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Abstract: Poly (lactic-co-glycolic acid) (PLGA)-based materials

are widely investigated for drug delivery and tissue engineer-

ing applications. Despite their popularity the genotoxic

potential of PLGA has not been investigated. In this study,

the comet assay, a sensitive assay for DNA damage, was

used to evaluate potential genotoxicity in model cell types

exposed to PLGA microspheres. Human umbilical vein endo-

thelial cells (HUVECs) and mesenchymal stem cells (MSCs)

cells were exposed to PLGA microspheres (0.4–6 mg/mL) and

DNA damage assessed at 24 h, 4 days, and 7 days. DNA

damage was not identified after 24 h. However, after 4 and 7

days of exposure to 2 and 6 mg/mL of PLGA microspheres a

significant elevation of DNA damage in both cell types was

observed. The PLGA microspheres did not exhibit any cyto-

toxic effects on the cells under the conditions tested. Our

results suggest that PLGA may have a genotoxic effect on

cells. A broader investigation of the PLGA genotoxic profile

in biological systems is needed. VC 2016 Wiley Periodicals, Inc. J

Biomed Mater Res Part A: 105A: 284–291, 2017.
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INTRODUCTION

Poly (lactic-co-glycolic acid) (PLGA) is one of the most pop-
ular polymers under investigation for medical applications
due to its biodegradability and biocompatibility.1 Micro-
spheres of PLGA are in clinical use as drug delivery systems
for cancer therapy2–4 and under extensive research for
many clinical needs in tissue engineering and drug delivery.
PLGA is a copolymer, which has been prepared in methods
that allow for sustained delivery of both hydrophobic (e.g.,
small molecule drugs) and hydrophilic (e.g., proteins, small
interfering RNA) molecules, with presumably minimal side
effects.5 PLGA has a number of advantages over other deliv-
ery systems. Phospholipid-based liposomes have stability
issues and can be rapidly cleared in vivo,6 and polymer-
somes are primarily used for short-term release (1 h to a
few days).7–9 PLGA polymer systems can be engineered
with a broad range of properties and degradation kinetics
that enable sustained release. In addition, porous PLGA

foams have been widely investigated as a tissue-engineering
scaffold.10

Biomaterials can provide a broad range of advantages in
medical applications. However, it is important to fully
explore potential side effects of implanted materials. PLGA
may stimulate inflammation in vivo due to the local accumu-
lation of degradation products.11 However, there has been
little investigation of PLGA’s effects on cells at the molecular
level. Compared to many other macromolecules, DNA is a
sensitive molecule and damage may result from exposure to
exogenous agents. Prolonged or repeated DNA damage and
genomic instability can contribute to multiple diseases
including cancer.12 Therefore, evaluating the impact of PLGA
particles on DNA is important. The literature describes sev-
eral works13,14 that aimed to determine the toxicity of poly-
meric nanostructured systems following exposure for 2–
48 h. These studies were primarily focused on toxicity
related to the size and shape of the materials. In addition,
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these short-term studies do not address genotoxicity result-
ing from the degradation of materials such as PLGA, which
can occur on the level of weeks.15 Therefore, we investi-
gated potential genotoxicity over a wider time period.

The aim of this study was to examine the genotoxicity of
PLGA microspheres in vitro using single cell gel electropho-
resis (the comet assay). Two model cell types commonly
used in tissue engineering research were examined, human
umbilical vein endothelial cells (HUVECS) and human mes-
enchymal stem cells (MSCs). The comet assay has been
shown to be an effective, sensitive, and rapid in vitro
method for examining DNA damage and issues related to
oxidative stress in human cells.16 The live/dead assay was
also performed with HUVECs and MSCs in order to assess
time-dependent cytotoxicity and cell viability following
exposure to varying concentrations of PLGA microspheres.

MATERIAL AND METHODS

Materials
PLGA 50:50 (Mw 5 7,000–17,000, ester terminated), poly(-
vinyl alcohol) (PVA, Mw 5 13,000–23,000), bovine serum
albumin (BSA), sucrose (>99.5%), magnesium hydroxide
(95%), PEG (Mn < 3,400), stannous octoate, acryloyl chlo-
ride (98%), 3,6-dimethyl-1,4-dioxane-2,5-dione, triethyl-
amine (99.5%), and 2-hydroxy-2-methylpropiophenone
(Irgacure 1173) were obtained from Sigma–Aldrich (St.
Louis, MO). Dichloromethane (DCM, 99.9%), poly (ethylene
glycol) (PEG, Mw 5 8,000), sodium chloride (99.5%), mag-
nesium sulfate anhydrous (97%), ethyl ether (anhydrous),
and phosphate-buffered saline (PBS) were obtained from
Fisher Scientific (Hampton, NH).

Microsphere preparation
A water-in-oil-in-water (w/o/w) double emulsion method17

was used to generate PLGA microspheres. Two hundred and
fifty milligrams of PLGA (50:50) was dissolved in 1 mL of
DCM (oil phase, o), with 7.5 mg of Mg(OH)2 added as an
anti-acid agent. Twenty five milligrams of BSA, 20 g of PEG
(Mw 8,000) and 5 mg of sucrose were dissolved in water to
form the water phase (w1), then the oil phase (o) and water
phase were mixed by vortex mixing (Fisher Scientific Analog
Vortex Mixer; 120 V; speed 103) for 90 s. The emulsion
was then immediately mixed with a 2% PVA solution (w2)
to form a water-in-oil-in-water (w1/o/w2) double emulsion
and vortexed at 53 speed for 90 s. The double emulsion
mixture was then added to 100 mL of deionized (DI) water
and stirred overnight to allow organic evaporation and
microsphere formation. The microspheres were collected by

centrifugation (2,000 3 g, 10 min), washed twice with DI
water, and lyophilized to a dry powder. Components of the
PLGA microspheres are shown in Table I.

Polymer synthesis
Synthesis of poly (ethylene glycol)-co-(l-lactic acid) diacry-
late (PEG-PLLA-DA) was performed based on the proce-
dures developed by Sawhney et al.18 All glassware and stir
bars were dried in a vacuum oven at 1008C for 24 h prior
to use. Ten grams of PEG mixed with 2.12 g of 3,6-dimethyl-
1, 4-dioxane-2, 5-dione was lyophilized overnight. The
lyophilized PEG, 3,6-dimethyl- 1,4-dioxane-2,5-dione, and
40 lL of stannous octoate were placed in a round-bottomed
flask. Vacuum and argon gas cycles were repeated 33 in
the reaction vessel to ensure the removal of trace water and
oxygen. In order to perform the reaction at a uniform tem-
perature (1408C) the entire flask was submerged in an oil
bath and allowed to react for 4 h. The resulting products
were dissolved in 40 mL of dichloromethane, filtered with a
glass fiber filter (GF/F, Whatman, Maidstone, UK) and pre-
cipitated in ice-cold ethyl ether. To acrylate PEG-PLLA, 10 g
of PEG-PLLA was lyophilized and placed into a three neck
round-bottomed flask with 20 mL of dichloromethane. Two
moles of triethylamine per mole of PEG-PLLA was added
into the flask and stirred for 5 min under an inert Argon
gas. Four moles of acryloyl chloride per mole of PEG-PLLA
was added drop wise and reacted overnight in the dark
under an inert gas environment. The resulting products
were washed with 5 mL of K2CO3 (2 M) for inorganic mate-
rial separation and then precipitated into 1.2 L of ice-cold
ethyl ether to remove the residual acryloyl chloride. The
products were dissolved in CDCl3 and proton Nuclear Mag-
netic Resonance 1H NMR (Advance 300 Hz; Bruker, Billerica,
MA) was performed to evaluate structure and purity of the
polymer.

Hydrogel preparation
A salt leaching technique was used to prepare porous PEG-
PLLA-DA hydrogels.19,20 Two hundred and fifty milligrams
of PEG-PLLA-DA was dissolved in 1 mL of ethanol, with 2-
hydroxy-2-methylpropiophenone (0.5% v/v) added as a
photoinitiator. Sodium chloride was ground with a pestle
and mortar and sieved to select crystals of a defined size
range. Four hundred milligrams of salt crystals (300–
500 lm) was added per 200 lL of precursor solution poly-
merized under UV light (k 5 365 nm) for 5 min. The hydro-
gels were then incubated in 50 mL of deionized (DI) water
overnight to leach out the salt crystals and ethanol.

TABLE I. Composition of Solutions Used in Generating PLGA Microsphere

Solvent Components Concentration

Inner water phase (w1) 0.2 mL of DI water BSA
PEG (8,000)

Sucrose

125 mg/mL
100 mg/mL
25 mg/mL

Oil phase (o) 1 mL of DCM PLGA (50:50)
Mg(OH)2

250 mg/mL
7.5 mg/mL

Outer water phase (w2) 10 mL of DI water PVA 20 mg/mL
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Fifteen milligrams of PLGA was mixed with 50 lL of
PEG-PLLA-DA (10%, w/v) and applied on top of the porous
hydrogel and polymerized under UV light (k 5 365 nm) for
5 min.21,22 Hydrogel with PLGA top layer was placed in the
membrane inserts (pore size 0.4 lm) in the 12 transwell
plates.

Cell culture
HUVECs (Lonza) were cultured in T-75 flasks with endothe-
lial growth medium (EGM-2, Lonza). The culture medium
was changed every 2–3 days. Human mesenchymal stem
cells (hMSCs, Lonza) were cultured in T-75 flasks in mesen-
chymal stem cell growth medium (MSCGM, Lonza) with
media refreshed every 3–4 days. All cells were incubated
under an atmosphere of 5% CO2 at 378C.

When the cells reached approximately 80% confluence,
they were dissociated using TrypLE (Gibco) and seeded in
12-well transwell plates at 10,000 cells/well for hMSCs and
5,000 cells/well for HUVECs in 2 mL of complete media.
Cells were incubated for 3 h prior to the addition of PLGA
microspheres. To test the genotoxicity of PLGA, 1, 5, or
15 mg of PLGA microspheres were suspended in 0.5 mL
media and placed within an insert membrane (pore size
0.4 mm; membrane diameter: 12 mm; nominal pore density:
4 3 106 pores per well) that was placed in the well allow-
ing exposure without direct contact. The PLGA doses were
selected based on the range of levels previously used for tis-
sue engineering and drug delivery studies.20,21,23 The final
concentrations of PLGA microspheres were 0.4, 2, and

6 mg/mL. Culture medium was changed every 2–3 days
within the well only.

HUVECs and hMSCs were exposed to salt leached PEG-
PLLA-DA hydrogels with and without a PLGA layer (6 mg/
mL) in 12-well transwell plates for 7 days. Culture medium
was changed every 2–3 days within the well only. Samples
were cultured simultaneously with PLGA groups and a neg-
ative control (receiving culture media only).

Cell viability assay
Cell viability was assessed by a live/dead, viability/cytotox-
icity kit (Invitrogen). Staining was performed according to
the manufacturer’s instructions. Cells were incubated for
15 min prior to analysis using confocal microscopy (Carl
Zeiss, Oberkochen, Germany). The number of cells with
green and red fluorescence was counted in three images
per sample (1003 magnification, 1.79 mm/pixel). The per-
centage of cells that exhibited green fluorescence (inter-
preted as viable cells) was then calculated.

Comet assay
The comet assay was performed as described by Singh
et al.24 The alkaline comet test was used to detect DNA
strand breaks and alkali-labile sites. The extent of DNA
migration indicates the degree of DNA damage in the cell.
After exposure to PLGA, the cells were resuspended and
centrifuged. HUVECs were centrifuged 10 min at 200 3 g
and MSCs were centrifuged for 5 min at 600 3 g. Approxi-
mately 10,000 cells were embedded in 1% low melting-

FIGURE 1. Five classes of comets: (A) no damage, <5% (B) low level damage, 5–20% (C) medium level damage, 20–40% (D) high level damage,

40–95% (E) total damage, >95%.
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point (LMP) agarose in PBS, on a glass microscope slide
pre-coated with a layer of 1% normal melting-point agarose
covered with a glass cover slip and kept for 5 min at 48C.
After gently removing the coverslips, the slides were cov-
ered with a third layer of 0.67% LMP agarose and again
allowed to solidify for 5 min at 48C. As a positive control,
untreated cells were exposed to 50 mM H2O2 for 15 min at
4 8C.

All slides were placed in cold lysing solution (2.5 M
NaCl, 100 mM EDTA, 10 mM Tris, 1% Triton X100, and
10% dimethylsulfoxide, pH 10 adjusted with NaOH) at 48C
overnight and afterwards subjected to electrophoresis for
20 min at 25 V (300 mA). After neutralization for 15 min in
neutralization buffer (0.4 M Tris, pH 7.5), followed by
10 min in water, slides were stained with ethidium bromide
(20 lg/L), performed as described by Singh et al.24 The
comets were analyzed at 2003 magnification (0.27 mm/
pixel) via fluorescence microscopy (Carl Zeiss, Oberkochen,
Germany) equipped with a mercury lamp HBO (50 W, 516–
560 nm, Zeiss). Evaluation of DNA damage was performed
according to Anderson et al.16 DNA damage in the cells was
assessed based on DNA migration from the core of the
nucleus and comets were visually scored and classified into
five categories corresponding to the extent of DNA migra-
tion: (A) no damage, <5%; (B) low level damage, 5–20%;

(C) medium level damage, 20–40%; (D) high level damage,
40–95%; (E) total damage, >95% (Fig. 1). Analysis was per-
formed on 100 randomly selected cells per sample and was
always carried out by the same experienced person. DNA
damage was characterized as any condition where DNA
migration over 5% (B 1 C 1 D 1 E comet classes), and the
mean value was calculated for three repeated experiments
(Fig. 1).

Statistical analysis
Statistical analysis was performed by using Two-way analy-
sis of variance (ANOVA) with Tukey’s multiple comparisons
posttest for cytotoxicity and genotoxicity evaluation in
GraphPad Prism 5.0. Values are expressed as mean 6

standard deviation for n 5 3. A difference at p < 0.05 was
considered statistically significant.

RESULTS

Cytotoxicity
PLGA microspheres were suspended in cell culture medium
at a range of concentrations (0.4, 2, and 6 mg/mL) based
on levels often used in biomedical applications and placed
in a transwell insert (pore size 0.4 lm) enabling exposure
to degradation products without direct contact. MSCs and
HUVECs were exposed for up to 7 days. When observed

FIGURE 2. Representative images from cytotoxicity test (live dead assay) for MSC after 7 days of exposure to (A) 0.4, (B) 2.0, and (C) 6.0 mg/mL

of PLGA microspheres. (D) Control MSCs are shown (blank), in addition to MSCs exposed to (E) hydrogels without PLGA and (F) hydrogels with

6.0 mg/mL PLGA microspheres. *Green indicates live cells and red dead cells.
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under a microscope there was no visual evidence of altera-
tions in cell morphology at any time point or concentration.

Cytotoxicity was examined using a live/dead cell assay.
The cells were exposed to both microspheres alone and
PEG-PLLA-DA hydrogels (with 6 mg/mL PLGA or without
PLGA). The hydrogel delivery strategy represents a model
commonly found in tissue engineering where PLGA micro-
spheres are embedded in a biomaterial scaffolds.20–22 Rep-
resentative live-dead images for MSCs after 7 days of
exposure are shown in Figure 2. In the images, the majority
of the cells remain adhered to the surfaces with appropriate
morphology. The same was observed with HUVECs exposed
to PLGA (data not shown). Image analysis allowed quantifi-
cation of cell viability under the different conditions. These
data support the conclusion that neither PLGA microspheres
(Fig. 3) nor hydrogels (Fig. 4) exhibit substantial cytotoxic-
ity for HUVECs or MSCs. There were no differences in cell
viability relative to controls at any time point.

Genotoxicity
In the majority of pre-clinical research of biomaterials, the
assessment of toxicity is limited to the use of Live/Dead
stains and simple image analysis. However, these techniques
do not address the more critical concern of genotoxicity. We
employed the comet assay to assess DNA damage in MSCs
and HUVECs resulting from exposure to PLGA microspheres
and PEG-PLLA hydrogels. At a concentration of 0.4 mg/mL

the PLGA microspheres did not significantly increase DNA
damage (the mean number of cells with DNA migration) in
either cell type at any of the times examined (24 h, 4 days,
and 7 days) (Fig. 5). While differences were not statistically
significant, there was a trend toward an increase in the
number of cells with DNA damage cells after exposure to
0.4 mg/mL of PLGA microspheres between 4 and 7 days in
HUVECs and between 24 h, 4 and 7 days in MSCs (Fig. 5).

At higher microsphere concentrations (2 and 6 mg/mL)
DNA damage was significantly increased in HUVECs and
MSCs after 4 and 7 days of exposure. The extent of DNA
damage exhibited a dose dependency (Fig. 5). Two mg/mL
of PLGA microspheres induced significant DNA damage in
HUVECs after 4 (5.33%, p < 0.01) and 7 days (7.00%,
p < 0.001) of exposure compared to controls (1.33), while
at 6 mg/mL DNA damage in HUVECs was higher than con-
trols (1.33%) at 4 days (5.66%, p < 0.01) and 7 days
(8.67%, p < 0.001) [Fig. 5(A)].

MSCs exhibited a similar response to the microspheres
to what was observed with HUVECs. The levels of DNA
damage after 4 days of exposure to 2 (17.60%, p < 0.01)
and 6 mg/mL (17.60%, p < 0.01) of PLGA microspheres
was higher than controls (12.30%) [Fig. 5(B)]. The level of
DNA damage was higher at 7 days, with the percentage of
MSCs exhibiting DNA damage as 19.60% (2 mg/mL,
p < 0.001) and 24.60% (6 mg/mL, p < 0.001) with controls
only at 12.00%. At 6 mg/mL PLGA the DNA damage in
MSCs was higher than 2 mg/mL after 7 days (p < 0.05).

FIGURE 3. The PLGA microspheres do not exhibit significant cytotox-

icity for (A) HUVECs or (B) MSCs as determined from analysis of live/

dead stains. The percentage of live cells is shown following exposure

to PLGA microspheres for 24 h, 4 days, and 7 days. *Denotes statisti-

cal significance with p < 0.05 by using two-way ANOVA.

FIGURE 4. The PEG-PLLA hydrogels did not exhibit significant cyto-

toxicity with or without PLGA microspheres. Percent viability for (A)

HUVECs and (B) MSCs determined from analysis of live/dead stains.

The percentage of live cells is shown following exposure for 24 h,

4 days, and 7 days. *Denotes statistical significance with p < 0.05 by

using two-way ANOVA.
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We next examined whether exposure of HUVECs and
MSCs to PEG-PLLA-DA hydrogels with or without PLGA
microspheres induced DNA damage. This approach is a
model of common strategies employed in tissue engineering
and has been used in our laboratory to influence vascular-
ized tissue formation.20,21 The PEG-PLLA-DA copolymer
hydrogel did not induce DNA damage in the absence of
PLGA microspheres with either HUVECs or MSCs at 24 h,
4 days or 7 days (Fig. 6). No significant DNA damage was
observed during 24 h of exposure of either HUVECs or
MSCs to hydrogels containing 6 mg/mL of PLGA micro-
spheres. However, following longer exposures both cell
types showed significantly higher levels of DNA damage.
The levels of DNA damage in HUVECs were higher at 4
(6.33%) and 7 days (6.67%) relative to controls (1.33% and
1.67%, p < 0.001) [Fig. 6(A)]. Higher DNA damage was also
seen in after 4 (24.00%) and 7 days (29.30%) of exposure
to the hydrogels containing microspheres. These values
were significantly higher than controls (11.33% and
12.67%, p < 0.001) [Fig. 6(B)].

DISCUSSION

PLGA microspheres have been studied extensively as drug
delivery systems and as scaffolds for tissue engineering. In
order to fully understand risks associated with their clinical
application, potential side effects should be evaluated. DNA
damage caused by both exogenous and endogenous agents
can lead to degenerative changes and result in cell transfor-
mation that may progress to diseases such as cancer.25 In
this study, DNA strand breaks and levels of unrepaired cel-
lular DNA damage were measured using a simple and
reproducible technique, the comet assay.

The two cell types studied here, HUVECs and MSCs, are
widely used as model cells in the evaluation of biomaterials
and tissue engineering products.26,27 Results of the DNA
comet assays indicate that PLGA concentrations of 2 and
6 mg/mL induce DNA damage in both types of cells when
exposed for 4 days or more. PLGA degradation requires a
time period of 1–5 weeks;15 it appears that after 4 days the
levels of degradation products are high enough to induce

FIGURE 5. PLGA microspheres induces dose and time dependence

increases in DNA damage. The percentage of (A) HUVECs and (B)

MSCs exhibiting DNA damage after exposure to PLGA microspheres

of 0.4, 2 and 6 mg/mL during 24 hours, 4 days and 7 days are shown.

*p < 0.05, **p< 0.01, ***p < 0.001 by using two-way ANOVA test.

FIGURE 6. PEG-PLLA-DA hydrogels do not induce DNA damage but

combination of hydrogels with PLGA microspheres elevates the level

of DNA damage. The percentage of (A) HUVECs and (B) MSCs exhibit-

ing DNA damage following exposure to PEG-PLLA-DA hydrogels and

hydrogels with PLGA (6 mg/mL) at 24 h, 4 days, and 7 days.

*p < 0.05, **p < 0.01, ***p < 0.001 by using two-way ANOVA test.
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damage. The degradation products at higher concentrations
may interact with nuclear DNA (directly or indirectly), pro-
ducing significant DNA damage. In the view of substantially,
more DNA damage cells at 6 mg/mL relative to 2 mg/mL
during 7 days of exposure on MSCs, we hypothesized that
damaged cells did not have enough capacity to repair DNA
damage in cells induced by 6 mg/mL PLGA concentration
compared to 2 mg/mL.

PLGA is a biodegradable polymer, which undergoes
hydrolysis, producing lactic acid and glycolic acid that are
readily metabolized in organisms. The human body excretes
them by a glycolytic route in the form of carbon dioxide
and water. It is generally believed that degradation of PLGA
is a slow process that does not interfere with cellular
metabolism.25,28,29 However, our data suggested that PLGA
degradation products can lead to structural changes of DNA
molecules. Kornhauser et al.30 showed that human skin cells
treated with glycolic acid (10%) had increased UV-
sensitivity and induces DNA damage. It has also been shown
that PLGA-PEO nanoparticles significantly increased the
level of micronuclei (MN) in mononucleated cells suggesting
early aneugenic effects of weak mutagens while 0.12–
75 lg/cm2 of PLGA-PEO nanoparticles during 2 and 24 h
exposure did not induced DNA damage.13 This significant
olychromatic erythrocytes with micronuclei were not identi-
fied in an in vivo study by G€oelzer et al.31 At a low concen-
tration (0.4 mg/mL) exposure to PLGA microspheres did
not exert any significant DNA damaging effects over the
tested time frames (24 h–7 days). This is in agreement with
the reports by De Lima et al.28 and Setyawati et al.14 The
comet assay results show that hydrogels under the condi-
tions of this study did not induce DNA migrations in both
types of cells, suggesting that hydrogel is not potentially
genotoxic. On the other hand, PEG-PLLA-DA hydrogel with
PLGA significantly induced a damaging effect on DNA after
4 and 7 days of exposure.

Our results should contribute to the enlightening of
PLGA degradation as a cell-biodegradable material and its
impact on cellular biomolecules, particularly genomic mate-
rial. DNA damage increases with degradation time, and deg-
radation of PLGA is faster in vivo compared to that in
vitro.32,33 According to these findings, it is necessary to
investigate the effect of PLGA microsphere degradation in in
vivo systems. Regardless, the comet assay only indicates
DNA damage and possible mutagenesis. Additional studies
are needed in order to further examine any potential muta-
genic effects.

CONCLUSION

PLGA-based materials are under investigation for a broad
range of applications. These studies show that exposure of
cells to PLGA microspheres can result in DNA damage that
varies with concentration and duration of exposure. While
DNA damage does not necessarily mean mutagenesis, the
mechanism underlying this damage needs to be further
examined to fully understand the phenomenon and associ-
ated risks.
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