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The essential ideas of investigations of turbulent flow in a straight rectangular 
duct are chronologically presented. Fundamentally significant experimental and 
theoretical studies for mathematical modeling and numerical computations of 
this flow configuration are analyzed. An important physical aspect of this type of 
flow is presence of secondary motion in the plane perpendicular to the 
streamwise direction, which is of interest from both the engineering and the sci-
entific viewpoints. The key facts for a task of turbulence modeling and optimal 
choice of the turbulence model are obtained through careful examination of 
physical mechanisms that generate secondary flows. 
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Introduction 

Secondary flows – fluid motions which occur in turbulent flows in straight ducts of 
non-circular cross-section (Prandtl’s second kind of secondary flows) and in curved pipes of 
any cross-section (Prandtl’s first kind of secondary flows, which additionally exist in laminar 
flow regime) in a plane perpendicular to the direction of main flow – are of considerable en-
gineering interest. Many examples which occur in engineering practice, e. g. in components 
of fluid machinery and heat transfer equipment, include flows in: heat exchangers (compact 
heat exchangers, recuperators, inter-coolers), turbomachinery impellers and blade passages, 
air intake ducts of jet engines, diffusers, ventilation and air-conditioning systems, electrostatic 
precipitators of thermal power plants, and cooling systems in: gas turbines, rocket combustion 
chambers, nuclear-reactors [1]. Secondary circulation is an important phenomenon in natural 
streams as well, e. g. sediment transport in rivers and canals [2]. The impact of duct corners 
on the flow friction and heat transfer characteristics arising from different non-circular geom-
etries is thoroughly analyzed in order to gain further insights into the mechanisms responsible 
for the coexistence of laminar and turbulent flows, bearing in mind the reduction of fluid flow 
losses and electronic cooling applications [3, 4]. Furthermore, it is noteworthy to develop the 
understanding of fluid dynamics [5] and heat transfer [6] behavior of non-Newtonian fluids 
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flowing through non-circular ducts encountered in the chemical, pharmaceutical, biological 
and food industries. It is important to emphasize the common features of and the links be-
tween three seemingly different internal flows, turbulent duct flow of Newtonian fluids, and 
tube flows of viscoelastic and particle laden fluids in order to help bridge the mechanics of all 
three, because secondary motions appear as a common thread through afore-mentioned flow 
types. It is not possible to develop a good understanding of the mechanics of secondary field 
in the flow of viscoelastic and particle laden fluids without a clear grasp of the underlying 
driving mechanisms of the turbulent secondary flows of Newtonian fluids [7]. At the end of 
this introductory paragraph on secondary motions from a broad viewpoint (fluid – geometry – 
flow; fluid stress-strain rate relationship: Newtonian – non-Newtonian; duct centerline axis: 
straight – curved; duct cross-sectional shape: circular – non-circular; duct cross-sectional ar-
ea/shape: constant – varying; flow configuration: external – internal; flow regime: laminar – 
turbulent), there is an interesting fact observed in corner-flow configurations of Newtonian 
fluids where we encounter one of the rare cases where laminar and turbulent flows show 
completely different tendencies in their general behavior. It appears that the secondary flow 
along the bisector of the corner is directed away from the corner in laminar flow and towards 
the corner in turbulent flow, although the driving mechanisms in these cases are different, 
contrary to previously mentioned similarities in causes of secondary motion in Newtonian and 
non-Newtonian fluid flows [8]. 

The various effects caused by turbulent secondary flows can have profound 
consequences for engineering design and calculation methods. Secondary flow exerts a 
significant influence on transport phenomena (momentum, heat, and mass transfer) in 
turbulent flows and it is this factor which determines considerable interest in this phenomenon 
[9]. The flow through a straight duct of rectangular cross-section has important similarities in 
common with both straight circular pipe flow and plane channel flow (well-known canonical 
flows). However, geometrical characteristics of its cross-sectional shape (rectangle is not 
perfectly symmetrical – the number of symmetry lines is not infinite, contrary to the ideal 
shape of circle; moreover, rectangle has two additional sides/walls in comparison with two 
infinite parallel plates/lines) in synergy with turbulence lead to the remarkable changes of the 
mean flow field characteristics and turbulent flow structure. Apart from the deformation of 
primary velocity contours, the location of velocity maximum is shifted vertically downward 
from the free surface in open channels. In addition, the friction behavior is strongly affected 
by variation of the local wall shear-stress along the duct walls [10]. In a similar way, the local 
wall heat flux [11] and the particle transport [12] are significantly influenced by secondary 
motions. 

The goal of every engineer is to always improve the efficiency and performance of 
the machines and equipment that are to be designed. In order to do so, it is important to un-
derstand the phenomena and processes taking place in their components. Furthermore, certain 
important engineering problems, like the study of behavior and origin of secondary currents, 
arising in turbulent flow in a straight rectangular duct, demand a deeper insight into the mech-
anism of the flow. A satisfactory description and understanding of the mechanism, origin and 
prediction of Prandtl’s second kind of secondary flows have been an outstanding issue for 
many decades, despite continuous efforts from a number of researchers. This problem has 
been studied from many points of view, through experiments, theoretical analyses and differ-
ent numerical approaches: turbulence modeling and numerical computations of the Reynolds-
averaged Navier-Stokes equations (RANS), large-eddy simulations (LES), and direct numeri-
cal simulations (DNS). From the scientific viewpoint the nature and cause of secondary flows 
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is still somewhat intriguing, due to ambiguous and unexpected role of turbulence, as one of 
the fundamental fluid mechanics problems. On the one hand turbulence tends to reduce the 
secondary flow of the first kind, and on the other hand it represents a generating mechanism 
for the mean secondary flow of the second kind – an organized, rather than chaotic, cellular 
flow pattern perpendicular to the main channel flow is characterized by a symmetrical system 
of paired counter-rotating vortical structures bounded by the walls of the duct and bisectors of 
the walls and corners. Therefore, the understanding of basic mechanisms of turbulent flow is 
vital for modeling and reliable numerical predictions of turbulence-driven secondary motions 
[13-15]. 

Detection and classification of  
secondary flows  

Prandtl and Nikuradse were among the 
first researchers to experimentally investigate the 
flow characteristics in straight ducts of uniform 
but non-circular cross-section, fig. 1 [16].  

The results of careful measurements of 
isovels (lines of constant axial mean-flow 
velocity used to indicate velocity variation over 
the normal duct cross-section) distribution were 
very surprising – a fact not observed in turbulent 
flows through straight circular pipes nor in 
laminar flows through straight rectangular ducts 
(fig. 2). 

 

 
Figure 2. Axial velocity contours (isovels) for a duct of rectangular cross-section [17] 
 

A distribution with even more rounded isovels 
compared to those obtained in laminar flow was 
anticipated, but a shape of the axial velocity contours in 
turbulent flow was unexpectedly different, having convex 
deformations (increased velocity) in the corner (angle 
bisectrix) region  and concave deformations (decreased 
velocity) near the wall bisector zone (fig. 3). 

Searching for the cause of these peculiar changes, 
Prandtl recalled an article („Die Wasserkraftlaboratorien 
Europas“, Berlin, 1926, pp. 66-67, in [17]) on old observa-
tions of the spiral motion of water in a straight channel 
which could be connected with Leonardo da Vinci’s fa-
mous drawings of water currents in rivers given 500 years 
ago (fig. 4). 

Figure 1. Flow in a straight rectangular duct

Figure 3. Laminar and turbulent 
isovels shapes [18, 19] 



Stankovi}, B. D., et al.: Specific Aspects of Turbulent Flow in Rectangular Ducts 
S666  THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S663-S678 
 

Using an analogy with curling hair, Leonardo summarized his observations as: Ob-
serve the motion of the surface of the water which resembles that of hair, which has two mo-
tions, of which one depends on the weight of the hair, the other on the direction of the curls; 
thus the water forms eddying whirlpools, one part of which is due to the impetus of the prin-
cipal current, and the other to the incidental motion and return flow (his written comment in 
fig. 4). It is fascinating how this description, given 500 years ago, is similar to a modern view 
of the mean flow structure as a superposition of the axial mean flow and transverse mean flow 
[20]. Namely, Prandtl envisaged that the isovelocity contours distortion was the result of sec-
ondary flow – a cross stream circulatory motion superimposed upon the primary axial flow 
(fig. 5). 

 

 
Figure 5. Secondary motions in a straight rectangular duct [21] 

Fluid flows from the duct centre to the corner (outward secondary flow) along the 
bisectrix of the angle (preferred direction (geometrical anisotropy) – the longest straight way 
from the duct centre to the duct wall boundary, square full line, fig. 6), and then toward the 

Figure 4. “Studies of an old man
seated and of a swirling water”,
Windsor, Royal Library, No.
12579, about 1510, Leonardo
da Vinci 
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duct centre (inward secondary flow) along the wall and along the wall bisector (the shortest 
way from the duct boundary to the duct centre, square dotted line, fig. 6). In case of the pipe 
with circular cross-section all straight ways from the pipe center to the pipe wall boundary are 
of the same length and consequently the preferred direction does not exist (geometrical isot-
ropy), fig. 6. The secondary flow circulation mechanism results in a symmetrical system of 
four pairs of vortical structures, two counter-rotating in each corner in the cross-section, 
bounded by the walls of the duct and the bisectors of the walls and the corners (opposite pairs 
– binary opposition). Such paired vortices differ from those usually observed near walls in 
turbulent boundary layers, because they are large-scale and are locked near the corners by the 
imposed geometric constraints. By transporting high velocity fluid from the centre of the duct 
to the corners, relatively high (primary) velocities are generated there (outward secondary 
flow, isovel convex deformation). In order to satisfy the condition of continuity, by the return 
flow, the lower momentum fluid is transported into the region of wall bisector creating low 
velocities there (inward secondary flow, isovel concave deformation), fig. 6. In this way, sec-
ondary flow conveys momentum, vorticity, and energy from the centre to the corners, and 
then, by virtue of continuity, these quantities are transported away from the corner to the cen-
tre along the bounding walls and wall bisectors. A similar transport pattern applies for trans-
ferable quantities associated with the turbulent motion. These secondary currents have the key 
role in transport processes between the duct centre and the corners. The mean-flow velocity 
vector is composed of a component in the axial flow direction (primary velocity, U) and 
transverse components (secondary velocities, V, W) in a plane normal to this direction. The 
existence of all three components of the mean velocity vector gives to this kind of flow a 3-D 
character. 

 

 

Figure 6. Constant (circle) and varying (square) centre-to-boundary distances in different directions; 
characteristic directions and the secondary motion path 



Stankovi}, B. D., et al.: Specific Aspects of Turbulent Flow in Rectangular Ducts 
S668  THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S663-S678 
 

Shortly afterwards, Nikuradse [22] confirmed the existence of secondary currents by 
flow visualization studies with dye injection into the water flowing through the duct. Their 
presence was confirmed in natural streams as well. Using rivers again as an example, Prandtl 
notes that “we may also mention the fact that small objects floating in rivers tend to move to 
the middle, which is explained by the existence of a surface current from the banks to the 
middle”. 

The first attempt to explain the nature and cause of secondary flows was given by 
Prandtl [17]. He postulated that turbulent velocity fluctuations tangential to an isovel contour 
line, in regions where large variations in isovel curvature occurred, resulted in forces propor-
tional to the magnitude of the curvature, causing secondary flow to develop, which was di-
rected from the concave to the convex side of the isovel, towards the corner. It is implied in 
this assumption that tangential velocity fluctuations (parallel to the isovel) at a given point on 
a curved isovel are greater than normal velocity fluctuations (perpendicular to the isovel). The 
later Prandtl’s description [22] was based on the variations of wall shear stress along the duct 
perimeter. The fluid is transported from the center of the duct toward regions with low shear 
stress, to the corner, where the axial mean velocity is increased, and then into the interior of 
the channel from regions with high wall shear stress, near the wall bisector, where the axial 
mean velocity is decreased [10]. 

Apart from ducts of orthogonal (rectangular) cross-section, Nikuradse investigated 
non-orthogonal ducts as well, namely a pipe of equilateral triangular cross-section. In subse-
quent investigations, secondary flows were also encountered in ducts of the square, trapezoi-
dal, rhombic and elliptic cross sections, forming in that way the category of ducts of non-
circular cross-section (fig. 7). Typical secondary-flow streamline patterns with symmetrical 
paired counter-rotating vortical structures initiated a background for the classification of the 
secondary flows. 

 
Figure 7. Typical secondary flow streamline patterns in ducts of the triangular and square  
cross sections [17, 23] 

Secondary flows have been formally separated into two classes by Prandtl (fig. 8). 
The basic division, extended in the course of time, was based on several influential factors: 
geometrical characteristics of the duct, flow regimes (laminar and turbulent) and physical 
mechanisms  which  cause  the  secondary  motion.  Secondary  flows  of  the  first  kind  are 
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Figure 8. The basic classification of secondary flow phenomena 

 
observed in curved pipes of any cross section. Secondary flows of this type are driven by the 
centrifugal force and accompanied pressure gradient. Secondary flows of the first kind are al-
so called skew-induced or pressure-driven secondary flows. These flows arise in both laminar 
and turbulent flow regimes. Secondary flows of the second kind are encountered only in tur-
bulent flows through straight non-circular ducts. Laminar flow in a straight noncircular duct 
and turbulent flow in a straight circular pipe produce no secondary flow of this type. These 
flows are turbulence-driven (stress-induced secondary flow) – the gradients of the turbulent 
Reynolds stresses in the plane of cross-section give rise to a source of streamwise vorticity. 
Additionally, secondary flow phenomena were found in rotating pipes and ducts (Coriolis 
force), transition ducts (ducts of non-uniform cross-sectional shape) and in stationary fluid 
with oscillations (oscillating disks, spheres and cylinders). 

Suppose we introduced a term canonical forms for the following concepts: a straight 
line, a circle, and a laminar flow, corresponding to the straight duct (rectilinear duct axis), the 
pipe of circular cross-section, and the laminar flow through a duct. Using the idea of opposite 
pairs/binary opposition (straight – curved, circular – non-circular, laminar – turbulent), non-
canonical forms refer to the curved pipe (curvilinear duct axis), the noncircular cross-section 
of the duct and the turbulent flow regime. The presence of non-canonical forms leads to the 
development of secondary flows. Namely, flow in a curved (the 1st geometrical-static condi-
tion of non-canonical form) pipe is characterized by the formation of secondary motions of 
Prandtl’s first kind. In the case of  secondary flows of Prandtl’s second kind, since the first 
condition of the non-canonical form is not satisfied (a straight duct), then the following two 
conditions should be fulfilled, i. e. two non-canonical forms are needed: the non-circular 
cross-section of the duct (e. g. triangular, rectangular, square, rhombic, trapezoidal, elliptic 
ducts, etc.) and the turbulent flow regime – turbulent (the 3rd flow-dynamic condition) flow in 
a straight non-circular (the 2nd geometrical-static condition) duct. Laminar flow in a straight 
noncircular duct and turbulent flow in a straight circular pipe produce no secondary flow. In 
the case of the secondary flow of the 2nd kind both the geometrical (static) condition and the 
turbulence (dynamic) condition should be fulfilled, whereas for the secondary flows of the 1st 
kind only the geometrical (static) condition is needed. 

Although detection of secondary flows was comparatively easy, their direct meas-
urement was not. The difficulty lies in the fact that the secondary velocities are, at most, a few 
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percent of the primary velocity. The first actual measurements of the secondary velocities 
were performed by Hoagland [16]. In spite of the fact that secondary flow is small in magni-
tude, it has a profound effect on the overall flow (global and local flow properties; mean flow 
field characteristics as well as turbulence structure). The neglect of the secondary flows tends 
to produce uniform wall shear stress distribution and heat transfer around the periphery of the 
duct (analytical results of Deissler [24]), contrary to the experimental measurements. 

Vorticity transport equation and driving mechanism of  
secondary motion 

Theoretical analysis of this problem, i. e. the description of secondary flow phenom-
ena by equations have been based on: (1) the averaged momentum equation (Reynolds equa-
tion), (2) the mean kinetic energy equation, (3) the turbulent kinetic energy equation, and (4) 
the mean vorticity equation. Chronologically, the first investigations of secondary flow driv-
ing mechanism were made from the vorticity point of view. This equation served as a basis 
for the important experimental studies as well. Secondary flow is closely associated with the 
existence of a vorticity in the flow field (the fluid elements must possess an angular velocity 
about an axis in the main flow direction if secondary velocities exist). The vorticity vector has 
an important role in fluid mechanics as an indicator of rigid-body-like rotation of fluid ele-
ment. Vorticity is twice the local angular velocity of the fluid. In this paper the symbol ω is 
adopted for the vorticity vector, although it should be mentioned that this symbol is used for 
angular velocity vector as well. The vorticity vector is the curl of the velocity vector and can 
be written in vector or indicial (tensorial) notation by the following expressions: 

 u    (1) 

 k
i ijk

j

u

x
 





 (2) 

The (instantaneous) vorticity transport equation is derived by applying the curl 
operator to the Navier-Stokes equations (or by combining successive pairs of the Navier-
Stokes momentum equations in a manner so as to eliminate the pressure terms and then 
simplifying by the use of the continuity equation):  

 2
i i i i

j j
j j j j

u
u

t x x x x

  
 

   
  

    
 (3) 

One of the advantages of a description of flow changes in terms of vorticity lies in 
the absence of the pressure term in eq. (3). On the other hand, the term ωj∂ui/∂xj is the one 
that has no counterpart in the equation of momentum (Navier-Stokes equation) and that gives 
vorticity equation a distinctive character. 

In turbulent flow, the instantaneous vorticity ωi is decomposed into a mean vorticity 
Ωi and vorticity fluctuations ωi

' (ωi = Ωi + ωi
'). After substituting this expression and corre-

sponding Reynolds decomposition for instantaneous velocity ui = Ui + ui
' into eq. (3) and tak-

ing the time-average of all terms in the equation, the mean-flow vorticity equation for a steady 
incompressible constant-property flow is obtained: 
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 (4) 

As a result of the Reynolds time-averaging procedure, on the right-hand side of the 
eq. (4) the turbulence Reynolds stress term appeared (the last term). 

The presence of secondary flow, described by cross-stream mean velocity compo-
nents U2 = V and U3 = W (fig. 5), implies the existence of mean vorticity component in axial 
direction, Ω1, which can be expressed as (from eq. (2)): 

 3 2
1

2 3

  
 
 
U U

x x
 (5) 

The entire analysis is now focused on the mean streamwise vorticity equation which 
has the following exact (extended) form (from the compact form of eq. (4)): 
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(6) 

In order to clarify the physical meaning of each term in eq. (6), they are grouped in 
the following mathematical expressions: 
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The term A1 represents the rate of change of mean streamwise vorticity due to con-
vection of fluid by the primary flow (U1) and secondary motions (U2, U3). The term A2 com-
prises two physical actions which cause the change of mean axial vorticity (A2 = A2

* + A2
**). 

It is suitable to analyze these effects as if vorticity behaved like a material line element coin-
ciding instantaneously with a portion of the vortex-line. Part of the change in vorticity is com-
ing from extension or contraction of the line element (term A2

*; j = k; U1 ∥ Ω1 vortex stretch-
ing) and part being change in vorticity coming from rigid rotation of line element (term A2

**;  
j ≠ k; U1 ٣ Ω2, U1 ٣ Ω3; vortex tilting; vortex turning; lateral deflexion of mean flow; skew-
ing of mean flow). The latter effect leads to the exchange of the vorticity between its compo-
nents, so that y-wise (Ω2) and z-wise (Ω3) vortex lines, due to rotation of x-wise vortex line 
(Ω1) caused by mean velocity gradients ∂U1/∂x2 and ∂U1/∂x3, acquire a component in the x-
direction (Ω1). The term A3 describes the contribution to the rate of change of vorticity due to 
molecular diffusion of vorticity by viscosity. The terms A4, A5, and A6 express the influence of 
turbulent Reynolds stresses on the generation of streamwise vorticity. 

The physical interpretations of terms in the mean streamwise vorticity equation can 
be connected with previously mentioned classification of secondary flows into Prandtl’s first 
and second kind. The mean streamwise vorticity in turbulent flow is induced both from 
meanflow skewing (term A2

**) and from the inhomogeneity of Reynolds stresses (terms A4, 
A5, and A6). Namely, in curved pipes, the tilting or skewing mechanism (term A2

**) generates 
secondary flow of Prandtl’s first kind [25]. This mechanism (skew-induced secondary flow) 
can operate either in laminar or in turbulent flow. For turbulent flows in straight non-circular 
ducts the terms A4, A5, and A6 (gradients of the turbulent Reynolds stresses in the plane of the 
cross-section) are responsible for developing and maintaining of  secondary flow of Prandtl’s 
second kind. This mechanism (stress-induced or turbulence-driven secondary flow) cannot 
induce secondary motions in laminar straight channel flow nor in turbulent straight circular 
pipe flow. The driving mechanism of stress-induced secondary flows in a straight rectangular 
duct will be examined in more detail. 

For fully developed turbulent flows in straight non-circular ducts, the mean 
streamwise vorticity equation (eq. 6) can be simplified – all gradients with respect to 
streamwise direction are zero (∂/∂x1 = 0). As a result of this operation, the first addends of the 
sums in terms A1 and A3 vanish, and the term A4 disappears completely. After some additional 
mathematical operations, it can be shown that the whole term A2 reduces to zero as well. The 
mean streamwise vorticity equation for fully-developed turbulent flow of an incompressible 
Newtonian fluid in a straight duct of non-circular cross-section then becomes: 
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The reduced convection and viscous (diffusion) terms of eq. (15) can be written in 
the following way: 
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The remaining two terms on the right-hand side of eq. (15), Reynolds stresses terms 
(normal and shear) A5 and A6, stay unchanged. 

The mathematical form of eq. (15) can be replaced by its physical analogue (from 
the kinematic point of view), i. e. eq. (18), bearing in mind the interconnection between ex-
perimental, analytical and modeling/numerical approaches of solving this problem: 

 Convection = Diffusion + Production (18) 

Since convection by secondary flow serves to transport vorticity from regions of 
production to regions of diffusion of vorticity by viscosity, where the vorticity is destroyed, it 
can be concluded that the most influential factor in eq. (18) is the production (generation, 
source) of vorticity, represented by terms A5 and A6. Therefore, the size and distribution of the 
Reynolds stresses must be considered. In addition, it can be hinted from this equation that ax-
ial vorticity can not exist in laminar flows in straight non-circular ducts (i. e. secondary flow 
of the Prandtl’s second kind) because the mathematical expression for vorticity production is 
given by the derivatives of turbulent Reynolds stresses (terms A5 and A6).  

Examination of the generation mechanism of secondary flows of second kind – the 
essential information as to where the secondary flow originate and are dissipated – is mainly 
based on a detailed evaluation of all terms in eq. (15). This equation was investigated both 
experimentally and theoretically. The earliest recorded measurements of the Reynolds stress 
tensor components are those of Brundrett and Baines [26] for fully-developed turbulent flow 
through a straight square duct. The contribution of the term A6 was found to be negligible, the 
correlation was an order of magnitude smaller than the term A5. The subsequent experimental 
results of Perkins [27] in the corner of a square-sectioned duct suggested that the terms A5 and 
A6 were of equal order, contrary to previous measurements by Brundrett and Baines. The im-
portance of the term A5 in generating the secondary currents was confirmed and, in addition, 
the significance of the term A6 had been demonstrated. The diffusion of vorticity, term A3

*, is 
most intense near the wall and towards the corner, whereas it is negligibly small in other duct 
regions. In later numerical and experimental investigations [28, 29] it was verified that the 
normal and shear Reynolds stresses terms A5 and A6 were the dominant ones, having opposite 
signs and being much larger than the convection term A1

*. The difference between A5 and A6 
is of the same order of magnitude as the convection term A1

*.This small difference between 
these relatively large terms is responsible for generating secondary motion. Therefore, both 
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Reynolds stress terms A5 and A6 have to be accurately modeled in order to describe realistical-
ly the secondary flow of the second kind. 

From a theoretical perspective the important conclusions about the origin of turbu-
lent secondary flow in ducts of noncircular cross-section can be drawn by investigating the 
conditions under which secondary flow does not exist [21, 23]. In that case there is no axial 
vorticity, Ω1 = 0, and secondary velocities are equal to zero as well, U2 = U3 = 0, so the eq. 
(15) reduces to: 

  
2 2 2

'2 '2 ' '
2 3 2 32 2

2 3 3 2

0u u u u
x x x x

   
         

 (19) 

When the terms of eq. (19) make a non-zero contribution, the streamwise vorticity 
and consequently secondary flow exist, thus the turbulent Reynolds-stress terms of eq. (19) 
form vorticity production term or an axial vorticity source term SΩ1 in eq. (20), i. e. it is this 
term that is the cause of secondary flow. The only exception is fully developed turbulent flow 
in straight circular pipes where the ideal symmetry (geometrical isotropy; a circle has infinite-
ly many lines of symmetry) makes the source term SΩ1 go to zero: 

  1

2 2 2
'2 '2 ' '
2 3 2 32 2

2 3 3 2

S u u u u
x x x x


   
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 (20) 

The first term on the right-hand side of eq. (20) represents the anisotropy of the tur-
bulent normal stresses, while the second one describes transverse gradients of (secondary) 
turbulent shear stresses. The complex interaction of these two terms is responsible for the 
generation of turbulent secondary flows in straight non-circular ducts. This analytical conclu-
sion is in agreement with previously mentioned findings of experimental investigations. In 
addition, this information can serve as a waymark for identifying the optimal route in a wide 
variety of turbulence models options. 

Secondary flows of Prandtl’s second kind and  
turbulence modeling (RANS)  

The experimental and theoretical studies on physical mechanisms that generate and 
suppress secondary currents in straight ducts of non-circular cross-section significantly con-
tributed to the development of turbulence models for a detailed prediction of this flow config-
uration. A considerable number of experimental investigations have been carried out to thor-
oughly understand turbulent flows in straight square/rectangular ducts as one of the simplest 
geometrical configurations in which turbulence-driven secondary flows arise. Since this rela-
tively simple geometry provides an excellent case to test and develop existing turbulence 
models, stress-induced secondary flows in straight square/rectangular ducts are of special in-
terest to turbulence modelers. 

Despite over a century of research, turbulence remains the major unsolved problem 
of classical physics. While most researchers agree that the essential physics of turbulent flows 
can be described by the Navier-Stokes equations, limitations in computer capacity make it 
impossible – for now and the foreseeable future – to directly solve these equations in the 
complex turbulent flows of technological interest. Hence, virtually all scientific and engineer-
ing calculations of non-trivial turbulent flows, at high Reynolds numbers, are based on some 
type of modeling. This modeling can take a variety of forms. 
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Two basic levels of modeling currently used in computational fluid dynamics and 
transport processes are Eddy Viscosity Models (EVM) and Second-Moment Closure Models 
(SMC) (known also as Reynolds Stress Models). Each category has a number of variants. The 
oldest proposal for modeling the turbulent or Reynolds stresses is Boussinesq’s eddy-
viscosity concept, which assumes that, in analogy to the viscous stresses in laminar flows, the 
turbulent stresses are proportional to the mean velocity gradient: 

 
' ' 2

3
ji

i j t ij
j i

UU
u u k

x x
   

 
       

 (21) 

The main problem in this concept is to find mathematical equations for the eddy vis-
cosity μt to model the Reynolds stresses. These may range from the relatively simple algebraic 
models, to the more complex models such as the k-ε model, where two additional transport 
equations are solved in addition to the mean flow equations. 

As noted in previous section, it is the axial vorticity source term, eq. (20), that leads 
to the generation of turbulent secondary flows in straight non-circular ducts. According to eq. 
(21), the axial mean velocity Ui = (U1, U2, U3) = (U1, 0, 0) = U (fig. 5) produces the following 
Reynolds stress distribution: 

 '2 '2 ' '
2 3 2 3

2
, 0

3
u u k u u    (22) 

Substituting these values into the eq. (20) we have for the axial vorticity source 
term: 

 
1

0S   (23) 

Consequently, as a result of eq. (23), it is quite clear that models of turbulence based 
on the isotropic ( '2 '2 '2

1 2 3 u u u  and 0'
3

'
2

'
3

'
1

'
2

'
1  uuuuuu ) eddy viscosity concept (e. g. k-ε 

and k-l models) have no built-in mechanism for the creation of secondary flow in straight 
pipes of noncircular cross section [21]. 

Since turbulence-driven secondary motions in straight non-circular ducts are an es-
sentially non-isotropic phenomenon, the solution of this problem, from the modeling perspec-
tive, has split into two main directions – anisotropic eddy viscosity models and Reynolds 
stress models. The first path included the correction of deficiency in the k-ε and  
k-l model by replacing the Boussinesq’s linear (isotropic) eddy-viscosity hypothesis with a 
nonlinear constitutive relationship. Hence, anisotropic eddy viscosity models – by adding 
non-linear terms to the constitutive relation for the Reynolds stresses – constitute the simplest 
level of Reynolds stress closure that can predict secondary flows in straight non-circular 
ducts. 

Chronologically, the first attempts were made to model directly the turbulent Reyn-
olds stresses inducing the streamwise vorticity, since the notion of an isotropic turbulent vis-
cosity was inadequate [30]. Most of the subsequent turbulence models developed for predict-
ing turbulent flow in straight non-circular ducts were essentially based on the Reynolds stress 
models, although they showed considerable variation in the style of approach; examples in-
clude equilibrium models, one-equation transport models, two-equation transport models, al-
gebraic stress models and full second-moment closures. All of these models are simplified 



Stankovi}, B. D., et al.: Specific Aspects of Turbulent Flow in Rectangular Ducts 
S676  THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S663-S678 
 

from the original forms of the Reynolds stress models with various empiric assumptions. An-
other cause for the perplexity lies in the modeling of near-wall effects – the wall functions (e. 
g. the ambiguity of the wall distance when the corner is approached and the definition of a 
length scale independent of the wall distance create difficulties) and the near-wall modeling 
of Reynolds stress models, since both regions close to the wall and the corner are known to 
influence the characteristics of secondary flow considerably. Therefore, if predictions based 
on wall functions approach are made, it is difficult to know whether possible problems in both 
the near-wall and the near-corner regions are due to improperly specified wall functions or to 
deficiencies in the model itself. 

Conclusions  

Flow configurations with a dominant flow direction aligned with the duct axis are at 
the core of traditional engineering calculations. However, the transverse components of the 
velocity vector or secondary flows in the cross stream plane can develop under certain cir-
cumstances (e. g. if some kind of non-canonical forms exist: 1) flow in a curved (the 1st con-
dition of the non-canonical form) pipe or 2) turbulent (the 3rd condition) flow in a straight 
noncircular (the 2nd condition) duct. Turbulent flow in straight non-circular ducts, frequently 
encountered in engineering practice and natural streams, is characterized by the secondary 
motions in the plane perpendicular to the streamwise direction. 

In general, the secondary flow is caused by two different mechanisms and separated 
into two categories accordingly – secondary flows of Prandtl’s first and second kind. Devel-
opment of secondary flows requires the presence of cross stream gradients in the flow field. 
On the one hand, cross stream pressure gradients (in balance with centrifugal force) can occur 
due to turning of the mean flow or rotation of the duct about an axis perpendicular to the 
mean flow direction. Flow in curved or rotating ducts is characterized by a generation of sec-
ondary flows of Prandtl’s first kind driven by the centrifugal force and accompanied trans-
verse pressure gradient. It can be observed in both laminar and turbulent flows. On the other 
hand, transverse gradients can occur due to variations of turbulent stresses over the cross-
section in straight non-axisymmetric ducts. Secondary flows of Prandtl’s second kind exist in 
turbulent flows through straight non-circular ducts and cannot arise in circular pipes nor in 
laminar flows. This flow is turbulence-driven (or stress-induced): it arises from the anisotropy 
of the transverse turbulence normal stresses and from transverse gradients of the Reynolds 
shear stresses, both contributing to the generation of streamwise vorticity. 

Examination of the generation mechanisms of steady secondary mean flow fields in 
turbulent flows inside straight non-circular ducts is essentially based on the analysis of the 
transport equation for the mean streamwise vorticity for fully developed turbulent flow, eq. 
(15). It was shown, from both the theoretical and experimental standpoints that the axial 
vorticity source term, eq. (20), led to the generation of turbulent secondary flows in straight 
non-circular ducts. Furthermore, it was shown that the turbulence models based on the 
Boussinesq’s isotropic hypothesis (k-ε and k-l models) had no natural mechanism for the de-
velopment of secondary flow. The implications that this had on turbulence modeling were 
discussed briefly. From a turbulence modeling perspective, there are two possible main routes 
for prediction of secondary flows: the applying of anisotropic eddy viscosity models or Reyn-
olds stress models. One of the possible obstacles further on the way of solving this problem is 
the implementation of standard wall functions and their uncertain behavior in the regions 
close to the wall and the corner which influence the characteristics of secondary flow signifi-
cantly. It is worth noting that Gessner [19] pointed out equations for two other components of 



Stankovi}, B. D., et al.: Specific Aspects of Turbulent Flow in Rectangular Ducts 
THERMAL SCIENCE, Year 2017, Vol. 21, Suppl. 3, pp. S663-S678 S677 
 

vorticity vector (vorticity of the primary flow, Ω2 and Ω3) and the transverse gradients of pri-
mary shear stresses ( '

2
'
1uu  and '

3
'
1uu ) could be even more important for explaining and predict-

ing secondary flows in order to find out whether the mechanism which maintains the second-
ary flow is equivalent to the mechanism which initiates this transverse flow. This view, how-
ever, has not been properly explored yet. Future research is needed to better understand the 
role that various influential factors play in the development and maintenance of secondary 
flow, particularly with respect to turbulence modeling close to the wall and corner regions. 
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