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Fanconi anemia is rare inherited disease characterized by wide spectrum of congenital 

anomalies, progressive pancytopenia, and predisposition to hematological malignancies 

and solid tumors. Molecular genetic analysis of mutations in FANC genes is of a great 

importance for diagnosis confirmation, prenatal and carrier testing, as well as for 

prediction of chemotherapy outcome and disease complications. In this study we 

performed screening of frequently affected regions of FANCD2 gene for sequence 

variants in six unrelated FA-D2 patients in Serbia. This is the first molecular analysis of 

FANCD2 gene in Serbian FA-D2 patients. A total of 10 sequence variants were detected, 

one in homozygous, and nine in heterozygous state. Two variants were found within 

exons, and eight within introns, in deep intronic regions. In-silico analysis showed that 

among all detected variants one exon variant and three intron variants might have impact 

on splicing mechanism. Heterozygous variants found in intron 3, c.206-246delG; exon 26, 

c.2396 C>A and intron 28, c.2715+573 C>T were not previously reported. In-silico 

analysis revealed that among them, two (intron 3, c.206-246 delG and exon 26, c.2396 

C>A) could be novel disease-causing mutations. Many variants were found in more than 

one patient, including those unreported, indicating their possible ethnic association. Great 

number of variants in some patients suggests their non-random emergence in Fanconi 

anemia pathway.  

Keywords: deep intronic variants, Fanconi anemia, FANCD2 variants, splicing 

mechanism 
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LIST OF ABBREVIATIONS 

∆CV – Delta Consensus Value; ALL – Acute Lymphoblastic Leukemia; BLAST – Basic Local 

Alignment Search Tool; BMF – Bone Marrow Failure; BRCA – Breast Cancer Gene; dbSNP – 

Database of Single Nucleotide Polymorphisms; DEB – Diepoxybutane; FA – Fanconi Anemia; 

FANCD2 – Fanconi Anemia Complementation group D2; HGVS – Human Genome Variation 

Society; HSF – Human Splicing Finder; LRG – Locus Reference Genomic; MMC – Mitomycin C; 

NCBI – National Center for Biotechnology Information; PAA – Polyacrylamide; 

wt – Wild type 

 

INTRODUCTION 

Fanconi anemia (FA) is a rare inherited disease characterized by wide spectrum of 

congenital anomalies, progressive pancytopenia which often leads to bone marrow failure (BMF), 

and predisposition to hematological malignancies and solid tumors (SOULIER, 2011). Biallelic 

mutations in any of 19 up so far described FA genes, FANCA to FANCT (DONG et al,. 2015), 

which are a part of FA/BRCA DNA damage repair pathway lead to development of a 

corresponding complementation group (FA-A to FA-T complementation groups) of Fanconi 

anemia. In Serbia the most frequent complementation group is FA-D2 (VUJIC et al., 2014), 

whereas in the world population it accounts between 1% and 3.3% (LEVITUS et al., 2004; KALB et 

al., 2007) of all FA patients. 

The diagnostic approach for FA includes, besides physical examination, analysis of 

cellular sensitivity to DNA cross-linking agents such as diepoxybutane and mitomycin C (DEB 

and MMC) (AUERBACH, 2009) and determination of FA complementation group by 

immunoblotting (SHIMAMURA et al., 2002). Molecular analysis of germ-line mutation is of a great 

importance for diagnosis confirmation, prenatal and carrier testing, as well as for prediction of 

chemotherapy outcome (BORRIELLO et al., 2007). Additionally, even monoallelic mutations of a 

certain FA genes, such as FANCD2, are associated with the greater risk of developing 

hematological and solid tumors, such as T-cell acute lymphoblastic leukemia (ALL) and testicular 

seminoma (SMETSERS et al., 2012), which makes the molecular analysis important for evaluation 

of disease complications. 

Mutation analysis can be difficult considering the size of FA genes and existence of 

pseudogenes. FANCD2 gene (Locus Reference Genomic, LRG_306) is located on the short arm of 

the chromosome 3, 3p25.3 (TIMMERS et al., 2001). This gene is highly conserved in eukaryotic 

organisms, confirming its’ important role in DNA damage repair.  It contains 44 exons with the 

start codon localized in exon 2, and spans approximately 75.5 kb. Mutational analysis is hindered 

due to the existence of two known unprocessed pseudogenes, FANCD2-P1 (NCBI Acc. No. 

NG_025673.2) located upstream of FANCD2 and spanning 16 kb, and FANCD2-P2 (NCBI Acc. 

No. XM_017030238.1) located downstream of FANCD2 and spanning approximately 31.5 kb. 

Both pseudogenes show high percentage of sequence homology with the front (FANCD2-P1) and 

the middle portion (FANCD2-P2) of the FANCD2 gene, which makes primer construction for 

specific gene amplification difficult to achieve. Therefore, despite the development of new 

technologies, there is limited number of reports regarding FANCD2 mutations (KALB et al., 2007; 

AMEZIANE et al., 2012; KNIES et al., 2012; GILLE et al., 2012; CHANDRASEKHARAPPA et al., 2013; 

CHANG et al., 2014). Studies considering FANCD2 mutations in FA-D2 patients showed 

hypomorphic nature of the mutations since the residual FANCD2 protein with a preserved function 

was always present as showed by immunoblotting (KALB et al., 2007). Additionally, Kalb and 
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coworkers in their extensive study showed that more than a half of mutated alleles reside within 

introns and result in aberrant splicing; many mutations are recurrent and have ethnic association.  

The aim of this study was to screen frequently affected regions of FANCD2 gene for 

sequence variants in FA-D2 patients from Serbia. This is the first molecular analysis of FANCD2 

gene in Serbian FA-D2 patients. 

 

MATERIALS AND METHODS 

Patients  

A total of 6 unrelated FA-D2 patients were included in this study. Diagnosis of FA was 

previously confirmed by a positive DEB test, Western blot analysis and correction of cellular 

phenotype with particular FANC genes (AUERBACH, 2009; SHIMAMURA et al., 2002), and an 

assignment to FA-D2 complementation group was previously reported (JOKSIC et al., 2012; VUJIC 

et al., 2014). This study was approved by The Ethical Committee of the Mother and Child Health 

Care Institute of Serbia „Dr Vukan Cupic“. 

 

DNA isolation, PCR and sequencing 

Total DNA was isolated from patients’ fibroblast cells using FlexiGene DNA Kit 

(Qiagen) according to the manufacturer instructions. The regions with frequently described 

mutations were screened for mutations. Amplification was performed using Phusion High Fidelity 

PCR Kit (Thermo Scientific). Primers used for the amplification of the target regions are shown in 

the Table 1. Primers for exons 10, 16, 26, 29 and 38 as well as for the amplicon I were used 

according to Kalb and coworkers (KALB et al., 2007). Primers for exon 14, introns 3, 4, 12, 21 and 

28 as well as for the amplicon II were designed using Primer3Plus software. Sequences of the gene 

and the pseudogenes were previously aligned (NCBI BLAST, ClustalW) and regions that do not 

share homology were identified for placing the primers. Since introns 12 and 21 have high 

homology with pseudogenes, two large superamplicones (amplicon I and II) were generated by 

primers positioned in flanking region (region without homology with pseudogenes; from this 

amplicons introns 12 and 21 were reamplified, respectively (Nested PCR)). Two pairs of primers 

were used for amplification of introns 3 and 28 due to their great length.  

All primers were blasted against the whole genome for specificity. PCR products were 

purified using QIAquick kit (Qiagen) according to the manufacturer instructions and checked on 

the silver stained polyacrylamide (PAA) gels. The sequencing was performed on ABI 3730 

capillary genetic analyzer, Applied Biosystems (Macrogen, Netherlands, Europe).  

 

Sequence analysis 

NCBI BLAST (www.ncbi.nlm.nih.gov/BLAST/) was used for homozygous variation 

detection, and FinchTV and DNA Tools Xplorer softwares were used for the heterozygous 

variation analysis. Designation of FANCD2 variations was performed according to Human 

Genome Variation Society (HGVS) recommendations, Genome Reference Consortium Human 

Build 38 patch release 2 (GRCh38.p2 assembly), and Ensembl variation database. All found 

variants were checked in the currently available databases for reported mutations and single 

nucleotide polymorphisms (SNPs). 

 

 

 

https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.qiagen.com%2Fproducts%2Fcatalog%2Fsample-technologies%2Fdna-sample-technologies%2Fgenomic-dna%2Fflexigene-dna-kit&ei=vKXYVKa1CMbIyAO6zIC4Bw&usg=AFQjCNFexTT-ndI6pHOHAQweJr0VMXcYMQ&bvm=bv.85464276,d.bGQ
https://www.google.rs/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.qiagen.com%2Fproducts%2Fcatalog%2Fsample-technologies%2Fdna-sample-technologies%2Fgenomic-dna%2Fflexigene-dna-kit&ei=vKXYVKa1CMbIyAO6zIC4Bw&usg=AFQjCNFexTT-ndI6pHOHAQweJr0VMXcYMQ&bvm=bv.85464276,d.bGQ
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Table 1. FANCD2 exon, intron and amplicon primers 

FANCD2 regions Primer sequence (5’- 3’) Annealing temperature (⁰C) 

FANCD2 intron 3(1) 

 

F: AGGAAGCAACCACTTTCCAA 

R: GACCTGCCATAACCTTAGCAA 
60⁰C 

FANCD2 intron 3(2) 

 

F: TGTTTTGGGGGAGCAGATTA 

R: GGGATAGGAAGGGTGTCTCC 
56⁰C 

FANCD2 intron 4 

 

F: AGACACAACCCCATGACTCTG 

R: GCAGACGCTCACAAGACAAA 
60⁰C 

FANCD2 exon 10 

 

F: GCCCAGCTCTGTTCAAACCA 

R: CATTACTCCCAAGGCAATGAC 
65⁰C 

FANCD2 intron 12 

 

F: CTGGACTGTGCCTACCCACT 

R: TCAGCGAAACACGTTACACC 
60⁰C 

FANCD2 exon 14 

 

F: GTTGCCAGATGGACACATTG 

R: GACCTGGCTTCTTTGACTGC 
65⁰C 

FANCD2 exon 16 

 

F: AGGGAGGAGAAGTCTGACATT 

R: TTCCCCTTCAGTGAGTTCCAA 
65⁰C 

FANCD2 intron 21 

 

F: GCAGATTGGAAAAGGGATGA 

R: CTACGAAGGCATCCTGGAAA 
65⁰C 

FANCD2 exon 26 

 

F: GACATCTCTCAGCTCTGGATA 

R: TCAGGGATATTGGCCTGAGAT 
65⁰C 

FANCD2 intron 28(1) 

 

F: ATGTGACCCTACGCCATCTC 

R: AGCTTAGGGGCCAGAATGAT 
58⁰C 

FANCD2 intron 28(2) 

 

F: TTCTGTAAGAGCCCAAGTTTCA 

R: ACCTCAATGTCCAGCTCTCG 
60⁰C 

FANCD2 exon 29 

 

F: CTTGGGCTAGAGGAAGTTGTT 

R: TCTCCTCAGTGTCACAGTGTT 
65⁰C 

FANCD2 exon 38 

 

F: GCACTGGTTGCTACATCTAAG 

R: AAGCCAGGACACTTGGTTTCT 
65⁰C 

FANCD2 amplicon I 

 

F: TGCTCTTCTCTGTCCCCAGA 

R: CATTGGGCGTGTATTCAGGG 
58⁰C 

FANCD2 amplicon II 

 

F: GCTTCTAGTCACTGTCAGTTCACCAG 

R: ACGTTGGCCAGAAAGTAATCTCAG 
60⁰C 

 

In-silico analysis  

FANCD2 variants, especially those found in intronic regions and not previously reported, 

were further evaluated for the potential effect on the splicing. Human splicing finder, HSF 

(http://www.umd.be/HSF3/) was used for the prediction of the intronic variants effects on the 

splicing mechanism. Pathogenicity of the exonic variants that lead to amino acid substitutions, was 

assessed via PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/) program.  

 

RESULTS  

Of all regions of FANCD2 gene that have been screened in patients, a total of 10 

sequence variants were found. Table 2 summarizes all detected variants and a predicted 

consequence, if known, in the currently available databases. Most of the nucleotide changes were 

found at the heterozygous state, except for one found in all patients in intron 12 at homozygous 
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state (c.990-133 G>T), however this variant is commonly present in the healthy population, and 

has no clinical impact. In-silico analysis predicted that among all variants found, four (intron 3, 

c.206-246delG; intron 12, c.990-38 C>G; intron 28, c.2716-306 A>G; and exon 14, c.1122 A>G) 

might lead to the generation of the new splice sites. Heterozygous variants found in intron 3, 

c.206-246delG; exon 26, c.2396 C>A and intron 28, c.2715+573 C>T were not previously 

reported. 
 

Table 2. Detected FANCD2 variants, frequencies and predicted effects  

Region of 

FANCD2 

gene 

Genomic 

position 

(GRCh38.p2, 

Current 

assembly) 

Human 

Genome 

Variation 

Society 

nomenclature 

Frequency of 

allele in 

general 

population/ 

European 

population  

(HapMap) 

Frequency of 

genotype in 

general 

population/ 

European 

population 

 (HapMap) 

Homozygous/ 

Heterozygous 

Predicted 

effect on 

protein 

function 

Case 

number 

Ensembl 

variation 

database 

name 

(dbSNP) 

Intron 3 g.10034223 

delG 

c.206-246 

delG  

- - Heterozygous 

 

Not 

previously 

reported, 

creation of a 

new acceptor 

splicing site  

1 

2 

4 

 

- 

Intron 12 g.10043351 

G>T 

c.990-133 

G>T 

0.952/0.913 0.089/0.171 Homozygous 

T/T 

Intron variant 1 

2 

3 

4 

5 

6 

rs803335 

 

Intron 12 g.10043446 

C>G 

c.990-38 C>G 0.212/0.139 0.284/0.235 Heterozygous 

C/G 

Intron 

variant, 

creation of a 

new acceptor 

or donor 

splicing site 

1 

4 

rs9809061 

 

Exon 14 g.10043852 

A>G 

c.1122 A>G ?/0.034 ?/0.067 Heterozygous 

A/G 

Protein 

coding 

sinonimous 

variant, 

creation of a 

new donor 

splicing site 

1 

2  

4 

6 

rs34046352 

 

Intron 14 g.10043940 

G>T 

c.1134+76 

G>T 

 0.300, small 

sample 

0.600, small 

sample 

Heterozygous  

G/T 

Intron variant 1 

2 

4 

6 

 

rs35870071 
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Table 2. continued 

Region of 

FANCD2 

gene 

Genomic 

position 

(GRCh38.p2, 

Current 

assembly) 

Human 

Genome 

Variation 

Society 

nomenclature 

Frequency of 

allele in 

general 

population/ 

European 

population  

(HapMap) 

Frequency of 

genotype in 

general 

population/ 

European 

population 

 (HapMap) 

 

Homozygous/ 

Heterozygous 

Predicted 

effect on 

protein 

function 

Case 

number 

Ensembl 

variation 

database 

name 

(dbSNP) 

Intron 16 g.10048089 

A>C 

c.1413+38 

A>C 

0.179/0.139 0.272/0.235 Heterozygous  

A/C 

Intron 

variant and 

non coding 

transcript 

variant 

(retained 

intron) 

4 

6 

rs7615646 

 

Intron 21 g.10064163 

A>G 

c.1948-

193A>G 

0.026/0.070 0.049/0.131 Heterozygous  

A/G 

Intron 

variant and 

nonsense 

mediated 

decay 

transcript 

variant 

 

1  

2 

5 

 

rs2347585 

 

Exon 26 g.10067219 

C>A 

c.2396 C>A - - Heterozygous 

C/A 

p.A799D  2 

5 

 

- 

Intron 28 g.10074250 

C>T 

c.2715+573 

C>T 

- - Heterozygous 

C/T 

Unknown, 

not 

previously 

reported  

1 

2 

4 

6 

 

- 

Intron 28 g.10074224 

A>G 

c.2716-306 

A>G 

0.001/0.002 0.002/0.004 Heterozygous  

A/G 

Intron 

variant, 

creation of a 

new donor 

splicing site  

2 rs19280430

3 

 

*Bold variants are not found in the currently available databases. 

The Ensembl Variation database  

The Short Genetic Variations database (dbSNP) (NCBI dbSNP database) 

Fanconi anemia mutation database 
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Exon variants 

Two sequence variants in exons were found, heterozygous variant in exon 26, c.2396 

C>A, and heterozygous variant in exon 14, c.1122 A>G whereas all other changes were detected 

within deep intronic regions.  

Bioinformatics analysis of genomic variant in exon 26, c.2396 C>A (Figure 1) which was 

found in heterozygous state in two patients (cases 2 and 5) showed that this is probably damaging 

missense mutation p.A799D (PolyPhen2, score - 0.99). This variant has not been previously 

reported. 

Genomic variant in exon 14, c.1122 A>G was found in four patients in heterozygous state 

(cases no 1, 2, 4 and 6). This variant was reported in dbSNP - rs34046352, and referred as “protein 

coding synonymous variant”, but experimental data on its function was not available. In-silico 

analysis of this variant using HSF predicted activation of an exonic cryptic donor site with 

potential alteration of splicing (HSF scores: wild type (wt) – 40.32, mutant – 67.16, delta 

consensus value (∆CV) – 66.57%). 

 

 
 

Figure 1. Sequencing chromatogram of FANCD2 variant in exon 26, c.2396 C>A. Arrow indicates the 

presence of two peaks on the position c.2396 of FANCD2 gene. 

 

 

Intron variants 

Eight sequence variants were detected within intronic regions, many of which have been 

reported in databases (Table 2). Among all found intronic variants, in-silico analysis showed that 

three variants (intron 3, c.206-246 delG; intron 12, c.990-38 C>G and intron 28, c.2716-306 A>G) 

might have impact on splicing mechanism.  

Unreported variant in intron 3, c.206-246delG which is found in three patients (cases 1, 2 

and 4) is predicted to generate a new acceptor splicing site (Figure 2), upstream to the 

physiological acceptor splice site to the exon 4, with a very high score, according to HSF (HSF 

scores: wt – 10.13, mutant – 77.24, ∆CV – 662.49%). Creation of a new acceptor splicing site was 

also predicted for the intronic variant in intron 12, c.990-38 C>G, found in two patients (cases 1 

and 4), upstream to the physiological splice site to the exon 13 (HSF scores: wt – 56.61, mutant – 

85.55, ∆CV – 51.12%). This variant was previously reported in dbSNP (rs9809061), however its 

effect was not assessed.  
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Variant detected in intron 28, c.2716-306 A>G is predicted to generate a new donor 

splicing site downstream to the physiological donor splice site (HSF scores: wt – 40.04, mutant – 

66.87, ∆CV – 67.01%). Although reported in dbSNP - rs192804303, the presence of this variant is 

rather low in the world and European population - 0.001, and its functional significance is not 

assessed. 

 

 

Figure 2. Sequencing chromatogram of FANCD2 variants in intron 3, c.206-246delG. Blue vertical lines 

indicate position where the deletion has occurred; chromatogram of the control sample (A), 

heterozygous indel (B) and heterozygous deletion (C) in affected patient are presented. Double peaks 

after deletion can be observed (C). 

 

Distribution of FANCD2 genomic variants among patients 

As seen in Table 3, in patient 3 only one variant was detected (common variant in intron 

12 in homozygous state, also detected in all other patients). In all other patients three or more 

variants were found, whereas in three patients (1, 2, and 4) up to eight variants were detected. 

According to the prediction results (mutant scores <70 were considered ambiguous and therefore 

irrelevant without further investigation), in patients 1, 2 and 4 two pathogenic variants were found.  

In patient 5 only one pathogenic variant was found, whereas in patients 3 and 6 none of 

the genomic variants detected is predicted to be a disease causing.  

In-silico analysis revealed that among three previously unreported variants, two (intron 3, c.206-

246 delG and exon 26, c.2396 C>A) could be novel disease causing mutations. 
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Table 3. Unreported and reported FANCD2 variants in FA-D2 patients 
 FANCD2 variants (according to Human Genome Variation Society nomenclature) 

 

Case number Unreported variants Variants with low frequencies <1% Variants with frequencies >1% 

1 

 

c.206-246 delG 

  
c.2715+573 C>T 

 

- 

 

c.990-133 G>T 

 
c.990-38 C>G 

 

c.1134+76 G>T 
 

c.1948-193A>G 
 

c.1122 A>G 

2 

 

c.206-246 delG  

 

c.2715+573 C>T 
 

c.2396 C>A 

 

 

c.2716-306 A>G 

c.990-133 G>T 

 

c.1134+76 G>T  
 

c.1948-193A>G 

 
 c.1122 A>G 

3 

 

- - c.990-133 G>T 

4 

 

c.2715+573 C>T 
 

c.206-246 delG  

 
 

 
 

 

 

- c.990-133 G>T 
 

c.990-38 C>G 

 
c.1134+76 G>T 

 
c.1413+38 A>C  

 

c.1122 A>G 

5 

 

c.2396 C>A - c.990-133 G>T 
 

c.1948-193A>G 

6 

 

c.2715+573 C>T - c.990-38 C>G 

c.1122 A>G 
 

c.1134+76 G>T 

 
c.1413+38 A>C 

 

DISCUSSION 

The analysis of particular FANCD2 regions in FA-D2 patients in Serbian population 

revealed ten genomic variants, three of which have not been previously reported. One novel 

missense mutation found in two patients in exon 26, c.2396 C>A leads to the substitution of 

alanine with aspartic acid at the position 799 (p.A799D). According to the prediction program 

PolyPhen2, this mutation is pathogenic and could lead to partial degradation of protein. Another 

novel genomic variant c.206-246delG detected in intron 3 in three patients is predicted to affect 

splicing, i.e. creates a new acceptor splicing site 246 nt upstream to the physiological splicing site 

and may lead to intronic exonisation.  

Additionally, among other detected variants which have already been reported to the 

dbSNP, prediction tools revealed that three could influence the splicing pattern of FANCD2 gene. 
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Even though reported, the frequency of these variants is low in the population (Table 2), and their 

functional significance has not been assessed. Creation of an aberrant acceptor splicing site was 

estimated for the variant in intron 12, c.990-38 C>G, upstream to the physiological splicing site for 

the exon 13. Despite the fact that this variant is reported in the dbSNP (rs9809061), its 

pathogenicity has not been determined. It is important to mention that known SNPs, as well as 

synonymous mutations can also lead to the disease, and requires further investigation (CHANG et 

al., 2014; CHANDRASEKHARAPPA et al., 2013), therefore they cannot be excluded as variants 

related to FA disease. Both of these variants (intron 3, c.206-246delG and intron 12, c.990-38 

C>G) anticipated to create alternative splicing sites have high prediction scores for the mutant 

allele, scores below the threshold for the wt allele and high delta between the wt and the mutant 

CV (Table 4), suggesting great probability of creation of the splice sites in intronic regions where 

splicing normally doesn’t occur. According to Desmet and coworkers in their detailed and 

comprehensive study including 83 intronic and 35 exonic mutations known to cause aberrant 

splicing, HSF was able to correctly predict the effects of these mutations with very high 

sensitivity, especially for intronic mutations with such high scores (DESMET et el., 2009). 

Additionally, studies which included in-silico and functional analysis showed that HSF is the most 

reliable and informative prediction software (NASCIMBENI et al., 2010). 

Two variants of unknown significance reported in the dbSNP were predicted to create 

alternative donor splicing sites, intron 28, c.2716-306 A>G and exon 14 c.1122 A>G 

(rs192804303 and rs34046352, respectively). The variant in intron 28 is found with very low 

frequency in the world and European population (0.001 and 0.002, respectively; data from 1000 

genomes and HapMap project) and the effects of this variant are not known. Variant in exon 14 is 

reported as protein coding synonymous variant, but without experimental data of its pathogenicity. 

Nowadays it is known that synonymous and silent mutations can lead to modification of protein 

conformation and function, so despite once considered harmless, their importance in human 

diseases is widely accepted (CHAMARY et al., 2006). Albeit both of these variants (intron 28, 

c.2716-306 A>G and exon 14 c.1122 A>G) were estimated to create a new donor splicing site by 

HSF, mutant scores were slightly above the threshold values, and are therefore considered 

ambiguous without further functional analysis.     

Recent studies focused on identifying disease causing mutations in FANCD2 gene 

pointed out the hypomorphic and heterogeneous nature of found mutations. Apparently, 

homozygous mutations in FANCD2 are rather rare, but compound heterozygous mutations are 

mostly found. Furthermore, the great majority of reported mutations were found within intronic 

regions, near the exon-intron boundary or in deep intronic regions (KALB et al., 2007; 

CHANDRASEKHARAPPA et al., 2013; AMEZIANE et al., 2012). Presence of missense mutation which 

leads to FANCD2 protein with altered activity and intronic mutations which can cause aberrant 

splicing is consistent with the fact that residual amount of FANCD2 is present in all FA-D2 

patients.  

Detection of same variants, which are predicted to be pathogenic, in several unrelated 

patients (Table 2), such as intron 3, c.206-246 delG in three patients, exon 14, c.1122 A>G, in four 

patients and exon 26, c.2396 C>A in two patients suggests that these variants could be population-

specific and due to the founder effect of ancestral allele. Kalb and colleagues also found that some 

FANCD2 mutations are highly specific for the patients’ origin, such as splice mutation in intron 

21, c.1948-16 T>G which is strongly related to the Turkish origin (KALB et al., 2007). Association 

of specific mutations with the certain populations was also found in other FA genes (MADJUNKOVA 
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et al., 2014; TIPPING et al., 2001). Variants in intron 3, c.206-246 delG and exon 26, c.2396 C>A, 

found in this study, were not previously reported, even though large-scale studies on FA-D2 

patients from multiple populations have been performed, indicating their possible linkage to the 

Serbian population.  

Another interesting finding in our study is that in three patients (cases 1, 2 and 4), up to 

eight FANCD2 variants were found, whether assessed to be pathogenic or not (Table 2 and 3). As 

proposed by Chang and colleagues (CHANG et al., 2014), high frequency of heterozygous variants 

suggests that mutations doesn’t occur randomly, but might be linked and reflect the susceptibility 

of FA pathway, or in this case FANCD2 gene. They found a great number of concomitant 

mutations in FA patients, and not only in one gene, but throughout the FA pathway genes, which 

implies that assignment to some FA complementation group doesn’t exclude mutations in other 

FANC genes. Knies and colleagues (KNIES et al., 2012) also pointed out that single heterozygous 

mutation in one FA gene may be accompanied by the heterozygous mutation in other FA genes 

and lead to the disease. Our previous detailed molecular-cytogenetic investigation of these patients 

showed that cases 1 and 2 in which 7 and 8 variants were found, respectively, developed, at the 

time of sampling, severe BMF, had shorter telomeres, more telomere fusions and radial figures and 

different chromosomal breakage pattern compared to other FA-D2 patients (JOKSIC et al., 2012; 

FILIPOVIC et al., 2016). This is consistent with Chang’s statement that great number of variants 

reflects the susceptibility of FA pathway.  

Comparing the results obtained by Sanger sequencing and in-silico analysis showed that 

only in two patients, potentially pathogenic mutation was not detected, whereas in one patient only 

one pathogenic variant was found, in examined DNA regions. However, we only did screening for 

certain commonly affected FANCD2 regions, so the disease-causing mutation could be in other 

FANCD2 regions, or in the form of a large deletion/insertion, which could not be detected by 

sequencing techniques. We are aware that in examined patients’ cohort, which is rather small, 

further analyses are required, such as next generation sequencing and whole exome sequencing 

(NGS and WES) for complete coverage and multiple ligation-dependent probe amplification 

(MLPA) and microarray techniques for the large mutations detection (GILLE et al., 2012; CHANG et 

al., 2014; CHANDRASEKHARAPPA et al., 2013). NGS and WES could provide greater coverage; 

however, deep intronic mutations are not detectable by WES (KNIES et al., 2012). Additionally, the 

presence of two FANCD2 pseudogenes can lead to the incorrect mapping of the variants by NGS 

and WES (KNIES et al., 2012), which still makes these methods insufficiently reliable and 

requires confirmation by Sanger sequencing.  

Summarized, we found three novel, yet unreported variants in FANCD2 gene, two of 

which could be novel disease-causing mutations. Except one, all variants were present in 

heterozygous state, whereas the majority was found in deep intronic regions. Many of the detected 

variants were found in more than one patient, including those unreported, indicating their possible 

ethnic association. Finding of a great number of variants in some patients suggests their non-

random occurrence in susceptible FA pathway.  

 

ACKNOWLEDGEMENT 

This research was supported by the Ministry of Education, Science and Technological 

Development of the Republic of Serbia (Grant No. 173046). 

  Received October 19th, 2016 

                                                 Accepted March 25th, 2017 



570                                                                                                               GENETIKA, Vol. 49, No.2, 559-572, 2017 

REFERENCES 

AMEZIANE, N., D. SIE, S. DENTRO, Y. ARIYUREK, L. KERKHOVEN, H. JOENJE, J. C. DORSMAN, B. YLSTRA, J. J. GILLE, E. A. 

SISTERMANS, J. P. DE WINTER (2012): Diagnosis of Fanconi anemia: mutation analysis by next-generation 

sequencing. Anemia, 2012: 132856.  

AUERBACH, A. D. (2009): Fanconi anemia and its diagnosis. Mutat. Res., 668(1-2): 4–10. 

BORRIELLO, A., A. LOCASCIULLI, A. M. BIANCO, M. CRISCOULO, V. CONTI, P. GRAMMATICO, S. CAPPELLACCI, A. ZATTERALE, 

F. MORGESE, V. CUCCIOLLA, D. DELIA, F. DELLA RAGIONE,  A. SAVOIA (2007): A novel Leu153Ser mutation of the 

Fanconi anemia FANCD2 gene is associated with severe chemotherapy toxicity in a pediatric T-cell acute 

lymphoblastic leukemia. Leukemia, 21(1): 72–78. 

CHAMARY, J. V., J. L. PARMLEY, L. D. HURST (2006): Hearing silence: non-neutral evolution at synonymous sites in 

mammals. Nat. Rev. Genet., 7(2): 98–108.  

CHANDRASEKHARAPPA, S. C., F. P. LACH, D. C. KIMBLE, A. KAMAT, J. K. TEER, F. X. DONOVAN, E. FLYNN, S. K. SEN, S. 

THONGTHIP, E. SANBORN, A. SMOGORZEWSKA, A. D. AUERBACH, E. A. OSTRANDER, NISC Comparative 

Sequencing Program (2013): Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a 

comprehensive molecular diagnosis of Fanconi anemia. Blood, 121(22): e138-48.  

CHANG, L., W. YUAN, H. ZENG, Q. ZHOU, W. WEI, J. ZHOU, M. LI, X. WANG, M. XU, F. YANG, Y. YANG, T. CHENG, X. ZHU (2014): 

Whole exome sequencing reveals concomitant mutations of multiple FA genes in individual Fanconi anemia 

patients. BMC Med. Genomics., 7: 24. 

DESMET, F. O., D. HAMROUN, M. LALANDE, G. COLLOD-BERLOUD, M. CLAUSTRES, C. BEROUD (2009): Human Splicing 

Finder: an online bioinformatics tool to predict splicing signals. Nuc. Acids Res., 37(9): e67. 

DONG, H., D. W. NEBERT, E. A. BRUFORD, D. C. THOMPSON, H. JOENJE, V. VASILOU (2015): Update of the human and mouse 

Fanconi anemia genes. Hum. Genomics., 9(1): 32. 

FILIPOVIC, J., G. JOKSIC, D. VUJIC, I. JOKSIC, K. MRASEK, A. WEISE, T. LIEHR (2016): First molecular-cytogenetic 

characterization of Fanconi anemia fragile sites in primary lymphocytes of FA-D2 patients in different stages of 

the disease. Mol. Cytogenet., 9(1): 70.  

GILLE, J. J., K. FLOOR, L. KERKHOVEN, N. AMEZIANE, H. JOENJE, J. P. DE WINTER (2012): Diagnosis of Fanconi 

Anemia:Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger 

Sequencing. Anemia, 2012: 603253.  

JOKSIC, I., D. VUJIC, M. GUC-SCEKIC, A. LESKOVAC, S. PETROVIC, M. OJANI, J. P. TRUJILLO, J. SURRALLES, M. ZIVKOVIC, A. 

STANKOVIC, P. SLIJEPCEVIC, G. JOKSIC (2012): Dysfunctional telomeres in primary cells from Fanconi anemia 

FANCD2 patients. Genome Integr., 3(1): 6. 

KALB, R., K. NEVELING, H. HOEHN, H. SCHNEIDER, Y. LINKA, S. D. BATISH, C. HUNT, M. BERWICK, E. CALLEN, J. SURRALLES, J. 

A. CASADO, J. BUEREN, A. DASI, J. SOULIER, E. GLUCKMAN, C. M. ZWAAN, R. VAN SPAENDONK, G. PALS, J. P. DE 

WINTER, H. JOENJE, M. GROMPE, A. D. AUERBACH, H. HANENBERG, D. SCHINDLER (2007): Hypomorphic 

mutations in the gene encoding a key Fanconi anemia protein, FANCD2, sustain a significant group of FA-D2 

patients with severe phenotype. Am. J. Hum. Genet., 80: 895-910.  

KNIES, K., B. SCHUSTER, N. AMEZIANE, M. ROOIMANS, T. BETTECKEN, J. DE WINTER, D. SCHINDLER (2012): Genotyping of 

Fanconi anemia patients by whole exome sequencing: advantages and challenges. PLoS One, 7(12): e52648.  

LEVITUS, M., M. A. ROOIMANS, J. STELTENPOOL, N. F. COOL, A. B. OOSTRA, C. G. MATHEW, M. E. HOATLIN, Q. WAISFISZ, F. 

ARWERT, J. P. DE WINTER, H. JOENJE (2004): Heterogeneity in Fanconi anemia: evidence for 2 new genetic 

subtypes. Blood, 103(7): 2498–2503. 

MADJUNKOVA, S., S. A. KOCHEVA, D. PLASESKA-KARANFILSKA (2014): Fanconi anemia founder mutation in Macedonian 

patients. Acta Haematol., 132(1): 15-21.  

NASCIMBENI, A. C., M. FANIN, E. TASCA, C. ANGELINI (2010): Transcriptional and Translational Effects of Intronic CAPN3 

Gene Mutations. Hum. Mutat., 31(9): e1658–e1669.  



J.FILIPOVIC TRICKOVIC et al: FANCD2 GENOTYPES OF FANCONI ANEMIA PATIENTS IN SERBIA           571 

SHIMAMURA, A., R. MONTES DE OCA, J. L. SVENSON, N. HAINING, L. A. MOREAU, D. G. NATHAN, A. D. D’ANDREA (2002): A 

novel diagnostic screen for defects in the Fanconi anemia pathway. Blood, 100(13):4649-54. 

SMETSERS, S., J. MUTER, C. BRISTOW, L. PATEL, K. CHANDLER, D. BONNEY, R. F. WYNN, A. D. WHETTON, A. M. WILL, D. 

ROCKX, H. JOENJE, G. STRATHDEE, J. SHANKS, E. KLOPOCKI, J. J. GILLE, J. DORSMAN, S. MEYER (2012): 

Heterozygote FANCD2 mutations associated with childhood T Cell ALL and testicular seminoma. Fam. 

Cancer., 11(4): 661-5.  

SOULIER, J. (2011): Fanconi anemia. Hematology, Am. Soc. Hematol. Educ. Program. Ed. BURNS, L. J., San Diego, 

California 2011(1): 492-7.  

TIMMERS, C., T. TANIGUCHI, J. HEJNA, C. REIFSTECK, L. LUCAS, D. BRUUN, M. THAYER, B. COX, S. OLSON, A. D. D’ANDREA, R. 

MOSES, M. GROMPE (2001): Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell., 7(2): 241–

248.  

TIPPING, A. J., T. PEARSON, N. V. MORGAN, R. A. GIBSON, L. P. KUYT, C. HAVENGA, E. GLUCKMANI, H. JOENJE, T. DE RAVEL, S. 

JANSEN, C. G. MATHEW (2001): Molecular and genealogical evidence for a founder effect in Fanconi anemia 

families of the Afrikaner population of South Africa. Proc. Natl. Acad. Sci. USA, 98(10): 5734-9. 

VUJIC, D., S. PETROVIC,  E. LAZIC, M. KUZMANOVIC, A. LESKOVAC, I. JOKSIC,    D. MICIC, A. JOVANOVIC, Z. ZECEVIC, M. GUC-

SCEKIC, S. CIRKOVIC, G. JOKSIC (2014): Prevalence of FA-D2 Rare Complementation Group of Fanconi Anemia 

in Serbia. Indian J. Pediatr., 81(3): 260-265. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://kobson.nb.rs/nauka_u_srbiji.132.html?autor=Petrovic%20Sandra%20Z


572                                                                                                               GENETIKA, Vol. 49, No.2, 559-572, 2017 

 

GENOTIPIZACIJA PACIJENATA SA FANKONIJEVOM ANEMIJOM IZ SRBIJE 

OTKRIVA TRI NOVE VARIJANTE GENA FANCD2 

 

Jelena FILIPOVIĆ TRIČKOVIĆ1, Vesna MANDUŠIĆ1, Ivana JOKSIĆ1, Dragana VUJIĆ2,  

Ana VALENTA ŠOBOT1, Gordana JOKSIĆ1 

 

1 Institut za nuklearne nauke Vinča, Univerzitet u Beogradu, Beograd, Srbija 
2Institut za zdravstvenu zaštitu majke i deteta Srbije "Dr. Vukan Čupić", Beograd, Srbija 

 

Izvod 

Fankonijeva anemija (FA) predstavlja retko nasledno oboljenje koje karakteriše širok spektar 

kongenitalnih anomalija, progresivna pancitopenija i sklonost ka razvoju hematoloških maligniteta 

i solidnih tumora. Molekularno genetička analiza mutacija u FANC genima je veoma značajna za 

potvrdu dijagnoze oboljenja, prenatalno i testiranje nosioca, kao i predikciju ishoda hemoterapije i 

komplikacija oboljenja. Ispitivali smo prisustvo varijanti u često izmenjenim regionima gena 

FANCD2 (6 egzona i 5 introna) kod 6 FA-D2 pacijenata u Srbiji metodom Sangerovog 

sekvenciranja. Ovo je prva molekularna analiza FANCD2 gena kod FA-D2 pacijenata u Srbiji.  

Detektovano je ukupno 10 varijanti, jedna homozigotna i 9 heterozigotnih, od toga dve u 

egzonima, a 8 u dubokim intronskim regionima. In-silico analiza je pokazala da od svih 

detektovanih varijanti jedna egzonska i tri intronske mogu uticati na “splajsing”. Heterozigotne 

varijante u intronu 3, c.206-246delG; egzonu 26, c.2396 C>A i intronu 28, c.2715+573 C>T nisu 

prethodno prijavljene. In-silico analiza je pokazala da dve među njima (intron 3, c.206-246 delG i 

egzon 26, c.2396 C>A) mogu biti nove mutacije koje uzrokuju bolest. Mnoge varijante su 

detektovane kod više od jednog pacijenta, uključujući neprijavljene, što bi moglo ukazivati na 

etničku asocijaciju. Veliki broj varijanti kod nekih pacijenata ukazuje na njihovu ne-nasumičnu 

pojavu u putu FA.   
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