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Tetraspanins (Tspans) are a family of four-span transmembrane proteins, known as 
plasma membrane “master organizers.” They form Tspan-enriched microdomains 
(TEMs or TERMs) through lateral association with one another and other membrane 
proteins. If multiple microdomains associate with each other, larger platforms can form. 
For infection, viruses interact with multiple cell surface components, including receptors, 
activating proteases, and signaling molecules. It appears that Tspans, such as CD151, 
CD82, CD81, CD63, CD9, Tspan9, and Tspan7, coordinate these associations by con-
centrating the interacting partners into Tspan platforms. In addition to mediating viral 
attachment and entry, these platforms may also be involved in intracellular trafficking of 
internalized viruses and assist in defining virus assembly and exit sites. In conclusion, 
Tspans play a role in viral infection at different stages of the virus replication cycle. The 
present review highlights recently published data on this topic, with a focus on events 
at the plasma membrane. In light of these findings, we propose a model for how Tspan 
interactions may organize cofactors for viral infection into distinct molecular platforms.
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inTRODUCTiOn

The contents of the cell are protected from the extracellular surroundings by the plasma membrane: 
a lipid bilayer densely populated with protein (1, 2). These proteins are specifically distributed 
throughout the membrane, a phenomenon associated with lipid microdomains, rafts, phases, or 
clusters. Local enrichments can be explained by spontaneous self-organization driven by thermo-
dynamic principles (3). Conversely, the composition and architecture of membrane proteins is also 
actively remodeled in order to control specific functions.

Viruses are genetic entities that can form particles of sizes up to 200 nm and require multiple 
steps to overcome the cell barrier during entry and egress. To gain access into the cell, viruses employ 
different host receptors, proteases, and signaling molecules. After internalization via endocytosis, 
non-enveloped viruses escape the membranous organelle system in order to deliver viral genetic 
information into the cytoplasm or nucleus (4–6). Entry of enveloped viruses occurs through fusion 
of the viral and cellular membrane at the plasma membrane or in intracellular compartments (7).  

Abbreviations: CD, cluster of differentiation; CDV, canine distemper virus; CLDN1, claudin; CoV, coronavirus; EBV, Epstein–
Barr virus; ESCRT, endosomal sorting complexes required for transport; FIV, feline immunodeficiency virus, GFRs, growth 
factor receptors; HAV, hepatitis A virus; HCMV, human cytomegalovirus; HCV, hepatitis C virus; HIV, human immunodefi-
ciency virus; HPV, human papillomavirus; HSV, herpes simplex virus; IAV, influenza A virus; ITGB1, integrin β1; LEL, large 
extracellular loop; LUJV, Lujo virus; MAPK, mitogen-activated protein kinase; MVB, multivesicular body; Ras, rat sarcoma; 
SR-BI, scavenger receptor type B class I; TEMs or TERMs, tetraspanin-enriched microdomains; TIRF, total internal reflection 
fluorescence microscopy; TM, trans-membrane; Tspan, tetraspanin; vDNA, viral DNA.
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Each viral entry mechanism involves its own set of unique inter-
actions between the virus and the cellular membrane system. 
Members of the tetraspanin (Tspan) protein family are localized 
to membranes and as such, associate directly and indirectly, with 
multiple steps of viral infection.

TeTRASPAninS

Tetraspanins are a family of small transmembrane proteins (8) 
that function in cell migration, signal-transduction, intracel-
lular trafficking, and are used by several pathogens for infection 
(9–11). Of the 33 human Tspans, CD151, CD82, CD81, CD63, 
CD9, Tspan9, and Tspan7 have been associated with viral infec-
tions (12–16).

Structure
Structurally, Tspans consist of four transmembrane segments, a 
small extracellular domain, and a large extracellular loop (LEL). 
Intracellular domains, including the N- and C-terminal tails, are 
relatively small and contain palmitoylated cysteines. Homology is 
highly conserved between isoforms with the exception of a small 
variable domain located within the LEL (17), which may contri-
bute to differences in functionality between isoforms (18, 19).

To date, structural models are only available for CD81. The 
first model is based on the LEL crystal structure to which the 
α-helical transmembrane segments were attached in a theoretical 
conformation. The transmembrane region was predicted to form 
a four-stranded coiled-coil with two helices extending vertically 
into the bulkier LEL (20), resulting into a mushroom-shaped 
structure. The second model, derived from lipidic cubic phase 
crystallization of the entire protein, describes an arrangement 
with two major differences. First, instead of assembling into 
one bundle the transmembrane segments form two coiled-coils 
resulting in a cholesterol-binding pocket. Second, two kinks 
exist between the helical transmembrane segments and the LEL, 
causing the LEL to fold back toward the membrane (21). When 
cholesterol is released, the kinks straighten, and the LEL adopts 
an orientation similar to the proposed first model (21).

Tspan-enriched Microdomains
Tetraspanins are referred to as master organizers of the plasma 
membrane, largely due to the fact that they form functional 
units termed Tspan-enriched microdomains (TEMs or TERMs). 
Biochemical immunoprecipitation experiments employing deter-
gents of varying strengths revealed two major categories of 
Tspan interactions: (1) robust interactions between Tspans and 
non-Tspan binding partners, and (2) weak interactions between 
Tspan family members (22). Within the second category, certain 
assemblies of homo–Tspan interactions are preferred over hetero- 
dimerization/oligomerization (23), and the specificity of oligo-
merization is mediated by a small segment within the LEL  
referred to as δ-loop (24, 25). Consistent with these bioche-
mical findings, electron microscopy shows that CD63 and CD9 
form distinct clusters (26). Using a more systematic approach, 
super-resolution light microscopy confirms that single Tspan 
family members cluster within TEMs (27). Together, these data 

demonstrate that Tspan isoforms segregate into individual nano-
clusters within larger Tspan domains.

In immuno-electron microscopy, Tspan microdomains are 
highly variable in shape and size with an average surface area of 
0.2 µm2 (26). When assuming a spherical shape, this corresponds 
to a diameter of ≈500  nm. In contrast, super-resolution light 
microscopy detects spherically shaped structures with a diameter 
in the range of 100–150 nm (27, 28). These two methods result 
in surface area coverage calculations that differ by more than one 
order of magnitude. This substantial variability is likely due to the 
description of multiple nanoclusters within TEMs via electron 
microscopy, whereas super-resolution light microscopy identifies 
individual nanoclusters due to a higher epitope labeling density.

At present, the sequence of events for TEM biogenesis is 
unknown, though we can build a model on the following obser-
vations. First, different Tspans can associate with each other, but 
Tspans of one type preferentially homo-oligomerize. Second, 
Tspans form very tight complexes with non-Tspan partners such 
as integrins (29, 30) and signaling receptors (31). Finally, TEMs 
are stabilized by weak nonspecific interactions mediated by the 
aforementioned palmitate residues (32, 33) and glycolipids that 
promote Tspan assemblies (24, 34). These different interaction 
modalities likely produce small TEMs (Figure 1A). Viral surfaces 
contain abundant identical binding sites that may crosslink small 
TEMs to large Tspan trafficking platforms (Figure 1B). Evidence 
for virus-induced large Tspan assemblies has been documented by 
a number of microscopic studies discussed below.

ROLeS OF Tspans in viRUS inFeCTiOn

Tetraspanins are essential for specific steps in viral entry and 
exit (12, 13, 15). As described above, contacts between viruses 
and proteins on the cell surface can lead to large Tspan cluster 
networks or trafficking platforms (Figure  1B). Similarly, viral 
envelope proteins accumulate in TEMs during morphogenesis 
and induce large assemblies of Tspans and viral transmembrane 
proteins to facilitate efficient budding (Figure 2). These platforms 
enable the coordination of factors required for viral endocytosis, 
penetration, trafficking, and release. Here, we summarize and 
discuss the role of CD151, CD82, CD81, CD63, CD9, Tspan9, and 
Tspan7 in the life cycle of Tspan-facilitated viruses [for a detailed 
discussion on the role of Tspans in human immunodeficiency 
virus (HIV) infection see (Suarez et al.; Tspans, another piece in 
the HIV-1 replication puzzle) in this issue].

Tspan Platforms in virus endocytosis  
and Fusion
Studies investigating different viral systems show common mech-
anisms for how viruses infiltrate their target cells via Tspan 
platforms. Several microscopic studies confirm that Tspans are 
enriched at viral entry sites of human papillomaviruses (HPVs) 
(35, 36), hepatitis C virus (HCV) (37–42), coronavirus (CoV), 
influenza A virus (IAV) (43–45), and HIV (46, 47), and required 
for penetration of human cytomegalovirus (HCMV) (48) and 
alphaviruses (16, 49). These viruses use specific Tspans both as 
receptors and by compartmentalizing host entry factors.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
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FigURe 1 | Model of TEM building. (A) Left, random distribution of three TEM components: two tetraspanins (TspanA and TspanB) and a primary interaction partner 
of TspanA [e.g., an integrin or a growth factor receptor (GFR)]. Middle, TEM building blocks; tetraspanins (Tspans) are arranged in homomeric nanoclusters and 
integrins/GFRs form dimers. Right, building blocks are connected via strong specific interactions between TspanA and the receptor/integrin dimer and weak 
nonspecific interactions between different Tspan nanoclusters. (B) When a virus encounters the cellular membrane, virus surface molecules crosslink small TEMs to 
form larger TEMs, thereby concentrating proteins leading to the activation of intracellular signaling cascades that trigger the uptake of the Tspan trafficking platform.
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CD151 in Early Steps of HPV  
and Cytomegalovirus Entry
Host cell entry of non-enveloped DNA tumor virus HPV16 relies 
on a fine interplay between the virion and the host cell. HPV16 
binding to primary attachment sites triggers cell signaling events 
and rearrangement of the viral capsid, membrane proteins, 
and the actin cytoskeleton (15, 50–52). These processes lead to 
the formation of a virus entry complex and virus uptake via a  
CD151-dependent and clathrin-independent endocytosis path-
way (14, 15, 53). In epithelial cells, surface-bound HPV16 particles 
colocalize with locally enriched CD151 and CD63 on the plasma 
membrane during invagination and in endosomes (14, 35). 
Cellular depletion of CD151 and CD63 leads to signi ficant reduc-
tion of infections by different oncogenic HPV types, suggesting 
that these Tspans play a more general role in HPV entry (35, 36, 
54, 55). On T-cells, HPV particles are able to trigger the clustering 
of CD81 which results in the assembly of larger cluster networks 
required for particle uptake (56). Furthermore, detailed analyses 
using CD151 mutants revealed that palmitoylation, the δ-loop 

of the LEL and the C-teminus of CD151 are critical for HPV16 
endocytosis (14, 36). These findings indicate that integration of 
the virus/receptor-complex into larger TEMs and association 
with cytoplasmic factors (e.g., actin) are required for this process. 
HPV endocytosis may also involve interactions between multiple 
receptors and the viral surface, crosslinking smaller TEMs to 
larger entry platforms (Figure  1B). HPV16 receptor-complex 
components include integrins (36, 57–59), growth factor recep-
tors (GFRs) (60), the annexin A2 heterotetramer (61, 62), and 
other Tspans (35, 36, 56). CD151 directly interacts with integrins 
and GFRs (14, 22, 63, 64), and, therefore, positions these HPV 
receptors within TEMs (11, 65). Through this spatial arrangement 
of functional proteins, CD151 may control enzymatic activities 
and signaling pathways required for coordinated assembly of the 
viral entry platform and endocytosis.

Likewise, entry of the enveloped HCMV depends on CD151 
and CD151 partner proteins (e.g., integrins, GFRs) and additional 
Tspans, such as CD9 (15, 48, 66). CD151 is functionally involved 
post-binding during viral penetration (48). HCMV membrane 

https://www.frontiersin.org/Immunology/
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FigURe 2 | Schematic model depicting the subcellular localization of tetraspanins (Tspans) during virus infection. (1) Interactions between viral particles and entry 
receptors at Tspan clusters trigger the formation of larger cluster networks. (2) Tspan assemblies promote viral internalization by endocytosis and/or fusion.  
(3) Endocytosis is followed by intracellular trafficking of virus particles in transport vesicles. During this stage, Tspans mediate and organize interactions with 
cytoplasmic trafficking molecules. (4) These steps lead to delivery of viral genomes into the cytoplasm or the nucleus and successful infection. (5) Morphogenesis  
of enveloped viruses on Tspan-enriched microdomains. (6) Integration of viral proteins into Tspan clusters induces spatial enrichment of Tspans and viral proteins.  
(7) The resulting high concentration of virus envelope components enables efficient budding and release.
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fusion occurs after clathrin-independent endocytosis in many 
cell lines (67–69). Together, these studies suggest that CD151-
mediated endocytosis might be a prerequisite for efficient HCMV 
and HPV infection. Mechanistically, virus-receptor, virus-Tspan, 
and Tspan-Tspan interactions play a vital role in organizing large 
Tspan platforms, which facilitate coordinated or simultaneous 
interactions between virus and host to induce membrane invagi-
nation by a mechanism yet to be determined [for detailed review 
see Ref. (15)].

CD81 and CD9 in HCV, Corona-,  
and Influenza-Virus Entry
Similar to HPV and HCMV, HCV entry into hepatocytes is a 
multistep process involving attachment to cell surface heparan 
sulfate proteoglycans, conformational changes, and transfer of 
viral particles to secondary receptors (38, 40, 70, 71). These secon-
dary HCV binding molecules also include integrins, the epider-
mal GFR (EGFR), the ephrin receptor A2 and Tspans as well  
as claudin-1 (CLDN1), occludin, the scavenger receptor type B 
class I (SR-BI), and the serum response factor binding protein 1 
(SRFBP1) (72–74). Tspan CD81 plays a multifunctional role in 
HCV entry. CD81 acts as a virus receptor by directly interacting 

with the HCV glycoprotein E2 (41, 42). CD81 modulates Tspan 
interactions after HCV binding (75) by triggering EGFR signal-
ing pathways, which enables Tspan/receptor complex-assembly 
(76, 77) and promotes CD81-EGFR or CD81-CLDN1 complex 
formation (74, 76). These events are prerequisite for the endo-
cytosis of CD81-HCV clusters and viral glycoprotein-dependent 
membrane fusion. Proteomic approaches confirmed complex 
formation of CLDN1, SR-BI, and SRFBP1 with CD81, and 
demonstrate the functional requirement of integrin β1 (ITGB1) 
and SRFBP1 for HCV infection and the physical interaction of 
the Tspan coreceptor-complex with the signaling molecule HRas  
(73, 77). The rat sarcoma/mitogen-activated protein kinase 
signaling pathways and EGFR or EphA2 activity trigger lateral 
diffusion of CD81 for assembly of the viral entry complex consist-
ing of CD81- CLDN1, HRas, and ITGB1 (74, 77). Because GFRs 
support the uptake of multiple viruses (78), it is probable that 
activation of their downstream signaling cascades could trigger 
Tspan receptor clustering accompanied by cytoskeletal network 
rearrangement required for the entry of other virus families.

Influenza A-viruses and CoVs are enveloped RNA viruses 
(79). Tspan microdomains, especially CD81 and CD9 enriched 
microdomains, are preferred IAV and CoV entry sites as they 

https://www.frontiersin.org/Immunology/
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are required for fusion of viral and host cell membranes in 
pathogenic infections by both viruses (43–45, 80, 81). IAV and 
CoV use a variety of coreceptors for this glycoprotein-catalyzed 
process (82). IAV is routed to CD81-positive endosomes and 
CD81 is functionally required for the fusion of the viral and the 
endosomal membrane (45). Here, CD81 may help organize the 
endosomal membrane and cofactors assisting influenza viral 
fusion. CoV membrane fusion is mediated by the viral spike 
glycoprotein (S) and depends on multiple events including pro-
teolytic processing and conformational change of the S protein. 
Experiments utilizing Tspan knockout cell lines and mice revealed 
that infection by the human CoV strain 229E requires the Tspan 
CD9 (43, 44). Pulldown and proximity ligation assays uncovered 
the four known CoV receptors and a fusion-activating protease 
within CD9 microdomains. These studies also demonstrated that 
even in the absence of the virus, CD9 is responsible for the local 
accumulation of the identified entry receptors. Together, this evi-
dence suggests that CoV uses pre-existing clusters of receptors, 
proteases, and Tspans for entry. Whether these viruses induce 
local accumulation of the pre-formed nanoclusters to enable 
efficient priming of the viral spike proteins during viral egress 
requires further investigation.

CD63 and Tspan9 as Regulator of virus 
Trafficking and Fusion in infections by  
Hiv, iAv, HPv, and Lujo virus (LUJv)
Tetraspanins not only organize plasma membrane molecules but 
also regulate the trafficking of cellular proteins and the transport 
of endocytosed viruses (11, 15, 83). Many viruses, including 
HIV, IAV, HPV, and LUJV, localize to CD63-positive endosomes 
during entry (35, 46, 55, 81, 84). CD63 is most abundant in late 
endosomes or multivesicular bodies (MVBs) (85) and involved 
in the membrane organization and trafficking of cellular trans-
membrane proteins that interact with viruses such as HIV-
receptor component CXCR4 (83, 86, 87). Therefore, a functional 
involvement of CD63 in viral fusion and transport is conceivable. 
Cellular depletion of CD63 or treatment of cells with CD63 
anti bodies leads to decreased infectivity of HIV-1, HCV, LUJV, 
and oncogenic HPV types presenting CD63 as a more general 
mediator of virus infection (46, 55, 84, 88–90). In contrast to the 
proviral role of CD63, it is believed that CD9 and CD81 negatively 
regulate HIV-1 entry by interfering with the formation of the 
entry receptor complex (47).

Tetraspanin CD63 forms complexes with HPV16 capsid pro-
tein L1 (55). As CD63 is involved in the transport of proteins 
to multiple subcellular locations, it is plausible that different 
adaptors are required for regulating its trafficking and sorting. 
For example, syntenin-1 modulates trafficking of CD63 by bind-
ing to its C-terminus (91). Consequently, ultrastructural analyses  
demonstrated the importance of the CD63/syntenin-1 complex 
for HPV trafficking to MVBs, a process that is required for 
capsid disassembly (55). The complexity of CD63-mediated 
viral trafficking is highlighted by the finding that components of 
the cellular endosomal sorting complex required for transport 
(ESCRT) are also integrated into the HPV transport platform  
(55, 92, 93). ESCRT proteins are able to interact with both, 

syntenin-1 and viral proteins like the HPV16 capsid protein L2 
(55, 92–97). Therefore, both viral and cytoplasmic proteins may 
be targeted to CD63 platforms in a virus-modulated endosomal 
trafficking pathway.

In addition to its role in trafficking, CD63 facilitates membrane 
fusion of enveloped viruses. For example, LUJV glycoprotein-
mediated membrane fusion is dependent on CD63 and low pH 
(84), highlighting the importance of the endo/lysosomal system 
in cell entry. Similarly, Tspan TSPAN9 promotes membrane 
penetration in early endosomes by the alphaviruses Sindbis  
virus, Semliki Forest virus, vesicular stomatitis virus, and chikun-
gunya virus (16, 49). Together, CD63 and TSPAN9 may modulate 
the endosomal compartment to be more permissive for the fusion 
of viral and cellular membranes.

Tspans in virus exit
Morphogenesis of enveloped viruses occurs on membranes of 
intracellular compartments or at the plasma membrane. Like virus 
entry, virus exit is a multi-step process driven by viral proteins. 
This process includes the targeting of viral proteins to specific 
membrane domains, local concentration of these proteins, virus 
budding, and release of virus particles. During these processes, 
Tspans are incorporated into the enveloping membrane of virions, 
such as HIV, feline immunodeficiency virus, canine distemper 
virus (CDV), HCMV, influenza, or hepatitis A virus (HAV) (98), 
implicating TEMs at the site of virus budding.

Earlier reports support this hypothesis using electron and 
fluorescence microscopy to demonstrate that the HIV core (Gag) 
and envelope (Env) proteins (26, 99–101), the HTLV-1 Gag pro-
tein (102, 103), the Marburgvirus matrix protein VP40 (104, 105), 
and influenza proteins (45) accumulate in CD9, CD63, CD81, 
and/or CD82 containing TEMs.

Studies investigating Tspan dynamics in virus budding have 
shown that the herpes simplex virus (HSV)-1 capsid protein VP26 
physically interacts with Tspan7 (earlier known as CTMP-7)  
(106), and that formation of this complex supports viral egress. 
Moreover, influenza infection induced redistribution of CD81 on 
the plasma membrane into concentrated patches of viral budding 
sites which also contain different viral proteins (45). Likewise, 
CD63 coordinates sorting of specific viral proteins into extra-
cellular vesicles, such as the major oncoprotein latent membrane 
protein 1 of the Epstein–Barr virus (107, 108). Comparable to 
influenza budding, HIV Gag insertion into the plasma mem-
brane induces recruitment of CD81 and CD9 and the coale-
scence of different membrane microdomains (100, 101, 109–111). 
Co-immunoprecipitation experiments revealed that Gag proteins 
interact, directly or indirectly, with CD81 (100). The process of 
Gag accumulation in Tspan assemblies leads to the formation 
of larger membrane domains that extend over a few hundred 
nanometers (109, 112) and contain up to 2,500 tightly packed 
Gag molecules (113). In addition, multiple studies have shown 
that modulation of Tspan expression levels and redistribution 
via anti-Tspan antibody treatment in viral or cellular membranes 
interferes with different steps of the HIV and CDV life cycle 
including virus-to-cell fusion, reverse transcription, release, and 
virus-induced cell–cell fusion (114–121). Thus, Tspans can regu-
late, for example, viral release and cell–cell fusion by controlling 
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the access of the required cellular machineries to the specific 
areas.

In addition to Tspans and viral proteins, HIV and HAV exit 
platforms accumulate cytoplasmic factors, such as components 
of the ESCRT machinery, which are required for the budding 
process (113, 122–127). This Tspan-mediated pre-assembly of 
viral and cellular proteins enables the formation of large budding 
platforms, a precondition for coordinated viral morphogenesis.

COnCLUSiOn

At present, the various interaction modalities between viral and 
cellular proteins preclude the development of a simple model for 
viral entry. Common molecular mechanisms in viral infection 
may be revealed by characterizing Tspan platforms in different 
systems, from their initial involvement at the plasma membrane 
to their roles in intracellular trafficking and viral egress (Figure 2). 
We hypothesize that active accumulation of molecules into Tspan 

platforms drives viral infection forward in a defined step-wise 
sequence.
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