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Non-entire Functions of Creation and Annihilation

Operators and Their Relation to Phase Operator
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1 Civil engineering faculty, University of Belgrade, Serbia and Montenegro
2 Institute of Physics, Pregrevica 118, Belgrade, Serbia and Montenegro
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Abstract. On the coherent states |α〉 any entire function of creation and annihilation
operators may be defined. We show that it is not the case for non-entire functions. Use of
|α〉〈α| as identity operator for a non-entire function may lead to contradictory results. On the
example of the phase operator we show how these possible contradictions may be avoided.

Functions of operators for Hermitian operators may be defined in a more or less
straightforward way using the spectral theorem. Namely, for any such operator Ô we may
write

Ô =
∫
λdP̂λ,

where λ is eigenvalue and dP̂λ is orthogonal projector-valued measure. From this representation
for any function of operator f follow the expression

f(Ô) =
∫
f(λ)dP̂λ.

Orthogonal projector-valued measure P̂λ may be related to eigenstates of operator in a standard
way

P̂λ(a, b) =
∑

n∈(a,b)

|ψn〉〈ψn| +
∫ b

a
λ|λ〉〈λ|.

Annihilation operator is not Hermitian operator and its eigenstates are coherent states which
form an overcomplete set. However any entire function of this operator may be represented in
formally similar way

f(â) =
∫
f(α)|α〉〈α|d2α.

Unlike with the Hermitian case, nonentire functions for the annihilation operator cannot be
represented in such a way because such a representation would lead to contradictions. We will
show this for the case of logarithmic function. We can write

|α′〉 =
∫

|α〉〈α|α′〉d2α.

If one would define
ln â|α〉 ≡ lnα|α〉
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what seems quite natural, from the above equation one would have

lnα′|α′〉 =
∫

lnα|α〉〈α|α′〉d2α

and after scalar multiplication by 〈α′|

lnα′ =
∫

lnα〈α′|α〉〈α|α′〉d2α.

In general case this equality is not valid. For example if we take the cut in the complex plane
along the positive x-axis we would have ϕ ∈ [0, 2π) and taking α′ = 1ei0 on the left side we
would have zero while on the right side for the imaginary part we would have the integral

∫ ∞

0

∫ 2π

0
ϕ|〈α′|α〉|2dϕ�d�

which is obviously different than zero and positive. Independently of the position of the cut the
analogous example follows in a straightforward way.

One of the reasons for this contradiction is overcompletness of coherent states. As shown for
the first time by von Neumann [1] there exists complete but not overcomplete subset of coherent
states. We will recapitulate some of their features needed for our further argument following
Perelomov. Perelomov rigorously proved that coherent states of the form [2]

|αkl〉 = |kω1 + lω2〉,

where k and l are integers and ω1 and ω2 are such complex numbers which in complex plane
represent sides of a parallelogram with the surface S equal to π

S = Im(ω2ω
∗
1) = π,

form a complete set when from all possible combinations (k, l) one and only one arbitrarily
chosen, is excluded. If S < π, the system is overcomplete; if S > π – noncomplete. Points
kω1 + lω2 form a lattice in complex plane, and the surface of an elementary cell is S = Im(ω2ω

∗
1).

Note that to the cell of surface S = π in α plane corresponds the cell in phase plane of surface
h. In our considerations we found, convenient to choose the square elementary cell so that we
have

|αkl〉 = |√π(k + il)〉.
We excluded the vector |α = 0〉 since logarithmic function is not defined there.

For discretized set {|αkl〉} there exists biorthogonal set {|wkl〉} with properties:

〈wkl|αk′l′〉 = δkk′δll′

and
Î =

∑
kl

|wkl〉〈αkl| =
∑
kl

|αkl〉〈wkl|.

For phase operator there is proposal in the literature of the form

φ̂L = ln â† − ln â.

This definition together with resolution of unity in terms of coherent states leads to
contradictions which are easily revealed in a completely analogous way as we did above for
the case of ln â so we will not dwell on it. To avoid these difficulties we define the phase operator
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using logarithmic functions of creation and annihilation operators but defined on a lattice in a
phase space just described. In this way we have

ϕ̂ =
1
2i

∑
kl

(lnαkl|αkl〉〈wkl| − lnα∗
kl|wkl〉〈αkl|).

This operator is free from above mentioned contradictions.
Mean values of phase in coherent states from the lattice {|αkl〉} are argαkl while for other

coherent states |α〉 they differ from expected value argα for a couple percents. Investigations of
further properties of the here introduced operator are in progress and are encouraging.
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