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Introduction

Adaptation of an organism to changes in external and
internal environments is regulated by the autonomic nervous
system (ANS) 1–4. The ANS is structurally and functionally
positioned to interface between the internal and external mi-
lieu, coordinating bodily functions to ensure normal homeo-
stasis and adaptive responses to environmental changes 4.
The neural control of cardiovascular (CV) system plays a
major role in such adaptations, even if different humoral
mechanisms also participate in this control. In fact, dynamic
environmental changes contrasting basic functional needs of
the organism dramatically challenge the CV adaptive
mechanisms. The fact that “cardiovascular diseases are the
leading cause of death in the world today and will remain so
by the year 2020” (The WHO MONICA Project 5) strongly
supports the need for new insights into CV regulatory
mechanisms. This review considers recent studies which fo-
cus on the understanding of CV regulation and the method-
ology for monitoring CV regulation.

Cardiovascular regulation

CV neural regulation occurs through both sympathetic
and parasympathetic (vagal) outflow to the heart and vessels.
Central autonomic drives act directly from the central nerv-
ous system (CNS) on the heart and vessels, while peripheral
drives are relayed to the heart and vessels through, among
others, the baroreflex function. These drives are relayed to

the heart through sympathetic and parasympathetic outflows
and to blood vessels through sympathetic outflow only (Fig-
ure 1). Classically, central integration modifies the perform-
ance of individual reflexes according to the prevailing be-
havioural needs (ie exercise) 6. Thus, heart period (HP) is
modified together with other controlled hemodynamic vari-
ables, such as vascular resistance and, consequently, arterial
blood pressure (BP) 7. Numerous techniques for studying
autonomic control of CV system are based on HP and arterial
BP analysis (Figure 2). These techniques can be divided in
two groups: techniques based on induced fluctuations of arte-
rial BP and techniques based on analysis of spontaneous
fluctuations of BP (Figure 2). Here we put emphasis on the
techniques of HP and BP spontaneous fluctuations due to
their numerous advantages with respect to the techniques
based on induced fluctuations of arterial BP. The resulting
HP and arterial BP values obtained by this technique reflect
the overall interaction between central and peripheral
mechanisms of CV regulation, without providing straight-
forward information on separate central and peripheral con-
tributions being the result of rather complex interplay 8. As a
result of the activity of different mechanisms involved, HP
and arterial BP fluctuations are commonly observed in
physiological conditions. These fluctuations are present even
in the absence of motor behaviour, like in paralysed ani-
mals 9. Such fluctuations in hemodynamic parameters reflect
both the presence of a variety of naturally occurring physio-
logical perturbations to CV homeostasis (i.e. respiration,
postural shifts, thermoregulation) and the dynamic response
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of the CV control systems to these perturbations 10. Increase
of arterial BP and HP variability after sinoaortic baroreceptor
deafferentation and their decrease after following pharma-
cological sympathetic and parasympathetic ganglionic
block 9, 11 suggest that a significant part of spontaneous,
steady-state arterial BP and HP variability is due to the inter-
action in central and peripheral mechanisms of CV control.

Central control

There is a lack of data on the central pathways sub-
serving “central command” responses (Figure 1). The idea of
a “central command” signal originated from the observations
that heart rate, ventilation and BP increase almost immedi-
ately at the onset of voluntary exercise 6. “Central com-
mand”, in the case of BP and heart rate increase at the begin-
ning of the exercise has a clear functional implication in
matching blood flow to increased metabolic rate of an or-
ganism 12.

A dramatic demonstration of “central command” as a
feed-forward regulation in the absence of muscle activity is
shown in the study of Gandevia et al. 13, in which a para-
lysed, artificially ventilated human subject attempted to per-
form isometric contractions. It resulted in marked concomi-
tant increases in arterial BP and heart rate, which were

graded according to the degree of the attempted force. Con-
comitant hypotensive and bradycardic changes central by
origin are found in sleep 14 and opioid anesthesia 15. Ac-
cording to our findings central command has different impact
on the organism with respect to the age 16.

A number of cerebral areas appear to be involved in
central control of CV function. These areas are mostly lo-
cated in the frontal cortex and include parts of the cingulate
and insular cortex 17, orbitofrontal cortex 18, amygdala 19,
dorsomedial hypothalamic nucleus 20 and midbrain 21, 22.

Baroreflex control

Baroreflexes represent classic negative feed-back
mechanisms (Figure 1). Changes in baroreceptor input to the
brain provoke changes in neural output in two branches of
the ANS – sympathetic and parasympathetic branches. The
parasympathetic (vagal) system controls about 75% of the
fastest baroreflex effector loop – heart rate, up to 100
beats/min. The sympathetic system controls the remaining
25% of this effector, and further controls conductance and
contractility of the heart, and total peripheral resistance 1.

The parasympathetic system acts fast and powerfully,
and can change heart rate within one beat 1. Due to the dif-
ferent dynamics of neurotransmitter release, different intra-

Fig. 1 – Mechanisms of peripheral (baroreflex) and central regulation of cardiovascular system
NTS – nucleus tractus solitarii; RVLM – rostral ventrolateral medulla; IML – intermediolateral column; NA – nucleus ambiguus.

Long dash spotted line-parasympathetic nervous system drive, dashed line-sympathetic nervous system drive

Fig. 2 – Scheme of techniques for studying the autonomic regulation
of cardiovascular system
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cellular effector molecular mechanisms and different mecha-
nisms of neurotransmitter removal from neuromuscular syn-
aptic cleft, sympathetic nervous system act slower with re-
spect to parasympathetic system 23.

Blood pressure set point

Baroreceptor reflex performance is modified by various
mechanisms of the CNS. Though criticised for erroneous as-
sociations it might provoke between biological systems and
the servo control system, the term “set point” is in use for
description of the “desired level” of BP and baroreflex
mechanism 24.

The set point (level around which arterial pressure is
regulated) varies under different physiological (ie exercise) 6

and pathophysiological (ie hypertension) 25 conditions. A
natural selection appears to favour a control system that
regulates arterial pressure around a set point that varies ac-
cording to an animal’s behaviour 24.

Baroreflex sensitivity

Baroreflex sensitivity (BRS), or baroreflex gain is de-
fined as a transfer function between a primary (input) change
in BP and reflex (output) compensatory change in BP or
heart rate 24. From the classical studies of baroreflex func-
tioning 26 till the recent investigations 9, 11 27–29 the open loop
baroreflex studies were done in anesthetised or pharmaco-
logically treated animals. In conscious animals and humans,
it is very difficult to perform an open-loop analysis of baro-
reflex gain.

Methods for studing mechanisms of cardiovascular
regulation-techniques

Techniques for analysis of HP and BP induced
fluctuations

These methods apply external stimulus for the evalua-
tion of baroreflex loop and perform so-called “spot” analysis
of BRS 30.

Many basic laboratory techniques are applicable to ex-
perimental evaluation of selective carotide or aortic arch
baroreceptors (intravascular occlusion of corresponding ar-
tery 31. Selective unloading of cardiopulmonary barorecep-
tors is performed by an inflating cuff placed around vena
cava inferior. All these methods are invasive, demanding an-
esthesia and applicable only to laboratory animals.

Non-selective tests of baroreceptor function stimulate
whole groups of baroreceptors, without any care for their re-
gional and functional differences.

Orthostatic tests like stand test, tilt test and lower body
negative pressure (LBNP) test are widely used for clinical
and scientific purposes of investigating CV regulation 32. The
head-up tilt test is the method used for investigation of syn-
cope, presyncope, dizziness and palpitations related to dys-
autonomia symptoms 33. Lately, the test has been criticized
due to great variation in sensitivity and specificity rates in
different studies, as well as for its limited accuracy and re-
producibility 34. In this technique baroreflex stimulus is
physiological, but the specificity is limited, due to unloading

of cardiopulmonary baroreceptors and stimulation of ves-
tibular centers 35.

LBNP induces, with the depression below iliac crest,
fluid shift (blood and interstitial fluids) towards the lower
part of the body. LBNP stimulates CV system, in a particular
a baroreflex regulation loop by unselective unload of these
receptors. The LBNP test can cause syncope and progressive
fluid shift can cause CV changes that are not stationary, not
providing this important condition for further mathematical
analysis of the signal 36.

A method for application of vasoactive substances (Ox-
ford method) was founded by Smyth et al., 37 in 1969. It is
based on intravascular injection of vasoactive substances,
like angiotensin II, phenylephrine or nitroprusside. It is used
as the gold standard method for BRS measuring. It is meth-
odologically simple, more specific, but it quantifies only ar-
terial BP-HP baroreflex loop. Vasoactive substances also act
directly on the CNS structures, cardiopulmonary receptors,
as well as on sinoatrial node 38.

Valsalva manoeuvre is based on tachicardic or bradi-
cardic response on the initial decrease or increase of arte-
rial BP appearing during constant expiratory pressure (40
mmHg) lasting for 15–20 s. It is a noninvasive, simple
method, but its disadvantages are the involvement of
chemoreceptors, cardiopulmonary baroreceptors, muscle
receptors and it also requires active collaboration of a pa-
tient 39.

Techniques for analysis of HP and BP spontaneous
fluctuations

A basic methodological advantage of these techniques
is continuous measurement of BRS and higher level of sen-
sitivity on baroreflex disfunction as compared to classical
methods 30, 40, 41.

Direct measurement of sympathetic nerve activity in
peroneal nerve or in renal nerve allows measurement of BRS
as the responsiveness of sympathetic nervous activity to the
changes of BP 42. The sympathetic bursts are synchronized
with transient reductions of BP and are silenced during in-
creased pressure 43.

Spontaneous fluctuations in HP and arterial BP have
been explored both in frequency and time domains during
the last two decades. Spontaneous sequences of HP and arte-
rial BP beat-to-beat values have been used to study different
aspects of CV regulation in physiological and pathophysi-
ological states. An important step in evaluation of CV con-
trol came from the recognition that oscillations in HP and BP
result both from the operation of feed-back regulatory
loops 41, 44 and from “central commands” 45–47. In clinical use,
there are different software packages, like Nevrokard®, com-
patible with Finapress®, Portapress®, Colin® and BIOPAC®

monitors.

Frequency domain techniques

Studies on the frequency domain 10, 40, 48, 49 have pro-
vided a novel insight into the interplay of sympathetic and
vagal CV modulations, leading to new tools for studying CV
control. The frequency components of these fluctuations can
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be assessed by spectral analysis 50 and reflect major changes
in autonomic control of heart and vessels. HP power spectra
depict the modulation of autonomic control on sinoatrial
node, not its absolute value 51. In many conditions, the
modulation amplitude is proportional to its absolute
value 48, 52. In HP power spectra, the low-frequency band
(less than 0.15 Hz in humans 50, 0.45 Hz in rats 53, 0.6 Hz in
mice 54), has been associated with the modulation of both
sympathetic and parasympathetic outflow, while the high
frequency band (greater than 0.15 Hz in humans 50, 1.04 Hz
in rats 53, 1.0 Hz in mice 54) has been associated with the
modulation of parasympathetic outflow 55. The contribution
of sympathetic and parasympathetic efferent activity to low
frequency and high frequency HP and BP power spectra, re-
spectively, has been confirmed during wakefulness 56 and
sleep 57 by experiments using selective pharmacological
blockade (propranolol, atropine).

Time domain techniques

Analysis of the continuous relationship of beat-by-beat
changes in arterial pressure and HP revealed that spontane-
ous increases or decreases in systolic arterial pressure
(“ramps”) induce directionally similar reflex changes in
HP 58. On this basis, a novel technique called “spontaneous
baroreflex analysis” was developed for dynamic studying of
the arterial baroreflex control of the sinus node 44. This
widely accepted method 45, 59–62 is based on a computer scan-
ning of BP and HP time series to identify sequences of
spontaneously occurring consecutive beats in which BP and
HP change in the same direction, (named “baroreflex se-
quences”) i.e. hypertensive/bradycardic and hypotensive /
tachycardic sequences 44.

Measuring BRS from spontaneous variations in BP and
heart rate 44 has several advantages over methods that artifi-
cially induce changes in BP. This method excludes admini-
stration of vasoactive compounds or external appliances that
could influence the baroreceptor reflex by a direct action on
receptor or effector sites 63. BRS is measured within physio-
logical BP ranges, allowing computation of the gain at BP
close to the operating set point value, with minimal non-
specific effects from other efferent nerves 40. The barore-
ceptor gain thus obtained is closest to the physiological one.
These methods do not arouse subjects or animals, thereby re-
ducing stress-induced effects. In contrast to pharmacological
or mechanical methods, they are suitable to assess BRS over
prolonged periods of time 30, 41.

Methods that evaluate BRS from spontaneous changes
in BP and HP make use of linear regression analysis of HP vs
spontaneously occurring ramps in BP 44, 58, 64, and of spectral
analysis 65 or other statistical relationships between BP and
pulse interval changes 66.

BRS calculated as a slope of HP vs BP linear regression
in spontaneously occurring pressure ramps 44 shows the best
correlation to reference pharmacological methods and gives
zero value following interruption of the baroreflex
arch 41, 44, 60.

Apart from “baroreflex sequences”, beat-to-beat analy-
sis of the continuous relationship between spontaneous fluc-

tuations in BP and HP also reveals the occurrence of se-
quences of consecutive beats in which BP and HP change in
the opposite direction (ie hypertensive/tachycardic and hy-
potensive/bradycardic sequences). These sequences have
been defined as “non-baroreflex” 44.

The physiological meaning and thus the possible role of
non-baroreflex sequences in evaluation of central command
of the CV regulation is still controversial. Oosting et al. 41,

include in BRS index calculation all BP sequences, non-
baroreflex sequences as well, regardless the direction of HP
changes with respect to pressure changes. The idea behind
this approach is that the relationship between HP and arterial
BP includes both baroreflex and random influences; if baro-
reflex – mediated effects on HP are present, they should ap-
pear as such when averaging over ramps is performed 41. In
addition, this technique included 49.8  4.1% of all the re-
corded beats in BRS index calculation. Calculation also in-
cluded a significant number of sequences that corresponded
to non-baroreflex ones.

The main limitation of this approach is that the BRS in-
dex is mainly a measure of parasympathetic reaction, being
calculated on short sequences (9.7  1.6 beats, mean  SEM)
and with a delay of HP vs arterial BP (3, 4 and 5 beats) that
is too short to take account a full sympathetic reaction to an
arterial pressure change 46. HP changes induced by vagal re-
actions would superimpose upon slow sympathetically in-
duced ones 41.

Furthermore, Legramante et al. demonstrated in anes-
thetised rabbits 62 and humans 45 that spontaneously occur-
ring non-baroreflex sequences can be considered an expres-
sion of autonomic regulatory mechanisms operating with
feed-forward features, as it is the case of “central com-
mand”. They have calculated a baroreflex gain on se-
quences where heart rate and BP changed in the same di-
rection 44, while the gain of feed-forward mechanisms was
calculated on non-baroreflex sequences. The same authors
demonstrated that both branches of the ANS take part in
feed-forward mechanisms of short-term CV neural regula-
tion 45, 62. Recent investigation on conscious freely moving
rats 47 have provided further evidence that non-baroreflex
sequences reflect mechanisms feed forward in origin. A
complete autonomic pharmacological blockade reduced the
number of non-baroreflex sequences, as did sympathetic
blockade, selective alpha-receptor blockade did not induce
changes, while beta-receptor blockade induced a significant
decrease in non-baroreflex sequences occurrence. Moreo-
ver, parasympathetic blockade induced increase in non-
baroreflex sequences. The results of Pagani et al.  48 demon-
strate that physiological role of non-baroreflex sequences is
an expression of feed-forward type of short term CV regu-
lation being in dynamic interaction with feed-back mecha-
nisms of baroreflex origin.

Still, the intrinsic limitation of this method in evaluating
feed-forward mechanisms is a small number of beats (in
animals 5% 62 and in humans 7% 45) organised in se-
quences characterised by a non-baroreflex pattern. This
finding is in contrast with the fact that feed-forward mecha-
nisms can be engaged for a prominent fraction of time 6.
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Zoccoli et al. 46 suggest that parallel analysis of both the
BRS index of Bertinieri et al. 44 and the BRS index of Oost-
ing et al. 41, and a novel index in time domain sensitive to
slow sympathetic fluctuations would overcome: the limita-
tions of the method of Oosting et al. 41 in estimating the rela-
tive contribution of feed-back control, and the limitations of
the method of Legramante et al. 47 in estimating feed-forward
control over HP and offer a more complete picture of the in-
terrelation between peripheral and central mechanisms in HP
control. The index 46 bHPMAP is calculated as an index of lin-
ear regression of arterial BP vs HP 30s sequences. It corre-
lates well with indexes of Bertinieri et al. 44 and Oosting et
al. 41 in quiet wakefulness of the conscious rats, while in ac-
tive sleep correlates significantly with the sympathovagal in-
dex. We have reported that the index bHPMAP can reflect sym-
pathetic changes in the time domain as well 46. This data
suggest that the overall picture of baroreflex-central com-
mand interaction can be achieved by comparative analysis of
more than one method for calculation of BRS and feed-
forward gain proposed in the literature.

Short-comment and conclusion

It is well-known that phasic and tonic increases in central
drive to the heart both as impaired baroreflex regulation might
increase the incidence and severity of cardiac arrhythmias 67.
An increased central drive is also present in acute stress (clas-
sic “defense” or “alerting” response 68, chronic psychological
stress 69, acute physical stress 70 as well as during arousal 71,
acoustic stimulation 72). In all circumstances, the central drive
and impaired baroreflex both were positively correlated to the
incidence of cardiac arrhythmia in susceptible subjects. On the
basis of these results, the techniques of CV monitoring keep an
important place in studying pathophysiological mechanisms of
arrhythmogenesis.
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