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The application of the principal component analysis and artificial neural network method in
forecasting 137Cs behaviour in the air as the function of meteorological parameters is pre-
sented. The model was optimized and tested using 137Cs specific activities obtained by stan-
dard gamma-ray spectrometric analysis of air samples collected in Belgrade (Serbia) during
2009-2011 and meteorological data for the same period. Low correlation (» = 0.20) between
experimental values of 137Cs specific activities and those predicted by artificial neural network
was obtained. This suggests that artificial neural network in the case of prediction of 137Cs
specific activity, using temperature, insolation, and global Sun warming does not perform
well, which can be explained by the relative independence of 137Cs specific activity of particu-
lar meteorological parameters and not by the ineffectiveness of artificial neural network in re-

lating these parameters in general.
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INTRODUCTION

Revealing patterns in vast amount of data ob-
tained from routine monitoring of activities of
anthropogeni c and natural-occurring radi oi sotopesre-
quires application of advanced statistical analysisand
machine-learning methods. Artificial neural networks
(ANN) gained in popularity because of their robust-
nesswhich outperformsthat of conventional statistical
techniques. They belong to non-linear methods where
no assumption of relations between input variablesis
needed. A number of ANN agorithms have been de-
veloped [1-6] for various purposes. In the area of ra-
dioactivity, ANN havebeen applied in automaticiden-
tification of radioactive isotopes in gamma
spectroscopy [7], in determination of parameters in
monitoring uranium enrichment [8], in portable sys-
temsfor rapididentification of radionuclides[9-11], in
experimental nuclear structure physics(for thegamma
ray tracking technique) [ 12], to optimize parameters of
the gamma-spectrometric analysis, and in monitoring
radioactive contamination of the environment
[13-18].

* Corresponding author; e-mail: sale1509@yahoo.com

The ¥'Cs (t,, = 30.14 year) is a man-made
radionuclide which represents a hazard to the environ-
ment. Because of its long half-life 13’Cs s regarded as
an indicator of anthropogenic pollution caused by nu-
clear tests and nuclear power plant accidents. Once
emitted into the atmosphere it participates in the
air-mass circulation processes and can be used for de-
scription of pollutant scavenging by precipitation, at-
mospheric deposition patterns of airborne contami-
nants, etc. [19].

In this study we measured specific activities of
137Csinnear-ground air and correl ated themwith local
meteorological conditions since those have the great-
est influence on the stability of the ground layer of at-
mosphere. Similar to our previous study on ‘Be[20],
wetested the ability of ANN to predict specific activi-
ties of 1¥’Csin near-ground air by using meteorol ogi-
cal parameters asinput.

EXPERIMENTAL ANALYSIS
Sampling
Air sampling was conducted in the period from

March 2009 to December 2011 at the Kumodraz loca
tion, Belgrade, Serbia. It was performed with two digital

-
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samplers DH 604EV.2 (F&J Specidity Products, Inc.
Ocalag, Fla,, USA) which providetheair flow intherange
of 15-120 m3h, with an initia air flow rateof 50+ 5
m3/h. Theair sampleswere collected weekly with asam-
pling time of six days at the height of 124 cm from the
ground, with a total of 101 samples. Digital samplers
were used for measurement of temperature, pressureand
relative humidity, whileval uesfor wind speed, insolation
(sunny hours per day), global Sun warming and precipi-
tation were taken from annua reports of the Republic
Hydrometeorologica Service of Serbia[21].

Cellulose filter paper FJ213340 1.770 mm thick
with an efficiency of 65% onthedioctyl phthalate (DOP)
test wasused. The DOPtest wasused to determinethe ef-
ficiency of thefilter with an areaof 100 cm?for air or gas
filtration with the flow rate of 32 L/min containing DOP
particles at a concentration of 100 mg/L [22].

Gamma-ray spectrometric analysis

The measurements were performed using a
gammaray spectrometric system AMETEK-AMT
(ORTEC, USA) withacoaxial high-purity germanium
(HPGe) detector with relative efficiency of 59.2%
measured ontheline1.33MeV ®Co. Resol ution of the
devicewas 1.78 keV on the line 1.33 MeV ®Co. The
detector was housed in home-made lead casing. Lead
protection was 11 mmthick and covered with acopper
sheet 5 mm thick.

Gamma-ray spectrometric analyses were con-
ducted on the device calibrated to the filter geometry.
Thesolution used for calibration was obtained by dilu-
tion of the reference IAEA material (?*Am, 1%°Cd,
57CO, 139Ce, 203Hg, 113Sn, SSSr’ 137CS, 88Y, and 6OCO).
The standard wasmade by dripping theradioactive so-
lution on the circular filter paper in the hexagonal net-
work. Fifty-five points were applied, each with avol-
ume of 10 pL. *3’Cs specific activity of air samples
was evaluated fromitsline at 661 keV, with arelative
standard deviation that ranged from 8.8% to 13.7%,
for 250 000 s by using the Gamma Vision 32 software
package [23].

Data analysis

Principal component analysis (PCA). The ex-
traction of major factors of variations within activity
data was performed using PCA (SPSS v 13 software
package, SPSS Inc., Chicago, USA) [24] on the set of
gammaspectraacquired during 2010. PCA isastatisti-
cal method which alows identification of major fac-
tors within amultidimensional data set in order to re-
duce the number of variables of a given data set.
Commonly, itisused when there are agreat number of
correlated variables within one data set. The factors
weretested on the correl ation with meteorological pa-

rameters; the parameters corresponding to the highest
correlation coefficients were selected and used as in-
put for the ANN analysis.

Artificial neural network. The most common
type of ANN used in the analysis of environmental
samples is the multilayer perceptron. Here, the
three-layer feed-forward network with the back-prop-
agation algorithm was used based on our previous ex-
perience in the neural network application in
gamma-ray spectrometry [14-16].

The training process of this network was per-
formed in two phases. In the first phase, the data con-
tained in the input layer were sent to the hidden layer
through theinput nodes. Nodesinthe hidden layer cal-
culate the weight sums of input data. All these sums
were then sent to the output layer through the activa-
tion functions as single end data.

In our case, we used the logistic function as an
activation function which is a representative of sig-
moid activation functions

1
- 1+exp(-Xw;0; +b)

f; D
wherewj; istheweight factor whoseval ue connectsthe
lower layer nodei to the upper layer nodej, o — the
output value of the node i, while b represents a bias.
Thebias(limit of neural activation) isusedto calculate
thetotal numerical valueof al nodeslocatedinthesin-
glelayer.

Inthesecond phaseof network training, theerror
was cal cul ated between the cal cul ated and experimen-
tally obtained values in the output layer using the
so-called general deltarule. Based on thisrule, nodes
in the output layer are adjusted according to the value
of nodes in the input layer based on the equation
Wit =wj +18;0; +awj) 2)
where §; is the signal error at node j, o; — the output
value of node j, n — the number of iterations, n —the
learning rate, and a — the momentum. The learning
rate affects the step size in the space of weight coeffi-
cients and controls the speed at which the network
learns. Momentumisincludedinthecalculationto add
the previous changes of weight coefficientsto the cur-
rent change during the training process. In determin-
ing the value of the learning rate and momentum, we
used previous experience in the application of neural
networksin gamma-spectrometry and determined that
both these values are 0.1 [16].

Thekey part of thecalculationinartificial neural
networksisforming the setsfor training and testing the
network. Thetraining set isused to optimizethe model
characteristics, while the testing set is used to assess
the generalization capabilities of agiven network. The
training set contained logarithmic values of meteoro-
logical parametersasinput dataand those of 13’Cs spe-
cific activity from 2009 as output data. The same pa-
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rametersfrom 2010 were used asinput and output data
in the testing set.

Theoptimal number of nodesinthe hidden layer
wasfound by cal cul ating the RM SE (root mean square
error) for different values of nodes, from 2 to 22. This
was performed for different number of epochs: 1000,
5000, 10000, 20000, 30000, 40000, and 50000.

In order to check the network operation, another
dataset isformed, called the validation set, whose pri-
mary purpose isto assess the formed network. It con-
sisted of the logarithmic values of the meteorological
parameters from 2011 asinput data and those of 1¥’Cs
activity inthe sameperiod asoutput data. Thislast part
is called the cross-validation process [25].

To determine the appropriate number of epochs
and to verify thevaues of network parameters, thevali-
dation data set was inserted in the network. Thevaida-
tion set isused to determineif the so-called over-fitting
of the network has occurred during training. When ap-
plying the methods of early stopping, the network isin-
serted with the validation set instead of the testing set,
andthevalidation error iscalculated periodically. When
thevalidation error, after noticeable convergence, starts
to grow again, the training process is stopped.

The network optimization process is followed
by its testing. The testing set contained 38 measure-
ments of the 13’Cs activities, obtained during 2010.
Validation of network predictive ability is performed
by comparing thevalues of specific activities obtained
experimentally and those calculated using the neural
network. Analysis of behaviour of the specific 1¥’Cs
activities by using neural networks was performed in
the software package QwickNet 2.23 [26].

RESULTS

The'¥"Csaverage monthly activitiesfor the period
fromMarch 2009to December 2011 aregiveninfig. 1.

Table 1 shows statistical characteristics for al
the experimental data for the given period. Meteoro-
logical parameters were selected using the PCA. Data
from 2009 were used for creating the training set,
while datafrom 2010 and 2011 were used for creating
the testing and validation sets, respectively.

Theresults presented infig. 2 show that the opti-
mal number of nodes in the hidden layer of the ANN
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Figure 1. The ®¥"Cs average monthly activity for the
period from March 2009 to December 2011 measured at
Kumodraz, Belgrade
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Figure 2. RM SE dependency on the number of nodesin
the hidden layer

was 17, because RM SE had the smallest valuefor this
number of nodes.

Figure 3 presentsthe RM SE for training, testing
and validation sets of the model depending on the
number of epochs. Results converged and the value of
40000 epochs was considered as optimal .

Schematic representation of the optimized net-
work isshowninfig. 4. Theinput layer ispresented by
three nodes consisting of meteorological parameters
andtheoutput layer ispresented by one node-13"Csac-
tivities. The network structure also consists of biases

Table 1. Descriptive statistics of experimental data for the period from march 2009 to December 2011

2009 2010 2011

Experimental data Mean Min/Max Mean Min/Max Mean Min/Max
Ac[10° Bgm™] 1.0+0.7 0.4/2.5 14+09 0.2/2.4 04406 0.09/3.7
Temperature [°C] 25+ 6 8.3/34.5 18+ 10 —0.6/34.7 220+ 95 0.8/36.1
Insolation [h] 46+ 19 6.1/74.9 28+ 18 0.0/74.1 42+ 23 0.0/88.3

Global Sunwarming [Wem™@] | 1625+ 605 | 301/2615 915 + 621 213/2320 1285 + 688 114/2475
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Figure 3. RM SE for training, testing, and validation sets
of model dependency on the number of epochs
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Figure 4. Schematic representation of the optimized
three-layer feed-forward neural network used in this
study: input layer —nodes 1-3; hidden layer —nodes4-20,
and output layer —node 21
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Figure 5. Dependency of the experimentally obtained
(circles) and calculated (triangles) **'Cs aver age weekly
specific activities for samples measured during 2010

connected to nodes in the hidden layer (bias 1) and in
the output layer (bias 2).

Figure 5 presents values of experimentaly ob-
tained and calculated specific activities of 3’Cs that
were used in the network testing process. It isobvious
that predicted values are much lower than actually
mesasured and the correlation coefficient is rather low
(r = 0.20).

Figure 6 presents cal culated and experimentally
obtained values of the 13’Cs specific activities as the
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Figure 6. The dependency of experimentally obtained
(triangles) and calculated (circles) **’Cs aver age weekly
specific activities as a function of meteorological
parameters. (a) maximum air temperature, (b)
insolation, and (c) global Sun warming
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Table 2. Correlation coefficients of meteorological parametersof air and specific activities experimentally obtained and
meteorological parametersof air and calculated specific activities

Meteorological parameters of air

Correlation coefficients of experimentally obtained Correlation coefficients of calculated specific
specific activity and meteorological parameters

activity and meteorologica parameters

Insolation [h] 0.10 -0.01
Global sun warming [Wcm] 0.17 -0.19
Maximum temperature [°C] -0.15 -0.14

function of individual meteorological parameters, ob-
tained during 2010, whiletab. 2 showsthe correlation
coefficients between these parametersand experimen-
tally obtained and cal cul ated specific activities, for the
same period. Values of correlation coefficients are
low. Good prediction was obtained only for the maxi-
mum temperature while for the other two parameters
even the sign of correlation is different between mea-
sured and predicted values.

DISCUSSION

The specific activities of 3'Cs obtained in this
study werein therange 0.09-2.32 10-° Bg/m?® (seefig.
1). For the 2004-2009 period, Todorovi¢ etal., [27] re-
ported that values of '3’Cs specific activity were
mostly below the detection limit of their technique
(10° Bg/m®). Another publication [28] reports that
during the 1990s these values ranged from 1076-1075
Bg/m?®, which was in the same range as in different
parts of Europe [29, 30]. The maximum values that
wereobserved inlate spring/early summer andinwin-
ter have been observed by othersaswell and can be ex-
plained by the stratosphere-troposphere exchange
(spring/summer) or the soil dust re-suspension in air
from the Chernoby! fallout (winter) [31, 32]. Consid-
ering the relatively long half-life of *¥’Cs and rela-
tively infrequent nuclear accidents, itsspecific activity
can remain the same for along period of time, which
wasindeed the case until the nuclear accident in Japan
in 2011. During the Fukushima accident, reported ac-
tivity values of 13’Csin Belgrade ranged from 4 to 16
10-° Bg/m® [33-35].

The overall correlation coefficient between ex-
perimentally obtained specific activities and calcu-
lated (predicted) valueswaslow (0.20) indicating that
our model cannot correctly forecast 13'Cs activity.
Thisisavery different situation than for cosmogenic
’Be where a rather good correlation of r = 0.91 has
been obtained using the same methodology [20]. This
is probably dueto the fact that values of al individual
correlation coefficients are rather low (tab. 2), and
hence their statistical significanceislow.

Considering the behaviour of ¥’Csanditstrans-
fer through the atmosphere, failurein predicting **’Cs
specific activities suggests relative independence of
local meteorological conditions, i. e, these do not
greatly affect the anthropogenic radionuclide *3'Cs
specific activity. Actually, some authors have stated

that thereisno significant correl ation between them et
all [36]. It has been suggested [36] that correlation can
beimproved if sampling isperformed on adaily basis
instead of on aweekly basisasdonehere. Evenso, itis
difficult to believethat thiscanincreasethecorrelation
to the level of reliable forecasting.

Benefits of using PCA/ANN methods in fore-
casting cannot be seen when correlation coefficients
for individual meteorological parameters and specific
activities of *’Cs are low. However, this method has
been foundto be useful in cases of forecasting concen-
tration levels of other airborne radionuclides such as
’Be and 3H and air pollutants [20, 37, 38] and using
PCA/ANN seemsto be the only way analyse multiple
parameters and unknown analytical relationships.
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Anexcanapa [I. CAMOJIOB, Cuexana [I. IPATOBUh,
Mapko K. JAKOBWR, I'opan I'. BAYNTh

IMPUMEHA HEYPOHCKHMX MPEXA 3A AHAJIM3Y MOHAMAIBA 137Cs ¥
Y30PLIMUMA BA3IYXA HA IMOAPYWYJY I'PAJA BEOI'PAJIA

Y papy je nmpuka3aH KOMOMHOBaHM METOJi IPUMEHE aHAJIW3€ OCHOBHUX KOMIIOHEHTH U
HEYPOHCKHUX MpE3Xa 3a pe/IBrbhatbe Monamama >/ CSy (hyHKIMj1 METEOPOJIOIIKIX MapamMeTapa. Mopen je
ONTHMHU30BaH M TECTUPAH KOpHUIThemeM BPEAHOCTH crequpUIHAX aKTHBHOCTH 2/CS poGHjeHnx
CTaHJapAHOM raMacleKTPOMETPUJCKOM aHalIM30M y30paKa Ba3lyXa, KOjU Cy CAKyNJbaHU Yy HEPHONY
2009-2011. ropune Ha TepuTOpUju beorpaja, 1 METEOPOIIOLIKKX TapaMeTapa U3 ucror nepuopua. Jooujena
je Mana BpegHOCT KopenanuoHor koeduumjerta (r = 0.20) n3meby ekciepruMeHTaTHIX ¥ HEYPOHCKOM
MPEKOM U3pauyHaTHX BPETHOCTH crienuduunux aktugHOCcTH 2/ Cs. OBO IOKa3yje 1a HeypOHCKa Mpeska 3a
cy4aj mpefBubama BpeiHocTH crnenuduyHanx akTuBHOCTH 27Cs, y (hyHKIMj1 TeMnepaType, MHCoJIaluje 1
rno6ansor CyHYeBOr 3arpeBama He IMokasyje f1o0pe pesyaTaTe, HITO MOXKe Jja ce 00jacHU peJaTUBHOM
He3aBUCHONThY BPEHOCTH CrENU(PUUHMX AKTUBHOCTH °/CS Off METEOPOJONIKHX MapamMeTapa, a He
HeedukacHoIIhy BEIITAYKUX HEYPOHCKUX Mpexa.

Kmwyune peuu: HeypoHcKa mpedxca, 2amacileKitipomeiipuja, 6a3oyx, 137¢g




