discrete breathers. Next,
in Sec.III we present the linear stability analysis of the
compact discrete breathers, which will then be discussed
numerically in Sec.IV.

I. FLAT BAND NETWORKS

For simplicity we will operate in one spatial dimension.
Results in general take over to higher dimensions. We
will comment on particular cases where caution is to be
executed. The linear time-dependent model equation of
the flat band networks can be presented in a form

iψ̇n = H0ψn +H1ψn+1 +H†1ψn+1 (1)

For all n ∈ Z, ψn ∈ Cν is a time-dependent complex
vector of ν components, each one representing one site
of the network. The set of ν sites is called the unit-
cell. The matrix H0 defines the geometry of the unit-

cell, while the matrixes H1, H
†
1 define the hopping be-

tween nearest-neighboring ones. This model equation
can be easily generalized to longer range hopping as well
as higher dimensional networks. The phase-amplitude

ansatz ψn(t) = Ane
−iEt leads to the associated eigen-

value problem

EAn = H0An +H1An+1 +H†1An+1 (2)

Then, the Bloch solution An = ϕqe
iqn of Eq.(2) defined

for the wave-vector q gives rise to the Bloch hamiltonian
of the lattices

Eϕq = H(q)ϕq ≡
[
H0 + eiqH1 + e−iqH†1

]
ϕq (3)

Eq.(3) yields the band structure E = ∪νi=1Ei(q) of the
problem. We consider lattices which exhibit at least one
band independent from the wave vector q, which we call
disperionless (or flat) band EFB . The eigenmodes associ-
ated to a flat band are typically compact localized states
(CLS), and the number U of unit-cells occupied by one
CLS is the flat band class. These states can be written
in the time-dependent form solutions of Eq.(1)

ψn,n0
(t) =

[
U−1∑
l=0

vlδn,n0+l

]
e−iEFBt (4)

where the sum indicates the spatial component of the
CLSs. The real vectors vl are defined as the following

vl =

ν∑
j=1

al,jAl,jej (5)

where {ej}νj=1 are the canonical basis of Rν =
〈e1, . . . , eν〉; al,j ∈ {0,±1} denotes the sites with non-
zero amplitude, and the real numbers Al,j ∈ R defines
the amplitudes in the sites with non-zero ai,j . In the
next section, we will introduce local nonlinear terms to
Eq.(1), and we will discuss continuation criteria for the
CLS introduced in Eq.(4) as compact solution of the non-
linear regime.

II. NONLINEAR FLAT BAND NETWORKS
AND CONTINUATION OF COMPACT

LOCALIZED STATES

Let us consider the model equation of the flat band
network Eq.(1) in presence of local nonlinear terms

iψ̇n = H0ψn +H1ψn+1 +H†1ψn+1 + γF(ψn)ψn (6)

where the matrix F(ψn)

F(ψn) ≡
ν∑
j=1

|ψjn|2 ej ⊗ ej (7)

contains the terms |ψin|2 along the diagonal. We seek for
time-periodic solutions of the nonlinear system Eq.(6)

Cn,n0
(t) =

[
U−1∑
l=0

vlδn,n0+l

]
e−iΩt (8)
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with frequency Ω, which are continuation of the CLSs
Eq.(4,5) that exist in the linear regime γ = 0.

We consider the compact solution Eq.(8) defined with
the profile in space of the linear CLS in Eq.(4,5) and
frequency Ω, and check under which conditions these are
solutions of the nonlinear equation Eq.(6). At first, let
us observe that for all sites where a CLS is zero (al,j = 0
and outside the range of U cells in Eq.(4)), Eq.(6) is
solved. For l = 1, . . . , U and j = 1, . . . , ν where a CLS
has non-zero amplitude al,j 6= 0, Eq.(6) reduces to

ΩAl,j = EFBAl,j + γA3
l,j . (9)

If for all l, j such that al,j 6= 0, |Al,j | ≡ A (all sites have
same amplitude in absolute value), Eq.(9) turns into

A2 =
Ω− EFB

γ
, (10)

If instead there exist non-zero |Al,j | 6= |Al̂,ĵ |, Eq.(9)

yields different frequencies Ω, which breaks the condition
of continuation of CLS as a periodic orbit with compact
support. Let us introduce the following definition:

Definition: let ψn,n0(t) be a CLS of class U of a flat
band network with ν sites per unit-cell. We call ψn,n0

(t)
a homogeneous CLS if

for all al,j 6= 0 ⇒ |Al,j | ≡ A (11)

and we call ψn,n0
(t) a heterogeneous CLS otherwise.

From the above consideration in Eq.(9,10), we can
obtain the following continuation criteria in the follow-
ing lemma

Lemma: in a nonlinear flat band network Eq.(6),
a compact state ψn,n0

(t) of the linear lattice γ = 0
with energy EFB can be continued as a periodic
orbit with compact support Cn,n0

(t) with frequency
Ω = EFB + γA2 if and only if it is homogeneous.

This lemma states a necessary and sufficient condition
for linear CLSs to be continued as time-periodic solutions
of the nonlinear regime with compact support. Indeed,
homogeneous CLSs in presence of this local nonlinear-
ity do not break the destructive interference, preserving
therefore the compactness in space. Heterogeneous CLSs
instead in presence of nonlinearity break the destructive
interference, loosing therefore the compactness in space.
We call the continued homogeneous CLS solutions com-
pact discrete breathers. Their spatial profile is identical
to the CLS one, and their frequency is given by

Ω = EFB + g , g ≡ γA2 . (12)

In the next section, we will discuss the linear stability of
compact discrete breathers.

III. LINEAR STABILITY ANALYSIS

Herewith, we consider a perturbation εn(t) of a com-
pact discrete breather Cn,n0

(t) Eq.(8) solution of the non-
linear flat band model Eq.(6)

ψn(t) = Cn,n0
(t) + εn(t) , (13)

By linearizing Eq.(6) around one compact discrete
breather Cn,n0(t), and defining g ≡ γA2, we obtain

iε̇n = H0εn +H1εn+1 +H†1εn+1

+ g

U−1∑
l=0

Γl
(
2εn + e−i2Ωtε∗n

)
δn,n0+l

(14)

where {Γl}U−1
l=0 are the projector operators of ψn over a

compact discrete breather Cn,n0(t)

Γl =

ν∑
j=1

al,jej ⊗ ej (15)

The resulting dynamical model Eq.(14) for the perturba-
tion term εn consists of equations with time-dependent
coefficients that occur at sites where the compact discrete
breather Cn,n0

(t) has non-zero amplitudes. The aim of
this section is to analytically prove the existence of re-
gions of instability in the parameter space (Ω, g) ∈ R×R
for the compact discrete breather. In order to achieve
this, we first express Eq.(14) in the Bloch representation.
Than, we compute the condition for resonance determin-
ing the Floquet matrix at g = 0. At last, we obtain
the regions of instability around the resonances via the
strained coefficient method, focusing on the U = 1 and
U = 2 cases.

A. Bloch States Representation

Let us consider the Bloch representation of Eq.(14)
using the following transformation

εn =
1√
N

∑
q

φqe
iqn (16)

This leads to the Bloch equation,

iφ̇q̂ = H(q̂)φq̂

+
g

N

∑
q

[
U−1∑
l=0

e−iq̂lΓl

(
2eiqlφq + e−i2Ωte−iqlφ∗q

)]
(17)

where H(q) ≡ H0 + eiqH1 + e−iqH†1 is the Bloch ma-
trix. The H(q) matrix admits ν eigenvectors viq and ν

eigenvalues λiq. We assume that one flat band λ1
q = EFB

exists with corresponding eigenvector wq of the Bloch
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matrix. Then we define the expansion of φq̂ in the Bloch
eigenbasis

φq̂ = fq̂wq̂ +

ν∑
i=2

diq̂v
i
q̂ (18)

The resulting equations on the expansion coefficients fq̂
of the flat band reads (see Appendix A)

iḟq̂ = EFBfq̂

+
g

N

∑
q

{
U−1∑
l=0

e−iq̂l
(

2eiqlfq + e−i2Ωte−iqlf∗q

)
Γlwq · w∗q

+

U−1∑
l=0

[
ν∑
i=2

e−iq̂l
(

2eiqldiq + e−i2Ωte−iqldi∗q

)
Γlv

i
q · w∗q

]}
(19)

while the equation of the coefficients dq̂ of the j-th dis-
persive band reads

ḋjq̂ = λjqd
j
q̂

+
g

N

∑
q

{
U−1∑
l=0

e−iq̂l
(

2eiqlfq + e−i2Ωte−iqlf∗q

)
Γlwq · vj∗q

+

U−1∑
l=0

[
ν∑
i=2

e−iq̂l
(

2eiqldiq + e−i2Ωte−iqldi∗q

)
Γlv

i
q · vj∗q

]}
(20)

Eq.(19) and Eq.(20) describe the time-dynamics of the
flat band states fq with dispersive states diq due to the lin-
earized term of Eq.(14). For class U = 1, these equations
are decoupled, while for class U > 1 they are coupled.
In the next subsection, we neglect the terms following
from the nonlinearity (set g = 0), and obtain the reso-
nance condition by computing the Floquet matrix of the
system Eq.(19,20)

B. Floquet Matrix

For g = 0, we calculate the Floquet matrix A for
Eq.(19,20) (also called period advancing matrix). For
ϕ = (fq, dq) and T = π/Ω, it follows that[
ϕ(t+ T )
ϕ∗(t+ T )

]
= A

[
ϕ(t)
ϕ∗(t)

]
with A ≡

[
e−iλT 0

0 eiλT

]
(21)

The eigenvalues of the Floquet matrix A will be degener-
ate on the unit circle if and only if cos2(λT ) = 1, which
means

cos2(λT ) = 1 ⇔ λT = mπ , m ∈ Z
⇔ λ = mΩ , m ∈ Z

(22)

Concerning Eq.(19,20), Eq.(22) implies that for m ∈ Z

EFB = mΩ , λjq = mΩ , j = 2, . . . , ν (23)

It follows that from the values of the frequency Ω of a
compact discrete breather Cn,n0

(t) contained in Eq.(23),
regions of instability (Arnol’d tongues) in the parameter
space (Ω, g) are expected. In order to obtain an approx-
imation of these regions, we apply a standard technique
of perturbation theory called strained method coefficient.

C. Arnol’d tongues

In the following, we estimate the regions of instability
in the parameter space (Ω, g) of Eq.(19) and Eq.(20), sep-
arating between the class U = 1 case (where the disper-
sive states are decoupled from the flat band ones) and the
class U = 2 case (where dispersive and flat band states
are coupled).

1. Class U = 1

In the case of class U = 1 flat band network, it holds
that Γ0wq = wq and Eq.(19,20) reduce to

iḟq̂ = EFBfq̂ +
g

N

∑
q

(
2eiqlfq + e−i2Ωte−iqlf∗q

)
iḋjq̂ = λjqd

j
q̂ +

g

N

ν∑
i=2

{∑
q

2diq + e−i2Ωtdi∗q

}
Γ0v

i
q · vj∗q

(24)

Without loss of generality, we refer to a two bands prob-
lem ν = 2. The equations of the dispersive band compo-
nent dq of Eq.(24) read

iḋq̂ = λqdq̂ +
g

N

∑
q

(
2dq + e−i2Ωtd∗q

)
(25)

The strained coefficient method consists in expanding in
powers of g both the time-dependent component dq as
well as the frequency term λq̂ around one of the resonant
frequencies in Eq.(23). Then, we determine the expan-
sion coefficients so that the resulting expansion is peri-
odic. This will define transition curves between stability
and instability regions in the parameter space (Ω, g) (for
further details, see [40]). The expansion of dq and λq̂
reads

dq̂ =

+∞∑
k=0

gku
(q̂)
k , λq̂ = mΩ +

+∞∑
l=1

glδl (26)

for λq̂ 6= λq and for all q 6= q̂. Vanishing the secular terms
(terms which give rise to non-periodicities in the expan-
sion) demands the following conditions in the expansion
coefficient δ1 (see Appendix B for details)

δ1 = − 3

N
,− 1

N
, m = 1

δ1 = − 2

N
, m 6= 1

(27)
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This implies that that a region of instability appears
from each dispersive frequency λq (obtained for m = 1 in
Eq.(23)), while for λq/m for m ≥ 2 regions of instability
are absent. It is important to notice that for N 7−→ ∞
the coefficients in Eq.(27) converge to zero, implying that
in the limit of infinite chain, the instability regions dis-
appear, in analogy with [41]. In Fig.1 we can see a rep-
resentation of the Arnol’d tongue around one frequency
λq.

λ
q

g

λ
q

2

Ωλ
q

3

FIG. 1. First order approximation of the Arnold’s tongues
(grey shaded area) at a dispersive energy λq.

Analogous conclusions follow from the strained coeffi-
cient method applied to the flat band states fq. Here the
expansions reads

fq̂ =

+∞∑
k=0

gkv
(q̂)
k , EFB = mΩ +

+∞∑
l=1

glσl (28)

The zeroing of the secular terms yields to the following
coefficients

σ1 = −3,−1 , m = 1

σ1 = −2 , m 6= 1
(29)

Eq.(29) is independent on N due to macroscopic degen-
eracy of the flat band states (see Appendix B for details).

The strained coefficient method showed the appear-
ance of regions of instability in correspondence of each
dispersive energy λq of the dispersive band. However,
instability regions do not appear for higher order reso-
nances (λq/m for m ≥ 2) (see Fig.1). Furthermore, we
can notice that this region of instability also follows from
the Bogoliubov expansion of Eq.(24) (see Appendix C
for details). Before to go ahead to numerical studies,
we briefly check the previous approach in the case with
U = 2.

2. Class U ≥ 2

In the case U = 2, without loss of generality, we refer
to a two band problem ν = 2, using the saw-tooth net-
work as a test-bed. Eq.(19,20) read (see Appendix B for

details)

iḟq̂ = EFBfq̂ +
g

α2N

∑
q

{
(α2 − 1)

(
fq + e−i2Ωtf∗q

)
+ e−iq̂

(
2eiqfq + e−i2Ωte−iqf∗q

)
+ (1 + e−iq)

(
2diq + e−i2Ωtdi∗q

)}
(30)

iḋq̂ = λqdq̂ +
g

α2N

∑
q

{(
2dq + e−i2Ωtd∗q

)
+ e−iq̂

(
2eiqdq + e−i2Ωte−iqd∗q

)
+ (1 + eiq)

(
2fq + e−i2Ωtf∗q

)} (31)

for α =
√

3 + 2 cos q. Both expansions Eq.(26,28) have to
be applied to Eq.(30,31). However, in the first order, the
additional terms (the second and the third lines of both
equations) do not provide the appearance of further re-
gions of instability (see Appendix B for details). These
additional polarized terms (terms dependent on the wave
number q) indeed provide interactions between dispersive
and flat band states. However, the strained coefficient
method does not report additional instability regions in
the parameter space (Ω, g) due to these terms. In the
following, we will discuss numerically the linear stability
of the compact discrete breather solutions of certain ex-
amples of class U = 1 and class U = 2 one-dimensional
nonlinear flat band networks.

IV. NUMERICAL RESULTS

In this section we numerically study the linear sta-
bility properties of the compact discrete breather solu-
tions of certain flat band topologies. We then relate the
numerical observations with the analytical results dis-
cussed above. Herewith we numerically solve the eigen-
value problem Eq.(14) obtained from the time-evolution
equations Eq.(6) linearized around a compact discrete
breather Eq.(13). Generally, we will obtain complex
eigenvalues, and the presence of non-zero real part will
highlight instability [42]. We will also discuss the na-
ture of the eigenvector associated to unstable eigenvalues
(eigenvalues with non-zero real part). Furthermore, we
will substantiate the findings by showing simulations of
the time evolution of initially perturbed Compact Dis-
crete Breathers. In the following, we will focus on two
models: the Cross-Stitch lattice and the Saw-Tooth chain.
In Appendix D we detail the numerical methods used
along the work.
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Cross-Stitch Lattice

The cross-stitch lattice - Fig.2(a) - is a one-dimensional
two-band network, which posses one flat band. Associ-
ated to the flat band, there exists a countable set of class
U = 1 compact localized states, whose homogeneous pro-
file in space is shown by the black dots in Fig.2(a). The
full band structure of the model is

EFB = h , E(q) = −h+ 4 cos(q) (32)

which can be visualized in Fig.2(b), for h = 3. In this

0

0

5

-5

-10

q

E

b
n

h

+A

-A

a
n

3.001

(a)
80

(b)

FIG. 2. (a): profile of the Cross-Stitch lattice. (b): band
structure for h = 3.

model, the relative position between dispersive and flat
bands can be tuned using the free parameter h ∈ R,
which leads to crossing between the two bands for |h| < 2,
band touching for |h| = 2, and presence of a band gap
for |h| > 2.

The time-dependent equations of the cross-stitch lat-
tice in the presence of onsite nonlinearity read

iȧn = −an−1 − an+1 − bn−1 − bn+1 − hbn + γan|an|2

iḃn = −an−1 − an+1 − bn−1 − bn+1 − han + γbn|bn|2
(33)

where γ is the nonlinearity strength. As we have in
Sec.II, the CLSs of the linear regime can be continued
as compact discrete breathers written as Eq.(4,5) with
frequency Ω = EFB + γA2:

Cn,n0(t) = A

(
1
−1

)
δn,n0e

−iΩt (34)

In order to study the linear stability of this model, we
linearize Eq.(33) around the compact discrete breathers
Eq.(34), and we numerically calculate the eigenenergies
of the resulting model for different values of g = γA2

(obtained fixing A = 1).
The outcome of our computations can be phrased in

the following way. Consider first a weakly nonlinear com-
pact discrete breather with |g| � 1. Due to U = 1 the
linear CLS states are all degenerate but span an orthonor-
mal eigenvector basis of the flat band Hilbert subspace.
Therefore, the degeneracy is harmless, and continuing
one CLS into the nonlinear regime will not lead to any
resonant interactions with neighboring CLSs. Therefore,

a compact discrete breather whose frequency Ω is not
in resonance with the dispersive part of the linear spec-
trum E(q) is linearly stable. However, if a compact dis-
crete breather is tuned into resonance with the disper-
sive part of the linear spectrum, it will become linearly
unstable due to the resonance with extended dispersive
states. If we tune the nonlinearity to a finite strength,
non-perturbative effects will lead to additional instability
windows for compact discrete breathers.

|an|

0

0.1

0.2

0.3

0.4

0.5

0.6

0 250 500 750 1000
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1.25

1.5

1.75

P
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t

0

20

40

60

80
(d)(c)

|an|

0

0.05

0.10

0.15

0.20

0.25

0.30

FIG. 3. Cross-Stitch. (a) and (b): time evolution of the
components an(t) of an initially perturbed compact breathers.
(c) and (d): time evolution of the participation number P .
Plots correspond to: h = 3, g = 5 (a),(c) h = 1, g = 1
(b),(d).

In Fig.3, we show the time evolution of perturbed com-
pact discrete breathers. We choose the amplitude of
the compact breather to initially be A = 1, and then
we introduce an initial uniform random perturbation
with maximum amplitude 10−3 along the whole chain of
N = 50 unit-cells. In Fig.3(a) and (b) we show the time
evolution of the |an(t)| component for h = 3, g = 5 and
h = 1, g = 1, respectively. Plot (a) has been obtained
for h = 3 and g = 5, when the frequency Ω = 3 + 5 = 8
of the compact discrete breather is located outside the
dispersive band [−7, 1]. The numerical simulation of the
time-evolution shows stability of the compact breather.
Instead, plot (b) has been obtained for h = 1 and g = 1,
when the frequency Ω = 1 + 1 = 2 of the compact
breather is in resonance with the dispersive band [−5, 3].
The breather will start to radiate and reduce its ampli-
tude, however the resonance condition will not be de-
stroyed down to the linear level since the linear flat band
is resonating with the dispersive one. Thus the compact
discrete breather is unstable and will be completely de-
stroyed during its perturbed evolution. The stable and
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the unstable behavior of these two cases are confirmed in
Fig.3(c) and (d), where we show the time evolution of the
participation number P = 1/

∑
(|an|4 + |bn|4). The par-

ticipation number takes values between unity (obtained
for a single site excitation) to the system size (obtained
for uniformly excited states), P ∈ [1, N ], and it estimates
the number of non-negligibly excited sites. Indeed, in
plot (c) which corresponds to the stable compact discrete
breather shown in Fig.3(a), the participation number P
fluctuates around 1.5, confirming that only few sites are
excited. In plot (d), which corresponds to the unstable
compact discrete breather shown in Fig.3(b), the partic-
ipation number P fluctuates around 40, confirming the
loss of compactness and the instability of the compact
breather.

Saw-tooth

The saw-tooth lattice - Fig.4(a) - is a one-dimensional
two-band network with one flat band. Associated to the
flat band, there exists a countable set of class U = 2
compact localized states, whose homogeneous profile in
space is shown by the black dots in Fig.4(a). We recall
that in this network, every CLS is non-orthogonal with
its two nearest neighbors. The full band structure of the
model is

EFB = 1 , E(q) = −2− 2 cos(q) (35)

which can be observed in Fig.4(b). Differently from the
cross-stitch case, the spectral bands of this model can-
not be tuned by certain free parameter, and the network
possesses a band gap between the dispersive and the flat
band.

+A

-A

a
n

b
n

+A

3.001

(a)

0

2

-5

q

E

80

(b)

FIG. 4. (a): profile of the Saw-Tooth lattice. (b): band
structure.

The time-dependent equations Eq.(6) of the saw-tooth
in presence of onsite nonlinearity read

iȧn = −bn − bn+1 + γan|an|2

iḃn = −bn − bn−1 − bn+1 − an−1 − an + γbn|bn|2
(36)

The CLSs of the linear regime can be continued as com-
pact discrete breathers written Eq.(4,5) with frequency
Ω = EFB + γA2

Cn,n0(t) = A

[(
1
0

)
δn,n0−1 +

(
1
−1

)
δn,n0

]
e−iΩt (37)

Comparing to the U = 1 case of the cross-stitch lattice,
the new feature is the non-orthogonality of neighboring
CLSs at the linear limit. While the flat band is gapped
away from the dispersive band, at weak nonlinearities we
can expect a resonant interaction between neighboring
CLSs, which may - or may not - lead to model dependent
linear local instability. It turns out that this instability
indeed takes place for the saw-tooth chain. There exists a
narrow region of instability for −0.1 < g < 0. Therefore,
the fact that the linear flat band network is of class U = 2
makes compact discrete breathers unstable even in the
presence of a band gap. However, this instability is local,
and therefore might not lead to to a destruction of the
perturbed compact discrete breather, since there is no
way to radiate the excitation to infinity. In Fig.5 we
show the an components (a) and the bn components (b) of
the unstable eigenvector with pure real eigenvalue EV =
2.987 × 10−5 obtained for g = −0.001. The eigenvector
is exponentially localized.

0 10 20 30 40 50
n

10-12
10-9
10-6
10-3

1

|a n
|

0 10 20 30 40 50
n

10-12
10-9
10-6
10-3

1

|b
n|

(a) (b)

FIG. 5. Saw-Tooth. an component (a) and bn component (b)
of the unstable eigenvector for g = −10−3 and real eigenvalue
EV = 2.987× 10−5.

Let us discuss the time evolution of slightly perturbed
compact discrete breathers, where a perturbation of or-
der 10−3 is equidistributed along all the N = 50 unit-
cells. In Fig.6(a) and (b), we show the time evolution
of the |an(t)| component for g = −1.5 and g = −0.007
respectively, while in Fig.6(c) and (d) we show the time
evolution of the participation number P . In the left col-
umn - Fig.6(a) and (c) correspond to the time evolution
of a compact discrete breather for g = −1.5. In this
case, the compact discrete breather is unstable, since its
frequency Ω = 1 − 1.5 = −0.5 is in resonance with the
dispersive band [−4, 0]. This instability is also depicted
by the participation number P . In the right column -
Fig.6(b) and (d) - we plot the time evolution of a compact
discrete breather for g = −0.007 In this case, the pure
real eigenvalues and the exponentially localized eigenvec-
tor yield an oscillatory behavior in time of the compact
discrete breather, which is depicted also by the partici-
pation number P .

V. CONCLUSIONS

In this work, we have discussed the properties of com-
pact discrete breathers in some flat band networks. Lin-
ear flat band networks possess compact localized states.
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FIG. 6. Saw-Tooth. Time evolution of the amplitudes of per-
turbed compact breathers (component |an(t)|) and the par-
ticipation number. Plots correspond to: g = −1.5 (a),(c)
g = −7× 10−3 (b),(d).

In order to continue them into the nonlinear regime to
become compact discrete breathers, a homogeneity con-
dition on the amplitude distribution of CLS has to be
satisfied, which is known to be present for a number
of flat band networks. The nonlinear compact discrete
breathers will then persist as compact states, albeit with
tuned modified frequencies.

If these frequencies are in resonance with dispersive
branches of the linear flat band network, then the dis-
rete breather will turn linearly unstable, which may lead
to a complete destruction of the perturbed breather by
dissolving it into dispersive states. If the CLSs form an
orthonormal set at the linear limit, no further instabili-
ties are expected in the weakly nonlinear regime. So all it
needs to have a stable compact discrete breather at the
weakly nonlinear limit, is to tune the flat band energy
out of resonance with the dispersive bands.

However, there exist flat band networks for which the
CLSs are not orthogonal. In these cases, the flat band
is gapped away from the dispersive spectrum, and reso-
nances with the dispersive spectrum are avoided in the
weakly nonlinear regime. But the overlap with nearest
neighbor CLS states can lead to a local instability in the
weakly nonlinear regime. We indeed observe that this
is the case for the saw-tooth chain. Remarkably the in-
stability does not lead to a complete destruction of the
breather, and instead yields a local oscillation of the ex-
citation.

The class of heterogeneous CLSs cannot be continued
as compact discrete breathers. However, as discussed in
[36], flat band networks that admit heterogeneous CLSs
in presence of local nonlinearity admit families of expo-

nentially localized discrete breathers. Additional fine-
tuning of parameters and functions can lead to a com-
pactification for a countable set of discrete breathers.
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APPENDIX

Appendix A: Bloch States Representation

Let us consider Eq.(6) linearized around one compact
discrete breather Cn,n0

(t), for g ≡ γA2

iε̇n = H0εn +H1εn+1 +H†1εn+1

+ g

U−1∑
l=0

Γl
(
2εn + e−i2Ωtε∗n

)
δn,n0+l

(A1)

where {Γl}U−1
l=0 are the projector operators of the vector

ψn over a compact discrete breather Cn,n0
(t)

Γl =

ν∑
j=1

al,jej ⊗ ej (A2)

The expansion Eq.(16) in Bloch states

εn =
1√
N

∑
q

φqe
iqn (A3)

maps Eq.(A1) to

i
1√
N

∂

∂t

∑
q

φqe
iqn =

1√
N

∑
q

H(q)φqe
iqn

+
g√
N

∑
q

[
U−1∑
l=0

Γl
(
2eiqnφq + e−i2Ωte−iqnφ∗q

)
δn,n0+l

]
(A4)

where H(q) ≡ H0 + eiqH1 + e−iqH†1 is the Bloch ma-
trix. This matrix has i = 1, . . . , ν eigenvalues λiq and

eigenvectors viq, where λ1
q = EFB and viq = wq. Let us

multiply Eq.(A4) by 1√
N
e−iq̂n and sum over the lattice
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n=1. This yields to

i
∂

∂t

∑
q

φq

[
1

N

N∑
n=1

ei(q−q̂)n

]
=
∑
q

H(q)φq

[
1

N

N∑
n=1

ei(q−q̂)n

]

+
g

N

∑
q

[
U−1∑
l=0

Γl

(
2ei(q−q̂)(n0+l)φq

+ e−i2Ωte−i(q+q̂)(n0+l)φ∗q

)
δn,n0+l

]
(A5)

Without loss of generality, we choose n0 = 0. The rela-
tion

1

N

∑
q

eiqn = δq,0 (A6)

yields to Eq.(17) in Sec.III A

iφ̇q̂ = H(q̂)φq̂

+
g

N

∑
q

[
U−1∑
l=0

e−iq̂lΓl

(
2eiqlφq + e−i2Ωte−iqlφ∗q

)]
(A7)

Let us now expand φq̂ in the Bloch eigenbasis

φq̂ = fq̂wq̂ +

ν∑
i=2

diq̂v
i
q̂ (A8)

where fq, d
i
q̂ ∈ C are time-dependent complex numbers.

Eq.(A7) becomes

i
∂

∂t

(
fq̂wq̂ +

ν∑
i=2

diq̂v
i
q̂

)
= EFBfq̂wq +

ν∑
i=2

λiqd
i
q̂v
i
q

+
g

N

∑
q

{
U−1∑
l=0

e−iq̂lΓl

[
2eiql

(
fqwq +

ν∑
i=2

diqv
i
q

)
+ e−i2Ωte−iql

(
f∗qwq +

ν∑
i=2

di∗q v
i
q

)]}
.

(A9)

Next, we regroup Eq.(A9) in terms of fq and diq̂ and we
multiply it by w∗q . By the orthogonality of the eigen-

vectors wq and viq of the Bloch matrix H(q), we obtain
Eq.(19) for the flat band component fq

iḟq̂ = EFBfq̂

+
g

N

∑
q

{
U−1∑
l=0

e−iq̂l
(

2eiqlfq + e−i2Ωte−iqlf∗q

)
Γlwq · w∗q

+

U−1∑
l=0

[
ν∑
i=2

e−iq̂l
(

2eiqldiq + e−i2Ωte−iqldi∗q

)
Γlv

i
q · w∗q

]}
(A10)

Analogously, we obtain Eq.(20) for the dispersive bands
component diq̂ by multiplying Eq.(A9) by vj∗q and using
the orthogonality of the eigenvectors of the Bloch matrix
H(q)

ḋjq̂ = λjqd
j
q̂

+
g

N

∑
q

{
U−1∑
l=0

e−iq̂l
(

2eiqlfq + e−i2Ωte−iqlf∗q

)
Γlwq · vj∗q

+

U−1∑
l=0

[
ν∑
i=2

e−iq̂l
(

2eiqldiq + e−i2Ωte−iqldi∗q

)
Γlv

i
q · vj∗q

]}
(A11)

Appendix B: Strained Coefficient Method

Let us consider Eq.(24) in Sec.III C 1 for a class U = 1
flat band network

iḟq̂ = EFBfq̂ +
g

N

∑
q

(
2eiqlfq + e−i2Ωte−iqlf∗q

)
iḋjq̂ = λjqd

j
q̂ +

g

N

ν∑
i=2

{∑
q

2diq + e−i2Ωtdi∗q

}
Γ0v

i
q · vj∗q

(B1)

and the expansion of dq and λq̂ in Eq.(26)

dq̂ =

+∞∑
k=0

gku
(q̂)
k , λq̂ = mΩ +

+∞∑
l=1

glδl (B2)

This expansion yields to

i
∂

∂t

+∞∑
k=0

gku
(q̂)
k = mΩ

+∞∑
k=0

gku
(q̂)
k +

+∞∑
k=0

+∞∑
l=1

gk+lδlu
(q̂)
k

+
1

N

+∞∑
k=0

gk+1

{∑
q

(
2u

(q)
k + e−i2Ωtu

(q)∗
k

)}
(B3)

Next, we equate the coefficients of each power of g to
zero. From g0 we get

iu̇
(q̂)
0 = mΩu

(q̂)
0 ⇒ u

(q̂)
0 (t) = e−imΩta

(q̂)
0 (B4)

Without loss of generality, we can assume all the initial

conditions to be equal a
(q̂)
0 ≡ a0. For g1 in Eq.(B3) we

get

iu̇
(q̂)
1 = mΩu

(q̂)
1 + δ1u

(q̂)
0 +

1

N

∑
q

(
2u

(q)
0 + e−i2Ωtu

(q)∗
0

)
(B5)

which, by Eq.(B4) reads

iu̇
(q̂)
1 = mΩu

(q̂)
1 +

1

N

[
(Nδ1 + 2)e−imΩta0 + e−iΩ(2−m)ta0

+
∑
q 6=q̂

(
2e−iλqta0 + e−i(2Ω−λq)ta∗0

)] (B6)
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Using the general solution

y(t) = e
∫ t
0
a(s)ds +

∫ t

0

e
∫ t
r
a(s)dsb(r)dr (B7)

of the first-order differential equation ẏ(t) = a(t)y(t) +
b(t), for m 6= 1 it follows that

u
(q̂)
1 (t) = e−imΩta1 +

1

N
(Nδ1 + 2)a0e

−imΩtt

+
ia∗0

2Ω(1−m)

(
e−i2Ωt − e−imΩt

)
+
∑
q 6=q̂

[
i2a0

mΩ− λq
(e−iλqt − e−imΩt)

+
ia∗0

Ω(2−m)− λq
(
e−i(2Ω−λq)t − e−imΩt

)]
(B8)

To kill the secular term we need to set δ1 = −2/N in
the second term of the right hand inside of Eq.(B8). The
solution Eq.(B7) in the case m = 1 reads

u
(q̂)
1 (t) = e−iΩta1 +

1

N

[
(Nδ1 + 2)a0 + a∗0

]
e−iΩtt

+
∑
q 6=q̂

[
i2a0

Ω− λq
(e−iλqt − e−iΩt)

+
ia∗0

Ω− λq
(
e−i(2Ω−λq)t − e−iΩt

)]
(B9)

To kill the secular term we need to set

(Nδ1 + 2)a0 + a∗0 = 0

⇔ Nδ1 = −2− a∗0
a0

= −2 + eiθ0

⇔ δ1 =

{
− 3

N
,− 1

N

} (B10)

since a0 = I0e
iθ0 , and the coefficients {δi}i in Eq.(B2)

are real numbers. The very same procedure discussed
above for the components dq̂ of the dispersive states can
be repeated for the component fq̂ of the flat band. Anal-
ogously to the expansion Eq.(B2), we perform an expan-
sion for the flat band component fq̂ in Eq.(B1)

fq̂ =

+∞∑
k=0

gkv
(q̂)
k , EFB = mΩ +

+∞∑
l=1

glσl (B11)

This ultimately lead to the expansion coefficients

σ1 = −3,−1 , m = 1

σ1 = −2 , m 6= 1
(B12)

The system size N is absent due to the macroscopic de-
generacy of the flat band states. Therefore, in Eq.(B6)
all terms of the sum

∑
q 6=q̂ have the same time-dependent

term e−iEFBt. To kill the secular term in Eq.(B8) for the

flat band component fq for m 6= 1, the following condi-
tion has to be satisfied

σ1 = − 1

b0

2

N

∑
q

b0 = −2 (B13)

In Eq.(B9) for the flat band component fq for m = 1, in
order to kill the secular term we need to set

σ1 = − 1

b0

1

N

[
2
∑
q

b0 +
∑
q

b∗0

]
= −2 + eiθ0

⇔ σ1 =
{
− 3,−1

} (B14)

For flat band networks of larger class U ≥ 2, both expan-
sions Eq.(B2,B11) have to be applied to Eq.(19,20). For
the saw-tooth case, these equations reduces to Eq.(30,31)
here recalled

iḟq̂ = EFBfq̂ +
g

α2N

∑
q

{
(α2 − 1)

(
fq + e−i2Ωtf∗q

)
+ e−iq̂

(
2eiqfq + e−i2Ωte−iqf∗q

)
+ (1 + e−iq)

(
2diq + e−i2Ωtdi∗q

)}
(B15)

iḋq̂ = λqdq̂ +
g

α2N

∑
q

{(
2dq + e−i2Ωtd∗q

)
+ e−iq̂

(
2eiqdq + e−i2Ωte−iqd∗q

)
+ (1 + eiq)

(
2fq + e−i2Ωtf∗q

)}
(B16)

since in the saw-tooth is a two band problem ν = 2 with
the following Bloch vectors wq, vq and projector operators
Γ0,Γ1

wq =
1

α

(
−1

1 + eiq

)
, Γ0 =

(
0 0
0 1

)
vq =

1

α

(
1 + e−iq

1

)
, Γ1 =

(
1 0
0 1

) (B17)

where α =
√

3 + 2 cos q. Eq.(B15,B16) expanded via
Eq.(B2,B11) leads to additional time-periodic terms de-
pendent on the wave number q (called polarized terms).
These terms therefore do not influence the zeroing condi-
tion of the secular term presented above for class U = 1
flat band networks.

Appendix C: Bogoliubov Expansion

Let us consider Eq.(24) for the dispersive component
diq for one of the dispersive band i considered for one
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component only

iḋiq = λiqd
i
q +

g

N

[
2diq + e−i2Ωtdi∗q

]
(C1)

Let us simplify the notation, by dropping the i. We now
apply the Bogoliubov expansion to Eq.(C1)

dq = aqe
−iωt + b∗qe

−i(2Ω−ω)t . (C2)

This yields to

ωaqe
−iωt + (2Ω− ω)b∗qe

−i(2Ω−ω)t

= λqaqe
−iωt + λqb

∗
qe
−i(2Ω−ω)t

+
g

N

[(
2aq + bq

)
e−iωt +

(
2b∗q + a∗q

)
e−i(2Ω−ω)t

] (C3)

which can be decoupled in two equations

ωaq = λqaq +
g

N

(
2aq + bq

)
(2Ω− ω)b∗q = λqb

∗
q +

g

N

(
2b∗q + a∗q

) (C4)

In matrix form, Eq.(C4) reads

ω

(
aq
bq

)
=

(
λ̃ ε

−ε 2Ω− λ̃

)(
aq
bq

)
(C5)

for λ̃ = λq + 2g/N and ε = g/N . The eigenvalues of this
system

ω1,2 = Ω±
√

Ω2 − 2λ̃Ω + λ̃2 − ε2 (C6)

The argument of the square root is equal to zero when

Ω1,2 =
2λ̃±

√
4λ̃2 − 4(λ̃2 − ε2)

2
= λ̃± ε (C7)

This yields complex eigenvalues ω in Eq.(C3) for λ̃− ε ≤
Ω ≤ λ̃+ ε which translates into

λq +
g

N
≤ Ω ≤ λq +

3g

N
(C8)

which is the Arnold tongue obtained in Eq.(27).

Appendix D: Numerical Methods

In the linear stability analysis of the compact dis-
crete breathers, the nonlinear model Eq.(6) is reduced
to the eigenvalue problem Eq.(14) of small perturba-
tion εn added to a compact discrete breathers Cn,n0

(t).
We solve this problem numerically by applying an IMSL
Fortran routine called DEVCRG (see [43] for details).
The time evolution of the perturbed compact discrete
breathers has been obtained by direct integration (for
example [38]). These numerical simulations have been
performed using a 6th order Runge-Kutta procedure.
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