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Abstract. We study the wake effect in a supported graphene layer induced by external charged 

particles moving parallel to it by using the dynamic polarization function of graphene within 

the random phase approximation for its π electrons described as Dirac’s fermions. We explore 

the effects of a substrate assuming that graphene is supported by an insulating substrate, such 

as SiO2, and a strongly polar substrate, such as SiC, under the gating conditions. Strong effects 

are observed in the wake pattern in the induced density of charge carriers in supported 

graphene due to finite size of the graphene-substrate gap, as well as due to strong coupling 

effects, and plasmon damping of graphene’s π electrons. We find that the excitation of surface 

phonons in the substrate may exert quite strong influences on the wake effect in the total 

electrostatic potential in the graphene plane at low particle speeds. 

1.  Introduction 

Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb 

lattice [1]. It is a basic building block for graphitic materials of all other dimensionalities: highly 

oriented pyrolytic graphite (HOPG, a stack of graphene layers), carbon nanotubes (rolled-up cylinders 

of graphene), and fullerene molecules (consisting of wrapped graphene by the introduction of 

pentagons on the hexagonal lattice) [2, 3]. 

The ability to screen an external electric field is an important property of any nanostructured 

material, including graphene. Depending on the speed of the external charge, the screening mechanism 

changes its character dramatically, going from a Debye-like screened potential of a static charge to a 

dynamic regime characterized by an oscillatory potential contained in a cone trailing a moving charge, 

which is commonly known as the wake effect [4]. It is characterized by the onset of oscillations in the 

polarization of the medium, which arise from resonances due to excitations of collective modes in the 

medium and often provide an effective mechanism of energy loss for an external charge. While the 

wake effect in three-dimensional (3D) plasmas has been known for almost sixty years [5], its current 

significance encompasses diverse new areas, such as dust-crystal formation in complex plasmas [6], 

Coulomb explosion of large clusters, such as C60, in thin solid foils [7] and plasmas [8], channelling of 

fast ions through nano-capillaries in solids [9] and carbon nanotubes [4, 10], as well as interactions of 

charged particles with 1D electron gas (1DEG) [11], one [12] and two [13, 14] layers of a 2D quantum 

electron gas (2DQEG), supported thin metal films [15], nanosphere [16], and with magnetized two-

component plasmas [17, 18]. 
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We have studied, in our previous publications [19, 20], the wake effect due to fast charged particles 

that move at speeds in excess of the Bohr’s speed over a supported 2DEG characterized by a single 

energy band with parabolic dispersion. We have used a one-fluid hydrodynamic model with the 

parameters characteristic of graphene [19], which treats all four carbon’s valence electrons as a single 

2DEG, to present the oscillatory wake effect which develops in the induced number density when the 

particle speed exceeds a threshold value for the collective excitations in a 2DEG corresponding to the 

four valence electrons in graphene. We have also used a two-fluid hydrodynamic model with the 

parameters characteristic of graphene [20], which makes distinction between the contributions of 

carbon's σ and π electrons, to calculate the induced number density per unit area of electrons in the 

2DEG and compare it with the induced number density in the one-fluid model. Our results showed 

that, when the particle speed matches the phase velocity of the quasi-acoustic π plasmon, the induced 

number density shows the usual wake oscillations. In addition, we have presented calculations of the 

total electrostatic potential in the 2DEG plane, induced by a fast point charge moving parallel to it. 

Those results indicated a possibility of realizing the so-called wake riding effect in 2D [4, 21], 

whereby other charged particles may be captured in a potential well, or their state manipulated in the 

presence of the wake potential induced by a fast external charge. 

In order to study the wake effect due to slow charged particles moving parallel to a graphene layer 

under the gating conditions, the dielectric-response theory for surfaces and layered structures [22] is a 

convenient way to proceed, given that the dielectric function for graphene is available within the 

random phase approximation (RPA) based on a linear approximation for the π electron bands [23, 24, 

25]. As regards the applicability of the latter approximation in describing the elementary excitations in 

the wavenumber-frequency, ),( k , domain pertinent to graphene, we note that conditions ckk 2  

and /2 c   should be satisfied, where 
1 akc  is a high-momentum cutoff (with 46.2a Å 

being the lattice constant), and 1c eV is a high-frequency cutoff [2, 23, 25]. For particles moving 

parallel to graphene at a fixed distance 0z  and constant speed v , the former condition will be satisfied 

for distances az 0  (thereby neglecting the size of the π electron orbitals in graphene). The latter 

condition can be transformed into a restriction on the particle speed by invoking the Bohr’s adiabatic 

criterion and requiring that /2 0 czv  . When the projectile speed is normalized by the Fermi speed 

of graphene, Fv  ( 300/cvF  , where c  is the speed of light in free space), the latter condition 

amounts to 03.0/ zvv F   with 0z  expressed in angstroms. 

Although we consider the RPA dielectric function to be a basic, parameter-free model that provides 

an adequate description of both the inter-band and intra-band single-particle excitations (SPEs), as 

well as plasmon excitations, of graphene’s π electrons, the model nevertheless has its shortcomings. 

For example, it ignores the local-field effects (LFE) due to electron-electron correlations [26, 27] and 

assigns an infinitely long lifetime to the electron excitations. Only one of these shortcomings can be 

qualitatively corrected in the RPA dielectric function at a time, e.g. by using either the Hubbard 

approximation (HA) for the LFE in the static limit [28] or by introducing finite relaxation time, or 

decay (damping) rate,  , using Mermin’s procedure [29, 30, 31, 32]. 

We present the oscillatory wake effect in the charged carrier density and in the total electrostatic 

potential in the graphene plane in a supported graphene layer, induced by a slowly moving charged 

projectile. We study the effects of a substrate assuming that graphene is supported by an insulating 

substrate, such as SiO2, and a strongly polar substrate, such as SiC, under the gating conditions, taking 

into account the influence of: the equilibrium charge carrier density n  due to doping of graphene, the 

distance 0z  and the speed v  of the projectile, the size of the graphene-substrate gap h , and the 

damping rate   of elementary excitations in graphene. 
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The equilibrium charge carrier density is a particularly important parameter because it determines 

the Fermi wavenumber of graphene’s π-electrons, nkF   (we shall assume 0n , i.e., graphene 

doped by electrons, without loss of generality), and the corresponding Fermi energy, FFF vkE  . 

Note that we use Gaussian electrostatic units and denote the charge of a proton by 0e . 

2.  Basic theory 

We use a Cartesian coordinate system with coordinates },{ zR  and assume that single-layer graphene 

is located in the plane 0z , where },{ yxR   is position in the plane and z  distance from it. A semi-

infinite substrate is assumed to occupy the region 0 hz  underneath graphene, whereas the 

region hz   is assumed to be vacuum or air. It can be shown that, for a point charge Ze  moving 

parallel to graphene along the x  axis with speed v  at a fixed distance 00 z , the induced number 

density per unit area of electrons in graphene and the total electrostatic potential in the graphene plane 

are given by, respectively 
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where we have used the symmetry properties of the real and imaginary parts of the dielectric function 

of the combined graphene-substrate system 
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with ),(  k  being the polarization function of non-interacting π electrons in free graphene [23, 24, 

25], and 
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is the background dielectric function which quantifies the effects of substrate on the response of 

graphene [33, 34]. Note that ),(  kbg  takes the values in the range between 1  and 2/]1)([  s , 

characterizing, respectively, the case of a free-standing graphene ( h ) and the case of a zero gap 

( 0h ) between graphene and a substrate. 

In equation (4), )( s  is the bulk dielectric function of the substrate, which is given in the local 

approximation for a material supporting only one transverse optical (TO) phonon of frequency TO  by 
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where   and 0  are the dielectric constants at high and low frequencies, respectively, and TO  is the 

damping rate of the TO phonon. Note that, when substrate phonons are ignored in graphene studies, it 

is customary to take the static limit of the dielectric function in equation (5), 0)0(  s  [2]. 

In order to estimate the effects of strong coupling, we go beyond the RPA regime by using the 

aproach outlined in reference [35] for interactions of slow charged particles with 2DEG, whence the 

RPA polarization function ),(  k  is to be replaced with 
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where kekV /2)( 2  is the Coulomb interaction in 2D. 

For the sake of simplicity, we use static limit of the LFE correction function, )(kG , which is given 

in the Hubbard approximation (HA) by 
2/122 )()4/1()(  FkkkkG  [28, 36]. On the other hand, the 

finite lifetime of the excitation modes of charge carriers in graphene is treated by introducing a finite 

damping rate,  , in the RPA polarization function through Mermin’s procedure [29, 30, 31, 32], 

whereby one replaces ),(  k  with 








 








)(

),(
11

),(
),,(

k

ik

i

i

ik
k

s

M










 ,                                               (7) 

where the static limit of the RPA polarization, ),(lim)(
0




kks


 , is given elsewhere [23, 24, 29]. 

3.  Results and discussion 

We choose the external particle to be proton ( 1Z ) moving along the x  axis with speed v  at a fixed 

distance 200 z Å above graphene with the equilibrium charge carrier density n . 

Firstly, we use equation (1) to calculate the induced number density for free-standing graphene 

( h ), without the LFE, and with vanishing damping rate ( 0 ). Our calculations of the 

induced number density for 0y  show that the wake effect generally takes place for particle speeds 

satisfying Fvv  , and is manifested as oscillations trailing the proton ( 0 vtx ). In figure 1, we 

explore the spatial dependence of wake oscillations in the induced number density grn  (multiplied by 

2

0z ) as a function of both vtx   and y  (both normalized by 0z ), for a proton moving along the x  

axis with a speed Fvv 4  at a distance 200 z Å above graphene with an equilibrium charge carrier 

density of 
1310n cm

-2
. One can observe that the V shape wake-field appears apparently behind the 

particle, along with multiple oscillatory lateral wakes. One notices, away from the symmetry axis 

0y , that the amplitudes of the lateral wakes are damped which is a consequence of plasmon 

damping due to the inter-band SPEs. 

Next, we calculate the induced number density for graphene supported by a SiO2 substrate in the 

static mode ( 9.30  ), without the LFE, and with vanishing damping rate ( 0 ). We explore the 

effects of a variable gap height and consider the gap heights: 0h  for the zero gap commonly 

considered in the literature, 4h Å for a realistic value [37] and h  for free graphene. In figure 

2, we compare the spatial distribution of the induced number density grn  (normalized by n ) as a 

function of vtx  (multiplied by nkF  ) with 0y , for a proton moving at a distance 

200 z Å above graphene, for several gap heights and densities, with vanishing damping ( 0 ), at 

two speeds: (a) Fvv 2  and (b) Fvv 4 . One can observe in figure 2(a) that the oscillation period of 

the induced number density decreases when the size of the gap increases, as was also shown in our 

previous publication [19] in the case of the wake effect in interactions of fast ions with a supported 

2DEG. This effect of the gap size on the oscillation periods seems to be weaker at higher particle 

speeds, as shown in figure 2(b) for Fvv 4 , but the amplitude of these oscillations in the normalized 

number density nngr /  appears to be suppressed by the close proximity of a substrate. Such a strong 
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influence of the size of the graphene-substrate gap on the wake effect is in accord with the conclusions 

found in our previous publications [29, 30, 38] about the importance of the gap size on the stopping 

and image forces on external charges moving near graphene. 

 

 

Figure 1. (Color online.) The induced number density grn  (multiplied by the square of the particle 

distance 
2

0z ) as a function of vtx  and y  (both normalized by 0z ) in the wake-field region created 

by a proton moving along the x  axis with a speed Fvv 4  at a distance 200 z Å above free-

standing graphene ( h ) with an equilibrium charge carrier density of 
1310n cm

-2
, and with 

vanishing damping ( 0 ). 

 

We also discuss the local-field effects (LFE) and the effects of finite damping rate on the induced 

number density. While the LFE is an inherent feature of graphene’s electronic response that is 

particularly important at low particle speeds [35], the damping rate   depends on graphene’s 

environment and hence may vary quite strongly from sample to sample because   arises from various 

mechanisms for charge carrier scattering, including charged impurities, local defects, and ripples in 

graphene [28]. For example, it was found for epitaxial graphene that a reasonable value for the 

damping rate   is on the order of several hundred meV [29]. Thus, we compare in figure 3 several 

cases: graphene with 0  and 100 meV (without LFE), and graphene with the LFE included 

(whence 0 ). Figure 3 shows the spatial distribution of the induced number density grn  
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(normalized by n ) as a function of vtx  (multiplied by nkF  ) with 0y , for two equilibrium 

densities n  of 
1110 cm

-2
 to 

1310 cm
-2

, for a proton moving at a distance 200 z Å above graphene on 

a SiO2 substrate ( 9.30   and 4h Å) at two speeds: (a) Fvv 2  and (b) Fvv 4 . One notices that 

the main result of including the LFE is an increase in the period of the wake oscillations, which is 

similar to the effect of decreasing the graphene-substrate gap in figure 2. As expected, the LFE is seen 

to be more pronounced at the lower speed in figure 3 [35]. On the other hand, one notices that finite 

damping rate exerts quite strong influence in reducing the amplitudes of the wake oscillations at both 

speeds shown in figure 3. The observed suppression of the wake oscillations with increasing   occurs 

due to the broadening of the plasmon resonance in the ),( k  plane. 

 

 

Figure 2. (Color online.) The spatial distribution of the induced number density grn  (normalized by 

the equilibrium charge carrier density n ) as a function of vtx  (multiplied by the Fermi momentum 

nkF  ) with 0y , for a proton moving at a distance 200 z Å above graphene on a SiO2 

substrate ( 9.30  ), with vanishing damping ( 0 ), at two speeds: (a) Fvv 2  and (b) Fvv 4 . 

Results are shown for three values of the gap heights: 0h  (black solid lines), 4h Å (red dashed 

lines), and h  (blue dotted lines). Thin and thick lines represent the cases of 
1110n cm

-2
 and 

1310n cm
-2

, respectively. 
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Figure 3. (Color online.) The spatial distribution of the induced number density grn  (normalized by 

the equilibrium charge carrier density n ) as a function of vtx  (multiplied by the Fermi momentum 

nkF  ) with 0y , for a proton moving at a distance 200 z Å above graphene on a SiO2 

substrate ( 9.30   and 4h Å), at two speeds: (a) Fvv 2  and (b) Fvv 4 . Results are shown for 

three values of the damping rates  : 0  (black solid lines), 0  with the LFE (red dashed lines), 

and 100 meV (blue dotted lines). Thin and thick lines represent the cases of 
1110n cm

-2
 and 

1310n cm
-2

, respectively. 

 

Finally, we use equation (2) to calculate the total electrostatic potential in the plane of graphene 

with an equilibrium charge carrier density of 
1310n cm

-2
, without the LFE, and with vanishing 

damping rate ( 0 ). We explore the effects of a strongly polar substrate, such as SiC. Note that we 

use the following values in equation (5): 7.6 , 7.90  , 97TO meV, and 10TO meV 

[30]. For the sake of simplicity, we set 0h  noting that the effects of finite h  are considered in 

figure 2. In figure 4, we show the total electrostatic potential in the plane of graphene tot  

(normalized by 00 / zZe ) as a function of vtx   (normalized by 0z ) with 0y , for four model 

systems: graphene on a substrate with phonon (g-SiC-phonon), graphene on a substrate in the static 
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mode (g-SiC-static), bare substrate with phonon (SiC-phonon), and free graphene (g-free). Since the 

wake effect is critically dependent on the particle speed, we consider three cases: 5.0/ Fvv , 1  and 

2 , in the panels (a), (b) and (c) of figure 4, respectively. Numerical results show that, when the 

projectile speed exceeds a threshold value on the order of graphene’s Fermi speed Fv , the oscillatory 

wake effect develops in the total electrostatic potential in the graphene plane trailing the particle, as 

shown in figure 4(c) for the speed Fvv 2 . However, the potential for graphene on a substrate that 

supports a phonon mode also exhibits spatial oscillations at sub-threshold speeds, Fvv  , as shown in 

figure 4(a) for Fvv 5.0  and in figure 4(b) for the speed Fvv  . This may be due to hybridization of 

the plasmon in graphene and the substrate phonon. 

 

 

Figure 4. (Color online.) The spatial distribution of the total electrostatic potential in the plane of 

graphene tot  (normalized by 00 / zZe ) as a function of vtx  (normalized by 0z ) with 0y , 

for a proton ( 1Z ) moving at a distance 200 z Å above graphene with an equilibrium charge 

carrier density 
1310n cm

-2
, with vanishing damping ( 0 ), at three speeds: (a) Fvv 5.0 , (b) 

Fvv  , and (c) Fvv 2 . Results are shown for four model systems: graphene on a substrate with 

phonon (g-SiC-phonon), graphene on a substrate in the static mode (g-SiC-static), bare substrate with 

phonon (SiC-phonon), and free graphene (g-free). 
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4.  Conclusions 

We have presented the wake effect in interactions of moving external charges with supported graphene 

under the gating conditions. Calculations of the induced number density per unit area of electrons in 

graphene, as well as of the total electrostatic potential in the graphene plane as functions of the speed 

of the projectile moving parallel to graphene and the particle distance, were performed within the 

random phase approximation (RPA) based on a linear approximation for the π electron bands. 

We have found that the presence of a substrate can exert strong influence on the wake effect as 

well, e.g., via the dependence of the oscillation period of the induced number density trailing the 

charged particle on the size of the graphene-substrate gap (the oscillation period decreases when the 

size of the graphene-substrate gap increases). Similarly, strong influence was also observed at lower 

particle speeds when local-field effects were included in grаphene’s electronic response. In addition, 

we have found that the amplitudes of oscillations are heavily suppressed by increasing the damping 

rates of plasmons in graphene. 

The total electrostatic potential in the plane of graphene exhibits the usual wake effect in both free 

graphene and graphene on a substrate in the static limit, showing spatial oscillations that lag the 

particle, which moves at a speed v  exceeding the threshold value of Fv , the Fermi speed in graphene. 

Surprisingly, the potential for graphene on a substrate that supports a phonon mode also exhibits 

spatial oscillations at sub-threshold speeds, Fvv  , that trail a moving charge. While this may be due 

to hybridization of the plasmon in graphene and the substrate phonon, such an unusual manifestation 

of the wake effect warrants further investigation. 
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