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Abstract
Fluence, depth absorbed dose and linear energy transfer (LET) distributions of
proton and carbon ion beams have been investigated using the Monte Carlo code
Geant4 (GEometry ANd Tracking). An open source application was developed
with the aim to simulate two typical transport beam lines, one used for ocular
therapy and cell irradiations with protons and the other for cell irradiations with
carbon ions. This tool allows evaluation of the primary and total dose averaged
LET and predict their spatial distribution in voxelized or sliced geometries.
In order to reproduce the LET distributions in a realistic way, and also the
secondary particles’ contributions due to nuclear interactions were considered
in the computations. Pristine and spread-out Bragg peaks were taken into
account both for proton and carbon ion beams, with the maximum energy of
62 MeV/n. Depth dose distributions were compared with experimental data,
showing good agreement. Primary and total LET distributions were analysed
in order to study the influence of contributions of secondary particles in regions
at different depths. A non-negligible influence of high-LET components was
found in the entrance channel for proton beams, determining the total dose
averaged LET by the factor 3 higher than the primary one. A completely
different situation was obtained for carbon ions. In this case, secondary particles
mainly contributed in the tail that is after the peak. The results showed how
the weight of light and heavy secondary ions can considerably influence
the computation of LET depth distributions. This has an important role in
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the interpretation of results coming from radiobiological experiments and,
therefore, in hadron treatment planning procedures.

Keywords: hadrontherapy, Monte Carlo simulation, linear energy transfer,
biological effect, Bragg peak

1. Introduction

Over the last few years there has been growing interest in the use of light ions for therapeutic
purposes. Synergistic effects of ballistic precision and high biological efficiency make
hadrontherapy with light ions more advantageous with respect to conventional radiotherapy
with photon beams (Paganetti and Kooy 2010, Baumert et al 2001, Brada et al 2007, Kraft 2000,
Schardt et al 2010). So far, more than 90 000 patients have been treated worldwide with protons
and about 10 000 with carbon ions (PTCOG). Although physical characteristics of these beams
are widely known, predictions of the biological damage and the consequent cellular response
still need to be improved (Wambersie 1999). In hadrontherapy, the quantitative estimation of
the biological effect is commonly given by using the concept of relative biological effectiveness
(RBE): it is defined as the ratio of the absorbed dose of the reference radiation, such as 60Co
gamma rays, and the dose given by the specific radiation type which produces the same
biological effect. The latter is most frequently quantitatively measured by means of the cell
survival fraction. RBE usually varies for different positions inside the target volume and it
depends on various kinds of parameters such as: cell line, surviving fraction, dose, ion species
and, in particular, the linear energy transfer (LET) (Belli et al 1998, Wouters et al 1996,
Gerweck and Kozin 1999, Paganetti and Gotein 2001). Different particle species for the same
LET value produce distinct biological effects, i.e., RBE, in the same cell line. In addition, the
single LET value of one ion species gives different outcomes, RBE, for each cell line. LET
gives a quantitative description of the radiation quality of the beam and its increase towards
the end of the primary particle range represents the main advantage of ion beams. Good
predictions of spatial LET distributions in tissues are therefore of crucial importance for the
study of radiobiological parameters and, finally, in the treatment planning for hadrontherapy
both with protons and light ion beams. Although the single RBE value of 1.1 is currently used in
the clinical proton therapy treatments, a number of radiobiological studies have demonstrated
considerable variation of RBE. Some of them gave also an overview in the matter (Bettega
et al 2000, Petrovic et al 2010). It was shown that the proton RBE values increased along the
spread-out Bragg peaks (SOBP), and that there was a further increase at the distal declining
part of the clinical SOBP. Close values were obtained by analyses using Monte Carlo (MC)
proton transport simulations (Paganetti and Schmitz 1996, Paganetti 1998, 2002). Higher
values of RBE as a function of LET were also measured using low energy protons (Belli et al
1998, 2000). Since LET depends on particle species, as well as on its energy, heavier particles
have higher energy loss per unit length. Therefore carbon ions reach even higher RBE values
than protons, thus improving radiotherapy, particularly for radio-resistant tumours (Weyrather
et al 1999, 2004, Belli et al 2008, Ristic Fira et al 2011, Petrovic et al 2012). In particular for
carbon ion beams, an accurate spatial distribution of RBE is necessary to correctly weight the
dose with the biological response (Scholz and Elsasser 2007).

For mono-energetic beams, LET values are easily obtained from tables, but in the case
of clinical beams calculations of averaged LET distributions are necessary in order to obtain
realistic predictions. Several studies have been carried out in this field and analytical algorithms
were developed for this purpose (Wilkens and Oelfke 2002, Kempe et al 2007, Grassberger
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et al 2011). In most of them certain limitations are still present due the fact that they do
not take into account contribution of secondary particles produced by nuclear interactions of
primary particles with the target nuclei. This issue can influence the average LET calculations
at different depths, in particular when the stopping powers of secondary particles have a larger
weight. A more precise tool, able to reproduce in a realistic way the physical interaction of
the primary beam with the traversed tissues, is therefore required for this kind of computation.
Most of the approaches for RBE modelling are based on analytical LET models that consider
primary protons only (Wilkens and Oelfke 2004). Moreover, the majority of the radiobiological
experiments performed to study the relation between LET and RBE refer to the incident particle
LET, again neglecting the contribution of secondary particles (Matsuura et al 2010).

In this paper, a study of LET distributions for protons and carbon ions is carried out with
the use of MC methods. A MC application has been developed to simulate usual experimental
environment, where depth dose distributions were measured. The developed application allows
the computation of the average LET distributions, also taking into account the secondary
contributions that are due to nuclear interactions. The main aim of this work is to compute
and analyse average LET distributions for hadrontherapy purposes, considering the proton and
carbon ions incident beams. The specific tasks of this paper are to:

• simulate dose, fluence and LET distributions for the two transport beam lines that are used
at Laboratori Nazionali del Sud (LNS) of the Istituto Nazionale di Fisica Nucleare (INFN)
in Catania, currently involved in proton treatments and radiobiological experiments;

• investigate the contribution of the secondary particles in the computation of the average
LET, both for protons and carbon ions;

• estimate the difference between the primary and total average LET as a function of depth
and show the distinct influence of the secondary contributions of the proton and carbon
ion incident beams.

2. Materials and methods

2.1. Dose and track averaged linear energy transfer

All LET definitions that can be found in literature are based on stopping power values. The
stopping power is generally expressed as a sum of different and independent components:
the electronic (or collision) stopping power due to the collisions of the incident ions with the
electrons of the traversed material, the nuclear stopping power, due to the interactions with the
nuclei and the radiative stopping power, related to the emission of bremsstrahlung radiation in
the electric field of atomic nuclei or atomic electrons (ICRU 1993, 1998). Considering that the
last term can be neglected for non-relativistic ion beams and that within this regime the energy
transfers are mainly dominated by electronic collisions, the total stopping power is practically
reduced to the electronic stopping power. LET in ICRU60 is defined as the restricted linear
electronic stopping power, L�, given as:

L� = dE�

dl
(1)

where dE� is the energy lost by a charged particle due to electronic collisions, with the energy
transfer less than the specified value �, while traversing the distance dl.

If all possible energy transfers are included (� = ∞), the LET value coincides with the
electronic stopping power (Sel) and it is referred as the unrestricted LET (L∞):

L∞ = Sel. (2)
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In the case of monochromatic beams, the LET calculation is easily achieved because the
kinetic energy is well defined. Different considerations are needed for a non mono-energetic,
clinical beam. In this case, the calculation of L∞ shows additional complexity (Wilkens and
Oelfke 2002). At a given depth in tissue, the clinical ion beam has kinetic energy spectrum with
different components. Under these conditions it is more meaningful to introduce the concept
of LET distribution and hence, to deal with the mean LET value. It represents the local mean
of the stopping power S and may simply be referred to the generic term of LET.

Therefore, the defined LET is obtained by averaging, at a given depth z, the particles’
stopping powers S(E) where E is the particle energy spectra at z. There are two common
definitions of the mean LET: the track averaged LET (Lt) or simply LET-track and the dose
averaged LET (Ld) or LET-dose (ICRU 1970, Berger 1993). The first one is the value S(E)
weighted by the particle fluence, while the second one is weighted by the local dose. If we
now consider the specific particle j, the LET-track can be defined, at the depth z, using the
integral notation reported in ICRU16. By slightly modifying its formalism we obtain:

L j
t (z) =

∫ ∞
0 S j

el(E )ϕ
j
E (z) dE

∫ ∞
0 ϕ

j
E (z) dE

(3)

where ϕ
j
E (z) is the local particle spectrum of the particle j at the depth z and S j

el(E) represents
the electronic stopping power of the same particle at the energy E.

Similarly, for the LET-dose we have:

L j
d (z) =

∫ ∞
0 S j2

el (E )ϕ
j
E (z) dE

∫ ∞
0 ϕ

j
E (z) dE

. (4)

The two kinds of averaged LET calculation can be done for primary particles as well as
for each type of secondary particle that is eventually generated in the nuclear interactions of
primary particles with the nuclei of the traversed medium. In such a way LET-dose and track
for each specific isotope j can be calculated.

On the other hand, it could be of interest to derive a unique value of both LET-track
and LET-dose, which takes into account all the different LET contributions (L j

t (z), L j
d(z)) due

to the produced isotopes. This leads to the total LET that can be obtained by averaging the
contributions of LET coming from the primary beam as well as from different secondary
isotopes calculated with equations (3) and (4) (Wilkens and Oelfke 2002, Kempe et al 2007,
Seltzer 1993).

This total LET can also be expressed as the total LET-track and the total LET-dose with
two analytical expressions similar to equations (3) and (4):

L̄t (z) = �n
j=1

∫ ∞
0 S j

el(E )ϕ
j
E (z) dE

�n
j=1

∫ ∞
0 ϕ

j
E (z) dE

(5)

L̄d (z) = �n
j=1

∫ ∞
0 S j2

el (E )ϕ
j
E (z) dE

�n
j=1

∫ ∞
0 ϕ

j
E (z) dE

. (6)

Here the sum of the j index expresses that the calculation is extended to each kind of j
particle that is produced ( j = 1, . . . , n).

2.2. The Geant4 hadrontherapy application

Hadrontherapy is a free and open source application developed, regularly maintained and
released inside the official GEANT4 (GEometry ANd Tracking) distribution among the
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advanced examples. GEANT4 is a code developed in C++ with object-oriented techniques,
devoted to the transport of particles in matter (Agostinelli et al 2003). It is not a stand-alone
MC executable, but a toolkit organized into categories of classes. Initially developed for high
energy physics experiments, it is intensively used for medical applications for several years,
allowing the tracking of any charged and uncharged particle relevant for radiation therapy.
The GEANT4 toolkit is capable of simulating a comprehensive range of physical processes,
including electromagnetic, hadronic and optical processes. It includes methods that provide
basic functions for simulations, handling set-up geometry, tracking primary and secondary
particles and calculating their energy deposition in matter (Allison et al 2006). During last
years a big effort has been made in order to validate the physics models in the energy range
of interest for medical physics, particularly for proton therapy (Jiang and Paganetti 2004) and
for therapy with electrons and photons (Carrier et al 2004, Larsson et al 2005).

The hadrontherapy example has the aim to study issues related to hadrontherapy with
protons and light ion beams as well as to provide users with the tool for general-purpose
investigations in this field. It was initially developed for the simulation of the CATANA
(Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) beam line of the LNS—INFN in
Catania, where ocular tumours are treated using the 62 MeV proton beams accelerated by the
superconducting cyclotron (Cirrone et al 2004, Cuttone et al 2011). Hadrontherapy permits
the simulation, via simple macro commands, of a beam line for proton/ion therapy including
all the necessary transport elements: diffusion and modulation systems for spatial and energy
distribution of particles, collimators, transmission detectors, as well as detectors for dose
distribution measurements (Cirrone et al 2005). In the last version, hadrontherapy provides
improved capabilities in the definition of the geometrical setup and physics models (Cirrone
et al 2011). Specific tools were added to permit simple switch between different geometrical
setups (while leaving unchanged the detection system) and to allow clear and error-free
activation of the available physics models (Romano et al 2011). Exploiting the power of these
new features, both the proton and carbon experimental beam lines of LNS–INFN, commonly
used for radiobiological experiments, were simulated using the same simulation environment.
This procedure guarantees the best quality of the obtained final results: the use of the same
application in the two cases permits minimization of the code-related errors and high level of
homogeneity and consistency of the attained results.

State-of-the-art of the physics models available inside the GEANT4 framework were used
to produce all the presented results. The QGSP BIC EMY Reference Physics List was used.
It was specifically created to address simulation problems for which high level of accuracy is
required, as it is the case in medical applications. When this Reference Physics List is activated,
the G4EmStandardPhysics option3 is employed to manage the electromagnetic processes.
The Binary Cascade model is adopted for the nucleus–nucleus inelastic interactions. The
QGSP BIC EMY also activates models for the decay physics and for the hadronic elastic
processes.

The average LET distributions presented in this work have been achieved using the
Geant4.9.6.p02 version of the toolkit and the models of the proton and carbon experimental
beam lines of INFN–LNS. They are now included in the last release of the hadrontherapy
example (Cirrone et al 2011, Romano et al 2011). Protons and carbon ions that are accelerated
by the superconducting cyclotron up to 62 MeV/n, travel in vacuum along the appropriate
pipelines and reach after about 80 m the CATANA room or the 0◦ room, respectively. The
first one is used for proton therapy of eye melanoma and for experiments with proton beams,
while the second one is used for ion beam measurements and for radiobiological experiments
with carbon ions. In both cases the beam exits in air through the 50 μm kapton window. Just
before the exit window in vacuum, the first scattering foil made of 15 μm tantalum is placed,
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with the tasks of spreading the beam and on-line monitoring the beam current. Proton and
carbon ion transport beam lines are identical except for the length in-air (1.8 m for the carbon
ion beam line and 2.8 m for the proton one). Also the box hosting energy range shifters and
energy modulators is present only in the CATANA beam line. Range shifters and modulators
are plastic passive elements adopted in the proton clinical practice to adjust the maximum
proton energy and/or its distribution, according to the patient specific tumour location and
thickness (Cirrone et al 2004). Along the transport in air particles pass through two steel and
two plastic collimators and the 50 cm long brass tube ending with the aperture of 25 mm in
diameter. They are kept fixed during the whole measurement campaign. The plastic collimators
eliminate the particles with large scattering angle and provide the shield from the produced
secondary neutrons. The brass tube enables the final beam collimation and creates beams with
negligible divergence at the irradiation point. There the beams have circular spot size and flat
fluence distribution. A set of two transmission free-air ionization chambers positioned along
the transport beam lines, upstream the final brass collimator, provide full control of proton
and carbon beam doses during irradiations. The two chambers are independently calibrated
with respect to the absolute Markus type ionization chamber, following the recommended
procedures of the International Atomic Energy Agency (IAEA) TRS-398 (IAEA 2000). A
detailed description of the dosimetric procedures adopted at the LNS irradiation beam lines,
can be found elsewhere (Cuttone et al 2011).

In this work, the two mentioned beam lines have been simulated inside hadrontherapy and
each element has been realistically represented. In order to closely reproduce the experimental
depth dose distributions, a PMMA (PolyMethylMethAchrilate) phantom, corresponding to
the so-called sensitive detector, was simulated. It was divided into slabs, orthogonal to the
beam axis. The slabs were of 100 μm and 10 μm in thickness for the proton and carbon ion
cases, respectively. The dose deposited by both primary and secondary particles was collected
at the end of the simulation in each slab. Fluence, kinetic energy spectra and average LET
distributions were retrieved at the same depths, as described in the following section. A similar
approach can be used considering voxels division instead of slabs. As regards the primary beam
characteristics, the Gaussian energy distribution was used, centred at the nominal energy of
62 MeV/n and with an energy spread of 0.1%. The Gaussian spatial distribution with a FWHM
(full width at half maximum) of 6 mm has been considered and the beam initial momentum
was set parallel to the beam line direction.

2.3. LET implementation within the hadrontherapy application

The class for LET calculations has been implemented inside the hadrontherapy application.
As described in section 2.2., both electromagnetic and nuclear processes were implemented in
the simulation. Therefore secondary particles produced in nuclear interactions were also taken
into account. The contribution of secondary charged particles to the mean LET has distinct
influences for protons and carbon ion beams, depending also on the specific depth regions.
In both cases a mixed radiation field is created and different secondary contributions to the
averaged LET distributions have to be combined together.

In section 2.1. two different mean LET definitions were treated: the track averaged LET
(LET-track) and the dose averaged LET (LET-dose). A reasonable choice has to be done
when such kind of computations have to be linked to radiobiological studies and when cross-
comparisons must be carried out for different incident beam configurations. In this work,
where the protons and carbon ions incident beams are considered, the LET-dose was used.
Even though LET-track may be more meaningful when dealing with high-LET ions, due to
the small number of tracks for sub-cellular targets, LET-dose could be more directly related
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to the expected biological response. Indeed, when RBE distributions have to be provided
by clinical MC calculations, dose averaged parameters are usually evaluated to provide cell
survival fraction after irradiations with mixed fields of different LET (Mairani et al 2010).
In particular α and β parameters of the linear quadratic model are weighted by dose in the
step-by-step MC procedure and calculated in the specific point including the contributions of
secondary particles.

The initial approach that was adopted for the LET-dose computation made use of the
information retrieved step-by-step by the simulation and stored at the end of run for each
specific isotope. The used stopping power values were published in tables (ICRU 1993).
Wilkens et al employed a similar approach, but they only included primary and secondary
protons (Wilkens and Oelfke 2002). When considering the specific isotope j, the procedure
that was implemented consists of registering and scoring the kinetic energies of the particles j
when they traverse the specific slab located at the depth position z inside the PMMA phantom.
Due to interactions suffered along the path, the beam traversing medium is not mono-energetic.
Therefore, a local spectrum is present for each depth z, characterized by an energy spread,
which increases with the depth z. In the Geant4 hadrontherapy application we simulated
this complex configuration and calculated the LET-dose following the definitions given in the
equations (5) and (6). For each particle j an accurate estimation of the local spectrum of kinetic
energy is needed, which is stored in histograms. An energy bin of 250 KeV was chosen for the
energy spectra, together with the energy threshold of 250 KeV. Once the local energy spectra
are collected for each particle and depth, they have to be coupled with the corresponding
stopping power values in order to obtain the average LET. If φi, j(z) indicates the number of j
particles in the energy bin i (i = 1, . . ., N) and Si, j indicates the stopping power corresponding
to the same energy bin for the specific j isotope, thus the LET-dose was computed as follows:

L̄MC
d (z) = �K

j=1�
N
i=1ϕi, j(z)S2

i, j

�K
j=1�

N
i=1ϕi, j(z)Si, j

(7)

where the index j = 1,. . ., K indicates the specific charged isotope created at the end of
the simulation. The stopping power values Si, j, used in equation (7), were retrieved in tables
(ICRU 1993), using ad hoc methods that allow point interpolations when the required value
is not available. Equation (7) represents the discrete version of equation (6), and it has been
directly implemented inside the hadrontherapy application. Thus, at the end of the simulation
run, the depth distribution of the LET-dose is obtained for each single isotope j as well as for
the total contribution due to all the isotopes present in the mixed radiation field.

A different approach was implemented in the final version of the MC application and
it was compared with the previous one. In this second approach the final average LET is
computed in an easier and more realistic way. Indeed, at a specific depth z, LET is averaged
step-by-step without explicitly separating the contributions due to different isotopes: their
contributions are directly included as well as those of the primary particle, because stopping
power is calculated on flight for each step done by the specific particle. Fixing the specific
depth z, energy deposited along the step dE is divided by the particle step length ds and the
stopping power calculated for the specific step is weighted by the released energy in the step:

L̄MC
d (z) = �M

k=1dEk(dEk/dxk)

�M
k=1dEk

(8)

where k = 1, . . ., M represents the steps done by both primary and secondary particles in the
fixed slab z. This method has been finally used for the simulations, because it calculates the
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Figure 1. Total and primary LET-dose distributions for the proton beam of 62 MeV in
PMMA, obtained with the Geant4 simulations. Relative dose distributions and primary
protons fluence are given in arbitrary units. Dose is compared with experimental data,
normalized at the entrance.

local stopping power without using pre-defined tables and avoids the approximation of binning
storage. Moreover, lower memory usage characterizes this approach, since no energy spectrum
per isotope is computed and stored but just the energy deposited per step is registered. Each
produced particle was tracked down to zero kinetic energy. Only the production cut off for
secondary electrons, positrons and gammas were implemented and they were set to 0.01 mm.
A total of 107 primary events were simulated.

3. Results

The LET-dose was calculated for two different experimental transport beam lines: on for the
62 MeV protons and 62 MeV/n carbon ion beams, available at INFN–LNS in Catania and
described in section 2.2. For both protons and carbon ions, two different beam configurations
were considered: the mono-energetic and the spread-out. For each specific configuration dose,
fluence, primary and total LET-dose were computed. In the same plots, the comparison with
the experimental depth dose distributions are also shown. These data were acquired by the
air ionization Markus chamber with the spatial distribution ranging between 10 and 100 μm.
The impact of the secondary particles on the total average LET-dose was investigated for each
specific configuration and its influence on the final results was shown comparing the total and
primary LET-dose. The depth dependence of LET was computed in PMMA, as this material
is mainly used in radiobiological experiments during cell irradiations. Flasks containing cell
samples and slabs that are inserted in front of them in order to simulate the desired depth
in tissue (position along the Bragg curve) are usually made of this material. All the results
that are presented in this work were also obtained in water as reference with other published
results.
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Figure 2. Contributions of the secondary particles in terms of dose (top) and fluence
(bottom) for pristine proton beam of 62 MeV in PMMA, obtained with Geant4. Depth
dose distributions for the total and proton dose/fluence are scaled by the factor 10.

3.1. LET for the 62 MeV proton beams

Proton beams with the initial energy of 62 MeV, that is usually applied for the eye melanoma
therapy, were analysed. Even though mono-energetic beams are not clinically used, we firstly
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Figure 3. Total and primary LET-dose distributions for the spread-out Bragg peak in
PMMA, obtained with the Geant4 simulation. Relative dose distributions and primary
protons fluence are given in arbitrary units. Dose is compared with experimental data,
normalized at the centre of the modulated region.

investigated this configuration in order to focalize on a more simple configuration and to study
the LET dependence for the fixed energy. In the following section the SOBP, used for clinical
ocular treatment, will be analysed. Figure 1 shows the depth dependence in PMMA of primary
and total LET-dose for the 62 MeV pristine proton beams. A range in PMMA of 25.5 mm was
found with a peak–plateau ratio of 5. In the same plot, the primary proton fluence and total
released dose are also given. The depth dose is compared with experimental data acquired
at LNS.

A good agreement between the experimental dose distribution and results obtained with
the Geant4 simulations was found. Due to nuclear interactions of protons with target nuclei,
the primary fluence reduces to 85% in proximity of the Bragg peak and then steeply falls
down in 0.15 mm, where the highest LET values are achieved. In the entrance region of
the beam LET slowly increases and rapidly grows up towards the protons range. LET-dose
values, considering only primary protons (primary LET-dose) or the total contribution of
both primary and secondary particles (total LET-dose) have a common trend in proximity of
the range, where they both reach a maximum value of 37 KeV μm−1. Different values for
primary and total LET-dose were found in the entrance channel. In the first 20 mm of depth,
the primary mean LET ranges between 1.5 and 2.5 KeV μm−1, whereas the total mean LET
ranges between 6 and 7 KeV μm−1. This difference is due to high-LET contributions coming
from the secondary ions produced in non-elastic nuclear interactions. Switching off the nuclear
processes in the MC simulation, no difference is found between the two distributions. A large
variety of isotopes are produced because of elastic and non-elastic nuclear interactions of the
primary protons with the target nuclei. In figure 2 the contribution of the secondary particles in
terms of dose and fluence is shown. There is a major contribution of the secondary protons and
a non-negligible contribution from alpha particles. However, the secondary dose and fluence
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Figure 4. Contributions of the secondary particles in terms of dose (top) and fluence
(bottom) for SOBP proton beam of 62 MeV in PMMA, obtained with Geant4. Depth
dose distributions for the total and proton dose/fluence are scaled by the factor 10.

alone cannot explain the difference in primary and total LET-dose, because the local energy
spectra have the main role in such computation. How to assess this contribution is discussed
in section 4.
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Figure 5. Total and primary LET-dose distributions for the carbon ion beam of 62 MeV/n
in PMMA, obtained with the Geant4 simulations. Relative dose distributions and primary
carbon fluence are given in arbitrary units. Dose is compared with experimental data,
normalized at the entrance.

3.2. LET for the spread-out proton Bragg peak (SOBP)

A more realistic configuration has been also considered by incorporating in the MC simulation
one of the modulation wheels that is frequently used in the ocular proton treatments of the
CATANA facility (Cirrone et al 2004, Cuttone et al 2011). The combination of the wheel and
range-shifter chosen for this work is able to passively shape the beam within the modulation
region of 18 mm in PMMA (95% proximal to 95% distal dose), which is one of the most
common in the clinical practice. The comparison between the simulated and experimental
depth dose distributions is shown in figure 3, together with the LET calculations. Some
discrepancies are found in this case in the dose comparison: they may reach 5% in the final
part of the peak. This can be due to small defects in the wheel construction, which were not
reproduced in the MC simulation. In fact, minor differences in the thickness of the last (and
thinnest) wheel steps, may produce a slightly negative influence in particular at the end of the
peak where LET increases.

Primary fluence gradually decreases, due to the ranges that correspond to each specific
single peak, varying from 96% to 16% along the modulation region. As in the previous case
of the mono-energetic beam, the primary and total LET-dose show a common trend in the
distal part of the peak where the same maximum value of the pristine peak configuration is
reached. The discrepancy that is obtained in the entrance channel is again due to the effects
of secondary heavy ions, as already discussed in the previous section. In addition fluctuations
are more evident due to the proton scattering in the range-shifter and modulator wheel, which
considerably reduces the total primary fluence. At the beginning of the modulation region,
there is an increase of the mean LET and it corresponds to the beginning of the SOBP.
Along the modulation region the primary LET gradually grows up ranging between 3 and
18 KeV μm−1. The LET increase is less pronounced for the total LET, where the secondary ion
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Figure 6. Contributions of the secondary particles in terms of dose (top) and fluence
(bottom) for the pristine carbon beam of 62 MeV/n in PMMA, obtained with Geant4.
Depth dose distributions for the total and carbon dose are scaled by the factor 100, for
total and carbon fluence by the factor 10.

contributions somewhat cover the rise of the primary stopping power. Similar results as in the
case of the pristine peak were found for the secondary particle dose and fluence and are shown
in figure 4.
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Figure 7. Total and primary LET-dose distributions for the spread-out carbon Bragg
peak in PMMA, obtained with the Geant4 simulations. Relative dose distributions
and primary carbon ions fluence are given in arbitrary units. Dose is compared with
experimental data, normalized at the entrance.

3.3. LET for the 62 MeV/n carbon ion beams

The results obtained with the carbon ion incident beams are shown in the present and in
the following section. These beams are of great interest because of their higher biological
efficiency. Various radiobiological experiments are performed world wide with such a kind of
beams. At LNS a large number of cell irradiations measurements were carried out with the
62 MeV/n carbon ions. This is the reason why this energy was chosen as the reference energy
for the LET depth dependence analysis (Belli et al 2008, Ristic Fira et al 2011, Petrovic et al
2012, Koricanac et al 2013).

Again the pristine Bragg peak configuration, characterized by the mono-energetic carbon
beam, was the first to be considered. Subsequently a more realistic case in which a passive
element is used for spreading the peak will be considered. As mentioned in section 2.2, the
experimental transport beam line was fully simulated, in order to accurately take into account
the energy loss in air and along the traversed passive elements. To compare Geant4 results
with the acquired data the experimental depth dose distributions were obtained with the same
experimental procedure that was mentioned before. According to figure 5, there is a good
agreement between the two distributions, characterized by the peak–plateau ratio that is about
two times higher respect to the proton case. The primary and total mean LET values reach
much higher levels with respect to protons. They also show a completely different relative
trend regarding protons. Figure 5 shows that the primary and total LET-dose have the same
values both in the entrance channel and in the proximal part of the peak. Only in the distal
part of the peak and in the tail they show a different trend. In the entrance channel they are
characterized by the common LET value of 48 KeV μm−1, while in the last part of the peak
primary LET-dose reaches the maximum value of 750 KeV μm−1 and the total LET-dose the
maximum value of 870 KeV μm−1. In the tail beyond the peak the primary LET-dose steeply
drops and the total LET-dose has the initial value of about 55 KeV μm−1.
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Figure 8. Contributions of the secondary particles in terms of dose (top) and fluence
(bottom) for the spread-out carbon beam of 62 MeV/n in PMMA, obtained with Geant4.
Depth dose distributions for the total and carbon dose are scaled by the factor 100, for
total and carbon fluence by the factor 10.

These results can be explained considering again the influence of non-elastic nuclear
interactions of the primary particles with the target nuclei. In the case of the carbon ion
incident beams, the contribution of the secondary particles to the total LET-dose is mainly due
to projectile fragments, which are characterized by larger range. This is obvious in figure 6,
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where in particular the secondary protons and alphas, created along the primary carbon path,
deliver their dose far beyond the Bragg peak position. Therefore, as discussed more in detail
in section 4, their contribution, although relatively small, mainly influences the tail after the
peak.

3.4. LET for the carbon ion spread-out Bragg peak

Similar results have been obtained for the carbon ion spread-out peak. In this case, the ripple-
filter passive element was used for degrading the beam and obtaining a slightly larger Bragg
peak. It is a PMMA device with a segmented central area that is traversed by the beam
(Bourhaleb et al 2008). Two ripple-filters specifically designed for the 62 MeV/n carbon ion
beams were incorporated in the MC computation. They are widely used at INFN–LNS for
radiobiological experiments with the carbon ions. The configuration including two ripple-
filters at the relative distance of 10 cm was adopted in order to achieve further enlargement
of the peak. This is the reference configuration that is used in the mentioned cell samples
irradiations.

Experimental data, shown in figure 7, were acquired with the already described procedures
and compared with Geant4 results. The fluence and primary/total average LET are also shown
in the same figure. Considering the wider peak, a more gradual fluence decreasing is found.
For the primary and total LET-dose, the same considerations as before are valid also in this
case. The only difference can be found in the trend of LET depth distribution. This is due to
the presence of the two ripple-filters that degrade and enlarge the beam. Again, as shown in
figure 8, the contribution of the secondary particles mainly influences the distal part.

4. Discussion and conclusions

The presented Geant4-based tool is able to calculate the primary and total LET-dose for all
kinds of geometrical configurations and incident beams. For the incident beams considered in
this work, the increase of LET towards the end of range is more pronounced for the pristine
Bragg peaks than for the SOBP. Such behaviour was also pointed out by other authors (Wilkens
and Oelfke 2002, Kempe et al 2007).

It is clear from the present study that the contribution of the secondary particles due to
non-elastic nuclear interactions influences the distribution of the total LET-dose. For the
incident proton beams, some investigations have been done in order to understand how
to take into account these contributions for biological assessments. So far it is not clear
how to include in particular the contribution from heavy secondary particles (Grassberger
et al 2011, Berger 1993). In these studies, both analytical and MC approach were used to
take into account the secondary contributions for the average LET computations. The dose
averaged LET distributions for the pristine Bragg peak and SOBP have been computed by
Wilkens and Oelfke, who also developed a fast analytical model for the prediction of LET
distributions in water phantoms (Wilkens and Oelfke 2002). In their work, the secondary
particles due to non-elastic nuclear interactions are not fully taken into account. They only
consider the contribution of the secondary protons neglecting the production of light and
heavy ions. In order to crosscheck the Geant4 LET-dose computations, we compared our
results with those obtained by Wilkens and Oelfke for the pristine proton peaks at 70 and
150 MeV. The same configuration was simulated, including the same parameters for the
initial energy spread. It was considered that only the secondary protons contribute to the
total LET-dose. Our data agree well with their results with the maximum discrepancy of 0.5
KeV μm−1 for the LET-dose in the entrance region (about 0.5 KeV μm−1 at 160 MeV and
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1 KeV μm−1 at 70 MeV). If we include the secondary particle contributions large deviations
are found for the total LET-dose, which is due to the presence of the secondary particles.
Initial investigations with this aim were done in the way that the LET-dose distributions were
calculated using the MC approach (Berger 1993, Seltzer 1993). In these works separate curves
for the primary protons only and for the primary and secondary particles were acquired,
obtaining large differences in the LET-dose distributions, especially in the entrance channel.
Grassberger et al have used a similar approach, but they only considered the contribution of the
primary and secondary protons, electrons and photons, neglecting light ions (Grassberger et al
2011).

In the present study similar results to those of Seltzer were obtained for proton beams and
are shown in sections 3.1 and 3.2. For the pristine proton Bragg peak in the entrance channel the
total LET-dose is roughly a factor of 4 higher than the primary one (figure 1). We specifically
investigated the source of the high-LET contribution by including separately in the total LET
computation the weights due to the specific ions. The largest contribution was estimated to be
due to carbon and oxygen ions produced by non-elastic nuclear interactions of protons with
the target. Following the nuclear de-excitation, the low energy residual nuclei are produced.
They are characterized by a very high LET, with respect to the stopping power of protons at
the same specific depth. Even though the production cross sections of the mentioned ions are
very low, their contribution in the total LET-dose is quite large. This is caused by the high
amount of their local energy deposition in a very short range. For track average LET, where
computation is weighted by fluence instead of dose, we found a factor of 2 lower values in the
same regions. The contribution of these secondary ions is more pronounced in the entrance
region, where the energy is high enough to produce a significant number of non-elastic nuclear
interactions. As shown in figure 1, at or behind the Bragg peak, the secondary particles can be
neglected. Larger fluctuations are observed in the case of the total LET-dose with respect to
the primary one. This is because of low statistics characterizing these low-probability events
related to the nuclear interactions.

The high-LET components for the clinical proton beams were recently analysed,
considering also contributions from the secondary charged particles (Grassberger and Paganetti
2011). The influence of the secondary particles on the LET-dose distribution was separately
studied. It was shown that the secondary protons have a significant impact, leading to an
increase in LET-dose up to the factor of 10 for the same depth. Also, the contributions from
alpha particles and heavier ions was analysed, concluding that even though alpha particles
surely inflict biological damage, the situation is less clear for the heavier ions. For instance, in
the case of the secondary carbon ions, a negligible percentage of their deposited dose is due
to those with the energy able to traverse 10 μm (assuming this as a reasonable cell diameter).
The authors also claim that it is not possible to exclude that the low energy carbon ions may
be created within the cell nucleus; therefore, their contribution cannot be neglected a priori in
the computation. In the present study we demonstrated that the contribution of the secondary
particles, including heavier ones, slightly increases the average LET-dose distributions in the
entrance channel for both the pristine and SOBP proton beams. For the clinical cases, where
SOBP are used to treat the target, our results show that it might not be possible to completely
neglect the contribution of light and heavy ions in the target area, otherwise an underestimation
of the LET-dose might be done. In order to better understand the presented results, cell sample
irradiations performed in the same conditions were planned.

A rather different situation with respect to protons occurs in the case of the carbon
ion incident beams. A few studies were done for the incident ion beams, where the LET
distributions for specific ions of interest in hadrontherapy were analysed, trying to separate
the low LET and high-LET regions (Kempe et al 2007). However, they did not include the
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contribution of the secondary ions produced in nuclear interactions. In the presented work, we
compared the primary LET-dose with the total one for the carbon ion incident beams, using the
same tools as for protons. We analysed the secondary contributions in order to understand how
they may influence the average LET distributions and to point out the difference with respect to
the proton case. Because of non-elastic nuclear interactions, several lighter ions are produced,
most of them coming from the projectile fragmentation. They are produced at roughly the
same velocity of the projectile. Together with the primary beam, they traverse the considered
thickness. By passing the primary range they create the tail of extra dose after the Bragg peak.
Considering their lower atomic number regarding the primary carbon ions, they give the low
LET contribution to the total LET-dose. Moreover, their weight is lower with respect to the
primary carbon one because lighter ions release lower amount of dose per slab as compared to
carbon ions. For this reason in the proximal part the primary carbon LET has the main weight
and is practically equivalent to the total LET-dose. On the opposite, beyond the peak the only
contribution to the total average is given by the projectile particles, whose energies imply
very large ranges. Even though a relatively low dose characterizes the tail at this energy, it is
well known that for higher energies used in the carbon clinical treatments (up to 400 MeV/n),
the tail dose may reach not so negligible values. Indeed, as shown in several experimental
studies, up to 30% of primary carbon ions at 200 MeV/n and up to 70% at 400 MeV/n undergo
fragmentation before they stop in the tissues (Haettner et al 2013). The relatively high LET
found in this region, due to the contribution of all the secondary particles, can enhance the
predicted biological effect, therefore representing a challenge for the healthy tissues just after
the peak. A precise tool for the total LET-dose computation would be particularly useful for the
investigations of the biological events arising in the healthy tissue, thus exploring the possible
secondary tumour induction and reducing the related risks. Phenomenological models for the
RBE are developed starting from the LET-dose computations that have to be as more realistic
as possible (Wilkens and Oelfke 2004).

The results that were presented and analysed in this study considerably improved
understanding and helped in the interpretation of biological effects produced on cells by
protons along the clinical SOBP. The opposite behaviour of the fluence and LET-dose along
the path of protons and particularly close to the end of range, where the distal fall-off part
of the SOBP is located, was fully investigated in view of the biological processes that were
produced (Petrovic et al 2010). In the case of carbon ions, the physics as well as the biological
properties of the events at this specific part of the SOBP and even more at the fragmentation tail
have not yet been extensively studied. The result of these studies ought to be directly included
in the treatment planning system in order to avoid unexpected hot spots in neighboring vital
normal tissues.

The tool for the LET computation has been recently included in the last public version of
the hadrontherapy advanced example of the current Geant4 release (version 10.0, December
2013). This tool will be also integrated with a module dedicated to RBE computations: an
interface to the most common track structure codes will be developed in order to provide
biological dose depth curves for different cell lines.
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