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Abstract 

Performed investigation of pulverized fuel combustion in swirl flows has shown that there are two important groups 
of influential parameters: fuel and burner characteristics. The most important conclusion of these investigations is 
that each type of fuel needs a defined burner for its combustion and concrete operating parameters for its optimal 
work. Optimal operating parameters can be determined only by performing the appropriate experiments. Selection of 
optimal swirl burner design is dependent on energy loss which is used for air transport through burner. Increasing of 
swirl intensity is convenient for fuel ignition and flame stability, but energy loss for air transport increases, too. Swirl 
economy is estimated using hydraulic resistance parameter which represents energy loss due to swirling. In the paper 
are presented the methods and experimental data of hydraulic resistance determination for three laboratory models of 
swirl burners for pulverized fuel combustion. In the tangential burner the swirling is accomplished by tangential 
inflow of secondary air and fuel/air mixture. Axial-blade burner of type 1 enables swirling by a set of 18 blades. 
Axial-blade burner of type 2 is with a central lead of gas and coaxial lead of fuel/air mixture, primary air and 
recirculating gases. In movable swirl block burner the secondary air swirling is enabled by 8 stationary and 8 
movable blocks fixed at movable and stationary plate.  
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1. Introduction 

Combustion of pulverized fuel with swirl burners utilizing the swirl effect is very significant and 
widespread. Swirl flows are formed as a result of inducing the proper rotation motion to current flow such 
as: guide vanes, swirl device or otherwise. This method of combustion is used extensively because of 
their favorable influence on the stabilization and intensification of the combustion process. In addition to 
increase the efficiency of combustion, swirl flows provides an environmentally cleaner fuel combustion 
by reducing the forming of harmful pollutants, oxides SOx, NOx, CO2 and others. 

Swirl burners are widely used in furnace technique for different types of combustion of fossil fuels. 
These burners are installed in the energy and industrial boilers and furnaces, furnace in cement kilns, 
brick yards and lime kilns, metallurgical furnaces and in the combustion chambers of gas turbines, gas-
turbine engines, both petrol and diesel engines and other devices [1]. The complex processes that occurs 
in non isothermal stream which is getting out from the burner prevents the establishment of calculation 
according to associate the structural parameters of the burner with the aerodynamic characteristics of the 
flame. It is impossible to establish universal criteria for defining cost-effectiveness and safety of the 
burner which makes selecting the optimal burner design. Therefore, the experimental determination of 
this dependence is the best way for reliable burners calculation. 

Swirling flows are commonly used in processes with and without combustion. In engineering set-ups 
with combustion swirling flows are commonly used for stabilizing and intensifying the combustion 
process. Also, they are used for environment protection from pollutant oxides SO , NOx, CO etc. The 
main effect of swirl is to improve the flame stability. When rotating motion is imparted to a fluid 
upstream of an orifice, the fluid flow emerging from the orifice has a tangential component of velocity 
besides the axial and the radial components. The presence of swirl induces radial and axial pressure 
gradients which affect the flow field. In the case of strong swirl, reverse axial pressure gradient becomes 
too large and produces a reverse flow-internal recirculation zone (RZ). This zone which recirculates heat 
and active chemical species to the root of the flame has a great influence on stabilization of the 
combustion process [2].  

RZ formation, dimensions and shape depend on several factors: swirl intensity, presence of a central 
pipe, geometrical burner and furnace characteristics, presence of combustion in the flow, blade shape etc. 
Performed investigations have shown that swirl exerts a strong influence on the aerodynamic processes 
within the flow. The most commonly used parameter for characterizing the swirling flows is the swirl 
number (S), a non-dimensional parameter. Investigations have shown that the swirl number is a 
significant similarity criterion for swirling flows. 

Aerodynamic characteristics of swirling flows are different for weak (S<0,6) and strong (S 0,6) swirl. 
In swirling systems with weak swirl the jet spread is stronger, but they are not of extensive use in 
practice. In the strong swirl case the axial pressure gradients cause internal recirculation, and they have a 
wide practical use.  
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2. Swirl burner models for pulverized fuel combustion 

Performed investigation of pulverized fuel combustion in swirl flows has shown that there are two 
important groups of influential parameters: fuel and burner characteristics. The most important conclusion 
of these investigations is that each type of fuel needs a determinate burner for its combustion and concrete 
operating parameters for its optimal work. Optimal operating parameters can be determined only by 
performing the appropriate experiments.  

To enable detailed study of the combustion process of pulverized fuels (biomass, coal etc.) using swirl 
burners of different types and strengths, and compare the results of research in laboratory and real 
conditions fireplaces, Laboratory for Thermal Engineering and Energy Institute of Nuclear Sciences 
Vinca made four models of swirl burners with heat power of 0.1-0.7 MW. Their basic design and 
operating characteristics are given in Table 1. For experimental tests of burner model was used laboratory 
facility, which allows the implementation of pulverized fuel combustion test in a wide range of operating 
parameters. This facility can conduct the following tests: determination of the optimal area of the burner 
for the selected type of fuel, to determine the effect of fuel quality, fineness of grinding, moisture content, 
ash and volatile matter in pulverized fuel combustion, determining the influence of temperature on 
combustion and determination of additional parameters essential for the vortex burner construction and 
design. 

Table 1. Basic design and working characteristics of the burner model 

 TG ALG1 GB ALG2 
Burner geometry     

Gas tube diameter (mm) - - - 30/23,6 
Central tube diameter (mm) 60.2/52.7 60.2/52.7 42.4/37.2 63.5/57.1 
Primary tube diameter (mm) 103/92 103/92 60.3/54.5 108/100 
Secondary tube diameter (mm) 160/145 160/145 95.0/87.8 146/138 
Diffuser length (mm) 320 320 100 160 
Diffuser half angle ( ) 33 33 33 26.6 

Blade angle of secondary air ( ) - 30-75 0-90 15-75 

Units     
Primary air velocity, wp (m/s) 1.8-4.5 2.3-9.4 5.3-23.4 2.3-4.5 
Secondary air velocity, ws (m/s) 3.4-6.6 2.7-9.4 10.5-25.6 6-44.9 
Central air velocity, wj (m/s) 1.4 - - - 
Ratio, ws / wp (-) 2-4 0.53-3.68 0.6-3.42 1.8-14.1 
Ratio, Gp / Gs (-) 0.15-0.40 0.16-0.89 0.09-0.52 0.09-0.73 
Momentum ratio, MR (-) 0.056-0.194 0.054-1.77 0.039-0.869 0.004-0.28 
Swirl number, S (-) 3.0-6.4 0.41-1.10 0.12-1.12 0.55-7.50 
Reynolds number, Re (-) 0.17x105 0.25x105 0.44x105 0.84x105 

Fuel consumption, Bg (kg/h) 27-150 20-140 19-130 20-140 
Burner power, Qg (KW) 110-774 172-635 106-720 89-621 

TG – Tangential burner; ALG1 – Axial-blade burner type 1; GB – Movable block burner; ALG2 - Axial-blade burner type 2 
 

The most reliable and simplest way to carry out the examination of various fuel and burner types is on 
experimental facilities. The basic conveniences of utilizing these facilities in comparison to experiments 
on real plants are [3]: easier and more efficient experimental work, lower cost of research, possibility of 
variation and detailed examination of main parameters in wide ranges, possibilities of real processes 
simulations are not lessened, modelling of processes, operation of industrial facilities is not hampered, 
possibility to use the pulverized fuel with same characteristics etc.  
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In designing the experimental facilities it is necessary to satisfy certain conditions [3]: to ensure 
temperature conditions of process modelling, equality of volume heat flux, to use fuel of the same 
characteristics etc. In accordance with these conditions the experimental facility was designed.  

Four models of swirl burners were made: tangential, axial-blade type 1 and type 2 and with movable 
blocks (Fig. 1). In the tangential burner model (Fig. 1a) the swirling is accomplished by tangential inflow 
of secondary air through the annular channel (3) and fuel/air mixtures through the channel (2). On the 
front side are positioned movable blades (4) that, if necessary, are inserted to regulate the overall level of 
swirl in the burners. The burner has been designed in such a way that particle residence time in the flame 
is equal, compared to a real burner, while velocities are several times lower. 

Axial-blade model of swirl burner type 1 (Fig. 1b) enables swirling by a set of 18 moveable blades (4). 
The fuel-air mixture is introduced at an angle of 300 and the output is set round with straight blades (5) to 
reduce disparities in the concentration of the mixture. The central tube (1) provides supply of central air 
and storage of oil burners. Modelling was performed as for tangential burner.  
 

 

Fig. 1. Swirl burner models: a) tangential; b) axial-blade type 1; c) with movable blocks; d) axial-blade type 2 
1-central air, 2-primary air, 3-secondary air, 4,5-blade vane, 6-diffuser, 7-gas burner, 
8,9-stationary and movable blocks, P1, P2 -movable and stationary plate. 

Axial-blade model of swirl burner type 2 (Fig. 1d) was prepared so that they prefer the existing design 
of swirl burners on boilers installed by some local boiler company. By its construction it is swirl type 
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burner, with bringing gas from the central ring and bringing the fuel-air mixture around the central tube of 
air. Mixture passes through the tube of a mixture of pulverized fuel, primary air and gas recirculation. It is 
anticipated wheel whirling mixture of 16 blades wreath. There are three sets with angle of the blades of 
15, 30 and 450. The secondary air is introduced around the pipe of the mixture. Swirling of the secondary 
air is realized with a wreath of 16 blades with a mechanism for the continuous change of angle of the 
blades. 

Movable swirl block burner (Fig. 1c) has been designed in such a way that the velocities of pulverized 
fuel/air mixture flow and secondary air can vary from the lowest to the velocities used in industrial 
burners. The secondary air swirling is enabled by 8 stationary and 8 movable blocks fixed at P1 movable 
and P2 stationary plate. The appropriate mechanism to enable the continuous movement of blocks and 
thus the light changes the level of swirl. 

In designing the model and prototype burners are used appropriate similarity criteria [4]. The basic 
criterion for burner modeling was used retention time of particles in the flame. The condition of the same 
residence time of particles in the flame is obtained the ratio of air velocity in the model and prototype 
burner in inverse proportion to their relative diameters. Other conditions are the equality of modeling: 
length of the jet, power burner and heat input capacity of the flame. Meeting some criteria causes a form 
of flame. Also it is taken into account the geometric similarity model and the prototype burner. 

3. General characteristics of swirl flows 

3.1. Efficiency of swirl flows 

At choosing of the type of swirl in burner one of the key criteria is its efficiency. Loss of power in the 
burner and the pressure that must be achieved at the entrance of the swirl is one of the characteristics of 
the burner of practical importance. It is clear that only a portion of available energy of the pressure 
exceeds the kinetic energy of the formed swirl flow, while the rest of the energy is lost by the action of 
viscous forces. The kinetic energy at the exit of the burner is [4]: 

 

Ek  = G u2  ( 1 +  S2 ) / 2        (1) 

where: G - mass flow of air through the burner, u - the average axial velocity in the outlet section of 
the burner;  - coefficient depending on the type of swirl, on the ratio between tube diameter in the output 
section of the burner and on the axial velocity distribution, if is not uniform; S – burner swirl level.  

Efficiency of swirl flows is evaluated by coefficient of kinetic energy flow in the form of annular flow 
depending on the geometrical characteristics of the swirl burner and ways of swirl. Also, efficiency of 
swirl flow is usually defined [4, 5] as the ratio of the kinetic energy flow through the outlet section of the 
burner and the static pressure drop through the burner. This parameter is used for assessing the formation 
of swirl intensity and is not a measure of efficiency of flow. At the same time swirl intensity of the 
various swirl devices can form different types of flow. Therefore, in practice, the parameter S is used for 
flow formed by axial and tangential swirl devices, and the angle of the blades  for blade devices. 

3.2. The coefficient of hydraulic resistance of the burner 

Selection of the optimal burner design depends on the loss of energy used to "blow" air through the 
burner. With increasing of swirl intensity enhances the security of fuel ignition and flame stability, but 
growing energy losses in the blowing air. Therefore, in choosing the optimum swirl intensity or swirl 



677  B. Repic et al.  /  Procedia Engineering   42  ( 2012 )  672 – 682 

device design must take into account both factors. Cost-effectiveness of swirl burner is assessed using 
hydraulic resistance burners coefficient  which is determined by the expression [5, 6]: 

 

 = 2 pst / ( w2) + (Ae / Ai)
2        (2) 

where: pst - static pressure drop between the inlet section of the channel (Ai) and the output section 
of the duct behind the swirl device (Ae);  - air density; w - velocity at the exit of the channel (Ae). 

The coefficient of hydraulic resistance of the burner reflects energy losses due to turbulence and 
experimental way can be related to the swirl intensity. Performed experiments Shagalova et al. [5, 6, 7] 
have shown that it is not possible to generalize the dependence of S and  for all types of swirl device.  

In Fig. 2 is showed a dependence  of S in the auto model (self preserving) field of Re number for 
different swirl types [5, 6]. For most types of burners for pulverized fuel auto modelity (self preserving) 
performed at Re = w*dhidr /   2x105, where: dhidr – burner hydraulic diameter. In the non auto modeled 
area resistance coefficient  increases. The ratio of actual coefficient  and coefficient  in auto modeled 
field is shown in Fig. 2b. Of the surveyed construction of swirl device least resistance  at the same S has 
an axial-blade swirl device with profiled blades. 
 

 

Fig. 2. Hydraulic resistance coefficient in auto model (self preserving) region (a) and correction for non auto modeled (b) 
 for different swirling types: 1-axial with profiled blades, 2-with entrance device, 3-tangential with strait blades,  
4-axial with strait blades. 

3.3. Swirl intensity (degree) for burner models 

Since the hydraulic resistance to a large extent depending on the swirl intensity of burner, it will be 
analyzed shortly the way of determining the swirl intensity of burners for different burner models. In 
swirling free jets, isothermal or with combustion, applies the law of conservation of momentum. 
Therefore, can be writing that: 
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where: G  - the flux of angular momentum in the axial direction, Gx - the flux of momentum in the 
axial direction; u and w axial and tangential velocity component at a radius r; p - static pressure; r1 and r2 - 
the radial border of the outlet cross section of burner.  

Maintaining momentum is the aerodynamic characteristics of the development swirl flow, and as a 
dimensionless criterion of this type of flow Beer and Chigier [4] proposed a swirl intensity, so-called 
swirl number defined as the ratio: 

S = G  / ( Gx rg )         (5) 

where rg – exit radius of the burner nozzle. A number of studies analyzed in [1] showed that the swirl 
number is an important criterion of similarity of swirl flows, caused by the geometric similarity of the 
way of swirl, and that the other criteria of similarity, whether it is on the isothermal flow or combustion, 
can be applied in conjunction with the swirl number. 

Calculation of swirl number by using the expression (3)- (5) requires knowledge of, or measurement, 
velocity and static pressure profiles at the exit of the burner, at the jet cross section. In most cases it is 
impossible to do, so the swirl number is determined using the known burner design data. 

Axial-blade burner models: For the multi-component coaxial flow which is exit from burner channel 
the swirl number is calculated as the integral, according to the expression: 
 

Sg S D A w D A w Di ei i i i ei i i i eg
i

n

i

n
( ) / ( )2 2

11
     (6) 

where: Si - appropriate flow stream swirl number; Ai - area of the i-th channel; i - coaxial flow 
density; wi – velocity of coaxial flow; Dei - the equivalent diameter of the i-th coaxial channel; Deg - the 
equivalent diameter of the burner according to the output section of the burner. Swirl burner model ALG1 
hasn’t primary flow swirl, so that Sp = 0, and the swirl number is calculated as: 
 

Sg = (1.7397 tg s ) / (1 + 0.4645 ( pwp
2 / sws

2 ))     (7) 

For a burner model ALG2 which has primary flow swirl the swirl number is calculated as: 
 

Sg = (SpDep pApwp
2  + SsDes sAsws

2 ) / (( pApwp
2  + sAsws

2 )Deg )  (8) 

where: Sp = 1.89 tg p and Ss = 3.6 tg s. 
Tangential burner model: For this burner model the swirl number is calculated depending on the 

geometric dimensions of the burner [7]. 
Movable blocks burner: For the burner with blocks which containing un swirled primary and 

secondary swirl flow, swirl number is equal to: 
 

Sg = ( 0.83 Ss ) / ( 1 + 0.288 ( pwp
2 / sws

2 ) )     (9) 
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where the secondary air swirl number is determined depending on the axial width of the channel, the 
number of blocks and geometric characteristics of the burner. 

4. Experimental results 

Experimental determination of hydraulic resistance performed for all four laboratory models of swirl 
burners. Change of the burner operating parameters was performed within the plant boundary features. 
The coefficient of hydraulic resistance was calculated according to the expression (2) whereby certain 
size determined as follows: 

- pst (Pa): pressure drop between the inlet and outlet section of the burner was measured using digital 
micro manometer, 

-  (kg/m3): air density was determined from the appropriate table based on the measured air 
temperature, 

- w (m/s) air velocity at the outlet section of the burner was calculated based on the measured flow 
(using a measuring aperture) and air temperature, 

- Ai / Au (-): the ratio of surface area of the output and input section of burner was: for the burner with 
blocks - 0.653, tangential burner – 14.39; axial-blade type 1 burner - 1.447 and for the axial-blade type 2 
burner - 0.992. 

Experimentally determined values of the hydraulic resistance coefficient of burner models are shown 
in Fig. 3-6. For the movable blocks burner (Fig. 3) was determined the correlation of coefficient  and the 
burner swirl number Sg for more air velocities, i.e. for more secondary air flow. Measurements showed 
that on the coefficient  have a similar impact change of the swirl intensity and air velocity, i.e. to their 
increase resistance value of burner increases. The high value of the coefficient  from 8-12 was obtained 
because, the blocks which fulfill the air swirl are the major resistance to air flow and cause considerable 
loss of kinetic energy flow. 

 

Fig. 3. Hydraulic resistance coefficient for movable blocks burner model. 

In Fig. 4, for the tangential burner, is shown the change in the coefficient  depending on the velocity 
i.e. secondary air flow. The values were obtained at approximately constant value of the burner swirl 
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number Sg = 5.0 because this type of burner has not the ability noticeable change in the intensity of air 
swirl intensity. It may be observed weak dependence of the coefficient  change of air velocity. The high 
average value of the coefficient  of  20,7 is the result of a small section of the input channels for the 
introduction of air conditioned to the possibilities of bringing air at the pilot plant. 

For axially-blade burner type 1 was performed determination of the coefficient  (Fig. 5) for the three 
angles (position) of secondary air blades  of 30, 45 and 600. Measurements have been made for the case 
of un swirled primary air (Sp = 0) and for the constant velocity of primary air wp = 5.5 m/s. 
Measurements showed that the angle of the blades of secondary flow significantly influence the change of 
coefficient , but also that this model of burner has a huge loss of energy to blow air through the burner. 
By this, it is obtained the following average values of the coefficient : from angle  = 300 (Ss = 1,42)  
= 16,0; for  = 450 (Ss = 2,47)  = 12,0 and for  = 600 (Ss = 4,27)  = 18,5. 

Axial-blade burner type 2 had the lowest experimental values of the coefficient  of all tested burner 
models. The explanation of this lies in the fact that this burner model has profiled blades of primary and 
secondary air, which considerably reduce air flow resistance. For this burner model (Fig. 6) performed the 
determination of the coefficient  in function of continuous changes of blade angle and velocity, i.e. 
secondary air flow. Measurements were performed for different angles (positions) of secondary air blades 

 = 15, 30, 45, 60 and 750. These values of blade angle and actual secondary air velocities i.e. secondary 
air flow rates correspond to swirl numbers of secondary air of Ss = 0.853, 1.838, 3.184, 5.515 and 11.882.  

 

 

Fig. 4. Hydraulic resistance coefficient for tangential burner model. 
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Fig. 5. Hydraulic resistance coefficient for axial-blade type 1 burner model. 

Measurements showed that on the change of coefficient  the same effect has a changing the blade 
angle or shifting secondary air velocity i.e. flow through the burner. So, to their increase growth 
experimentally determined values of the coefficient . The obtained values of the coefficient  which 
ranging from 2 to 4 fully correspond to the actual values of the coefficient of hydraulic resistance of the 
burner installed on real plants. 

Experimentally determined values of the coefficient  correspond to a specific geometry of burner. 
The results can be replicated in real burners of the same or similar geometry. High values of the 
coefficient  obtained for some burner models are due to small burner input section of the burner, which 
is convenient for the model but not for real burner. In practice, it is common for the air injection through 
air ducts significantly greater at lower values of the coefficient , as well as production of profiled blades. 

 

Fig. 6. Hydraulic resistance coefficient for axial-blade type 2 burner model. 
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5. Conclusions 

Selection of the optimal swirl burner design depends on the loss of energy used to blow air through the 
burner. Cost of swirl device is evaluated using the so-called coefficient of hydraulic resistance of the 
burner, which reflects the energy losses due to swirling effect. This paper presents a method and 
experimental data to determine the burner hydraulic resistance of four laboratory model of swirl burners 
for pulverized fuel combustion (biomass, coal etc.). Investigation was performed for four swirl burner 
models where swirl of air is establish by movable blocks, with tangential air introduction and using a 
blades. Experimental measurements show that the hydraulic resistance of burner is very dependent on the 
geometric characteristics of the burner. The results can be successfully replicated in real burners of the 
same or similar geometry. 
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