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Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia

bFaculty of Electrical Engineering
Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia

Time delays for an intense transverse electric wave propagating through a slab with saturable nonlinearity
are investigated. The nonlinearity is assumed in a form of the Vinetskii–Kukhtarev model, which is relevant
for the slabs made of nonlinear photorefractive crystals, such as GaAs and LiNbO3, which feature a saturable
nonlinearity. The expressions for the group delay and the dwell time are derived and the relation between them is
studied. It is shown that the difference between them has three different contributions. The first one corresponds
to the self-interference associated with the dispersion of the medium surrounding the slab. The other two appear
due to the nonlinearity of the slab and oblique incidence of the transverse electric wave. All the results are
compared with the case of dielectric slabs with cubic (Kerr) nonlinearity.
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1. Introduction

The question of “how long it takes for a wave packet to
tunnel through a potential barrier” has been occupying
physicists for a long time. The deep relationship between
the Schrödinger and the Helmholtz equation, as well as
the analogy between the quantum-mechanical tunneling
of particles and the classical electromagnetic tunneling
of evanescent waves [1, 2], enable determination of tun-
neling times. Condon was the first scientist who pointed
out to the problem of the speed of tunneling in 1931 [3].
Years later, Hartman showed that time delay saturates
with increasing barrier lengths [4].

Numerous experiments [5–7] have revealed the pres-
ence of superluminal velocities for wave packets tunnel-
ing through waveguide with positive index of refraction.
In materials with regions of anomalous dispersion, these
velocities can even be negative. This phenomenon can
be explained by the fact that the peak of the transmit-
ted wave packet would emerge prior to the peak of the
incident wave packet entering the medium. These nega-
tive velocities do not, as it may seem, violate causality,
because energy propagation velocity inside the medium
is positive and smaller than the speed of light in vacuum
c. For this reason, it is necessary to establish a new,
appropriate time scale with which one characterizes the
tunneling of electromagnetic waves. Two tunneling time
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definitions — the group delay and the dwell time — are
considered to be the most appropriate [8]. The relation
between these two time definitions has been suggested by
Winful [9]: the group delay is a sum of the dwell time and
a term called self-interference time, which represents the
time that a wave packet spends interfering with the re-
flected wave in front of an obstacle (this time is non-zero
only when background medium is dispersive). However,
this relation was valid only for an obstacle made of linear,
non-absorptive, non-magnetic material with normal inci-
dence. Later on, tunneling times have been calculated
for all linear [10] and media with cubic nonlinearity [11].

Nowadays, materials with saturable nonlinearity at-
tract great attention because of their characteristic to
lead numerous physic quantities to saturation [12–14].
The goal of this paper is to derive an explicit expres-
sion for the mentioned tunneling times, i.e. group delay
and the dwell time, when the wave packet is tunneling
through an obstacle made of material with saturable non-
linearity. All derivations in this paper presume propaga-
tion of transverse electric (TE) modes. Numerical calcu-
lations were carried out for different nonlinear materials
and compared to those obtained for the slabs with the
Kerr type of nonlinearity, presented in [11].

2. Theoretical considerations

The model of a planar dielectric waveguide and an
obstacle made of a nonlinear material placed inside the
waveguide is shown in Fig. 1. Both the waveguide (whose
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permittivity is εb) and the obstacle are made of non-
-magnetic materials. The thickness of the obstacle is de-
noted by L. Since the obstacle is made of a material with
saturable nonlinearity, its permittivity εNL is given by:

εNL = εLN + α
|Ey|2/E2

c

1 + κ|Ey|2/E2
c

= εLN + εSLN, (1)

where εLN represents the linear part of the permittivity
and εSNL is a saturable contribution to the permittivity.

Fig. 1. The model.

Here, α = ±1, depending on focusing or defocusing
nonlinearity, Ey is the y component of the electric field
inside the obstacle, Ec is a characteristic electric field and
κ stands for the saturation strength. In this paper, we
presume an obstacle placed in vacuum.

Assuming that the waveguide is finite only in y direc-
tion and that the wave packet propagates along the x
axis, with an angle of incidence θ, the Helmholtz nonlin-
ear equation within the obstacle reads

E′′
y + (k2

0εNL − β2)Ey = 0, (2)
where k0 is the vector of propagation and β =√

εbµb k0 sin(θ) stands for the propagation constant. By
switching to the dimensionless form, via replacing ρ2 =
k2
0εLN − β2, Ω = 2κρ2/(k2

0α), Ey = ρ/k0

√
2E2

c /αy and
ξ = ρx, the Helmholtz equation can be rewritten as

y′′ξ +
(

1 + 2
|y|2

1 + Ω |y|2
)

y = 0. (3)

Taking the solution as y(ξ) = r(ξ)eiφ(ξ) and integrat-
ing the above expression, we obtain

(S′)2

4S
+

Θ2

S
+ S +

2S

Ω
− 2 ln(1 + ΩS)

Ω2
+ C1 = 0, (4)

where S = r2, Θ = γ0 |E0|2 k2
0α(1− |R|2)/(2E2

c ρ3), γ0 =
k0
√

εb cos(θ) and C1 is the integration constant. After
inserting the boundary conditions on the cross-sections
waveguide–obstacle and obstacle–waveguide into the pre-
vious expression, we derive the following three equations:

C1 = − (S′(0))2

4S(0)
− Θ2

S(0)
− S(0)− 2S(0)

Ω

+
2 ln(1 + ΩS(0))

Ω2
, (5)

C1 = − Θ2

S(L)
− S(L)− 2S(L)

Ω

+
2 ln(1 + ΩS(L))

Ω2
, (6)

∫ S(ξL)

S(0)

dt√
−4t2 − 4tC1 − 4Θ2 − 8t2

Ω + 8t
Ω2 ln(1 + Ωt)

= ξL, (7)
where S(0) and S(L) represent the squares of the electric
field amplitude on the obstacle boundaries, and are func-
tions of the amplitude and the argument φr of the com-
plex reflection coefficient (i.e. |R|). Solving of this system
of three equations provides C1, |R|, and φr, which fur-
ther enables determining of S(ξ) from differential Eq. (4).
Obviously, this implies defining of Ey and subsequent ex-
pressions for the dwell time and the group delay, which
is the goal of this paper.

Dwell time is a measure of the time spent by a wave
packet in a given region of space, and is defined as
[9, 15, 16]:

τd =
〈W 〉
〈Pin〉 , (8)

where W stands for the stored electromagnetic en-
ergy inside the barrier and Pin represents the time
averaged incident power, which is equal to 〈Pin〉 =[√

εbε0c cos(θ)A/2
] |E0|2. Here, ε0 is the permittivity

of vacuum, A stands for the cross-section surface per-
pendicular to the x axis, and c is the speed of light in
vacuum.

For a media with saturable nonlinearity, the electro-
magnetic energy represented by the sum of the electric
energy We and the magnetic energy Wm, can be derived
as

〈W 〉 = 〈We〉+ 〈Wm〉 =
Aε0

2

∫ L

0

εNL |Ey|2 dx

−Aγ0 |E0|2
2ω2µ0

Im(R) +
Aε0

2
ω

2

∫ L

0

dεLN

dω
|Ey|2 dx. (9)

Here, ω is the incident wave frequency and µ0 represents
the permeability of vacuum.

By inserting the expressions for 〈W 〉 and 〈Pin〉 into (8),
followed by some basic simplifications, we arrive to

τd =

∫ L

0

(
ω
2

dεLN
dω + εLN

) ∣∣∣Ey

E0

∣∣∣
2

dx
√

εbc cos(θ)

+α

∫ L

0
|Ey|2

E2
c+|Ey|2

∣∣∣Ey

E0

∣∣∣
2

dx
√

εbc cos(θ)
− Im(R)

ω
. (10)

This expression is valid for dispersive nonlinear media.
The first term in this expression represents the influence
of the linear part of the obstacle’s permittivity, while
the second term represents the influence of the saturable
nonlinearity in the obstacle.
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Subtracting the conjugate of the Helmholtz equa-
tion multiplied by dEy/dω from the derivative of the
Helmholtz equation (with respect to ω) multiplied by
E∗

y , and integrating the obtained expression along the
barrier, results in a connection between the group delay
and the dwell time

τg = εθτd +
(

1
ω

εθ − 1
γ0

dγ0

dω

)
Im(R)

+

∫ L

0
εSNL

∣∣∣Ey

E0

∣∣∣
2

dx
√

εbc cos(θ)

− ε+
LN

ε+
LN − sin2(θ)ε+

b

∫ L

0
ε+
SNL

∣∣∣Ey

E0

∣∣∣
2

dx
√

εbc cos(θ)
, (11)

where we have denoted εθ = 1 − sin2(θ)ε+
b /ε+

LN, and
ε± = ε±ω/2 · dε/dω = ε [1± ω/(2ε) · dε/dω]. The third
term in previous expression represents the nonlinear time
τNL, which is the explicit contribution of the nonlinear-
ity. The fourth term, marked as τt, appears due to the
oblique incidence of the TE wave.

In case of linear, non-dispersive obstacle, placed inside
the dispersive waveguide, i.e. dεLN/dω = 0, dεb/dω 6= 0,
and with θ = 0◦, τNL and τt vanish, so the expression for
the group delay reduces to the expression that Winful de-
rived in [9]. He presented the group delay as a sum of the
dwell time and a term known as the self-interference time,
which equals τi = [Im(R)/β] (β/ω − dβ/dω). Hence, this
result implies the validity of the expression (11) derived
in this paper.

3. Numerical results and discussion

In this paper, the numerical results show dependences
of τd, τg, Ey and |T | on different values of the am-
plitude of incident electric field E0, with angle of inci-
dence and incident wavelength chosen to be θ = 10◦ and
λ = 10−6 m, respectively. The comparison among these
results and those presented in [11] is given. The param-
eters of the obstacle’s permittivity Ec and κ, as well as
its length L, are chosen in order to attain best effect re-
sults possible, and are equal to Ec = 1 V/m, κ = 1 and
L = 10−7 m.

The first case observes an obstacle made of self-
-focusing nonlinear material, i.e. α = 1. Figure 2 de-
picts the dependence between normalized electric field
magnitude |Ey|/|Et| and the length of the obstacle x, for
three different values of E0, i.e. when E0 = 0.05 V/m,
E0 = 1 V/m and E0 = 5 V/m. It is quite apparent
that the amplitude of the electric field saturates with the
length of the obstacle.

We should note that in case of an obstacle made of a
self-defocusing material, i.e. α = −1, and with compa-
rable values of the incident electric field, similar shapes
to those of Fig. 2 are obtained. However, in this type of
media the values of |Ey|/|Et| increase with the increase
in E0, contrary to the self-focusing media.

Comparative results for the group delay and the dwell
time for a certain range of E0, for self-focusing and self-

Fig. 2. Distribution of the normalized electric field am-
plitude |Ey| / |Et| for three different values of the inci-
dent field amplitude E0 and for α = +1.

-defocusing medium, are given in Fig. 3. As it can be
seen, for the same type of medium, these two times have
different, but very close values. The distinction between
them occurs because of the presence of τNL and τt, whose
relative influence is small (the difference is ∼ 10−18 s),
but nevertheless existing. In case of the normal inci-
dence θ = 0◦, τNL and τt cancel each other out, so τd

becomes equal to τg. Also, the dwell time and the group
delay have lower values for the self-focusing medium than
for the self-defocusing one. The comparison between the
results obtained for media with cubic (Kerr) nonlinear-
ity [11], shows that for small incident field amplitudes,
the values of tunneling times match those obtained in
this paper. This arises from the fact that for small E0,
the expression which describes the permittivity for sat-
urable nonlinearity reduces to the expression for cubic
nonlinearity.

Fig. 3. Dwell time and group delay dependence on the
incident field amplitude E0, for α = ±1.

In addition, the transmittivity as a function of E0 was
calculated for self-defocusing and self-focusing material.
In case of a self-defocusing medium, |T | saturates nearly
to 1, so the obstacle practically becomes totally trans-
parent for electromagnetic (EM) waves. For self-focusing
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medium, however, transmittivity decreases with increas-
ing E0, and saturates at around 0.88. These results,
especially the ones for self-defocusing media, are, also,
comparable with those obtained for the Kerr nonlinear-
ity media [11]. Again, for small values of E0, the values
of transmittivity coincide, however, for higher values of
incident field amplitudes, it seems as if the transmittiv-
ity curve for self-defocusing media in our case follows the
shape of the upper peaks of transmittivity curve in the
cubic nonlinear media. This conclusion can be applied
to the results for dwell time and the group delay, with
the difference that, here, our results follow the shape of
lower peaks in cubic nonlinearity case.

4. Conclusion

In this paper a more general expression that describes
the relation between the dwell time and the group de-
lay, and which is valid for nonlinear materials, is derived.
An obstacle made of material with saturable nonlinearity
and surrounded by air, was used as a model. It is shown
that, for non-magnetic obstacle surrounded by air, these
two times saturate and can be equal, if the angle of in-
cidence is 0◦. For other values of incidence angles there
is an expression which, apart from these two quantities,
includes two more times, namely — the self-interference
time and the nonlinear time, though very small compared
to the dwell time and group delay. Numerical results also
show saturation of the electric field in the obstacle, as well
as of the transmittivity. In contrast to the self-defocusing
medium, the self-focusing medium gives minor values for
all relevant quantities. The results show that the trans-
mittivity saturates to lower value than its initial one for
self-focusing media, while in self-defocusing it achieves
its maximum value, i.e. 1. All the results are in good
agreement with those obtained for the Kerr type media.
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