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1.  Introduction

Thermometry, the practice of  temperature 
measurements, started relatively late in human 
history when Galileo Galilei invented the air 
thermoscope sometime between the years 1592 and 
1603. Developments in the eighteenth and nineteenth 
centuries established the forms of thermometry that are 
familiar today in everyday life, experimental science, 
and technological applications. Temperature is both a 
thermodynamic property and a fundamental unit of 
measurement; one of the seven base quantities of the 
international system of units (SI). It can be seen simply 
as the ‘degree of hotness or coldness,’ a qualitative 
definition built on the bodily sensation of heat and 
cold. Today it is readily defined from the principles 
of classical thermodynamics as the parameter of state 
that has the same value for any systems which are in 
thermal equilibrium, and from statistical mechanics as 
a direct measure of the average kinetic energy of non-
interacting particles [1].

Temperature is an intensive quantity, meaning that 
its value does not depend on the amount of the sub-

stance for which it is measured. That temperature is not 
an additive quantity had exceptional implications for 
its measurement and the creation of temperature scale. 
It still has, even today, for its measurement in impor-
tant emerging environments (nanoscale or intracel-
lular, for instance) for which reliable and standardized 
thermometry methods have not yet been developed, 
contrary to the cases of many other physical quantities. 
Temperature is important because it is something we 
feel and because it has an effect on the smallest aspects 
of our daily life, from how to adjust our housing and 
clothing to what we eat for supper. It affects the life 
cycles of plants and animals, governs rates of chemi-
cal reactions, influences tides and so on. For these rea-
sons, it is by far the most commonly measured physical 
quantity; sensors of temperature account for 80% of 
all sensors worldwide at present [2] and they are used 
across a broad spectrum of human activities, such as in 
medicine, home appliances, meteorology, agriculture, 
and industrial and military contexts, to mention some 
of the most significant areas.

Temperature measurements are currently con-
ducted by many diverse measurement devices based on 
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Abstract
Temperature is important because it has an effect on even the tiniest elements of daily life and is 
involved in a broad spectrum of human activities. That is why it is the most commonly measured 
physical quantity. Traditional temperature measurements encounter difficulties when used in some 
emerging technologies and environments, such as nanotechnology and biomedicine. The problem 
may be alleviated using optical techniques, one of which is luminescence thermometry. This paper 
reviews the state of luminescence thermometry and presents different temperature read-out schemes 
with an emphasis on those utilizing the downshifting emission of lanthanide-doped metal oxides 
and salts. The read-out schemes for temperature include those based on measurements of spectral 
characteristics of luminescence (band positions and shapes, emission intensity and ratio of emission 
intensities), and those based on measurements of the temporal behavior of luminescence (lifetimes 
and rise times). This review (with 140 references) gives the basics of the fundamental principles and 
theory that underlie the methods presented, and describes the methodology for the estimation of 
their performance. The major part of the text is devoted to those lanthanide-doped metal oxides 
and salts that are used as temperature probes, and to the comparison of their performance and 
characteristics.
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assorted measurement principles. Liquid-in-glass ther-
mometers, thermocouples and pyrometers are the most 
frequently utilized devices, but common thermometry 
also includes thermometers based on the expansion of 
solids, gas thermometers, manometric thermometers, 
resistance thermometers, semiconductor thermom-
eters, fiber optic thermometers, quartz and ultrasonic 
thermometers [3]. However, emerging technologies 
and novel applications have presented requirements 
for new measurement conditions. Today, an imme-
diate need exists for the non-contact thermometry 
of moving or contact-sensitive objects, difficult to 
access pieces, bodies in hazardous locations, objects 
of nanosize dimensions, or living cells and organisms. 
However, the properties of existing thermometers and 
sensor platforms limit their use in such environments. 
Temperature sensing based on changes in the optical 
properties of materials has the potential to meet many 
of the aforementioned needs as has been recently dem-
onstrated by many research groups. These methods 
utilize the temperature dependences of Rayleigh and 
Raman light scattering, reflectance and refraction, 
but the temperature dependencies of the luminescent 
properties of materials have attracted the most atten-
tion. This interest is motivated by the strong sensitiv-
ity of luminescence on temperature and the ease with 
which luminescence can be detected in comparison to 
other optical signals. As the temperature of the mat
erials changes, the luminescent characteristics, such as 
emission intensity, decay and rise time, and band posi-
tions and widths, may all change.

To date, various materials have been used for lumi-
nescence thermometry: semiconductors, organic dyes, 
polymers and organic–inorganic hybrids, but lantha-
nide-doped materials and nanomaterials have been the 
materials of choice in most instances. This is because 
the luminescence of lanthanide ions shows plentiful 
narrow emission lines and relatively long emission 
lifetimes in different spectral regions that can be used 
for temperature sensing, and also because lanthanide 
luminescence is prone to photobleaching and fairly 
influenced by materials’ surroundings. In addition, 
lanthanide luminescence provides materials with the 
ability to perform multiple functions and to meet oth-
erwise unattainable performance needs, for example, 
to perform intratumoral thermal reading during pho-
tothermal therapy [4]. Multifunctional (or polyvalent) 
luminescent materials may be constructed by adding 
thermometric functionality to materials already chosen 
for specific applications according to their other prop-
erties, or by completely new material design through a 
careful combination of physical properties and func-
tional capabilities.

Considering the rapid growth of the luminescence 
thermometry field, it is difficult even for experts to keep 
abreast of new developments through the information 
presented in scientific and technical papers. Up-to-date 
summaries of the practice of luminescence thermom-
etry that are published at regular intervals may allevi-

ate this difficulty. Until now, several comprehensive 
reviews [5–25] and two books [26, 27] have been pub-
lished which are devoted in part or in full to the practice 
of temperature measurements via luminescence. Some 
reviews are now dated and, additionally, the field has 
grown considerably over the past few years making it an 
extremely difficult enterprise to provide an overview of 
all the achievements.

This review article aims to summarize develop-
ments related to temperature measurements via the 
downshifting emission of lanthanide ions incorporated 
into the metal oxides and salts. Seemingly, a small frac-
tion of the materials used for luminescence thermom-
etry probes, lanthanide-doped metal oxides and salts 
are in fact an extensive group of materials, well known 
for a long time and mostly used for phosphor applica-
tions. Phosphors possess exceptional properties, such 
as superior thermal and chemical stability, and excel-
lent quantum efficiency of emission. Owing to these 
properties, the highest temperature ever measured by 
luminescence thermometry of 2000 K was achieved 
using Dy3+-doped Y3Al5O12 [28]. It is worth mention-
ing that lanthanide-doped metal oxides and salts can be 
prepared in different forms: powders, crystals or ceram-
ics by well-developed synthesis methods; this appreci-
ably eases their adoption in luminescence thermom-
etry. Lastly, but quite importantly, the majority of these 
materials allow the use of more than one temperature 
read-out scheme, including both self-referencing ones 
that will be described later in the text.

The content of the review is organized as follows. 
The short theoretical lead-in at the beginning of the 
second section aims to provide newcomers to this field 
with a basic understanding of lanthanide luminescence 
and its temperature quenching. The measurement 
principles and methods of luminescence thermometry 
are presented in a separate section. Then, the standard-
ized ways of estimating the performance of lumines-
cent thermometry methods are described. The largest 
part of the text is devoted to lanthanide-doped metal 
oxides and salts that are used as temperature probes on 
account of their downshifting emissions, as well as to the 
comparison of their performance and characteristics. 
It was not my intention to give a detailed summary of 
the applications since this would considerably expand 
the text, nevertheless, a few examples are depicted. The 
literature cited here is believed to cover all the relevant 
works published up to May, 2016.

2.  Principles and methods of luminescence 
thermometry

Since the first human perception of light without a 
fire and fascination with examples from nature such 
as glowing worms, seashells, Aurora Borealis and the 
like, through the discovery of Bologna stone at the 
beginning of the 17th century, to the present-day use 
of lasers, lighting, displays and biolabels, the interest 
in understanding and using luminescence has been 
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growing continuously. The term luminescence is 
used today to describe the phenomenon in which 
the electronic state of a substance is excited by some 
kind of external energy and the excitation energy is 
released as photons in the ultraviolet, visible and near-
infrared spectral regions [29]. Among many types of 
luminescence, the one that originates from lanthanide 
ions has received special attention and found important 
applications. Lanthanides (Ln) are 15 elements that 
belong to the sixth row of the periodic table of elements, 
from La (atomic number 57) to Lu (atomic number 71). 
The valence electrons of lanthanides are linked with the 
4f orbital which is shielded from external electric fields 
by the outer 5s2 and 5p6 electrons. Electron transitions 
between 4f states are forbidden according to Laporte’s 
selection rule; however, when lanthanide ions are 
surrounded by a non-symmetric local environment, 
the f–f transitions become partially allowed. For this 
reason, f–f luminescence is specific for each lanthanide 
ion (due to characteristic 4f energy levels of each ion), 
presents narrow-emission lines, and weakly depends on 
the crystalline environment of the host material.

2.1.  Understanding temperature quenching of 
lanthanide luminescence
To understand the effects of temperature on the 
luminescence of lanthanides, one should first 
consider the processes which follow the excitation of 
the electronic states of a substance. The energy of an 
electronically excited state is lost by a combination of 
radiative and nonradiative processes. The intensity 
of the emission, I, is proportional to the population 
density of electrons in the excited states, I N∝ , the 
temporal evolution of which is described by:

N

t
k k N t

d

d
,R NR( ) ( )= − + ⋅� (1)

where kR and kNR are the rates of radiative and 
nonradiative transitions, respectively. Photon emission 
is created through radiative de-excitation pathways, 
while nonradiative ones are accompanied by the release 
of vibrational energy. As a consequence, the electron 
population in the excited state and the luminescence 
intensity exponentially decay with a time constant, τ, 
which is commonly termed the ‘lifetime’ of the excited 
state:

k k

1
.

R NR

τ =
+� (2)

The inverse value of the radiative transition rate is called 
the ‘radiative lifetime’ or ‘natural lifetime’:

k

1
,R

R

τ =� (3)

and can be calculated, in many instances rather well, 
from the absorption and emission spectra [30, 31] and 
also from the ratio of the measured lifetime and the 
quantum efficiency of emission, η:

,Rτ
τ
η

=� (4)

the latter of which is defined as the fraction of electrons 
that underwent radiative decay over the total number 
of de-excited electrons:

k

k k
.R

R NR

η =
+

� (5)

One should note that radiative lifetime values calculated 
from equation (4) and those obtained from spectroscopy 
measurements differ in many cases [30]. However, in 
view of the topic discussed, the more important thing is 
that radiative lifetime can be considered as temperature-
independent for most elaborations.

The intensity of luminescence can be decreased 
by different processes and such decreases are termed 
‘quenching’. When quenching occurs due to an 
increase in the temperature of the material, it is referred 
as the temperature quenching of luminescence, and it 
is the underlying phenomena of all luminescence ther-
mometry measurement principles. The temperature 
dependence of the luminescence emission intensity 
results from the temperature dependence of the non-
radiative transition rate:

I T C k T C T C
k

k k T
,R

R

R NR

( ) ( ) ( )
( )

τ η= ⋅ ⋅ = ⋅ = ⋅
+

� (6)

where C is a constant comprised of a number of physical 
parameters that are characteristic for the measuring 
system and investigated material (such as the intensity 
of excitation, the detection geometry, concentration of 
luminescent species in material and their absorption 
coefficient and so on) and, in principle, does not change 
with the temperature.

Therefore, theoretical explanations of temper
ature-quenching effects are, in fact, related to the 
description of the temperature-induced changes in 
the non-radiative transition rate for the material of 
interest. This description is usually given by a Mott–
Seitz theory which is created on a simple configuration 
coordinate model that consists of two parabolas shifted 
with respect to each other [32], figure 1. These parabo-
las represent potential curves, each of which stands for 
the total energy of the system in its ground or excited 
state as a function of the configurational coordinate, R.

According to this model, an electron in the excited 
state, assisted by thermal energy, nonradiatively 
de-excites to the ground state through the parabola 
intersection S with the temperature-dependent rate [33]

k T A E k Texp ,NR B( ) ( / )= ⋅ −∆� (7)

where ∆E is the energy difference between the lowest 
level of the excited state and the intersection point 
of parabolas S, kB is a Boltzmann constant, and A is 
a frequency constant (in fact, a quantity only weakly 
dependent on temperature) of the order of 1013 s−1. 
The nonradiative transition rate is lower for the larger 
∆E, and increases with the temperature increase. 
Expressions for the temperature dependence of 
luminescence emission intensity and lifetime can be 
derived by combining equations (6) and (7):
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However, the Mott–Seitz theory is more suitable for the 
explanation of the quenching of broadband emissions 
(with a large ∆R, see figure 1) than for the quenching 
of narrow-line f–f emissions that are observed for Ln3+ 
ions (with ∆R  ≈  0). Such cases were explained in 
early works [34–36] by phonon emission to the lattice 
mode, so-called multiphonon relaxation, schematically 
depicted in figure 2(a), and described by the following 
formula:

k T k
h k T

h k T
0

exp /

exp / 1
,

E
h

NR NR
B

B

( ) ( ) ( )
( )

⎡
⎣
⎢

⎤
⎦
⎥

ν
ν

= ⋅
−

ν
∆

� (9)

where ∆E is the energy difference from the excited level 
to the next lowest level, h  ν  is the dominant phonon 
energy of the lattice, and kNR(0) is the value of the 
nonradiative transition rate at zero temperature which 

depends on the electron–lattice coupling strength. 
The E h/ ν∆  value actually represents the number of 
effective phonons that need to be emitted to bridge the 
energy-gap difference. However, the higher the number 
of phonons the lower the probability of the process is; 
it is believed that processes involving more than seven 
effective phonons are fairly probable. In the case of 
Eu3+-doped GdVO4 [37], the multiphonon relaxation 
process, schematically illustrated in figure 2(a), would 
require at least 14 phonons of maximal energy (of 
885 cm−1 [38]) to bridge the gap between 5D0 and 7F6 
levels (~12 500 cm−1).

Blasse reported the first observation of the role of 
the charge-transfer state in the temperature quenching 
of Eu3+ luminescence [39]. This nonradiative de-excita-
tion pathway is illustrated in figure 2(b). The minimum 
of the CT state potential curve has an offset in the con-
figurational coordinate to both excited and ground-state 
potential curves of Eu3+, therefore, making crossing with 
them, and thus creating a path for electrons in the excited 
state to nonradiatively reach the ground state [40, 41]. 
The rate equation for this process is given by [42]:

Figure 2.  Configuration coordinate representation of (a) multiphonon relaxation process, and (b) relaxation through  
charge-transfer band.

Figure 1.  Configuration coordinate diagram of a luminescent center. According to the Mott–Seitz theory, non-radiative transition 
from the excited state to the ground state is possible via the crossover S.

Methods Appl. Fluoresc. 4 (2016) 042001
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where Ea is the activation energy of the process.

2.2.  Luminescence thermometry measurement 
principles
Changes in the luminescence of  a substance 
caused by temperature are manifested by several 
phenomena. Almost all of them may serve as the 
basis of a temperature measurement, i.e. as the 
principles of temperature measurement, from which 
a large number of measurement methods have been 
derived so far. Depending on the temporal nature of 
these manifestations, luminescence thermometry 
measurement principles can be classified as either 
time-integrated (steady-state) or time-resolved 
ones. Measurement methods derived from the 
former principle are implemented with a constant 
illumination and observation, while those resulting 
from the latter one are performed with a pulsed or 
harmonically modulated excitation. Figure 3 illustrates 
the phenomena that are most commonly used for the 
development of thermometry methods from the 
luminescence of lanthanide-ion-doped materials. 
Some other, quite useful, phenomena are also of 
importance, such as polarization/anisotropy, but they 
cannot be implemented using metal oxides and salts.

2.2.1.  Changes of energy of emission and excitation 
lines with temperature 
In general, the spectral positions of emission and 
excitation lines are temperature-dependent in any 
material. These dependences arise from a number 

of processes, such as the changes in the energy of 
electronic levels, dilatations of the crystal lattice, 
changes in the refractive index and others. Therefore, 
measurement procedures can be developed to 
determine temperature from the luminescence line-
shifts, provided that these shifts are sufficiently large 
to facilitate accurate measurements. However, quite 
frequently, this condition cannot be fulfilled, especially 
with the luminescence of lanthanide ions which are 
fairly dependent on changes in the crystal field acting 
upon ions (<0.1 cm−1 K−1). For example, Kusama et al 
[43] have shown the line-shift of Y2O2S:Eu3+ emission 
(5D0  →  7F0) from 583.00 to 582.75 nm over the  
-16 °C to 72 °C temperature range (figure 4(a)). 
Recently, Rocha et al [44] have demonstrated that the 
863 nm peak in LaF3:Nd3+ shifts to longer wavelengths 
with a temperature increase at an almost constant rate 
of 0.007 nm K−1 (which corresponds to 0.095 cm−1 K−1 
at 863 nm). The development of high-resolution state-
of-the-art instruments in recent years may improve 
conditions of measurement methods based on the line-
shifts and expedite their use.

2.2.2.  Changes in the emission linewidth with  
temperature 
The density of phonons grows with the increase in 
temperature of a material. For this reason, emission 
lines are broadened. In most cases, linewidth linearly 
depends on temperature. Peng et al [45] have shown 
with Y2O3:Eu3+ micro- and nanoparticles that the 
linewidth of 5D0  →  7F2 transition linearly changes for 
temperatures higher than 70 K. The overall change is 
about 50 cm−1 over the 70–700 K temperature range 
(figure 4(b)). Recently, Wang et al [46] have reported 
the temperature change in effective linewidths Δλeff 
( ( )∫λ λ λ∆ = I Id / ;eff max  Imax is the emission intensity 

Figure 3.  Luminescence thermometry measurement principles—‘read-outs’ of temperature.

Methods Appl. Fluoresc. 4 (2016) 042001
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at peak emission wavelength) of anti-Stokes emissions 
in NaYbF4:Tm3+@SiO2 core–shell microparticles. 
As the temperature increased from 100 to 700 K, the 
values Δλeff for the 697 nm and 798 nm emissions non-
homogeneously increased from 16.76 nm to 22.94 nm 
and from 19.79 nm to 25.35 nm, respectively.

2.2.3.  Changes in the intensity of the emission line  
with temperature 
As shown in the previous section, the intensity of 
the emission of lanthanide ions is reduced mainly 
because of the increase of the non-radiative transition 
rate with temperature. However, other temperature-
dependent mechanisms may also be involved, such as 
energy transfers between ions, between ions and other 
quenching centers and to the host and charge-transfer 
states [47]. In addition, absorption of the host material, 
the volume of its unit cell and the refraction index may 
all change with temperature which affects the intensity 
of the emission line. The major problem in using a single 
emission line for temperature measurements is that the 
observed intensity is greatly influenced by changes in 
measurement conditions. Instabilities in light sources 
and detectors, if not properly compensated, are the 
main cause of large measurement errors. Hence, this 
read-out scheme is almost completely abandoned in 
current luminescence thermometry applications.

2.2.4.  Using the spectrum shape for temperature  
measurements 
Lanthanide-ion-doped materials have rather complex 
spectra. Emissions may come from more than one 
excited state, transition may end at different energy 
levels, and all of them are split into Stark sublevels by 
crystal field. In addition, materials may present emissions 
from more than one dopant ion, intrinsic emission of 
the host material or emission from defect states of the 
host material, the last of which is particularly important 
for nanosized materials. Such a complexity of emission 
spectra provides several excellent opportunities for 
temperature sensing. The ratio of intensities of different 

emission lines is of the utmost importance and probably 
the most frequently used temperature read-out scheme 
in luminescence thermometry. It is a self-referencing 
scheme and eliminates problems caused by changes 
in measurement conditions. The ratiometric intensity 
methods can be classified as those that exploit emissions 
from (i) a single emission center, and (ii) two or more 
emission centers. The former are based on the ratio of 
intensities of emissions that originate from two closely 
separated excited states of lanthanide ions and, quite 
rarely, on the ratio of intensity of emission originating 
from electron transitions that end at different Stark 
sublevels. The latter method uses the ratio of intensities 
of emissions from two or more lanthanide ions doped 
into one host material, or the ratio between the emission 
of a lanthanide ion and the emission of defect states of 
the host material. In some cases these methods may be 
combined to achieve good measurement sensitivity 
over the wide temperature range, as shown by Ćulubrk 
et al [48]. Also, temperature can be extracted from the 
ratio of intensities of emissions that originate from both 
thermally coupled and non-coupled excited levels, as 
demonstrated with Y2O3:Er3+,Yb3+ nanopowders by 
Nikolić et al [49]. Recently, neural-network recognition 
has been used to extract the sample temperature from 
the shape of emission spectra by Liu et al [50]. Even 
though rhodamine B in a mixture of CuCl2 and glycerol 
was used as a temperature probe, this measurement 
method may also be promising for use with lanthanide 
luminescence. Up to now, temperature read-out from 
the ratio of emission intensities that originate from two 
closely separated excited states of a single lanthanide 
ion was the most commonly used among all intensity-
based methods. However, the relative sensitivity of this 
method is limited by the value of the energy difference 
between excited states responsible for the emissions, 
which will be explained in more detail later in the text. 
Therefore, the current research is directed toward the 
development of the ratiometric intensity methods 
which utilize emissions from two or more emission 
centers in the material.

Figure 4.  (a) Emission from 5D0  →  7F0 transition of Eu3+ in Y2O2S measured at  −16 °C and 72 °C (adapted from [43]—Copyright 
(2016) The Japan Society of Applied Physics), (b) temperature dependence of bandwidth of 5D0  →  7F2 emission line of Y2O3:Eu3+ 
micro- and nanoparticles (adapted from [45] with permission from AIP Publishing LLC).

Methods Appl. Fluoresc. 4 (2016) 042001
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2.2.5.  Temperature measurements from the temporal 
dependence of emission 
The intensity of emission and the lifetime of the excited 
state from which that emission originates are in a linear 
relationship (see equation (6)). It seems then that it 
is equivalent to measure temperature dependence 
of these quantities. Yet, significant differences exist 
between these two measurements from the practical 
point of the realization of luminescence thermometry. 
In contrast to the temperature read-out from the 
intensity of a single emission line, the determination 
of temperature from the emission lifetime is not really 
compromised by changes in measurement conditions. 
Additionally, it is not affected by the inhomogeneity 
of the probe material. Lifetime measurements have 
better detection limits than intensity ones, which is 
important for high-temperature applications and, 
generally, they present smaller uncertainties compared 
to those in measurements of intensity [7]. They are a 
self-referencing, like ratiometric intensity methods, 
but in contrast to them need the observation of just 
one emission line. The drawback is that lifetime 
measurements require relatively expensive equipment 
and, compared to intensity reads, lengthy processing 
of emission decay data to derive lifetime values. In 
addition, the temperature change of the excited-
state lifetime of lanthanide ions generally shows two 
regimes. At lower temperatures the change is negligible 
or relatively small. A sharp decrease in lifetime values 
occurs at high temperatures. The temperature ranges 
of these regions are specific for each combination 
of dopant ion and host material. However, almost 
constant values of lifetimes are frequently observed 
around room temperature or in the physiologically 
important temperature range, limiting the applicability 
of the method. The problem may be overcome 
by measuring the rise time of the emission with 
lanthanide-doped materials of specific characteristics. 
The rise of an emission occurs in the initial period after 
the excitation pulse, prior to emission decay, and their 
values are notably smaller than the lifetime values. 
They are strongly reduced with temperature increase 
over the whole dynamic range. One should note that 
rise times are measured along with lifetimes, i.e. during 
the same measurement procedure; therefore, it is 
possible to combine two temperature read-outs in one 
measurement procedure.

2.3.  Figures of merit of luminescence thermometry
The great and ever-increasing number of reports 
on luminescence thermometry measuring systems, 
materials and applications necessitates reliable ways 
of comparing their performance and characteristics. 
Estimating and reporting the figures of merit of devices 
and measurement uncertainties in a standardized 
metrological format is crucial in disseminating 
results, comparison with theoretical models and 
competing results. It also increases the public’s 

confidence in results. One should note that there is 
no essential difference in the elementary principles 
of measurement in physics, engineering, chemistry, 
biology, food science, or luminescence thermometry. 
Thus, the aforementioned estimating in luminescence 
thermometry, like in any other field, must be done 
following universal guidelines for the evaluation of 
measurement data [51] and reported in wording 
which is carefully defined in metrology. Because of the 
importance of terminology and its use in this review, 
some of the terms will be defined at this point. The 
definitions are mostly derived from the international 
vocabulary of metrology (VIM) [52] and assume 
temperature as the measurand—the quantity intended 
to be measured.

In luminescence thermometry measuring sys-
tems do not provide the value of temperature directly; 
instead they provide the indication (Q), which can be, 
for example, the value of the emission lifetime, the value 
of the emission intensity or the wavelength of the emis-
sion line. The measurement result, i.e. the temperature 
value, is obtained from a measurement model, that is, 
from the mathematical relation between the temper
ature, indication and other quantities involved in a 
measurement. The measurement model is also used to 
calculate an uncertainty in a value of temperature as an 
estimate of the dispersion of values within which the 
true temperature value is expected to lie. The uncertain-
ties stem from random variations in replicated inde-
pendent measurements (so-called type A uncertain-
ties) and systematic effects in the measurement process 
(so-called type B uncertainties). Type A uncertainties 
are mostly calculated as a standard deviation of the 
mean of the measured temperature values. Accuracy 
of measurement is the closeness of agreement between 
the measured value of temperature and the true value. 
Accuracy is not a quantity and does not have a numer
ical value: it is a descriptive parameter. For instance, one 
can say that measurement is more accurate if it presents 
a smaller measurement error—the measured temper
ature value minus the reference temperature value. On 
the other hand, measurement precision is a quantity 
that is expressed numerically by measures of impre-
cision, usually with a standard deviation or variance. 
Precision is always estimated for a specified condition 
of measurement, such as reproducibility or repeatabil-
ity conditions, as the closeness of agreement between 
indications or measured temperature values acquired 
by replicate measurements on the same objects. Accord-
ingly, repeatability is the precision of measurement 
achieved by replicate measurements over a short period 
of time under a repeatability measurement condition 
that comprises the same measurement procedure, 
measuring system, operator, operating conditions and 
location. Similarly, reproducibility is the precision of 
measurement under a reproducibility measurement 
condition that includes repeated measurements at 
distinct locations, using different measuring systems 
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and operators. The most frequently reported figures of 
merit in the literature on luminescence thermometry 
are the sensitivity and temperature resolution. The sen-
sitivity (S) of a luminescence thermometry measuring 
system is defined as a quotient of the change in an indi-
cation and the change in the temperature value and it is 
expressed in (unit of indication/K]:

S
Q

T
.=

∂
∂

� (11)

Generally, sensitivity depends on the value of the 
quantity being measured, so it is not particularly 
suitable for the comparison of results obtained with 
different measuring systems. For example, let us assume 
a value of an intensity of emission as an indication. 
Even with the same measuring system, the indication 
may be different if measured with different detection 
amplification gains or with different intensity of 
excitation. Consequently, the change in the indication 
with temperature, i.e. the sensitivity, will be different. 
Frequently, sensitivity is called absolute sensitivity to 
distinguish it from the term relative sensitivity, which 
is defined as the ratio of sensitivity and indication:

S
Q

Q

T

1
.R =

∂
∂

� (12)

Relative sensitivity is, in fact, the normalized value of 
sensitivity with respect to the indication; it is expressed 
in K−1 and is suitable for the comparison of results. 
Sometimes, relative sensitivity is multiplied by 100 
and presented as a percentage change in the indication 
value per unit change in the temperature, %K−1. 
Temperature resolution (∆Tmin) is the smallest change 
in a temperature that causes a perceptible change in the 
indication; it is presented in kelvins and is calculated 
as the ratio of uncertainty (expressed by the standard 
deviation, σ) and sensitivity [47]:

T
S

.min
σ

∆ =� (13)

Temperature resolution strongly depends on the 
characteristics of a measuring system (for example, 
on the noise), but it also depends on the indication 
value. The spatial resolution of a measuring system 
is defined as the minimum distance between points of 
a measurement (∆xmin) that can be resolved under a 
temperature resolution of the system [53], and can be 
calculated as [54]:

x
T

.
T

x

min
min

d

d

∆ =
∆

� (14)

However, the spatial resolution is restricted by the 
Rayleigh diffraction limit, which can be calculated 
from the maximal wavelength of the emission used 
in the measuring system and its numerical aperture. 
The ability of a luminescence temperature measuring 
system to follow temporal changes in temperature is 
presented by its temporal resolution (∆tmin) which 
is defined as the minimum period of time between 

measurements capable of resolving a temperature 
higher than the temperature resolution [53]:

t
T

.
T

t

min
min

d

d

∆ =
∆

� (15)

3.  Temperature sensing from spectral 
features of lanthanide-downshifting 
emission

Among different read-outs of temperature from 
spectral features of luminescence, temperature 
eva luat ion by  re la t ive  emiss ion- intens i t y 
measurements (ratiometric intensity measurements) 
are of particular importance and prevalently used 
with lanthanide-doped metal oxides and salts. This 
is because ratiometric measurements alleviate 
problems occurring with fluctuations in excitation and 
electronic drifts in detection and, more importantly, 
because ratiometric methods are self-referencing, i.e. 
measurements do not have to refer to any temperature 
standard. Ratiometric read-outs of temperature 
can be successfully realized with any combination 
of lanthanide emissions, whether they come from 
single or multiple emission centers, providing that 
temperature dependences of these emissions have 
distinct behaviors.

3.1.  The ratiometric method utilizing emissions 
from closely separated excited levels of trivalent 
lanthanide ions
The luminescence intensity ratio (LIR) of emissions 
from closely separated excited levels is by far the 
most utilized read-out of temperature in methods 
employing lanthanide ions. Two excited energy states 
of lanthanide ions are thermally coupled when they 
are separated by an energy difference of ~2000 cm−1 
or less, which means that they are separated by an 
energy gap sufficiently small to permit the promotion 
of electrons to the higher energy state from a lower one 
using thermal energy [47]. In this case, both states share 
the electronic population according to Boltzmann’s 
distribution,

N N E k Texp ,H L B( / )= ⋅ −∆� (16)

where NH and NL are the number of electrons in 
the higher and lower excited state, respectively, ΔE 
is the energy difference between these states, kB is 
Boltzmann’s constant, and T is absolute temperature. 
Then, the LIR of emissions from higher (IH) and lower 
(IL) excited states can be approximated as follows [21]:

T
I T

I T
C

g A h

g A h

E k T B E k T

LIR

exp / exp / ,

H

L

H H H

L L L

B B

( ) ( )
( )

( ) ( )

ν
ν

= = ⋅

⋅ −∆ = ⋅ −∆

�

(17)

where h is Planck’s constant, g is the degeneracy of the 
excited state, A is the spontaneous emission rate, ν is the 
emission frequency, while H and L denote ‘higher’ and 
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‘lower’ energy states. At low temperatures the higher 
energy state will not be populated because electrons 
do not have enough thermal energy to bridge the 
energy gap, and because the non-radiative relaxation 
rate from the higher to lower energy state is very 
large for the closely spaced states. Therefore, the LIR 
read-out scheme has a low-temperature bound that 
is proportional to ∆E, so that the smaller the ∆E, the 
lower the temperature from which LIR can be used. As 
temperature increases, the higher energy state becomes 
populated, and hence the emission from this state 
gradually increases in intensity, at the expense of the 
population of the lower state. However, both emissions 
lessen in intensity because of temperature quenching 
(as described in the section 2.1) until one of them, or 
both, become undetectable. The upper temperature 
bound of LIR applicability thus depends mainly on 
the phonon spectrum of the host material and the 
type of lanthanide ion involved. One should note that 
measurement uncertainties become higher near these 
limits. One should also note that with the LIR method 
it is possible to use any emissions providing that they 
originate from two thermally coupled excited levels. 
For example, it is possible to use any combination of 
emissions from 5D1  →  7FJ and 5D0  →  7FJ transitions of 
Eu3+ ion.

For the assessment of the material performance in the 
LIR technique, experimental data are fitted to the theor
etical equation (17) to obtain B and ∆E. However, the 
natural logarithm of equation (17) shows that log(LIR) 
has a linear dependence on inverse temperature:

B
E

k T
log LIR log

1
.

B

( ) ( )= −
∆
⋅� (18)

The values of ∆E/kB and log(B) can be easily found as 
the line-slope and intercept with y-axes of the log(LIR) 
versus 1/T linear fit, respectively. Expressions for the 
absolute and relative sensitivities of LIR measurements 
can be derived from equations (11), (12) and (17):
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It should be noted that both sensitivities are functions 
of temperature; when reporting their values it is 
important to state for which temperature they were 
calculated. For example, for any material the value of 
relative sensitivity at 300 K reduces by 20% at 335 K, 
by 50% at 424 K and by 90% at 950 K (if still in a 
measurement range). The relative sensitivity crucially 
depends on the type of lanthanide ion used, that is, on 
the energy difference between its thermally coupled 
excited states; the larger the ∆E the higher value of 
relative sensitivity. The value of ∆E of a particular ion 
just slightly varies between different hosts (max. up to 
few hundreds cm−1). Therefore, relative sensitivities 
of LIR using particular lanthanide ions will be pretty 

much the same irrespective of the host material. The 
thermally coupled energy levels of different trivalent 
lanthanide ions that are commonly exploited by 
LIR technique are given in table 1 and schematically 
presented in figure 5.

The thermally coupled excited levels of Eu3+ ions (4f6 
electron configuration) whose emissions are utilized for 
LIR are 5D1 and 5D0, which are separated by approxi-
mately 1750 cm−1, figure 5(a). This is, in fact, the larg-
est energy gap among all trivalent lanthanide ions used 
for LIR thermometry and, therefore, LIR thermometry 
with Eu3+ has the worst low-temperature boundary, but 
the highest relative sensitivity. In the case of Dy3+ ions 
(4f9 electronic configuration) LIR uses emissions from 
the 4I15/2 and 4F9/2 adjacent excited levels (figure 5(b)), 
and for Sm3+ (4f5 electronic configuration) emissions 
from the 4F3/2 and 4G5/2 levels are used (figure 5(c)). In 
both cases, the energy difference between the levels is 
approximately 1000 cm−1. The energy levels of inter-
est for Nd3+ (4f3 electronic configuration) are the 4F7/2, 
4F5/2 and 4F3/2, figure 5(d). The emissions from the 4F5/2 
and 4F3/2 levels are commonly used for LIR (the energy 
difference is 1000 cm−1). In addition, the ratios of emis-
sions from the 4F3/2 Stark sub-levels are also utilized, but 
with low relative sensitivity because of the small energy 
gap between the sub-levels (of the order of 100 cm−1). 
In the case of Pr3+ (4f2 electronic configuration) the LIR 
method can use emissions from the 3P1  +  1I6 and 3P0 
levels, which are separated by approximately 580 cm−1 
(figure 5(e)). LIR using Er3+ ions (4f11 electronic 
configuration) uses the emissions of the 2H11/2 and 4S3/2 
levels (an energy gap of approximately 780 cm−1), as 
shown in figure 5(f). Ho3+ (4f10 electronic configura-
tion) presents three combinations of thermally coupled 
levels: 5F4–5S2, 5F2,3–3K8, and 5G6–5F1 whose emissions 
can be utilized for LIR thermometry (figure 5(g)). Tm3+ 

Table 1.  Summary of thermally coupled energy levels of different 
trivalent lanthanide ions that are commonly exploited by LIR 
technique, emission colors, usual energy difference between 
coupled levels (∆E), and theoretical relative sensitivity at 300 K. 
a: low energy Stark component, b: high energy Stark component.

Ion

Coupled  

excited levels
Emission 

color

∆E 

(cm−1)

Relative 

sensitivity at 

300 K (%K−1)High Low

Eu3+ 5D1
5D0 Green/red 1750 2.80

Dy3+ 4I15/2
4F9/2 Blue 1000 1.60

Sm3+ 4F3/2
4G5/2 Green/ 

orange/red

1000 1.60

Nd3+ 4F5/2
4F3/2 NIR 1000 1.60

Nd3+ 4F3/2 b 4F3/2 a NIR 100 0.16

Pr3+ 3P1
3P0 Green or 

red

580 0.93

Er3+ 2H11/2
4S3/2 Green 780 1.25

Ho3+ 5F4
5S2 Green 120 0.19

Tm3+ 3F2,3
3H4 Red/NIR 1700 2.72

Tm3+ 1G4 b 1G4 a Blue 100 0.16

Yb3+ 2F5/2 b 2F5/2 a NIR 680 1.09
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(4f12 electronic configuration) has two couples of adja-
cent thermally coupled levels, 3F2,3 and 3H4, and 1G4(a) 
and 1G4(b), whose emission intensity ratios are strongly 
temperature-dependent (figure 5(h)). In the case of 
Yb3+ (4f13 electronic configuration), thermometry can 
be based on the LIR of the emissions of the 2F5/2 Stark 
sublevels (an energy difference of 680 cm−1), as shown 
in figure 5(i).

It is important to note that table 2 presents ∆E val-
ues obtained by the fitting of experimental LIR temper
ature dependences to the theoretical model given by 
equations (17) or (18). Quite frequently, this value devi-
ates from the value obtain spectroscopically (as a differ-
ence between respected emission barycenters—∆ES) 
or from the value obtained by theoretical elaborations. 
The difference can be quantified through the error 
parameter E E E/S Sδ = ∆ −∆ ∆  [23]. A large value of 
δ implies either an error in the measurement and fit-
ting procedure, or that some other mechanism apart 
from Boltzmann’s re-distribution of the population 
takes place in materials as the temperature increases. 
Such mechanisms may be, for example, energy trans-
fers between thermally coupled levels, other levels or 
charge-transfer bands.

3.2.  Ratiometric methods that exploit emissions 
from multiple emission centers in one host
The LIR read-out of temperature is not necessarily 
limited to the use of emissions from adjacent excited 
energy levels. It can be used with any combination of 
emissions that originate from one or more emission 
centers. An ideal case in terms of a simple theoretical 
interpretation would be the one where one of the 
emissions does not change in the temperature range 
of measurement, IR  =  const. Then, LIR temperature 
dependence could be explained using the theoretical 
models described in section 2.1, and would also have 
the same trend as the temperature dependence of the 
excited-state lifetime [92]. On the basis of equation (6), 
the following expression can be easily derived:

τ= = ⋅ ⋅ = ⋅
+

T
I T

I
C k T C

k

k k T
LIR ,

R
1 R

R

R NR
( ) ( ) ( )

( )
�

(20)

where C1 is a constant that is characteristic for the 
measuring system and the investigated material. This 
case can be realized using the emissions of rare earths 
incorporated into the wide band-gap nanocrystalline 
host materials whose trap emission can serve as 

Figure 5.  Schematic representation of the thermally coupled excited levels used in LIR read-outs of temperature for various 
trivalent lanthanide ions. (a) Eu3+, (b) Dy3+, (c) Sm3+, (d) Nd3+, (e) Pr3+, (f) Er3+, (g) Ho3+, (h) Tm3+, (i) Yb3+.
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a reference emission. This concept was originally 
demonstrated with Zn2SiO4:Mn2+ using the ratio 
of the transition-metal ion emission and the trap 
emission of the host material [93]. Nikolić et al [92] 
and Dramićanin et al [94] have demonstrated LIR 
thermometry in Eu3+-doped and Sm3+-doped anatase 
TiO2 nanocrystals, respectively, where the trap emission 
of TiO2 [95], with maximal value at 438 nm, was 
considered temperature-independent and served as a 
reference. The presence of dopant luminescence centers 
led to the appearance of energy states within the band 
gap of TiO2, shown in figure 6, whose emissions were 
strongly quenched by temperature.

By monitor ing the LIR of  the 613 nm 
(Eu3+5D0  →  7F2 transition) and 438 nm emissions (the 
trap emission), luminescence thermometry was accom-
plished over the 307–533 K temperature range with a 
maximum relative sensitivity of 2.43%K−1@533 K and 
a temperature resolution of 0.46 K. The ratio of Sm3+ 
emission at 612 nm (4G5/2  →  6H5/2 transition) and the 
trap emission provided measurements over a slightly 
smaller temperature range (307–483 K), but with an 
excellent relative sensitivity of 10.54%K−1@328 K. In 
addition, in both cases the thermometry using emis-
sion-lifetime temperature dependences has been dem-
onstrated over the same temperature intervals. The 
use of the trap emission as a reference emission has 
also been demonstrated with Eu3+-doped Gd2Ti2O7 
nanocrystals [61] (303–423 K range, relative sensitiv-
ity from 0.14 to 0.46%K−1) and Dy3+-doped Gd2Ti2O7 
[48] nanocrystals (293–423 K range, relative sensitivity 
from 0.133 to 1.127%K−1), along with the conventional 
LIR of emissions from two excited levels of rare-earth 
ions. Recently, Das et al [96] have implemented the 
same approach using the ratio of the trap emission of 
a SrZrO3 host and the emission of a Eu3+ dopant over 
the 293–423 K range with a maximum relative sensi-
tivity of 2.22%K−1 at 460 K. In addition, the authors 
have demonstrated temperature read-out from the 
Eu3+ emission decays. It is worth noting that these mat
erials provide two LIR read-out schemes. For example, 
by combining two LIR approaches it was possible to 
obtain a relative sensitivity higher than 0.9%K−1 over 
the complete measurement range [48].

The LIR of arbitrary emissions of YAG:Tb3+ has 
been demonstrated over the 293–423 K range [97]; 
temperature dependence of the 541 nm/547 nm emis-
sion ratio was approximated by a polynomial function. 
The LIR of two emission centers in one host has been 
demonstrated by Tripathi et al [98] for Sm3+ (0.25 
mol%) and Eu3+ (1 mol%) co-doped CaO–Li2O–
B2O3–BaO. A similar approach to thermometry has 
been realized using Ho3+–Tm3+ co-doped Y2O3 [99], 
but employing up-conversion emission. Ding et al [100] 
have shown that the LIR between the Tb3+ (5D4  →  7F5 
transition) and Eu3+ (5D0  →  7F2 transition) emissions 
in β-NaYF4:Ce3+,Tb3+,Eu3+ microcrystals is linearly 
related to the temperature over the 300–573 K range; 
the observed maximum relative sensitivity is 0.46%K−1. 

The LIR between the Tb3+ and Eu3+ emissions has also 
been investigated by Marciniak and Bednarkiewicz 
[101] using LiLaP4O12:Tb3+,Eu3+ nanocrystals. The 
thermometers studied could be applied to a 77–600 K 
range with a relative sensitivity up to 1%K−1. The LIR of 
emissions from two lanthanide ions, the 1060 nm emis-
sion of Nd3+ and the 980 nm emission of Yb3+ has been 
demonstrated by Marciniak et al [102]. They used core–
shell nanoparticles that consisted of an Yb–Er co-doped 
β-NaYF4 core and an active Yb–Nd co-doped β-NaYF4 
shell (figure 7(A)). Thermometry was achieved from 
the downshifting emission after an ~808 nm excitation 
with 2.1%K−1 relative sensitivity, but also from the ratio 
of upconversion emissions coming from the Er3+4S3/2 
and 2H11/2 levels (figure 7(B)).

Wang et al [103] were the first to show the LIR 
between emissions from transition metal and lantha-
nide ions co-doped into the same host. ZnS:Mn2+/
Eu3+ quantum dots showed the 595 nm emission 
from the Mn2+4T1  →  6A1 transition and the 612 
and 588 nm emissions from the Eu3+5D0  →  7F2 and 
5D0  →  7F1 transitions, respectively. The ratio of 
these intensities yielded a linear relationship over the  
303–413 K range. The LIR of transition metal and 
lanthanide ion NIR (near-infrared) emissions have 
been recently demonstrated by Marciniak et al [104] 
using LiLaP4O12:Cr3+,Nd3+ nanocrystals. The wide 
operating range (113–453 K), high relative sensitivity 
of  4.89%K−1 at 323 K, and high repeatability  
(a variance lower than 0.3% between measurements) 
shows the excellent potential of this method for 
operating in the NIR range.

Recently, using nano- and microcrystals of 
Y2O3:Eu3+, Souza et al [105] have reported a new rati-
ometric read-out of temperature based on the ratio 
between the emission intensities of the 5D0  →  7F4 trans
ition when the 5D0 emitting level is excited through the 
7F2 or 7F1 level. They were able to measure temperatures 
between 180 and 323 K with a relative sensitivity rang-
ing from 0.7 to 1.7%K−1. With this approach the cali-
bration factor can be calculated from the Eu3+ emission 
spectrum, avoiding the need for new calibration proce-
dures whenever the thermometer operates in different 
media.

4.  Temperature sensing from changes 
in the temporal behavior of lanthanide 
emission

Generally, time-integrated measurements are simpler 
than time-resolved ones since they require less 
complex instrumentation, and they are also more 
regularly practiced these days. However, being simply 
an average of the time-resolved phenomena, time-
integrated measurements do not account for all the 
information imparted by luminescence. It should be 
noted that all the aforementioned methods can also 
be realized through a pulsed excitation and, under 
certain conditions, with delayed detection. In fact, 
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Table 2.  A summary of metal oxides and salts used in thermometry based on the LIR of downshifting emissions from closely separated 
excited levels of lanthanides along with data on their shape, method of preparation, working temperature range, relative (SR) and absolute 
sensitivity (S), as well as the energy difference between coupled levels (∆E) given according to literature reports.

Ion Material Shape Synthesis Range (K) SR (%K−1) S (K−1)

∆E 

(cm−1) Ref.

Eu3+ LiNbO3 C Czochralski 303–723 0.0007 2720 [55]

Eu3+ Gd2O3 P Combustion 300–800 0.0007@800 K 1500 [56]

Eu3+ NaEuF4 P Hydrothermal 298–523 0.43@293 K 1690 [57]

Eu3+ Lu2O3 NC PCS 293–823 0.0004@823 K 1596 [58]

Eu3+ GdAlO3 P Solid-state 293–773 2.96@293 K 1745 [59]

Eu3+ CaEu2(WO4)4 P Solid-state 300–500 0.014@300 K 1068 [60]

Eu3+ Gd2Ti2O7 NC PCS 303–423 0.95@423 K 0.015@423 1718 [61]

Eu3+ YNbO4 P Solid-state 303–803 0.0035@700 K 1617 [62]

Eu3+ (Y0.75Gd0.25)2O3 NC PCS 293–773 0.0049@823 1633 [63]

Eu3+ Tellurite G MQ 293–480 2.75@300 K 1725 [64]

Eu3+ Calibo G MQ 293–550 2.75@300 K 1725 [64]

Eu3+ GdVO4 P Solid-state 298–823 0.0168@298 K 1530 [37]

Dy3+ BaYF5 NC Solvothermal 293–773 1.22@293 K 1047 [65]

Dy3+ BaYF5 a NC Solvothermal 293–693 1.11@293 K 954 [65]

Dy3+ Gd2Ti2O7 NC PCS 293–443 1.68@293 K 1002 [48]

Dy3+ Al2O3 P Combustion 298–723 0.0014 1117 [66]

Dy3+ Y3Al5O12 NC Co-precipitation 293–623 [67]

Dy3+ Y3Al5O12 CT Paint 300–900 [68]

Dy3+ Y3Al5O12 P Commercial 293–1573 [69]

Dy3+ B3+–N3−–Y3Al5O12 P Sol–gel 500–1500 [70]

Dy3+ Y4Al2O9 C MP 296–1273 0.003@873 K 1000 [71]

Dy3+ GdVO4 P Solid-state 298–678 0.01@336 K 1263 [37]

Dy3+ GdVO4 TF PLD 300–473 2.00@300 K 1270 [72]

Dy3+ LaF3 NC MQ 298–523 1245 [73]

Sm3+ Lu2O3 NC PCS 293–823 0.0004@823 K 1596 [58]

Sm3+ YNbO4 P Solid-state 303–773 0.43@500 K 0.0007@700 K 1455 [74]

Sm3+ GdVO4 P Solid-state 293–823 0.000 45@750 K 1038 [75]

Sm3+ Y2O2S P Commercial 293–1100 763 [76]

Nd3+ Gd2O3 NR Co-precipitation 288–323 1.75@288 K 1092 [77]

Nd3+ β-NaYF4 P Hydrothermal 323–673 1.12@500 K 0.0082@500 K 1001 [78]

Nd3+ La2O2S P Solid-state 30–600 1.58@300 K 987 [79]

Nd3+ La2O2Sb P Solid-state 30–600 0.18@300 K 110 [79]

Nd3+ LaF3 b NC Co-precipitation 298–338 0.1@298 K [44, 80]

Nd3+ α-NaYF4 b NC TD 273–423 0.12@273 K 0.0098@273 K 60 [81]

Nd3+ LiNdP4O12 b NC Co-precipitation 200–500 0.22@313 K 70 [82]

Nd3+ Y3Al5O12 b NC Combustion 288–343 0.15@300 K 95 [83]

Nd3+ YVO4 b NC Pechini 298–333 0.19@298 K 90 [84]

Nd3+ YVO4 c NC Pechini 298–333 0.15@298 K 90 [84]

Nd3+ P–K–Ba–Al G MQ 300–850 1.5@300 K 957 [85]

Nd3+ Silica F 1.68@293 K [86]

Pr3+ (K0.5Na0.5)NbO3 P Solid-state 293–456 5558 [87]

Pr3+ β-NaYF4 P Hydrothermal 120–300 0.731@300 K 457 [88]

Pr3+ Lithium tellurite G MQ 273–423 0.97@300 607 [89, 90]

Er3+ Yttria-stabilized 

zirconia

P Reverse co-precip-

itation

123–423 0.0015@423 64 [91]

a Using different emissions for LIR.
b LIR of emissions for Stark components of 4F3/2 (transition to 4I9/2).
c LIR of emissions for Stark components of 4F3/2 (transition to 4I11/2).

Abbreviations: shape: P—powder, C—crystal, NC—nanocrystal, NR—nanorods, CT—coating, F—fiber, TF—thin film; synthesis: 

MQ—melt-quenching method; PCS—polymerized complex solution method, MP—micro-pulling-down method, TD—thermal 

decomposition, PLD—pulsed laser deposition).
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delayed detection can eliminate some problems that 
compromise time-integrated measurements, such as 
strong background luminescence, and thus improve 
measurement accuracy. However, delays in detection 
should be considerably shorter than the lifetimes of 
any of the emission involved. Nonetheless, in terms 
of luminescence thermometry, the time-resolved 
measurements of interest are the measurements of 
emission decay times and rise times.

4.1.  Decay-time-based sensing of temperature
Time-domain and frequency-domain methods are 
commonly used for measurements of emission decay 
times; the first method utilizes pulsed excitation sources 
while the latter uses intensity-modulated continuous-
wave light sources. So far, only a few reports have been 
published on temperature sensing from the frequency-
domain measurements of emission decay times and 

none, to the best of my knowledge, which are related 
to lanthanide luminescence. Reports considering the 
use of the time-domain method for the read-outs of 
temperature from decay times, on the other hand, are 
extensive.

The temperature dependence of the excited-state 
lifetime, as discussed in section 2.1, results from the 
temperature dependence of the non-radiative trans
ition rate. Generally, it shows two distinctive behaviors 
which can be easily understood from equation (2) when 
rewritten in the following form:

T
T

T k T1
.R

R NR

( ) ( )
( ) ( )

τ
τ
τ

=
+ ⋅

� (21)

At low temperatures, where the values of the non-
radiative rate are negligible, the lifetime is equal to 
the radiative lifetime, .Rτ τ≅  In principle, radiative 
lifetime only slightly changes with temperature: 

Figure 6.  Schematic representation of the energy levels and bands of TiO2:Eu3+ and TiO2:Sm3+ anatase nanoparticles.

Figure 7.  (A) The Yb–Er/Yb–Nd co-doped core–shell β-NaYF4 nanothermometer, (B) schematic illustration of the radiative and 
nonradiative energy pathways (reproduced from [102] with permission from The Royal Society of Chemistry).
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T Texp ,R R0( ) ( )  τ τ α= − ⋅ w h e r e  α  i s  t h e 
phenomenological parameter of order 10−4 K−1 or 
less. Therefore, at low temperatures lifetime only 
slightly decreases with temperature increase or does 
not change at all. As a consequence, the decay-time 
method is practically insensitive to temperature 
changes. This temperature range of insensitive 
response is followed by one in which lifetime steeply 
decreases with temperature due to a strong increase in 
the non-radiative rate (equations (7), (9) and (10)). 
The temperature point of the transition between two 
regions essentially depends on the energy difference 
between lanthanide’s excited level and the closest 
lower energy level or charge-transfer band and on 
the phonon energy of the host material. Examples of 
lifetime temperature dependences of some lanthanide-
doped metal oxides and salts are given in figure 8. 
The temperature region of decay-time insensitivity 
represents the major obstacle to its use. This region 
frequently covers the physiologically relevant 
temperature range and thus prevents the use of many 
probes for decay-time read-out of temperature in 
biomedicine. On the other hand, in the temperature 
region of the steep decay-time decrease the method is 
very sensitive. One should note that the uncertainties 
in decay times are generally smaller than those in 
emission intensities and that current technology 
facilitates measurements of very short decay times. 
For these reasons, decay-time methods have the 
potential to present better temperature resolutions 
than intensity-based measurements and have larger 
high-temperature operating bounds. An overview of 
lanthanide-ion-doped metal oxides and salts used for 
decay-time read-out of temperature is given in table 3.

4.2.  Rise-time-based sensing of temperature
The temporal dependence of an emission generally 
shows three distinct behaviors, as described in 
figure 9(a). In the first time period, the emission follows 
(resembles) the time dependence of the excitation pulse. 

In the second, the emission intensity rises due to the 
accumulation of electrons in the excited level, and then, 
in the third period, the emission decreases due to the 
processes that were discussed in previous sections. The 
first two periods are relatively short by comparison with 
the third, and in routine analyses they are frequently 
not measured (so-called ‘dead time’ [129]). However, 
the initial rise of an emission may be very useful for 
the determination of temperature. Ranson et al [130] 
were the first to report the temperature dependence 
of the rise time of the emission from the 5D0  →  7F2 
transition of Eu3+ incorporated into Y2O3. They 
found that the rise time exponentially decreases over 
the 298–1073 K temperature range; from the reported 
data it is possible to estimate that the relative sensitivity 
was  ≈3%K−1@298 K and  ≈0.2%K−1@1073 K. Later, 
Allison et al [131] measured the emission rise time of 
the same material (but doped with 0.5 at% of Eu3+). 
They found a linear decrease in rise-time values 
from 110 to 9 s µ  over the 295–973 K temperature 
range; an absolute sensitivity of 0.15 sµ ·K−1 over the 
complete temperature range and relative sensitivities 
of 0.14%K−1@295 K and 1.66%K−1@973 K may be 
estimated from the reported data.

The accumulation of electrons on the 5D0 excited 
level of Eu3+ ions in the C2 site of Y2O3 occurs at short 
times after excitation by a fast transition from (i) the 
higher excited states (5D1, 5D2, …), (ii) by energy trans-
fer from neighboring Eu ions situated in C3i sites, and 
(iii) by energy migration from other Eu ions, as shown 
in figure 9(b). Then, according to Ranson et al [130] 
the number of electrons in the emitting level, N, can be 
described as:

N N N t1 exp / ,0 1 r[ ( )]τ= + ⋅ − −� (22)

where N0 stands for the population directly excited 
within the ion, N1 stands for the population 
accumulated by the transition from neighboring 
ions, and rτ  is a rise-time constant defined as the time 
elapsed until emission intensity reaches (1  −  1/e) 

Figure 8.  Temperature dependences of emission-lifetime values of some lanthanide-doped metal oxides and salts (adapted from  
19 with permission from Elsevier).
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of its maximum value. Taking it that I N∝ , the 
temporal dependence of emission intensity, I(t), can 
be described by:

I t A B t t1 exp / exp / ,r d( ) { [ ( )] } ( )τ τ= + ⋅ − − ⋅ −
� (23)

where dτ  is the decay constant, and A and B are intensity 
parameters.

Khalid and Kontis [132] have shown that it is pos-
sible to perform 2D-surface thermal imaging using 
the emission rise time of Eu3+ in Y2O3; however, the 
uncertainty of the measurement was relatively high. 
In addition, they reported (for the first time) that 
the time at which the emission reaches its maximum 
value (‘time-to-max’) can be used as an excellent 
read-out of temperature. Recently, Lojpur et al [133] 
have investigated the rise time of Eu3+ emission in 
SrY2O4 over the 298–473 K temperature range. In the 
0.5 at% doped sample, the rise-time value linearly 
changed from 138 to 13 sµ , as shown in figure 10(a), 
which corresponds to an absolute sensitivity of 0.66 

sµ ·K−1 over the complete temperature range and a 
quite high relative sensitivity of 5.53%K−1@473 K. 
In addition, the time-to-max temperature depend
ence was measured; the dependence was linear over 
the complete temperature range, and this read-out 
provided absolute and relative sensitivities of 1.29 sµ
·K−1 and 0.64%K−1@473 K, respectively. Figure 10(b) 
shows the temporal behavior of Eu3+ emission in 
SrY2O4 at different temperatures. The emission rise 
time of BaY2ZnO5:Eu3+ has been investigated by Li 
et al [134]; the rise-time value decreased from 207 

sµ  at 330 K to 16 sµ  at 510 K, with corresponding 
absolute and relative sensitivities of 1.1 sµ ·K−1 and 
2.2%K−1@490 K.

It is important to note that the emission of Eu3+ 
was used in all reports, and that a relatively small num-
ber of reports have been published on rise-time ther-
mometry despite the fact that this read-out scheme 
provides very good performance. Read-out of temper
ature from time-to-max values could be quite benefi-
cial. First, unlike decay- or rise times which need data 
processing for their evaluation, time-to-max values 
can be read simply. Consequently, measurements of 
time are very accurate, so the time-to-max values can 
be determined with small measurement errors, which 
in combination with relatively large sensitivities, may 
provide luminescence temperature measurements 
with an excellent temperature resolution. However, 
the temperature resolution of the method has not 
been demonstrated yet in the literature. It should also 
be noted that the choice of dopant ion concentration 
is very important for this method. It has been shown 
[133, 134] that the rise-time value strongly reduces 
with an increase in dopant concentration and that 
thermometry with low-doped samples provides much 
better measurement ranges and sensitivity. On the 
other hand, emission intensity lessens with a decrease 
in dopant concentration, so the proper concentration 
should compromise between these two effects.

5.  Multifunctional applicability of 
lanthanide luminescence

For the longest time in human history, the vast 
majority of materials have had only one function: 
to bear loads (to provide mechanical strength), and 
were known as structural materials. As time passed 
and human knowledge increased, new materials with 
novel functions were discovered, e.g. those capable 
of conducting electricity, emitting light, or showing 
thermal resistance, sometimes simultaneously. We are 
now witnessing a new phase in material research, where 
it is expected that materials and structures will perform 
several functions; it is reasonable to believe that in the 
near future most, if not all, materials and structures 
will be ‘smart’, ‘tailored’ multifunctional materials. 
These type of materials are designed to meet specific 
requirements through tailored physical properties 
which can change with the variation in certain external 
conditions; they can be defined as materials of specific 
properties favorable to meeting otherwise unattainable 
performance. Multifunctional design incorporates 
materials, structures and material systems that have the 
capacity to perform multiple functions through careful 
combinations of structural properties and at least one 
additional functional capability, as required by the 
system application.

Lanthanide-doped metal oxides and salts, as well 
as all luminescent materials, are ideal candidates for 
the development of multifunctional materials. This is 
because the luminescence of lanthanide ions is already 
used for a great number of diverse functions and host 
materials may have their own functional abilities. It is 
well known that lanthanide luminescence can be used 
for lasing, lighting, bio-labeling, imaging and counter-
feiting, to name only a few important functions and 
applications. Luminescence changes its characteristics 
in the presence of chemical species or as a response to 
physical stimuli (temperature, pressure, electric and 
magnetic fields, radiation of high energy, etc). The host 
material may be ferromagnetic, ferroelectric or it can, 
for example, provide its pristine emission. With this in 
mind, it is reasonable to expect that with many well-
known materials, multifunctionality (polyvalence) 
may be achieved by the addition of luminescent ther-
mometric functionality. In addition, it is possible to 
create a completely new multifunctional material with 
thermometric function by designing a structure with 
adequate luminescent and other physical properties (at 
least one).

Among the very first multifunctional materials 
with added thermometric function were thermal and 
environmental barrier coatings. Through doping with 
lanthanide ions it was possible to measure the temper
ature of coatings at and below surfaces as well as under 
transient conditions [7]. More recently it has been 
shown that the ratio of green and red emissions of Er3+ 
(2H11 and 4S3/2  →  4I15/2 transitions) ions doped in a fer-
roelectric BaTiO3 host changes in an electric field when 
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Table 3.  An overview of lanthanide-ion-doped metal oxides and salts used for decay-time read-out of temperature (abbreviations: shape: 
CT—coating, P—powder, NC—nanocrystal, C—crystal, F—fiber; synthesis: PCS—polymerized complex solution method, RFMS—radio 
frequency magnetron sputtering, CVD—chemical vapor deposition, EB-PVD—electron beam physical vapor deposition, BT—Bridgman 
technique).

Ion Material Shape Synthesis Range (K)

Sensitivity 

range (K) Comments Ref.

Eu3+ Y2O3 CT PCS 293–1393 790–1390 [106]

Eu3+ Y2O3 720–1473 720–1473 Sensitive to oxygen [107]

Eu3+ Y2O3 CT RFMS 290–1370 700–1300 Thin and thick films [108]

Eu3+ Y2O2S CT Commercial 350–450 350–450 4 · 10−5–1·10−6 s [109]

Eu3+ GdAlO3 P Solid-state 293–793 620–793 SR  =  2.28%K−1@793 K [59]

Eu3+ LaOF P Combustion 293–700 423–623 [110]

Eu3+ TiO2 NC Sol–gel 307–533 307–500 SR  =  2.43%K−1@400 K [92]

Eu3+ Y3Al5O12 P Solid-state 750–1470 1000–1470 2 · 10−3–2 · 10−6 s [111]

Eu3+ YAlO3 P Solid-state 750–1300 850–1300 1 · 10−3–2 · 10−6 s [111]

Eu3+ YNbO4 P Solid-state 303–800 620–773 [74]

Eu3+ Gd2O3 P Combustion 10–800 600–800 [56]

Eu3+ Gd2O3 CT CVD 300–1070 770–1070 1 · 10−3–3 · 10−6 s [112]

Eu3+ Sc2O3 CT CVD 300–1270 970–1270 1 · 10−3–6 · 10−6 s [112]

Eu3+ BaMgAl10O17 P Sol–gel 973–1473 973–1350 Eu2+/Eu3+ [113]

Eu3+ GdVO4 P Solid-state 10–750 550–750 [37]

Eu3+ TiO2 CT Dip-coating 293–673 473–673 0.26–1.14% Eu3+ [114]

Eu3+ La2O2S 390–510 420–508 Insensitive to oxygen [107]

Eu3+ La2O2S 70–325 200–325 5D2 for low T [115]

293–550 350–550 5D1 for high T

Eu3+ YSZa CT EB–PVD 300–1370 750–12 370 :τ 1 · 10−3–5 · 10−8 s [7]

Eu3+ BSASb 300–1700 700–1270 : τ 2 · 10−6–1 · 10−7 s [7]

Eu3+ Y2SiO5 P Co-precipitation 300–1470 870–1470 : τ 1· 10−3–3 · 10−7 s [116]

Eu3+ CaMoO4 P Solid-state 300–1000 600–1000 : τ 3 · 10−4–4 · 10−7 s [117]

Eu3+ LaPO4 P Solid-state 300–1180 700–1180 : τ 3· 10−3–5 · 10−7 s [117]

Eu3+ LaVO4 P Solid-state 300–820 500–820 : τ 7 · 10−4–7 · 10−6 s [117]

Eu2+ BaMg2Al10O17 P Commercial 290–1300 700–1300 : τ 1 µs–10 ns [118]

Eu2+ (Sr,Mg)2SiO4:Eu 290–720 500–700 : τ 5 ns at 700 K [118]

Dy3+ GdVO4 P Solid-state 10–600 480–600 [37]

Dy3+ GdAlO5 300–1470 1170–1470 : τ 3 · 10−4–4 · 10−6 s [7]

Dy3+ Y3Al5O12 P Commercial 290–1970 1370–1970 : τ 4 · 10−4–2 · 10−6 s [119]

Dy3+ Al2O3 CT Sol–gel 293–1473 1115–1473 Comb. with Cr3+ [120]

Dy3+ YSZa CT EB–PVD 300–1350 670–1350 : τ 2 · 10−4– 3 · 10−8 s [7]

Dy3+ Y2SiO5 P Co-precipitation 300–1700 1170–1700 : τ 7 · 10−4–1 · 10−6 s [7]

Dy3+ Y2SiO5 P Co-precipitation 300–1700 1170–1700 : τ 7 · 10−4–1 · 10−6 s [7]

Dy3+ BSASb 300–1700 1270–1700 : τ 6 · 10−4–1 · 10−7 s [7]

Sm2+ BaClF P Solid-state 293–600 293–473 Silicon fiber [121]

Sm2+ BaFCl C BT 10–470 100–470 : τ 8 · 10−4–5 · 10−7 s [122]

Sm2+ CaFCl C BT 10–300 100–300 : τ 5 · 10−5–2 · 10−7 s [122]

Sm2+ SrFCl C BT 10–470 100–470 : τ 4 · 10−4–3 · 10−7 s [122]

Sm3+ YNbO4 P Solid-state 303–773 620–750 [74]

Sm3+ TiO2 NC Sol–gel 297–383 300–370 SR  =  10.15%K−1@340 K [94]

Sm3+ Y2O2S P Commercial 400–1425 900–1425 [76]

Sm3+ YSZa CT EB–PVD 300–1300 300–1300 : τ 2 · 10−3–5 · 10−7 s [7]

Pr3+ CaTiO3 P Solid-state 300–620 300–620 : τ 5 · 10−5–3 · 10−8 s [117]

Tb3+ CaMoO4 C Flux 10–297 10–297 [123]

Tb3+ CaWO4 C Flux 10–297 10–297 [123]

Tb3+ Y2SiO5 P Co-precipitation 300–1570 1220–1570 : τ 3 · 10−3–3 · 10−6 s [7]

Tb3+ BSASb 300–1670 700–1670 5D4, 5D3 [7]

Tb3+ GdAlO3 P Co-precipitation 300–1500 1070–1500 : τ 2 · 10−3–1 · 10−7 s [124]

Tm3+ Y3Al5O12 P Commercial 290–1770 1270–1770 Up to 1970 K doped with Dy3+/Tm3+ [119]

Tm3+ Al2O3 CT Sol–gel 293–1473 1157–1473 Could be comb. with Cr3+ [120]

(Continued)
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the field intensity changes [135]. The ratio of these emis-
sions is exactly that which is used in LIR thermometry 
for both downshifting and upconversion emissions. 
When Gd3+ ions are constituents of the host matrix 
the material exhibits paramagnetic properties and it is 
able to sense magnetic fields. It has been shown [136, 
137] that GdVO4 nanoparticles can act as T1-positive 
contrast agents for magnetic resonance imaging (MRI) 
because Gd3+ ions possess unpaired electrons that 
efficiently alter the relaxation time of the surrounding 
water protons, and that they also provide luminescence 

imaging and controlled drug release functionalities. 
Gavrilović et al [138] have added thermometric func-
tionality to ultra-small GdVO4 nanoparticles after 
doping with Er3+ ions. The LIR method, which uses 
the emissions from 2H11/2 and 4S3/2  →  4I15/2 transitions 
provided thermometry over the 307–473 K range, 
with a relative sensitivity of 1.11%K−1 at 307 K and a 
temperature resolution of better than 1 K. The emis-
sion of Er3+ in Gd2O3 nanoparticles exhibits a strong 
decrease in intensity when nanoparticles are placed in 
a magnetic field [139]. However, the ratio of 2H11/2 and 

Figure 9.  (a) General shape of the emission-intensity temporal behavior; (b) mechanisms responsible for the accumulation of 
electrons on the 5D0 excited level of Eu3+ in Y2O3.

Figure 10.  (a) The temperature dependence of rise time and time-to-max and (b) the temporal dependence of the emission at 
different temperatures of SrY2O4:Eu3+ ([133]—adapted by permission of the PCCP Owner Societies).

Nd3+ YVO4 298–1123 970–1123 S  =  0.13 µs K−1 (>970 K) [125]

Nd3+ KGd(WO4)2 298–1023 870-–1023 S  =  0.5 µs K−1(>870 K) [125]

Nd3+ Y3Al5O12 298–1273 920–1273 S  =  0.27 µs K−1 (>920 K) [125]

Nd3+ Y3Al5O12 C 300–1100 900–1100 [126]

Nd3+ Y3Al5O12 300–488 300–488 [127]

Nd3+ Nd/Al/SiO2 CT 273–1000 273–1000 Linear T-dependence [125]

Nd3+ YP5O14 P Hydrothermal 77–700 400–700 [128]

aYSZ—yttria-stabilized zirconia (Y0.076Zr0.924O1.962).
bBSAS—barium–strontium aluminosilicate ((Ba0.75Sr0.25)Al2Si2O8).

Table 3.  (Continued)

Ion Material Shape Synthesis Range (K)

Sensitivity 

range (K) Comments Ref.
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4S3/2  →  4I15/2 emissions remains the same at a constant 
temperature, meaning that these nanoparticles are able 
to selectively sense both the intensity of the magnetic 
field (from the emission intensity) and the temper
ature (from emission intensity ratio). Nikolić et al [63] 
have showed that Eu3+-doped (Y0.75Gd0.25)2O3 scin-
tillating powder is capable of measuring temperature 
over the 293–773 K range from the ratio of 5D1 and 5D0 
emissions that were excited by high energy radiation. 
Recently, Carrasco et al [4] have demonstrated Nd3+ 
ion-doped LaF3 nanoparticles capable of in vivo pho-
tothermal heating, fluorescent tumor localization and 
intratumoral temperature sensing, figure 11.

6.  Concluding remarks

The luminescence thermometry field of research 
has continuously grown over the past few years. This 
growth is manifested by an increased number of 
publications in international scientific journals and by 
many cutting-edge applications. Today, luminescence 
thermometry is the most developed method among 
optical thermometries, leaving aside traditional 
pyrometry. Lanthanide-doped metal oxides and 
salts were among the first investigated probes, and 
even today are frequently the materials of choice. 
Thermometry may exploit both the downshifting 
emission, in the visible spectrum, but also in NIR, and 
upconversion emission of these materials, the latter of 
which has received particular attention in recent years. 

However, downshifting emissions of lanthanide ions 
are considerably more efficient and deliver stronger 
signals than upconversion emissions. Therefore, better 
signal-to-noise ratios and smaller uncertainties may 
be expected in downshifting- than in upconversion-
based thermometry. Sensitivity of upconversion-based 
thermometry is affected by measurement conditions. 
For example, it depends on the intensity of excitation, 
as recently demonstrated by Marciniak et al [140]; 
the effect may be discussed in terms of competition 
between thermalization and nonradiative depopulation 
processes. In addition, downshifting emission decays are 
quite frequently of single exponential nature, contrary 
to upconversion, which makes the interpretation of 
data easier. On the other hand, upconversion emission 
is excited by NIR radiation, thus enabling applications 
in biology and medicine.

Temperature was most frequently read from life-
times of downshifting luminescence in the early stage of 
development of luminescence thermometry; develop-
ments at that time were mostly aimed at applications 
at high-temperatures. More recently, the research focus 
has shifted to time-integrated methods, especially to the 
LIR method, and to the physiologically relevant temper
ature range. Both approaches present some advantages 
over each other. The LIR technique is found to be faster, 
simpler and requires less sophisticated instrumentation 
than the lifetime method and, therefore, it has received 
more attention lately. Generally, LIR methods pre-
sent larger relative sensitivities than lifetime ones. On 

Figure 11.  (a) Optical image of a mouse with two tumors. A solution of ‘dense’ Nd:LaF3 nanoparticles was injected only into the 
left-side tumor whereas the right-side one was used as a control. (b) and (c) Infrared fluorescence and thermal images of the same 
mouse under 808 nm (4 W cm−2) laser irradiation, respectively. The images show the fluorescent and heating signals differentially 
emitted by the treated tumor. (d) Time evolution of the temperature at the tumor surface as obtained from the analysis of infrared 
thermal images (blue circles), and the time evolution of intra-tumoral temperature obtained from the analysis of sub-tissue 
fluorescence (red squares): control (green diamonds). (reproduced from [4] with permission from Wiley).
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the other hand, to be self-referencing, lifetime meth-
ods require the monitoring of just one emission while 
time-integrated methods require the monitoring of 
two distinctively separated emissions. Measurements of 
temporal-emission changes are generally more accurate 
than emission-intensity measurements. Better values 
of uncertainties compensate for lower sensitivities, so 
time-resolved methods may provide better temperature 
resolution than the LIR ones [92, 96]. Lifetime meth-
ods suffer from small operating ranges and the low-
temperature bound can be at a relatively high temper
ature in a lot of cases. This obstacle may be overcome 
by the reading of temperature from the rise times. The 
high-temperature bound, on the other hand, is gener-
ally at higher temperatures in lifetime methods than in 
LIR. But, the performance of thermometry that uses 
materials with a single emission center, in both time-
resolved and time-integrated approaches, is mostly 
governed by the intrinsic luminescence properties of 
the dopant lanthanide ion with a fair contribution from 
the host material characteristics. The relative sensitivity 
of LIR that uses emissions from the thermally coupled 
excited levels of lanthanide ions is directly proportional 
to the energy gap between these levels. The largest energy 
gap is the one in the Eu3+ ion of about 1750 cm−1, mean-
ing that relative sensitivity varies with temperature as 

~251 800/T (%K−1) and that the maximum achiev-
able theoretical relative sensitivity of the technique is 
around SRmax ~ 2.8%K−1 at 300 K for different hosts. 
Bearing this in mind, and considering the large number 
of publications that have reported on LIR thermometry 
with different ion/host combinations, it is not reason-
able to expect that further research focused simply on 
the scrutiny of performance of different combinations 
of a single lanthanide luminescence centers and hosts 
will bring about any progress in the field. However, this 
LIR method can be further developed by improving its 
temperature resolution, which is rather low and rarely 
better than 1 K. This can be accomplished by enhancing 
measurement signals which would yield larger absolute 
sensitivities (if the signal-to-noise ratio is maintained) 
and/or by improving signal-to-noise and measurement 
procedures to lower the measurement uncertainties.

Further improvement in LIR relative sensitivities 
may be expected with the use of multiple emission cent-
ers, as discussed in section 3.2. These centers may be all 
lanthanide ions or a combination of lanthanide ions 
and other types of emission centers. Such probes may 
also provide multiple read-outs of temperature which, 
when combined, give wider operating ranges with good 
relative sensitivity and resolution. We should also note 
that the investigations into thermometry that use NIR 
emissions have just begun, and that they have poten-
tially valuable applications especially in biomedicine.

Selection of materials for the luminescence ther-
mometry probes ought to be done for the specific 
application. In this sense, measurement environment, 
temperature range of interest, adequate temperature 
resolution, the price of material and its availability, 

as well some other material properties determine the 
selection. Different types of materials provide differ-
ent advantages, but also disadvantages. Regarding 
thermometry via downshifting emission, for example, 
lanthanide temperature probes containing organic 
ligands may be advantageous over lanthanide-doped 
metals and salts since their absorptions are much 
increased owing to organic ligands that act as antennas, 
and because excitation wavelengths are shifted into the 
visible spectral region. The later property can signifi-
cantly reduce autofluorescence when investigating the 
temperature properties of tissues. On the other hand, 
these probes have substantially lower temperature and 
chemical stability than inorganic ones, limiting their 
use at high temperatures and in harsh environments. 
In addition, metal oxides and salts doped with lantha-
nide ions are excellent platforms for the development 
of multifunctional materials, considering the variety of 
important uses of lanthanide luminescence and the dif-
ferent functionalities of host materials in which lantha-
nide ions can be introduced. As mentioned at the begin-
ning of this text, knowing that temperature is essential 
in almost all aspects of human activities, and by pro-
viding thermometric functionalities to existing or new 
materials systems, this could lead to exciting progress in 
many disciplines. Some of them are briefly mentioned 
in the text and include dual- or multi-sensing devices, 
multimodal imaging with temperature monitoring and 
temperature-supervised photothermal therapies.
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