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Dynamin-like proteins (DLPs) are a family of membrane-active proteins with low
sequence identity. The proteins operate in different organelles in eukaryotic cells, where
they trigger vesicle formation, membrane fusion, or organelle division. As discussed
here, representatives of this protein family have also been identified in chloroplasts and
DLPs are very common in cyanobacteria. Since cyanobacteria and chloroplasts, an
organelle of bacterial origin, have similar internal membrane systems, we suggest that
DLPs are involved in membrane dynamics in cyanobacteria and chloroplasts. Here, we
discuss the features and activities of DLPs with a focus on their potential presence and
activity in chloroplasts and cyanobacteria.
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CHLOROPLASTS AND CYANOBACTERIA CONTAIN TWO
INNER MEMBRANE SYSTEMS

Cyanobacteria and eukaryotic chloroplasts are evolutionary deeply connected, as primordial
eukaryotic organisms had engulfed cyanobacterial ancestors in an endosymbiotic event.
Incorporation of the bacteria into the cell metabolism finally resulted in development of
a new organelle, the chloroplast, and the first oxygenic photosynthetic eukaryotes arose
(reviewed in greater detail in Hohmann-Marriott and Blankenship, 2011; Jensen and Leister,
2014). During the course of evolution, several metabolic functions were lost in this newly
developed organelle, and many genes of cyanobacterial origin were transferred from the new
organelle into the genome of the host eukaryote (Martin and Herrmann, 1998; Martin et al.,
2002; Kleine et al., 2009). Nevertheless, the ultrastructure of cyanobacteria and chloroplasts
is still very similar, and the process of oxygenic photosynthesis as well as the proteins and
cofactors involved therein are largely conserved (Hohmann-Marriott and Blankenship, 2011). In
both cyanobacteria and chloroplasts, the components of the photosynthetic electron transport
chain are localized within a specialized and unique internal membrane system, the thylakoid
membranes (TMs). While the TM system is a completely separated and enclosed membrane
system in chloroplasts and cyanobacteria, the exact fine structure of TMs can differ. In
chloroplasts, TMs typically form multiple membrane stacks, which are connected by unstacked
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TMs, called grana and stroma lamellae, respectively
(Adam et al., 2011), whereas TMs are organized in a sheet-
like structure in cyanobacterial cells. However, the detailed TM
arrangement can vary significantly in cyanobacterial strains
(Herrero and Flores, 2008).

The structure of the TM system is highly dynamic in
plant chloroplasts, and the amounts as well as the subcellular
organization of TMs alter in response to changing environmental
conditions (Chuartzman et al., 2008; Kirchhoff et al., 2011;
Herbstova et al., 2012; Iwai et al., 2015). It has been stated
that the dynamics observed in plant chloroplasts can essentially
only be explained by the existence of a protein machinery that
controls membrane fission and fusion processes (Chuartzman
et al., 2008; Kirchhoff et al., 2011; Herbstova et al., 2012),
analogous to the machineries involved in fusion of other
organelle membranes, such as the ER, the Golgi apparatus,
and the mitochondria (e.g., reviewed by Bonifacino, 2014).
In fact, membrane connections and membrane fusion/fission
processes have already been discussed for a long time (Nickelsen
et al., 2011; Karim and Aronsson, 2014; Rast et al., 2015),
but experimental evidence still is scarce. While described
in chloroplasts, TM dynamics are essentially not studied in
cyanobacteria yet. In cyanobacteria, individual TM layers appear
to be as interconnected as in chloroplasts, and individual TM
layers fuse and form “holes,” which are discussed to be required
for intracellular transport (Nevo et al., 2007; Liberton et al.,
2011a,b). Thus, the structure of TMs is most likely as dynamic
in cyanobacteria as in chloroplasts. However, in contrast to
chloroplasts, where TMs potentially develop de novo from the
chloroplast inner envelope membrane (Muehlethaler and Frey-
Wyssling, 1959; Morré et al., 1991), in cyanobacteria TMs do
probably not form de novo but assemble from existing structures
(Barthel et al., 2013).

DYNAMIN(-LIKE) PROTEINS ARE
INVOLVED IN MEMBRANE
REMODELING PROCESSES IN
PROKARYOTES AND EUKARYOTES

Dynamin-like proteins (DLPs) [also called, dynamin-related
proteins (DRPs)] are involved in diverse membrane-related
processes in prokaryotic and eukaryotic cells, involving
membrane fusion, membrane scission, membrane protection,
and/or membrane stabilization (Figure 1). DLPs are members
of a protein superfamily of GTPases. To separate DLPs from
other GTPases, such as Ras-like GTPases involved in signal
transduction, proliferation and survival of cells, DLPs are
also entitled “large GTPases” (Praefcke and McMahon, 2004;
Lu et al., 2016). The first identified member of the dynamin
family, MxA and its yeast homolog Vps1 were found being
involved in virus resistance, vacuolar protein sorting, fission
of endosomal membranes and in endocytic events (Staeheli
et al., 1986; Smaczynska-de Rooij et al., 2010; Chi et al., 2014).
Simultaneously, the founder of the dynamin superfamily, the
prototypical dynamin protein (Dyn), was shown to be crucial for

the scission of clathrin-coated endocytic vesicles from eukaryotic
plasma membranes (Shpetner and Vallee, 1989; Hinshaw and
Schmid, 1995). Upon triggering membrane fission, MxA and Dyn
form dimers that interacts head to tail, resulting in formation of
inactive tetramers. In presence of lipids, the structure reorganizes
resulting in rearrangement of this auto-inhibitory structure, and
the GTP hydrolysis rate of Dyn increases from 2.6 to 105 min−1

(Song et al., 2004; Reubold et al., 2015). The mechanistic details
of this GTP-driven process are described in more detail elsewhere
(Praefcke and McMahon, 2004; Antonny et al., 2016). However,
besides the prototypical Dyn protein, a group of related DLPs is
active in/at different eukaryotic organelles. E.g., the Drosophila
melanogaster DLP Atlastin and its yeast counterpart Sey1p are
required for fusion of ER membranes (Hu et al., 2009; Orso
et al., 2010), and the yeast protein Dnm1 and its mammalian
homolog Drp1 are involved in mitochondria scission (Smirnova
et al., 2001; Legesse-Miller et al., 2003; Ingerman et al., 2005;
Mears et al., 2011; Ugarte-Uribe et al., 2014). Similar to Dyn,
the GTPase activity of Drp1 also increases in presence of lipids
(Bustillo-Zabalbeitia et al., 2014; Reubold et al., 2015). The DLPs
Mitofusin and FZO mediate fusion of the mitochondrial outer
membrane, whereas OPA1 and Mgm1 are involved in fusion
of the mitochondrial inner membrane system (Hermann et al.,
1998; Santel and Fuller, 2001; Frezza et al., 2006; Meeusen et al.,
2006).

As in yeast, Drosophila and mammals, DLPs are also present
in plants and are currently best characterized in Arabidopsis
thaliana. The DLP ARC5 is localized at the outer membrane
of chloroplasts and is involved in chloroplast division (Gao
et al., 2003), whereas FZL was found at the stromal side of
the chloroplasts envelope and the TM (Gao et al., 2006). This
issue makes FZL unique, because it is the only plant DLP
within chloroplasts. Potential chloroplast DLPs, their subcellular
localizations and potential activities are introduced and further
discussed in more detail below (see section “DLPs in Arabidopsis
thaliana”).

While DLPs are also predicted to exist in prokaryotes,
this protein family was ignored for a long time in these
organisms. About 10 years ago, the structure and (in vitro)
activity of the first DLP was described, and the protein of
the cyanobacterium Nostoc punctiforme was named “bacterial
dynamin-like protein” (BDLP, hereafter named NosDLP) (Low
and Löwe, 2006). While the exact in vivo function of this protein
is still to be resolved, NosDLP behaves like other DLPs in vitro
(Low et al., 2009; Bramkamp, 2012). While DLPs are rather
common in cyanobacteria and some species encode multiple
DLPs (as further outlined below), further representatives are
not experimentally studied yet. Recently, two additional BDLPs
were identified and partly analyzed. DynA of Bacillus subtilis can
mediate membrane fusion in vitro (Bürmann et al., 2011), and
as there is no obvious need for membrane fusion processes in
B. subtilis, the in vivo activity of DynA was proposed to involve
repair of disordered membranes (de Sousa Borges and Scheffers,
2016; Sawant et al., 2016). It was suggested that environmental
stress (e.g., induced by phage infection or antibiotics) results
in membrane pore formation, and DynA is recruited to these
stressed membrane regions where it oligomerizes and fuses
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FIGURE 1 | Selected (B)DLPs and their proposed in vivo functions. The prototypical Dyn protein is involved in the formation of clathrin-coated vesicles at the plasma
membrane (Hinshaw and Schmid, 1995). Dnm1-like proteins are involved in mitochondrial scission. ARC5 is involved in chloroplast division (Smirnova et al., 2001;
Gao et al., 2003; Mears et al., 2011). Atlastin/Sey1p are potentially involved in ER fusion, whereas Mitofusin/FZO fuse the inner and OPA1/Mgm1 the outer
mitochondrial membranes (Hermann et al., 1998; Santel and Fuller, 2001; Frezza et al., 2006; Meeusen et al., 2006; Hu et al., 2009; Orso et al., 2010). The plant
FZL protein is localized at the chloroplast inner envelope and the TM (Gao et al., 2006). In prokaryotic cells, DynA is proposed to be involved in membrane protection
and/or membrane repair, and LeoA has been suggested being a component of a vesicle release system (Michie et al., 2014; Sawant et al., 2016).

opposite bilayer patches in order to seal the membrane (Sawant
et al., 2016). Furthermore, the Escherichia coli DLP LeoA was
suggested to be involved in secretion of toxin-containing vesicles
(Brown and Hardwidge, 2007; Michie et al., 2014). More recently
two new BDLPs, DynA and DynB, were described to play a
key role in a multiprotein cell division complex in Streptomyces
venezuelae (Schlimpert et al., 2017). DynB is anchored to the
cytoplasmic membrane where it interacts with DynA. Both
BDLPs colocalize with the tubulin-like GTPase FtsZ and they
might be involved, together with additional proteins, in the
formation of sporulation septa during cell division (Schlimpert
et al., 2017).

All thus far analyzed BDLPs hydrolyze GTP with much
lower rates than eukaryotic DLPs (LeoA does not show any
GTPase activity) and their GTP hydrolysis rates are typically
not affected by lipids (Low and Löwe, 2006; Bürmann et al.,
2011; Michie et al., 2014). However, being characteristic for DLPs,
NosDLP homodimerizes in its GDP-bound state via its GTPase
domain, and in presence of GTP and lipids, the protein self-
assembles around liposomes and forms lipid tubes (Low and
Löwe, 2006). The B. subtilis DynA is an internally fused protein
containing two BDLP subunits, and thus, this protein works
per definition as a dimer. Consequently, it shows nucleotide

independent self-assembly on liposomes (Bürmann et al., 2011).
As for LeoA, homo-dimerization has not been shown, suggesting
that activation via heterodimerization with LeoBC is crucial
(Michie et al., 2014).

Besides these few BDLPs being studied to some extent, the
physiological function of DLPs is not clarified in bacteria yet. It is
interesting to notice that in chloroplasts and cyanobacteria, both
having similar internal membrane systems, membrane dynamics
are observed (as discussed above), albeit no clear machinery is
yet defined mediating membrane remodeling. Thus, it is not
unlikely that BDLPs are involved in membrane dynamics in both
chloroplasts and cyanobacteria.

COMMON STRUCTURAL ELEMENTS
AND DOMAINS OF (B)DLPs

All (B)DLPs have a very similar domain structure (Figure 2A).
Typically, a (B)DLP has a G-domain with the GTPase activity,
followed by a middle (MID) domain, a region needed for
membrane interaction (MI domain) and a GTPase effector
domain (GED). The structure of all DLPs is dominated by
α-helices, and individual helices often form helical bundle
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FIGURE 2 | Domain structures of (B)DLPs. (A) The G domain carries the GTPase activity, the MID domain is crucial for protein oligomerization, the membrane binding
MI domain and the GED are also involved in protein oligomerization. The crystal structures of (B) monomeric Dyn G397D 1PRD (PDB 3ZVR) (Ford et al., 2011),
(C) NosDLP in its GDP-bound closed monomeric form (PDB 2J69) (Low and Löwe, 2006), and (D) an open NosDLP dimer (GDP-bound) anchored in a tubulated
lipid bilayer (PDB 2W6D) (Low et al., 2009). The G-domain is colored red, the MID domain in blue and the GED in light blue. The MI domains are highlighted in green.

structures. The only highly conserved sequence of (B)DLPs is
the G-domain, which is usually located at a (B)DLP N-terminus
(Figure 2A). It harbors the GTPase domain and contains
the amino acid motifs highly conserved in (B)DLPs. Like
other GTPases, all (B)DLP share four motifs in the GTP
binding/hydrolysis side: G1 or the P-Loop (GxxxxGKS/T), G2 or
Switch I (T/S), G3 or Switch II (DxxG), and G4 (RD or N/TxxD).
The G1 motif is involved in β-phosphate and Mg2+-binding.
While the G2 and G3 (D) motifs are also involved in Mg2+-
binding, they additionally interact with the γ-phosphate of GTP.
The G4 motif is also involved in GTP binding but less conserved
in (B)DLPs.

In contrast to the G-domain, the remaining (B)DLP domains
can vary strongly in their amino acid sequence, but are similar
in their function. Often, these domains cannot be identified by

sequence comparison and/or homology searches but solely by
functional studies.

The MID domain is structurally defined by the presence of
α-helical bundles (Figure 2), which are crucial for mediating
oligomerization of (B)DLPs (Low and Löwe, 2006; Low et al.,
2009; Gao et al., 2010; Faelber et al., 2013; Fröhlich et al., 2013;
Reubold et al., 2015).

Since (B)DLPs are membrane-active proteins, they harbor one
or more MI domains that interact with biological membranes,
and these MI domains usually follow the MID domain.
However, while membrane interaction is a key feature of
DLPs and the basis for membrane remodeling, the exact
mode of membrane interaction is not conserved, and different
(B)DLPs interact differently with membranes. FZO/Mitofusin,
OPA1/Mgm1 as well as Atlastin are anchored to membranes
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via transmembrane helices. In contrast, the prototypical Dyn
interacts with membrane surfaces via the pleckstrin homology
(PH) domain, which binds specifically to phosphatidylinositol
lipids (Zheng et al., 1996). The DLP MxA harbors a disordered
membrane binding loop (L4), and Dnm1 or the yeast homolog
Drp1 uses the B insert loop that binds specifically to cardiolipin-
enriched bilayers (Mitchell et al., 2013; Bustillo-Zabalbeitia et al.,
2014). Furthermore, in EHD2, a polybasic motif was shown
to mediate membrane interaction, and in GBP1, a specific
Cys residue can be enzymatically isoprenylated, resulting in
membrane anchoring (Nantais et al., 1996; Daumke et al., 2007;
Vestal and Jeyaratnam, 2011). In case of DynA and NosDLP,
the membrane interacting domain is called paddle domain (P),
and it is named Tip in case of LeoA. The P/Tip domain is
dominated by hydrophobic amino acids that mediate interactions
with membrane surfaces (Low and Löwe, 2006; Low et al., 2009;
Bürmann et al., 2011; Michie et al., 2014).

With only a few exceptions (GBP1 and Atlastin), the GTPase
effector domain (GED) follows the MI domain (Figure 2). The
GED is also part of a helical bundle, and in Dyn, MxA and
NosDLP, the GED is additionally involved in the formation
of higher-ordered structures (Schumacher and Staeheli, 1998;
Chappie et al., 2009; Low et al., 2009).

Furthermore, besides the above described domains, additional
domains might exist with more specialized functions.

In summary, all (B)DLPs appear to share three key features:
(i) All (B)DLPs oligomerize and form higher ordered structures
(Daumke and Praefcke, 2016). While in case of eukaryotic
DLPs homo-oligomerization controls the GTPase activity,
heterodimerization might be crucial for the activity of BDLPs
(Bramkamp, 2012; Michie et al., 2014). (ii) All (B)DLPs are
membrane-active and are involved in remodeling nearly every
kind of cellular membrane system (reviewed in Bramkamp, 2012;
Antonny et al., 2016; Daumke and Praefcke, 2016). For several
DLPs it has been shown that they oligomerize in vitro and
form helical structures around liposomes in the presence of a
non-hydrolysable GTP analog, resulting in formation of tube-
like membrane structures (Hinshaw, 2000; Low and Löwe, 2006;
Bürmann et al., 2011; Mears et al., 2011; Shah et al., 2014;
Ugarte-Uribe et al., 2014). (iii) (B)DLPs display a high sequence
variability. Besides the G-domain, other domains can typically
not be easily predicted in new classes of (B)DLPs and must be
experimentally identified.

DLPs IN Arabidopsis thaliana

In the model plant A. thaliana, 16 DLPs (or DRPs) are encoded.
Based on their amino acid sequence and domain structure, these
proteins can be grouped in six subfamilies, DRP1-DRP6 (Hong
et al., 2003; Backues et al., 2010; Bednarek and Backues, 2010).
When using the dynamin signature domain DYN1 (PF00350)
for identification of DRPs in A. thaliana, combined with the
literature and the plant subcellular localization integrative
predictor (PSI1) (Liu et al., 2013), six DRPs are identified with

1http://bis.zju.edu.cn/psi/

a putative chloroplast localization. Five of these are designated
DRPs in the literature; AtDRP1a/AtADL1a (At5g42080),
AtDRP3a/AtADL2a (At4g33650), AtDRP3b/AtADL2b
(At2g14120), AtDRP5A (At1g53140), and AtDRP5B/AtARC5
(At3g19720), whereas one is named fuzzy onion (FZO)-like
protein (FZL). AtDRP1a/AtADL1a, AtDRP3a/AtADL2a, and
AtDRP3b/AtADL2b all contain the GTPase (DYN1, PF00350),
the dynamin MID region (DYN2, PF01031) and the GTPase-
effector domain (GED, PF02212) (Miyagishima et al., 2008;
Heymann and Hinshaw, 2009). The proteins AtDRP5A and
AtDRP5B/AtARC5 additionally contain a pleckstrin homology
domain (PH, PF00169) that binds to membrane phospholipids.
In contrast, the FZL protein (At1g03160) contains solely the
DYN1 signature domain.

AtDRP1a/AtADL1a is one of five proteins in the DRP1
subfamily. AtDRP1a/AtADL1a was found in TMs and was
suggested to be involved in vesicle formation inside chloroplasts
due to impaired chloroplast development including reduced
amount of chloroplast membranes (Park et al., 1998). However,
AtDRP1a/AtADL1a was also identified at the cell plate (Lauber
et al., 1997). This apparent discrepancy was explained by a
shortcoming of the antibody used in the study of Park et al.
(1997). While the antibody was expected to recognize the
GTPase domain of AtDRP1a/AtADL1a, the GTPase domains
of DLPs are generally highly conserved (as discussed above),
and thus the antibody could well have detected other DLPs
besides AtDRP1a/AtADL1a (Kang et al., 2001). Subsequent
studies have further challenged the assumption of chloroplast
localization, as AtDRP1a/AtADL1a is targeted to other cellular
compartments and was shown to have other roles (Kang et al.,
1998, 2003; Collings et al., 2008; Konopka and Bednarek, 2008;
Fujimoto et al., 2010; Yoshinari et al., 2016). The protein is
targeted to the cell plate during cytokinesis (Kang et al., 1998),
and in mutants lacking AtDRP1a/AtADL1a, an unusual plasma
membrane accumulation is observed. This seems to inhibit
efficient targeting and fusion of exocytic vesicles to the cell
surface, which disturbs cell wall production (Kang et al., 2003).
Moreover, the protein has also been shown to have a role in
endocytic events at the plasma membrane, possibly associated
with formation of clathrin-coated vesicles (Collings et al., 2008;
Konopka and Bednarek, 2008; Fujimoto et al., 2010; Yoshinari
et al., 2016). Thus, AtDRP1 is currently not considered to be
active in chloroplasts.

AtDRP3a/AtADL2a has also been predicted to be localized
in chloroplasts. A GFP-tagged version of the A. thaliana DRP3a
has been shown to be chloroplast-localized in soybean and
tobacco, where the N-terminal 35 amino acid residues were
shown to be sufficient for chloroplast targeting (Kang et al.,
1998). However, in a later study a GFP-DRP3a fusion protein
was observed in mitochondria rather than in chloroplasts and
was shown to be involved in mitochondrial division (Arimura
et al., 2004). Moreover, AtDRP3 has also been partially targeted to
peroxisomes where it has been suggested to have an essential role
in peroxisome fission and replication (Lingard et al., 2008; Zhang
and Hu, 2009; Mano et al., 2011). Thus, although an AtDRP3
mutant displays slow growth and a pale color at the seedling
stage (Zhang and Hu, 2009), AtDRP3a less likely functions inside
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chloroplasts, but instead the protein localizes to mitochondria
and peroxisomes.

AtDRP3b, also known as “Arabidopsis dynamin-like 2b”
(ADL2b), shares 76% sequence identity with AtDRP3a/AtADL2a
(Hong et al., 2003). While the protein is predicted (by the plant
subcellular tool PSI) to be chloroplast-localized, is has so far
not been shown to be targeted to chloroplasts. Instead, it has
been identified in mitochondria and peroxisomes where it is
suggested to support mitochondrial and peroxisomal division,
respectively (Arimura and Tsutsumi, 2002; Fujimoto et al.,
2009; Zhang and Hu, 2009). The phenotype of a mutant is
similar to a AtDRP3a mutant, i.e., retarded growth and pale
colored at the seedling stage (Zhang and Hu, 2009). While both,
AtDRP3a/AtADL2a and AtDRP3b/AtADL2b, are suggested to
be involved in mitochondrial as well as in peroxisomal division,
in mitochondria the proteins have redundant functions while
in peroxisomes they appear to have more distinct functions
(Fujimoto et al., 2009).

Similar to AtDRP3b, the PSI tool predicts the DRP5 subfamily
member AtDRP5a to be targeted to chloroplasts, although
this localization has yet to be confirmed experimentally. The
phenotype of mutant plants shows retarded seedling growth with
no altered chloroplast (Miyagishima et al., 2008). Thus, there
is currently no clear link to chloroplasts except for a putative
localization prediction. Instead, AtDRP5a has been identified
via GFP-tagging and immunoblot analyses in the cytosol of
meristematic and meristemoid cells, and the protein is mainly
found within dividing cells and suggested to be involved in
cytokinesis (Miyagishima et al., 2008).

AtDRP5b is localized in both chloroplasts and peroxisomes,
and mutant plants show retarded plant growth with yellowish
leaves and enlarged and dumbbell-shaped chloroplasts (Gao
et al., 2003; Zhang and Hu, 2010). AtDRP5b, also known as
“accumulation and replication of chloroplasts 5” (ARC5), has
no predicted signal sequence-mediating protein import into
chloroplasts, albeit it clearly localizes to this organelle. However,
AtDRP5b/ARC5 is found at the outer chloroplasts envelope
membrane facing the cytosol, where it is enrolled in division ring
construction at the late stage of the chloroplast division (Pyke
and Leech, 1994; Gao et al., 2003; Miyagishima et al., 2006). The
protein is recruited to the plastid division site by two plastid
division proteins (PDV1 and PDV2), which also regulate the
GTPase activity of AtDRP5b/ARC5 (Gao et al., 2013; Holtsmark
et al., 2013). However, AtDRP5b is also present in peroxisomes
as revealed by bimolecular fluorescence complementation and
co-immunoprecipitation assays, and when the AtDRP5b gene
was mutated, impaired peroxisome division and function was
observed (Zhang and Hu, 2010).

The A. thaliana protein AtFZL is related to fuzzy onion
(FZO) proteins that are part of the dynamin superfamily of
remodeling GTPases. FZO is a protein that is located in the
outer mitochondria membrane where it is involved in fusion
of opposing outer mitochondrial membranes in animals and
fungi (Koshiba, 2004; Meeusen, 2004). However, the A. thaliana
FZL protein shows low homology both to the Mitofusin domain
found in the FZO family as well as to the dynamin domain
(DYN1). Despite some sequence homology and similarities with

FZO in respect of existing domains and their arrangement
(GTPase, coiled-coil, transmembrane helices), absence of AtFZL
does not affect mitochondria morphology in A. thaliana but
instead the morphology of chloroplasts (Gao et al., 2006). AtFZL
is located inside the chloroplasts at the TM but also at the
chloroplast inner envelope (Gao et al., 2006). It is believed to be
anchored to these membranes via two transmembrane domains
located within the C-terminal part of the protein, leaving the
GTPase and coiled-coil domains protruding into the chloroplast
stroma (Gao et al., 2006). Whether the AtFZL operates in a
similar fashion as the classical FZO, i.e., whether it brings two
membranes into close contact resulting in membrane fusion, is
currently unknown. However, such an activity is indicated and
an involvement of AtFZL in the transport of lipids between the
inner envelope and the TM has been suggested, since vesicles
appear to not fuse in plants lacking AtFZL (Gao et al., 2006)
and since the chloroplasts show a disorganized TM morphology.
Thus, AtFZL likely is a membrane-remodeling GTPase, involved
in TM biogenesis and dynamics in chloroplasts (Gao et al.,
2006).

Thus, out of the six predicted DRPs, evidence for chloroplast
localization and function is only strong for AtDRP5b and
AtFZL. However, as AtDRP5b is localized at the outer envelope
membrane, AtFZL is the one remaining that could facilitate
membrane remodeling, potentially involving fission and fusion
of vesicles budding off from the inner envelope membrane and
being targeted to the TM (Kroll et al., 2001; Wang et al., 2004;
Garcia et al., 2010; Tanz et al., 2012; Armbruster et al., 2013;
Karim and Aronsson, 2014; Karim et al., 2014). Thus, DRPs
can be important to secure a dynamic but organized thylakoid
network in chloroplasts.

DLPs ARE CONSERVED IN
CYANOBACTERIA

The BDLP of the cyanobacterium N. punctiforme has been
characterized to some extent. As typical for DLPs, the smallest
structural unit of this BDLP appears to be a dimer, which
can further self-assemble (Low and Löwe, 2006; Low et al.,
2009). NosDLP is thought to mediate membrane fusion by
inducing formation of highly curved membrane regions (Low
and Löwe, 2006). After GTP-binding, NosDLP self-oligomerizes
in vitro around a membrane and forces the membrane into
a tube-like structure with high curvature, similar to the
prototypical eukaryotic Dyn protein that is involved in vesicle
fission. After GTP hydrolyzes, NosDLP is released from the
lipid, and adjacent membrane regions spontaneously fuse
(Low et al., 2009). A NosDLP-GFP fusion protein was found in
the cell periphery in N. punctiforme as well as in rare ring-like
structures at the cell septa (Low and Löwe, 2006), highlighting
that the protein is interacting with membranes and is membrane-
active. Nevertheless, the in vivo function of this protein is still
unclear.

To obtain further information about potential cyanobacterial
BDLPs (hereafter named cBDLPs to distinguish them from other
bacteria DLPs), we searched the pfam database (dynamin_N
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FIGURE 3 | Phylogenetic tree of 121 cBDLPs encoded in 56 cyanobacteria species (including NosDLP). The DLP discussed in the text is shown in bold. The name
of the potential dynamins is abbreviated. For full information about the strain, the gene name and the gene locus, view the Supplementary Data Sheet S1. The
cBDLPs can be classified into six different clades, depending on their sequence and genomic environment: the KGK clade (red), the HSR1 clade (orange), and the
chaperone clade (brown). Upstream of the Tandem A (pink) clade, another cBDLP (Tandem B, light blue) is encoded. cBDLPs (green) could not be classified further
and thus, represents a group of diverse cBDLPs. It is worth mentioning that boundaries between the cBDLPs clade and the Tandem B or HSR1 clades, respectively,
are not sharp and it might be that proteins share characteristics of both clades. Furthermore, while Xen7305 3 does not show significant sequence similarity to
Tandem B members, downstream of this gene, the Tandem A protein Xen7305 4 is encoded. The here described group characteristics refer to the majority of the
cBDLPs but do not represent every encoded protein. For further details, view the Supplementary Data Sheet S1. The phylogenetic tree (model: jukes-cantor,
neighbor-joining) was created by a full-length multiprotein sequence alignment (Geneious global alignment, Matrix Blosum62) implemented in the software Geneious
version 11.0.4 (http://www.geneious.com; Kearse et al., 2012). The cyanobacterial sequences were obtained from “cyanobase” (Nakamura et al., 1998; Fujisawa
et al., 2017).
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family PF00350), for cyanobacterial proteins carrying a dynamin
GTPase domain, the only key marker for DLPs. Based on this
analysis, 279 potential cBDLPs were identified being encoded in
74 different cyanobacterial species. However, we further limited
our results and removed small GTPases, which sometimes also
have a predicted dynamin GTPase domain. Finally, we ended
up with 121 genes that likely encode BDLPs in 56 different
cyanobacterial strains (Figure 3 and Supplementary Data
Sheet S1). It should be noted that due to the rather rigid search,
we might have overlooked some cBDLPs. While all potential
cBDLPs have a highly conserved dynamin-like GTPase domain
within the N-terminal protein region, we did not limit our search
to the identification of other known domains, since the sequences
of these domains are typically not conserved (as discussed
above). However, nearly all of the cBDLP sequences have an
extended and conserved P-loop region within the G-domain:
beside the common GxxxxGKS/T P-loop motif, cBDLPs have an
additional L/INALL/I motif, which extends the P-loop motif to
GxxxxGKS/TxL/INALL/I.

Unfortunately, none of the predicted cDLPs share a high
sequence identity with the AtFZL protein in chloroplasts.
However, based on a phylogenetic analysis we categorized the
identified cBDLPs into six groups, where the sequences of
individual cBDLPs are highly conserved within the defined clades
but clearly differ in between the clades (Figure 3). Interestingly,
the genetic context of some cBDLP is conserved in some
clades and proteins are, e.g., part of conserved gene clusters
(Supplementary Data Sheet S1).

Within the first cBDLP group, typically a KGK domain
protein is encoded downstream of the cBDLP. Members of
the KGK protein family (PF08872) are small cyanobacterial
proteins (around 120 amino acids) that contain a KGK domain
(Finn et al., 2014). Unfortunately, the precise function of this
domain is enigmatic, albeit this domain potentially mediates
protein–protein interactions. The second cBDLP group is termed
Tandem B cBDLPs, and the only yet characterized cBLPD,
the BDLP of N. punctiforme, belongs to this group (Low
and Löwe, 2006). Upstream of the encoding gene, a second
cBDLP is encoded (clade Tandem A), and thus, translation
of the clustered genes likely results in expression of two
different BDLPs. While it has been shown that NosDLP forms
homodimers, its GTPase activity was not at all affected by
homo-oligomerization and/or lipid binding. Therefore, it has
already been suggested that hetero-oligomerization with another,
different BDLP might control the activity of this BDLP in
a way, as observed in the case of eukaryotic DLPs (DeVay
et al., 2009; Michie et al., 2014). Based on our analyses, the
Tandem A representative of N. punctiforme is a likely candidate.
Noteworthy, the sequences of the Tandem A and Tandem B
cBDLPs differ substantially.

In the HSR1 group of cBDLPs, a potential protein of the
HSR1 protein family is encoded downstream of the cBDLP.
HSR1-releated proteins are not well-characterized GTP-binding
proteins that, however, have no apparent GTPase enzymatic
function (Finn et al., 2017). Thus, the cyanobacterial HSR1
proteins encoded adjacent of the cBDLPs potentially have a
regulatory function. In the chaperone group, conserved proteins

carrying a DnaK domain are encoded downstream of the
respective cBLDP. DnaK proteins belong to the group of Hsp70
chaperones (Mayer and Bukau, 2005; Young, 2010; Mayer, 2013),
and thus, here the activity of a membrane remodeling DLP is
linked to the activity of an Hsp70 chaperone. In fact, membrane
activity of Hsp70 members has been described in recent years
(Armijo et al., 2014; Mahalka et al., 2014). In humans, selected
Hsp70 proteins have been suggested to, e.g., carry immunogenic
peptides for antigen presentation (Haug et al., 2005), and thus,
DnaK-like proteins encoded in the vicinity of a cBDLP might
be involved in protein sorting during membrane remodeling
processes.

The remaining cBDLPs are not significantly related to one
another and could not be further categorized (named cBDLP in
Figure 3).

ARE (B)DLPs INVOLVED IN TM
BIOGENESIS AND DYNAMICS IN
CHLOROPLAST AND CYANOBACTERIA?

At least one DLP is present in chloroplasts and the activity
of the FZL protein has been linked to membrane biogenesis
and dynamics (Gao et al., 2006). As discussed before, DLPs
are also encoded in cyanobacteria and at least the NosDLP
can remodel membranes resulting in membrane fission (Low
et al., 2009). However, the exact in vivo function of (B)DLPs
in chloroplasts and cyanobacteria still is enigmatic. Clearly,
membrane disruption would be deleterious in chloroplasts as well
as in cyanobacteria, e.g., disruption of TMs would result in a
breakdown of the electrochemical gradient across the TM. Thus,
it is feasible to propose a membrane protective function of the
DLPs and a crucial role in the repair of ruptured membrane
regions, as suggested, e.g., for the BDLP of B. subtilis (Sawant
et al., 2016). However, in cyanobacteria different proteins and

FIGURE 4 | Potential involvement of DLPs in chloroplast (left) and
cyanobacterial (right) inner membrane dynamics. DLPs might be involved in
vesicle formation, release or fusion at the chloroplast inner envelope or the
cyanobacterial cytoplasmic membrane, respectively (1), or at the TMs (2); the
fusion of the inner envelope or cytoplasmic membrane, respectively, with the
TM system (3); and/or the fusion/constriction of individual TM layers (4).
Moreover, DLPs are potentially involved in membrane repair (5) and/or
membrane protection (6). IMS, inter membrane space. Note that DLPs
located outside of the chloroplast, involving AtDRP5B/ARC5, are excluded.
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systems are described that are suggested to be involved in
membrane stabilization and membrane repair, involving small
heat shock proteins and the PspA system (Torok et al., 2001;
Nitta et al., 2005; Manganelli and Gennaro, 2017). Thus, the
DLPs might have acquired additional functions in chloroplasts
and cyanobacteria.

In recent years, evidence has accumulated indicating that
membrane fusion and fission events are involved in TM
development and dynamics in chloroplasts and cyanobacteria
(Chuartzman et al., 2008; Kirchhoff et al., 2011; Herbstova et al.,
2012; Nevo et al., 2012; Iwai et al., 2015). As spontaneous,
uncontrolled membrane fusion would be deleterious to
organisms, defined fusion and fission machineries likely control
such remodeling processes (Chuartzman et al., 2008). However,
proteins involved in membrane dynamics in chloroplast and
cyanobacteria still need to be better characterized and more
need to be identified. In bioinformatic analyses, several genes
have been identified that code for putative chloroplast-localized
proteins with homology to proteins involved in the secretory
pathway, operating in the cytoplasm of eukaryotic cells, and
some of these proteins are also conserved in cyanobacterial
genomes (Nakai et al., 1993; Srivastava et al., 2005; Keller
and Schneider, 2013; Khan et al., 2013; Paul et al., 2014).
Nevertheless, potential involvement of these proteins in TM
biogenesis and/or maintenance has only sparsely been shown
experimentally yet, and it appears to be rather unlikely that vesicle
fission and fusion is regulated identical in chloroplasts as in the
secretory pathway. However, some of the identified (putative)
membrane-active proteins might fulfill similar functions in
chloroplasts as in the secretory pathway but work together with
other, chloroplast- and cyanobacteria-specific proteins. Such
chloroplast and cyanobacteria-specific proteins likely involve
the recently identified Vipp1/IM30 protein (Kroll et al., 2001;
Westphal et al., 2001), a protein that can fuse membranes
in presence of Mg2+, at least in vitro (Hennig et al., 2015).
Moreover, IM30-depleted chloroplasts and cyanobacteria have
a significantly reduced TM network (Kroll et al., 2001; Fuhrmann
et al., 2009). Within the secretory pathway, several small GTPases
are involved in vesicle formation and fission (Hutagalung and
Novick, 2011; Barlowe and Miller, 2013), and involvement of the
small GTPases AR1 and CPRabA5e in TM biogenesis has been
shown in A. thaliana (Garcia et al., 2010; Karim et al., 2014). Since
especially dynamin-like GTPases are directly associated with
membrane remodeling processes in many eukaryotic organelles,
it appears possible that DLPs are also involved in membrane
biogenesis and/or remodeling processes in chloroplasts and
cyanobacteria. In fact, FZL has been suggested to mediate
contact of two adjacent membranes in A. thaliana chloroplasts,
finally resulting in membrane fusion (Gao et al., 2006). The
here presented analysis clearly demonstrates that DLPs are also

highly abundant in cyanobacteria. However, thus far solely the
DLP of the cyanobacterium N. punctiforme has been studied
to some extent. The in vitro analyses clearly indicate that
the protein behaves like the classical Dyn and thus might be
involved in vesicle fission in cyanobacteria. Nevertheless, we
initially expected to identify a prototypical cDLP in our analysis
that is conserved in all cyanobacterial species. Surprisingly,
we did not identify such a candidate; rather, while most
cyanobacterial genomes encode at least one cDLP, the proteins
belong to different clades. Thus, the sequences of cBDLPs
are highly variable. While the exact physiological function of
the cyanobacterial proteins is enigmatic, it is reasonable to
assume that proteins with a membrane remodeling activity
will be involved in membrane dynamics in chloroplasts and
cyanobacteria. The exact physiological function of the proteins,
i.e., their involvement in processes such as membrane protection,
membrane repair, membrane fission and/or membrane fusion,
however, still needs to be established. Nevertheless, the in vivo
observation of FZL being involved in TM dynamics and vesicle
fusion and the in vitro observation of NosDLP behaving like
the prototypical Dyn clearly indicates a crucial membrane-
active role of DLPs in chloroplasts and cyanobacteria. Based
on the described membrane activities of DLPs and on the
need of membrane remodeling processes, in Figure 4 we
summarize a potential involvement of DLPs in chloroplasts and
cyanobacteria. We hope this article will stimulate future research
on the involvement of this membrane-active protein family in
membrane dynamics in chloroplasts and cyanobacteria.
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