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The early diagnosis of diabetes is 

important in order to avoid long-

term micro- and macrovascular 

complications in individuals at high 

risk of type 2 diabetes. This thesis 

aims to investigate the association 

of various metabolic and genetic 

biomarkers with hyperglycemia 

and type 2 diabetes. Several novel 

biomarkers were identified in this 

study as predictors of hyperglycemia 

and incident type 2 diabetes.

d
issertatio

n
s | 214 | Y

u
va

r
aj M

a
h

en
d

r
a

n
 | Identifi

cation of B
iom

arkers for T
ype 2 D

iabetes

Yuvaraj Mahendran 
Identification of Biomarkers 

for Type 2 Diabetes Yuvaraj Mahendran

Identification of Biomarkers 
for Type 2 Diabetes



YUVARAJ MAHENDRAN  
 
 
 
 
 
 



II 

 

 

 

 

 

 

 

 

 

 

 

Juvenes Print - Finnish University Print 
Kuopio, 2014 

 

 

Series Editors:  

Professor Veli-Matti Kosma, M.D., Ph.D. 

Institute of Clinical Medicine, Pathology 

Faculty of Health Sciences 

 

Professor Hannele Turunen, Ph.D. 

Department of Nursing Science 

Faculty of Health Sciences 

 

Professor Olli Gröhn, Ph.D. 

A.I. Virtanen Institute for Molecular Sciences 

Faculty of Health Sciences 

 

Professor Kai Kaarniranta, M.D., Ph.D. 

Institute of Clinical Medicine, Ophthalmology 

Faculty of Health Sciences  

 

Lecturer Veli-Pekka Ranta, Ph.D. (pharmacy) 

School of Pharmacy 

Faculty of Health Sciences 

 

Distributor:  

University of Eastern Finland 

Kuopio Campus Library 

P.O.Box 1627 

FI-70211 Kuopio, Finland 

http://www.uef.fi/kirjasto 

 

ISBN: 978-952-61-1367-8 (print) 

ISBN: 978-952-61-1368-5 (PDF) 

ISSN: 1798-5706 (print) 

ISSN: 1798-5714 (PDF) 

ISSNL: 1798-5706



III 

 

Author’s address: Department of Medicine, Institute of Clinical Medicine 

School of Medicine, Faculty of Health Sciences 

University of Eastern Finland 

P.O. Box 1627 

FI-70211 Kuopio 

Finland 

e-mail:yuvaraj.mahendran@uef.fi 

 

Supervisors: Academy Professor Markku Laakso, M.D., Ph.D. 

Department of Medicine, Institute of Clinical Medicine 

School of Medicine, Faculty of Health Sciences 

University of Eastern Finland 

Kuopio University Hospital 

 

Professor Johanna Kuusisto, M.D., Ph.D. 

Department of Medicine, Institute of Clinical Medicine 

School of Medicine, Faculty of Health Sciences 

University of Eastern Finland 

Kuopio University Hospital 

 

Reviewers: Professor Risto Kaaja, M.D., Ph.D. 

Department of Medicine 

Turku University 

Turku, Finland 

 

Docent Olavi Ukkola, M.D., Ph.D. 

Department of Internal Medicine 

University of Oulu 

Oulu, Finland 

 

 

Opponent: Adjunct Professor Heikki Koistinen, M.D., Ph.D. 

Department of Medicine, Division of Endocrinology 

Helsinki University Central Hospital 

Minerva Foundation Institute for Medical Research 

Biomedicum 2U, Tukholmankatu 8 

Helsinki, Finland



IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

 

 

Mahendran, Yuvaraj 
Identification of Biomarkers for Type 2 Diabetes 

University of Eastern Finland, Faculty of Health Sciences  

Publications of the University of Eastern Finland. Dissertations in Health Sciences 214. 2014. 56 p. 

 

ISBN: 978-952-61-1367-8 (print) 

ISBN: 978-952-61-1368-5 (PDF) 

ISSN: 1798-5706 (print) 

ISSN: 1798-5714ɯ(PDF) 

ISSNL: 1798-5706 

 

ABSTRACT 

 

Type 2 diabetes (T2D) is a complex disorder characterized by insulin resistance and pancreatic 

β-cell dysfunction. The incidence and prevalence of T2D have doubled in recent decades, this 

phenomenon being attributable to obesity, sedentary lifestyle and unhealthy diet. Both genetic 

and environmental factors are major determinants of this disease. Genome-wide association 

studies have identified several risk loci for T2D and hyperglycemia, but the biological role of 

most of these variants remains unknown. The early diagnosis of diabetes is important in order 

to avoid long-term micro- and macrovascular complications in individuals at high risk of T2D. 

Therefore, the identification of biomarkers that accurately predict incident T2D is of great 

interest. The main aim of this study was to identify non-genetic and genetic biomarkers that 

would predict hyperglycemia and incident T2D in a prospective follow-up of the population-

based METSIM (METabolic Syndrome In Men) cohort. We also investigated the significance of 

insulin sensitivity and insulin secretion as mediators in the associations of metabolites with the 

deterioration of hyperglycemia and incident T2D. We found that high fasting levels of glycerol, 

free fatty acids, monounsaturated fatty acids (FAs), and saturated FAs, and omega-7 and -9 FAs 

associated with increased risk of the development of hyperglycemia and T2D, whereas high 

levels of omega-6 FAs were associated with reduced risk of hyperglycemia and T2D. Insulin 

resistance explained these associations at least in part. With respect to erythrocyte membrane 

FAs, palmitoleic acid, dihomo-gamma-linolenic acid, and the ratios of 16:1n-7/16:0 and 20:3n-

6/18:2n-6 associated with the worsening of hyperglycemia, whereas the linoleic acid level and 

the ratio of 18:1n-7/16:1n-7 were associated with decreases in the hyperglycemia. Palmitoleic 

acid and the ratio of 16:1n-7/16:0 nominally predicted incident T2D, whereas linoleic acid had 

an opposite association. These associations were largely independent of insulin sensitivity, 

insulin secretion and glucose levels. Finally, high levels of acetoacetate and β-hydroxybutyrate 

predicted the worsening of hyperglycemia, and acetoacetate predicted incident T2D. Impaired 

insulin secretion, but not insulin resistance, explained these associations. One common variant 

rs780094 of the glucokinase regulatory protein gene was significantly associated with β-

hydroxybutyrate levels. In conclusion, this study identified several novel biomarkers predicting 

the worsening of hyperglycemia and incident T2D which could be used in clinical practice. 
 

National Library of Medicine Classification: QU 84, QU 90, WK 810, WK 820, WK 880 

 

Medical Subject Headings: Diabetes Mellitus, Type 2; Biological Markers; Genetics; Metabolomics; Hyperglycemia; 

Insulin; Insulin Resistance; Glycerol; Fatty Acids; Ketone Bodies; Cohort Studies  
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TIIVISTELMÄ 
 

Puutteellinen insuliinin eritys ja heikentynyt insuliinin vaikutus kohdekudoksissa 

(insuliiniresistenssi) ovat tärkeimmät tyypin 2 diabeteksen aineenvaihdunnan häiriöt.  Tyypin 2 

diabetes on perinnöllinen sairaus, mutta sen puhkeamiseen tarvitaan geenien lisäksi 

ympäristötekijöitä.  Useita tyypin 2 diabetekseen liittyviä geenejä on löydetty viimeisten 

vuosien aikana, mutta geenien funktio on useimmissa tapauksissa edelleenkin tuntematon.  

Tyypin 2 diabeteksen esiintyvyys on nopeasti lisääntynyt viimeisten vuosikymmenien aikana 

johtuen ylipainon lisääntymisestä, liikunnan vähenemisestä sekä epäterveellisestä 

ruokavaliosta.  Tyypin 2 diabeteksen varhainen diagnoosi on tärkeää, koska tähän sairauteen 

liittyy pitkäaikaiskomplikaatioiden riski.  Tutkimuksen tärkein tavoite oli tyypin 2 diabetesta ja 

hyperglykemiaa ennustavien geneettisten ja ei-geneettisten tekijöiden (biomarkkereiden) 

löytäminen. Aineistona oli METSIM (METabolic Syndrome In Men) –kohortti, johon kuului 

10,197 Kuopiossa ja sen lähikunnissa asuvaa miestä. Kohortin viiden vuoden 

seuruututkimuksessa lisääntynyt glyserolin, vapaiden rasvahappojen, tyydyttyneiden 

rasvahappojen, sekä omega 7- ja omega 9- rasvahappojen pitoisuus ennusti hyperglykemian ja 

tyypin 2 diabeteksen kehittymistä. Omega 6-rasvahappojen lisääntynyt pitoisuus puolestaan 

suojasi hyperglykemian ja tyypin 2 diabeteksen kehittymiseltä, joka johtui osittain 

vaikutuksesta insuliiniherkkyyteen.  Punasolumembraanien rasvahapoista palmitoleiinihapon 

ja dihomo-gamma-linoleenihapon lisääntynyt pitoisuus sekä eripituisten rasvahappojen 

lisääntyneet suhteet (16:1n-7/16:0 ja 20:3n-6/18:2n-6) ennustivat hyperglykemian ja tyypin 2 

diabeteksen riskiä. Lisääntynyt linoleenihapon pitoisuus ja lisääntynyt 18:1n-7/16:1n-7 – suhde 

vähensivät puolestaan hyperglykemian riskiä.  Nämä tulokset olivat riippumattomia 

insuliiniresistenssistä, insuliinin erityksestä ja glukoositasoista. Asetoasetaatin ja β-

hydroksibutyraatin lisääntynyt pitoisuus ennusti hyperglykemian kehittymistä ja 

asetoasetaation lisääntynyt pitoisuus myös tyypin 2 diabetesta johtuen insuliinierityksen 

huononemisesta. GCKR-geenin yleinen polymorfia (rs780094) liittyi merkitsevästi β-

hydroksibutyraatin pitoisuuteen. Yhteenvetona voidaan todeta, että tutkimussarjassa löydettiin 

useita uusia biomarkkereita, jotka ennustavat hyperglykemian ja tyypin 2 diabeteksen riskiä ja 

joita voidaan käyttää myös kliinisessä diagnostiikassa. 
 

Luokitus: QU 84, QU 90, WK 810, WK 820, WK 880 

 

Yleinen suomalainen asiasanasto: aikuistyypin diabetes; markkerit; merkkiaineet; geenit; metabolomiikka; 

hyperglykemia; insuliini; insuliiniresistenssi; glyseroli; rasvahapot; ketoaineet; kohorttitutkimus 
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2 Review of the Literature  

 

2.1 PATHOPHYSIOLOGY OF TYPE 2 DIABETES  

 

The development of T2D is characterized by a progressive deterioration of glucose tolerance 

from normal glucose tolerance to abnormal glucose tolerance and finally to diabetes. T2D is 

diagnosed on the basis of elevated glucose levels and/or HbA1c level. According to the 

American Diabetes Association (ADA) criteria, the diagnosis of diabetes is based on elevated 

fasting plasma glucose (FPG)  (≥ 7.0 mmol/L) or elevated 2-hour plasma glucose (2hPG) level (≥ 

11.1 mmol/L) in an oral glucose tolerance test (OGTT) or elevated HbA1c levels (≥ 6.5 %) (6). 

The two major pathophysiological abnormalities in T2D are impaired β-cell function and 

insulin resistance. 

 

2.1.1 Insulin secretion 

Insulin secretion is a highly dynamic process regulated by complex mechanisms. The pancreatic 

β-cell secretes a peptide hormone, insulin, the only blood glucose-lowering hormone in human 

metabolism. The insulin mRNA is translated as a precursor called proinsulin and inserted into 

the endoplasmic reticulum, and further processed to the biological active form inside secretory 

granules. Several intracellular signals, such as Ca2+, ATP, cAMP, and diacylglycerol and inositol 

1,4,5-triphosphate are involved in insulin secretion. Glucose is transported into the β-cells by 

GLUT1 (encoded by SLC2A1) and GLUT3 (encoded by SLC2A3) transporters (7). Upon 

transportation, an increase in glucose metabolism in the β-cell occurs. This involves an 

enhancement in the activity of glucokinase and generates a high concentration of the 

intracellular adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio. The resulting 

increase in the ATP/ADP ratio triggers the closure of the ATP-sensitive K+ (KATP) channels and 

depolarizes the cell membrane. The activation of  voltage-dependent Ca2+ channels causes an 

increase in Ca2+ entry into the β-cells, and the rise in intracellular Ca2+ concentration ([Ca2+]i)  

which in turn stimulates insulin release (Figure 1) (8). 

Insulin secretion in response to glucose exhibits a characteristic biphasic pattern, this consists of 

a rapid initiated and transient first phase followed by a sustained second phase during which 

insulin secretion continues at a somewhat lower rate but is still enhanced (9). Only a fraction of 

the β-cell insulin content is released during stimulation. The complete loss of the first phase 

insulin secretion and a marked reduction of the second phase insulin release in non-diabetic 

individuals are the early markers for the risk of T2D (10). 
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Figure 1. Regulation of insulin secretion (8). VDCC, voltage-dependent calcium channel; PIP2, 

phosphatidylinositol 4,5-bisphosphate.  

Impaired insulin secretion is the major abnormality encountered in the pathogenesis of T2D. 

One consequence of the decline of early phase insulin secretion is impaired glucose tolerance, 

which leads to the development of post-prandial hyperglycemia which in turn impairs insulin 

secretion via glucotoxicity. Finally, the impairment of insulin secretion causes overproduction of 

endogenous glucose and this ultimately leads to the development of frank diabetes. Early phase 

insulin secretion is impaired in individuals with disturbed glucose homeostasis and in those at 

high risk for T2D. Impaired insulin secretion predicts T2D independent of insulin resistance in 

normoglycemic subjects (11). Defects in insulin secretion are attributable to a decrease in the 

sensitivity of the glucose receptor which transmits the glucose signal to trigger insulin release in 

the pancreatic β-cell (12). Genetic and environmental factors are the main determinants of 

insulin secretion. The offspring of patients with T2D show a defect in the first-phase insulin 

secretion in addition to insulin resistance (13). High levels of saturated fatty acids (FAs) impair 

insulin secretion and this leads to the deterioration of glucose tolerance (14). 

 

2.1.2 Insulin resistance 

Insulin resistance is defined as a reduction in insulin’s ability to stimulate glucose uptake in 

peripheral insulin sensitive tissues. Insulin mediates its action by binding to the insulin receptor 

(IR) in three major tissues, skeletal muscle, liver and the adipose tissues. The IR undergoes 

autophosphorylation and it enhances tyrosine kinase activity. Activated receptors lead to the 

binding of various scaffold proteins, including the insulin receptor substrates (IRS). This, in 

turn, results in the activation of the insulin signalling pathway, where the phosphorylation of 

IRS proteins leads to their association with the p85 regulatory subunit of phosphatidylinositol 3-

kinase (PI3-K). This results in the activation of p100 catalytic subunit of PI3-K that catalyzes the 

production of phosphoinositol lipids, including phosphatidylinositol 3,4,5-trisphosphates 
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[PI(3,4,5)P3], which further activates the Ser/Thr kinase 3-phosphoinositide-dependent protein 

kinase (PDK)-1. PDK-1 phosphorylates and activates other downstream kinases, including Akt 

and protein kinase C (PKC), which mediates translocation of GLUT4. This series of signals 

stimulates glucose uptake into the cells (Figure 2) (15).  

 

Figure 2. Insulin signaling pathway (15). PI(3,4)P2, phosphatidylinositol (3, 4)-bisphosphate; AKT, 

protein kinase B; GLUT4, glucose transporter type 4.  

Since IRS molecules are key mediators in the insulin signaling pathway, IR-deficient mice 

develops severe diabetes resulting in FA infiltration of the liver and increased production of 

ketone bodies (16). The lack of IRS-1 gene in primary adipocytes of mice showed decreased 

glucose transport and GLUT4 translocation in the membrane (17). GLUT4 is the main insulin-

responsive glucose transporter, and mice deficient of GLUT4 exhibit moderate insulin 

resistance and impaired glucose tolerance but do not develop diabetes. However, the GLUT4 

deficiency resulted in growth retardation, reduced fat tissue, cardiac hypertrophy and 

shortened lifespan (18). Defects in the insulin signaling pathway, such as impaired IRS tyrosine 

phosphorylation and reduced activation of PI 3-kinase/Akt signaling have also been 

demonstrated to be responsible for reduced glucose transport and glucose utilization in skeletal 

muscle and adipocytes (19). 

In addition to the defects in the insulin signaling pathway, genetic predisposition, unhealthy 

diet, physical inactivity, accumulation of lipids in the liver and skeletal muscle contribute to 

insulin resistance. 

2.1.2.1 Skeletal muscle insulin sensitivity 

Glucose uptake into skeletal muscle is insulin dependent, and skeletal muscle accounts for 

about 60-70% of whole body glucose uptake (20). GLUT4-mediated glucose transport into 
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skeletal muscle is essential for the maintenance of normal glucose homeostasis, and it is 

activated by insulin and muscle contraction (21). Muscle specific inactivation of the insulin 

receptor results in severe insulin resistance and glucose intolerance (21). Insulin resistance in 

skeletal muscle is attributable to defects in the insulin signalling pathway, such as IRS-1 and 

PI3-K and Akt activation (22). Individuals with T2D exhibit reduced IR and IRS-1 

phosphorylation and lowered PI3-K activity in skeletal muscle (23, 24). Skeletal muscle insulin 

resistance in genetically predisposed individuals manifests itself as impaired activation of PI3-

K, IRS-1 and AKT (25). 

 

2.1.2.2 Liver insulin sensitivity 

 

Liver accounts for ~30% of whole body insulin-mediated glucose uptake and plays a key role in 

the maintenance of glucose homeostasis. Approximately 85% of glucose produced in the liver is 

derived from glycogen breakdown and gluconeogenesis. Insulin regulates both glycogenolysis 

and gluconeogenesis. Impaired insulin mediated suppression of hepatic glucose production 

leads to increased levels of plasma glucose and contributes to the pathogenesis of T2D. In 

addition, hepatic insulin resistance results in other abnormalities including hyperinsulinemia, 

increased β-cell stress, hyperglycemia, dyslipidemia and increased levels of inflammatory 

factors.  

 

The accumulation of triglycerides (TGs) in the liver is responsible for hepatic insulin resistance 

(26). In the liver, an excess formation of diacylglycerols (DAGs) leads to the activation and 

translocation of PKCε in the membrane and consequently to the inhibition of insulin-stimulated 

insulin receptor kinase phosphorylation of IRS proteins which in turn downregulates the 

downstream insulin-signalling cascade. Intrahepatic accumulation of diacylglycerol mediates 

hepatic insulin resistance (27). It is known that defects in the IRS-1 and IRS-2 insulin receptor 

signalling pathways directly contribute to hyperglycemia and hepatic insulin resistance (28). 

 

2.1.2.3 Adipose tissue insulin sensitivity 

 

Adipose tissue accounts for ~10% of whole body glucose uptake. The primary role of adipose 

tissue is to store free fatty acids (FFAs) and release FFAs to ensure adequate energy level in the 

body. In the fed state, the upregulation of lipoprotein lipase (LPL) in adipose tissue hydrolyses 

chylomicron-associated TGs, and stimulates the uptake of FAs by adipose tissue. In the fasting 

state, FFAs originate almost entirely from the hydrolysis of TGs within adipocytes. Stored TGs 

are rapidly mobilized by the action of the three main lipases in the adipocyte: adipose 

triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL). 

HSL catalyzes the first and rate-limiting step in the mobilization of FFAs from adipose tissue 

(29, 30). In adipose tissue, HSL is activated by several hormones such as catecholamines, 

adrenocorticotropic hormone and glucagon via cAMP-dependent protein kinase A and 

inhibited by insulin (31, 32). 
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Insulin is the major regulator of LPL and HSL activity in the adipose tissue. Insulin upregulates 

LPL activity and promotes gene expression of acetyl-CoA carboxylase (ACC) and fatty acid 

synthase (FAS) (33). Additionally, insulin prevents HSL activity in the adipose tissue through 

inhibition of its phosphorylation (34). In insulin resistant conditions, the responses of both LPL 

and HSL activities to insulin are blunted. LPL is associated with increased TG synthesis, and the 

ineffective suppression of HSL-mediated lipolysis in the adipose tissue causes an abnormal 

release of FFAs in plasma (35).  

Adipose tissue releases hormones and cytokines that are involved in glucose metabolism, 

inflammation, and lipid metabolism. In obese subjects, levels of FFAs, TNF-alpha, IL-6, 

plasminogen activator inhibitor type 1 and C-reactive protein (CRP) are significantly increased, 

and the levels of adiponectin are low (36). Adiponectin increases insulin sensitivity by 

stimulating FA oxidation and inhibiting hepatic glucose production (37, 38). In obese 

individuals, the levels of TNF-alpha in the adipose tissue are increased and these contribute to 

insulin resistance (39) by inhibiting the genes involved in insulin signaling and adipocyte 

differentiation including CAAT-enhancer-binding protein-α, PPARG, GLUT4, IRS-1 protein, 

protein kinase B (PKB), adiponectin, and long-chain FA acyl-CoA synthase (38). Adipose tissue 

specific downregulation of GLUT4 can cause insulin resistance and thereby increase the risk of 

developing diabetes (40). Adipocytes from diabetic and insulin resistant individuals exhibit 

reduced GLUT4 translocation, reduced IRS-1 expression, impaired insulin-stimulated PI3-K and 

Akt/PKB (20). Elevated levels of TNF-alpha, combined with the elevation of IL-6, IL-1β, and 

CRP proteins are associated with incident diabetes (41). During fasting state, high levels of FFAs 

in plasma, a subsequent increase in the intake of FA by muscle and FA flux to the liver also 

increases and contributes to hepatic gluconeogenesis and ketogenesis. 

 

2.2 DIETARY FAT AS A RISK FACTOR FOR TYPE 2 DIABETES 

 

Essential FAs, such as omega-3 and omega-6 polyunsaturated FAs, trans-fatty acids, and 

saturated FAs (15:0, 17:0) are considered as reliable FA biomarkers. These FAs are derived only 

from diet and cannot be synthesized endogenously. Other saturated and monounsaturated FAs 

are derived either from the diet or are endogenously synthesized.  The levels of these FAs vary 

considerably from day to day within an individual.  Therefore, they cannot be considered as 

reliable biomarkers of dietary intake (42). The distribution of individual FAs can be measured in 

plasma, cholesterol esters, TGs, phospholipids, erythrocytes, platelets, various lipoprotein sub-

fractions and adipose tissue. 

Type of dietary fat intake might be a more important factor for the risk of diabetes than the total 

dietary fat intake (43). The increased intake of saturated FAs increases LDL cholesterol 

concentration. The replacement of saturated FAs by mono-or polyunsaturated FAs has been 

reported to lower the level of LDL cholesterol and to increase that of HDL cholesterol (44). A 

diet high in saturated FAs worsens insulin resistance (45). Randomized clinical studies have 

demonstrated that low-carbohydrate, low-glycemic index, Mediterranean, and high-protein 

diets can improve glycemic control and increase the HDL cholesterol level (46). In non-diabetic 
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men, a high intake of saturated FAs increases the risk of T2D (47). Similarly, a western diet and 

a high fat intake are also associated with incident T2D (48, 49). 

 

 
2.3 GENETICS OF TYPE 2 DIABETES 

 

T2D is a genetically heterogeneous disease and about 30-70% of the risk can be attributed to 

genetic factors. The pattern of inheritance suggests that multiple genes and different 

combination of genes are involved in T2D.  

 

2.3.1 Heritability of type 2 diabetes 

There is undisputed evidence that T2D is inherited. The prevalence of diabetes varies widely 

across different ethnic groups, due to underlying genes and different frequencies of 

predisposing alleles  (50). T2D aggregates in the families. The concordance of T2D in 

monozygotic twins is ~70% compared with 20-30% in dizygotic twins (4). The risk of 

developing T2D is ~40% in the offspring if one parent has diabetes and 70% if both parents have 

diabetes (51, 52). A prospective study has demonstrated a twofold increased risk of incident 

T2D in subjects with a family history of diabetes (53).  

 

2.4 APPROACH FOR GENETIC STUDIES IN TYPE 2 DIABETES 

 

2.4.1 Linkage and candidate gene approach 

Linkage analysis is undertaken to identify the regions of the genome that harbour genes which 

predispose to different diseases. Linkage analysis requires a large pedigree with many affected 

and unaffected individuals from several consecutive generations in the same homogenous 

population (54). With linkage studies, several loci for T2D have been identified on chromosome 

20q and chromosome 1q (q21 – q23) (55-57). The exploration of chromosome 1q revealed the 

gene encoding transcription factor 7-like 2 (TCF7L2). This locus has been reported to confer the 

strongest effect on the risk of T2D, and this association has been replicated in several ethnic 

groups (58, 59).   

The candidate gene approach focuses on the search for an association between disease and 

variants in or near biologically defined candidate genes which have been chosen based on their 

inferred physiological role in disease, especially in pathways involved in insulin secretion and 

insulin resistance. PPARG, KCNJ11, WFS1, HNF1B genes have been identified as risk genes for 

T2D using the candidate gene approach (60).  
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2.4.2 Genome wide association studies   

 

Genome wide association studies (GWAs) are designed to find loci that fit the common disease-

common variant hypothesis of human disease.  This approach is unbiased with respect to the 

genome structure and previous knowledge of the disease etiology. The completion of the 

Human Genome Project in 2003 and the International HapMap Project in 2005 led to the 

identification of several million SNPs.  

 

The first GWAs identified a zinc transporter and member of solute carrier family, SLC30A8, and 

HHEX as the first confirmed candidate genes for T2D and confirmed the association of TCF7L2 

and KCNJ11 with T2D (61). These results provided evidence that the GWA approach was useful 

for identifying functionally relevant loci. Another three GWAs studies identified CDKAL1, 

IGF2BP2, and a variant near CDKN2A-B as novel T2D loci and confirmed the known T2D loci of 

TCF7L2, KCNJ11, PPARG, SLC30A8, and HHEX (62-64).  The association of FTO with T2D was 

identified and subsequently confirmed in replication studies (65, 66). Additionally, meta-

analyses have found six new loci JAZF1, CDC123, TSPAN8, THADA, ADAMTS9, and NOTCH2 

for T2D (67). Most of the T2D loci identified with GWAs were common variants conferring 

small effects. 

 

2.4.3 Exome wide association studies 

 

The exome sequencing approach is based on a common disease-rare variant hypothesis. It 

postulates that multiple rare variants with large effects sizes are the main determinants of 

heritability of the disease. Exome sequencing has been successful in the identification of 

mutations for rare Mendelian disorders (68). A few studies have demonstrated the benefit of 

applying large-scale exome sequencing approach for discovering variations associated with 

complex metabolic traits (69, 70). A recent study in Finnish individuals using the exome chip 

approach identified three new low-frequency loci in TBC1D30, KANK1, and PAM that were 

associated with insulin processing or insulin secretion (71). This study provided the first proof 

that exome-wide association studies are a powerful way for identifying low-frequency 

functional variants for complex diseases.  

 

 

2.5 HYPERGLYCEMIA AND TYPE 2 DIABETES RISK LOCI IDENTIFIED BY 

GWAs 

Altogether GWAs have identified >65 genetic variants associated with T2D (51). Figure 3 

illustrates the year of discovery of all 65 loci associated with T2D and their effect sizes.  

However, for several of these variants, the biological role of the specific variant is unknown. 

Most of the common gene variants of T2D have been associated with β-cell function and not 

with insulin sensitivity (72).   
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Figure 3. 65 T2D variants identified with GWAs (modified from (72)), the red rectangle represents 

genetic loci that are associated with both fasting glucose and T2D. 

So far GWAs have reported 36 variants associated with fasting glucose levels (73-75), but the 

association of these variants with T2D has remained unclear. For example, GCK, MTN1RB and 

G6PC2 are associated with fasting glucose with strong effect sizes, but they do not have any 

significant effects on the risk of T2D. In contrast, TCF7L2 is the strongest candidate gene for 

T2D, but its effect on fasting glucose level is limited.  Individual SNPs associated with 

hyperglycemia and T2D are summarized in detail in Table 1.  Only the most important genes 

regulating the risk of T2D and hyperglycemia are discussed below. 

 

2.5.1 Gene variants affecting insulin secretion 

ARAP1 also known as CENTD2 encodes ArfGAP with RhoGAP domain, ankyrin repeat and 

PH domain 1. ARAP1 gene is known to regulate EGF-R trafficking and the signaling also 

involved in apoptosis (76, 77). The variant rs1552224 in ARAP1 is associated with an increased 

risk of T2D and decreased glucose-stimulated insulin release (78, 79). 
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Table 1. Single nucleotide polymorphisms associated with T2D, insulin secretion, insulin sensitivity, 

obesity and other glycemic traits 

Gene SNP 
Chromosomal 

Location 

GWA 

trait 

Other reported associations with 

phenotypes 
References 

Gene variants affecting insulin secretion 

 ADCY5 rs11708067 3q21.1 FG, T2D Decreased HOMA-B 
Decreased birth weight 

(73) 
(80) 

 ADRA2A rs10885122 10q25.2 FG  (81) 

 ARAP1/ 
CENTD2 

rs1552224 11q13.4 T2D  (79) 

BCL11A rs10490072 2p21 T2D  (82) 

CDKAL1 rs7754840 6p22.3 T2D Impaired conversion of  
proinsulin to insulin 
Decreased birth weight 

(83-85) 
 
(86) 

CDKN2A/B  rs10811661 9p21 T2D   (87) 

C2CD4A rs7172432 15q22.2 T2D  (88) 

C2CD4B rs11071657 15q22.2 FG Decreased HOMA-B (73, 81) 

DGKB rs2191349 7p21.2 FG, T2D Decreased HOMA-B  (73, 81) 

FADS1 rs174550 11q12.2-q13.1 FG Decreased HOMA-B  (73, 81) 

GCK rs4607517 
rs1799884 

7p15.3-p15.1 FG, T2D 
FG, T2D 

Decreased HOMA-B  
 

(73, 81) 
 

G6PC2 rs560887 2q24.3 FG Decreased HOMA-B 
Decreased T2D risk 

(73, 81) 
 

GLIS3 rs7034200 9p24.2 FG Decreased HOMA-B  (73, 81) 

HMGA2 rs1531343 12q15 T2D  (78) 

HNF1A/ 
TCF1 

rs7957197 12q24.31 T2D  (78) 

HNF1B rs7501939 17q12 T2D  (84)(89) 

HHEX rs1111875 10q23.33 T2D Decreased birth weight (86, 87, 90) 

IGF2BP2 rs4402960 3q27.2 T2D  (63, 87, 91-93) 

JAZF1 rs864745 7p15 T2D  (67, 94) 

KCNJ11 rs5219 11p15.1 T2D Increased glucagon level (92, 95, 96) 

KCNQ1 rs2237895 11p15 T2D  (97, 98) 

KLF14 rs972283 7q32 T2D  (78) 

MTNR1B rs10830963 11q21–q22 FG, T2D  (92, 99) 

MADD rs7944584 11p11.1 FG Impaired proinsulin to insulin conversion  
Decreased HOMA-B 

(100) 
 
(73) 

PROX1 rs340874 1q41 FG, T2D Decreased Insulin sensitivity  
Decreased HOMA-B 

(73, 81) 

PRC1 rs8042680 15q26.1 T2D  (78) 

SLC30A8 rs13266634 8q12.11 FG, T2D Impaired proinsulin to insulin conversion (61, 83, 101, 
102) 

SLC2A2 rs11920090 3q26.1-q26.2 T2D Decreased HOMA-B  (73) 

TP53INP1 rs896854 8q22 T2D  (78) 

TCF7L2 rs7903146 10q25.3 FG, T2D Impaired proinsulin to insulin conversion 
Decreased incretin effect 
Decreased glucagon level 

(58, 83, 102, 
103) 
 
(104) 

ZBED3 rs4457053 5q13.3 T2D  (78) 

ZFAND6 rs11634397 15q25.1 T2D  (78) 

Gene variants affecting insulin sensitivity 

GCKR rs780094 2p23 FG, T2D, 
FI, TGs 

 (73, 102) 

IRS1 rs2943641 2q36 T2D  (105) 

PPARG 
 

rs1801282 3p25 T2D  (106) 
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Gene variants affecting obesity 

FTO rs9939609 16q12.2 BMI,T2D Decreased insulin sensitivity 
Increased fasting insulin 

(66, 78) 

Gene variants with unknown function 

ADAMTS9 rs4607103 3p14.3-2 T2D Decreased insulin sensitivity 
Increased insulin secretion 

(107) 

ANKRD55 rs459193 5q11.2 T2D Decreased insulin sensitivity (108) 

ANK1 rs516946 8p11.1 T2D Decreased insulin secretion (108) 

AP3S2  rs2028299 15q26.1 T2D, BMI  (109, 110) 

BCAR1  rs7202877 16q23.1 T2D Decreased disposition index (108) 

CCND2  rs11063069 12p13 T2D  (111) 

CDC123D/ 
CAMK1D 

rs12779790 10p13 T2D Decreased insulin secretion 
Decreased arginine stimulated  
insulin secretion 

(82, 94) 

CLIP2 rs10401969 19p13.11 T2D, TGs, 
LDL 

 (111) 

CRY2 rs11605924 11p11.2 FG, T2D  (73) 

DUSP8  rs5945326 11p15.5 T2D  (78) 

GCC1 rs6467136 7q32.1 T2D  (112) 

GIPR rs10423928 19q13.3 2hPG, T2D Decreased insulin secretion 
Increased fasting proinsulin 

(75) 
(102) 

GLIS3 rs7034200 9p24.2 FG, T2D,  Decreased HOMA-B 
Decreased fasting insulin 
Decreased insulin secretion 

(73) 
 
(81) 

GRB14  rs13389219 2q22-q24 T2D Decreased Matsuda ISI 
Increased HOMA-B 
Increased fasting insulin 

(108) 

HMG20A  rs7178572 15q24 FG, T2D, 
BMI 

 (110) 

HNF4A rs4812829 20q13.12 T2D Decreased β-cell function (110) 

KLHDC5  rs10842994 12p11.22 T2D  (111) 

KCNK16  rs1535500 6p21.2-p21.1 T2D  (112) 

MAEA rs6815464 4p16.3 T2D  (112) 

MC4R  rs12970134 18q22 T2D, TGs, 
BMI 

Increased insulin resistance (108, 111) 

NOTCH2  rs10923931 1p13-p11 T2D Decreased fasting insulin (113) 

PEPD rs3786897 19q13.11 T2D  (112) 

PSMD6 rs831571 3p14.1 T2D  (112) 

PTPRD rs17584499 9p23-p24.3 T2D  (114) 

RBMS1 rs7593730 2q24.2 T2D Decreased HOMA-IR (115) 

SPRY2 rs1359790 13q31.1 T2D  (116) 

SRR rs391300 17p13.3 T2D  (114) 

ST6GAL1 rs16861329 3q27-q28 T2D, TGs, 
HDL-C  

Decreased β-cell function (110, 117) 

TLE1 rs2796441 9q21.32 T2D  (78) 

TLE4 rs13292136 9q21.32 T2D  (111) 

TSPAN8 rs7961581 12q14.1-q21.1 T2D Decreased insulin secretion (94) 

THADA rs7578597 2p21 T2D Decreased insulin secretion (92) 

UBE2E2 rs7612463 3p24.2 T2D Decreased HOMA-B (118) 

VPS26A rs1802295 10q21.1 T2D  (110) 

WFS1 rs10010131 4p16.1 FG, T2D, 
HbA1c 

Decreased insulin secretion (53, 119, 120) 

ZFAND3 rs9470794 15q25.1 T2D  (112) 

ZMIZ1 rs12571751 10q22.3 2hPG, T2D  (108, 111) 

 

FG, Fasting glucose; FI, Fasting insulin; 2hPG, 2 hour postprandial glucose; BMI, Body mass 

index; LDL, low density lipoprotein; HDL-C, High density lipoprotein-cholesterol; TGs; Triglycerides   
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CDKAL1 encodes a cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1. It 

is expressed in pancreatic islets, skeletal muscle and brain (63, 65). Pancreatic β-cell specific 

knockout of CDKAL1 in mice displayed pancreatic islet hypertrophy, a reduction in insulin 

secretion, and impaired blood glucose control (121). Stančáková et al. reported that CDKAL1 

variant rs7754840 was associated with reduced first phase insulin secretion (84). GWAs and 

meta-analysis have revealed significant associations of CDKAL1 variant rs7754840 with T2D in 

various ethnic groups (85, 122). 

DGKB encodes diacylglycerol kinase beta (DGK) and it belongs to the intracellular lipid kinase 

family. DGK phosphorylates diacylglycerol to produce phosphatidic acid (PA), where PA 

regulates PKC. Activation of PKC leads to increased serine phosphorylation of the IRS-1 and 

this subsequently resulted in decreased insulin-stimulated glucose transport activity (123). The 

variant rs2191349 in DGKB was associated with decreased insulin secretion, increased fasting 

glucose and risk of T2D (73). 

FADS1 encodes the fatty acid deta-5 desaturase (D5D), a key enzyme involved in the 

metabolism of long-chain polyunsaturated omega-3 and omega-6 FAs. The D5D enzyme is 

expressed mainly in the liver, brain, heart and lung (1). The SNP rs174548 was found to be 

associated with FADS1 mRNA expression in the liver and rs174550 with low insulin secretion 

(73, 102), fasting glucose, insulin, HOMA-IR, HOMA-B, TGs and T2D (73). 

HHEX encodes the transcription factor hematopoietically expressed homeobox protein which is 

essential for pancreatic and liver development and is also involved in the Wnt signaling 

pathway (124, 125). The variant rs1111875 in the 3’flanking region of HHEX has been associated 

with T2D risk and pancreatic β-cell dysfunction (87, 90). 

IGF2BP2 encoding insulin-like growth factor II mRNA–binding protein 2, plays an important 

role in embryogenesis and pancreatic development (126). IGF2BP2 belongs to a family of 

mRNA-binding proteins (IMP1, IMP2, and IMP3) and regulates the translation of IGF2 mRNA-

binding protein family. This family is known to play a vital role in growth and insulin-signaling 

(127). A common variant rs4402960 in intron 2 of IGF2BP2 has been associated with reduced 

early phase insulin secretion, impaired pancreatic β-cell function and an increased risk of T2D 

(63, 87, 91-93). 

KCNJ11 encodes the potassium inwardly-rectifying channel, subfamily J, member 11 gene.  It 

encodes protein KATP (Kir 6.2) and is highly expressed in the liver. Mutations in KCNJ11 

influence the KATP channel activity and impair insulin secretion in β-cells (128). A KCNJ11 E23K 

(rs5219) variant was found to be associated with an increased risk of T2D, BMI and impaired 

glucose-induced insulin secretion (95). 

KCNQ1 encoding potassium voltage-gated channel, KQT-like subfamily member 1 gene, is 

expressed in the heart, pancreas, kidneys and intestine (97, 129). The encoded protein plays a 

role in the electrical depolarization of the cell membrane in the heart and possibly also in 

pancreatic β-cells (130). Variants rs2283228 and rs2237895 of KCNQ1 have been associated with 

T2D in Asian and European individuals (129).  
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MTNR1B encodes the melatonin receptor type 1B. The circadian rhythm of melatonin hormone 

influences insulin secretion and glucose homeostasis through its islet-specific receptor (131). 

The T allele of rs1387153 has been shown to be associated with increased FPG level and an 

increased risk of T2D (99, 132). The risk G allele of SNP rs10830963 has been associated with 

impaired insulin secretion (99). Exome sequencing has revealed that 36 rare variants (minor 

allele frequency < 0.1) of this gene were associated with T2D (133). 

SLC30A8 encodes solute carrier family 30 (zinc transporter), member 8. It is highly expressed in 

the pancreatic islet β-cells (134). Deletion of SLC30A8 exon 3 in mice has resulted in marked 

reduction of the zinc content in islets, reduced fasting insulin and impaired insulin secretion 

(135). The non-synonymous variant rs13266634 in SLC30A8 causes an arginine to tryptophan 

change (Arg325Trp) and this has been associated with a decrease in the first phase insulin 

release and increased susceptibility for T2D (61, 101).  

TCF7L2 encodes transcription factor 7-like 2. It is a member of the T-cell-specific high-mobility 

group (HMG) box-containing transcription factor, a key component of the Wnt-signaling 

pathway. Depletion of TCF7L2 has resulted in increased β-cell apoptosis, decreased β-cell 

proliferation and glucose-stimulated insulin secretion. Variant rs7903146 in the third intron of 

TCF7L2 has been shown to be significantly associated with low levels of insulin secretion and 

an increased risk of T2D (58, 103).  

 

2.5.2 Gene variants affecting insulin sensitivity 

PPARG encodes for peroxisome proliferator activated receptor gamma, one of the members of 

nuclear hormone regulating transcription factors. It is moderately expressed in skeletal muscle, 

liver, macrophages, brain and highly expressed in adipose tissue (136). PPARG is important for 

adipocyte differentiation and the expression of adipocyte-specific genes. Adipose tissue and 

muscle specific deletion of PPARG resulted in glucose intolerance and progressive insulin 

resistance in the adipose tissue, liver and skeletal muscle (137, 138). The missense variant 

Pro12Ala of PPARG has been associated with the risk of T2D (139, 140).  

IRS1 encodes for insulin receptor substrate 1 and plays a major role in insulin signaling. Variant 

rs2943641, located adjacent to IRS1, has been associated with insulin resistance, 

hyperinsulinemia and T2D (105).  

 

GCKR encodes for glucokinase regulatory protein and plays an important role in whole body 

glucose homeostasis in the liver (141). GCKR inhibits glucokinase (GCK) in competition with 

glucose substrate. A variant rs780094 in GCKR  has been shown to be associated with several 

phenotypes including fasting glucose and insulin level, impaired fasting glucose, insulin 

secretion, reduced HOMA-IR, FFAs, serum TGs and the risk of T2D (62, 73, 142).  

 

2.5.3 Gene variants affecting obesity 

FTO encodes for fat mass and obesity associated gene. FTO is expressed in the hypothalamus, 

liver, muscle, adipose tissue and pancreatic β-cell (143). The rs9939609 variant resides within 
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the first intron of FTO has been shown to be associated with obesity, reduced insulin sensitivity, 

and T2D (66, 78). 

 

2.6 METABOLOMICS 

 

Metabolomics is the study of global metabolite profile in the various cells, tissues, organs or 

biological fluids. It measures the chemical phenotypes that are the net results of genomic, 

transcriptomic and proteomic variability, therefore providing the most integrated profile of 

biological status. Metabolomics is used to discover new diagnostic markers and to enhance 

better understanding of disease mechanisms. 

 

2.6.1 Untargeted metabolomics 

The untargeted metabolomics approach has the ability to detect and quantify a broad range of 

both known and unknown metabolites and reveal potential metabolites linking cellular 

pathways to biological mechanisms. This approach makes it possible to assess a large number 

of metabolites that are substrates and products in different metabolic pathways. Using this 

approach, differences in concentrations of a wide range of metabolite profiles, such as bile acids, 

urea cycle intermediates, purine degradation products, glutamine, glutamate, FFAs, 

acylcarnitines, lysophosphatidylcholines and other small molecules can been measured e.g. 

before and after a glucose load (144, 145). In obese individuals, several metabolites (FFAs, TGs, 

amino acids, C3 and C5 acylcarnitine, glutamate, pyruvate) have been reported to be elevated 

as compared to those of lean subjects indicating that branched-chain amino acids (BCAAs) 

contribute to the development of obesity-associated insulin resistance (146).  

Longitudinal studies have revealed that plasma branched-chain and aromatic amino acids are 

new predictors of the development of T2D (147). A 12-year follow-up study on lipid profiling 

during a 2-hour glucose tolerance test found that TGs of low carbon number and the double 

bond content were associated with an increased risk of T2D. These lipids were elevated in 

insulin resistance whereas TGs of high carbon number and the double bond content were 

poorly correlated with insulin resistance (148). The TwinsUK Study assessed metabolites before 

and after hyperglycemia and identified that glucose, mannose, FFAs, and amino acids (BCAAs, 

valine, isoleucine, leucine, and their branched-chain-keto-acid, 3-methyl-2-oxovalerate, 4-

methyl-2-oxopentanoate and 3-methyl-2-oxobutyrate) were associated with IFG and T2D. 

Adrenate and arachidonate levels were elevated in IFG whereas dodecenoate, heptanoate and 

pelargonate were decreased in subjects with T2D (149). 

 

2.6.2 Targeted metabolomics for biomarker discovery 

Targeted metabolomics has an excellent potential in the identification of new biomarkers as 

well as in the validation of identified biomarkers. By using this approach, specific metabolites 

levels which are chemically characterized and biochemically annotated can be measured by the 

liquid chromatography, nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry. 
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These techniques have their own advantages but some disadvantages in capturing the 

metabolites of interest. In the candidate biomarker discovery study, glycine, 

lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine were found to be significant 

predictors of impaired glucose tolerance and T2D (150). A recent targeted metabolomics study 

reported that sugar metabolites, amino acids and choline-containing phospholipids were 

associated with the risk of T2D (151).  

Glucose, HbA1c and insulin are well known biomarkers for T2D. Recently several new and 

emerging metabolic biomarkers for T2D and glycemia were reported, including ferritin, leptin, 

adiponectin, CRP, interleukin-2 receptor A, interleukin 6, interleukin-18, plasminogen activator 

inhibitor-1, apolipoprotein B, serum γ-glutamyl transferase, plasma fetuin-A, plasma levels of 

E-selectin, intercellular adhesion molecule-1 (ICAM-1), and tissue plasminogen activator (152-

160). A recent longitudinal study has indicated that plasma levels of alanine, leucine, isoleucine, 

tyrosine, and glutamine predict incident T2D (161). Furthermore, the concentration of leucine, 

valine, and phenylalanine predicted insulin resistance (162), and alanine, lactate, and pyruvate 

predicted the levels of 2-hour glucose (163).  

 

2.6.2.1 Glycerol, free fatty acids and fatty acids 

In the 1950’s Gordon, reported that plasma FFAs are mainly released from the adipose tissue 

and are utilized by metabolically active tissues, such as skeletal muscle and liver (164). Glycerol 

and FFAs in the plasma are the two main components released from TGs by lipolysis in the 

adipose tissue (Figure 4). Glycerol acts as a gluconeogenic substrate and thus regulates glucose 

homeostasis. In the fasting state, elevated levels of FFAs almost entirely originate from the 

hydrolysis of TGs in the adipose tissue. The stored TGs are rapidly mobilized by the action of 

the three main lipases of the adipocyte: ATGL, HSL and MGL.  

 

Circulating glycerol and FFAs levels are also regulated by obesity, physical activity, starvation, 

hormonal factors, short- and long term dietary intake and multiple pathological conditions, e.g. 

abnormal glucose tolerance and metabolic syndrome (165, 166). Insulin plays a vital role in 

regulating the levels of glycerol and FFAs by inhibiting lipolysis in the adipose tissue, 

explaining why glycerol and FFA concentrations are reduced after a meal that contains 

carbohydrate, which stimulate insulin secretion. In insulin resistance states, an increased 

amount of lipolysis of stored TG molecules in the adipose tissue produces high amount of 

glycerol and FAs (167, 168). Glycerol is a gluconeogenic substrate and stimulates 

gluconeogenesis (169).  Elevated levels of glycerol and FFAs have been shown to be associated 

with hyperglycemia and T2D (170, 171). A few prospective studies have reported that high 

levels of fasting FFAs and TGs are predictors of incident T2D (172-176).    

 

Polyunsaturated omega-3 and omega-6 fatty acids (PUFAs) are derived from the diet and 

cannot be synthesized de novo in humans. In contrast, monounsaturated omega-7 and omega-9 

fatty acids (MUFAs) are derived from the de novo synthesized saturated FAs. Thus, the serum 

FA profile is determined by both diet and endogenous FA metabolism (42). The serum lipid 
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Figure 4. Metabolic pathways (adapted from richsen.wordpress.com). Glucose 6-P, glucose 6-

phosphate; TCA, tricarboxylic acid cycle; VLDL, very low-density lipoprotein; Acetyl CoA, acetyl 

coenzyme A. 
 

esters reflect the intake of individual FAs over the last few weeks. Endogenously synthesized 

serum FA pattern is mainly influenced by genetic disposition and intrauterine programming 

(177). A high intake of saturated FAs increases the risk of hyperglycemia and T2D (178).  

However, high concentrations of polyunsaturated omega-3 FAs have not predicted the 

lowering of the risk of T2D (179-181). A meta-analysis including 26 studies concluded that 

marine omega-3 FAs (including docosahexaenoic acid, DHA) in the diet did not exert beneficial 

effects on the prevention of T2D, with the exception of benefits for Asian populations (182). 

Omega-3 and omega-6 FAs have been associated with improved insulin sensitivity in 

individuals with T2D. In contrast, saturated FAs have been reported to impair the action of 

insulin (183, 184). Monounsaturated omega-7 and omega-9 FAs have been previously shown to 

increase the risk of T2D (185-187).  

 

2.6.2.2 Erythrocyte membrane fatty acids 

 

The FA composition is predominantly determined by long term dietary FAs intake of the order 

of 120 days and endogenous synthesis of FA. It can be measured in various tissues and lipid 

pools and erythrocyte membrane (188, 189). Membrane phospholipids reflect serum FA profiles 

of saturated and monounsaturated FAs but they may also contain lower levels of omega-3 and 

omega-6 FAs (190). Erythrocyte membrane lacks de novo FA synthesis and modification by 
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desaturation or elongation, and it mirrors long-term FA intake, whereas plasma FAs and TG 

fractions represent dietary intake only of the past few days (191, 192). Delta-6 desaturases (D6D) 

and D5D are required for the synthesis of the highly unsaturated FAs by introducing a double 

bond in the long chain FAs. Stearoyl coenzyme A desaturase (SCD) catalyzes the synthesis of 

monounsaturated FAs (MUFA) from saturated FAs (SFAs) (193).  

 

The FA synthesis pathway produces saturated FAs, which can then be elongated and 

desaturated to generate FAs such as palmitoleic acid, oleic acid, or vaccenic acid. Activities of 

desaturases are difficult to measure directly in large-scale epidemiological studies, and 

therefore as an alternative, enzymatic conversions are estimated by the FA product-to-precursor 

ratios (194). Most of the case-control studies have reported that the levels of individual 

erythrocyte membrane fatty acids (EMFAs), desaturase and elongase activities are elevated in 

individuals with T2D than in control subjects (195-201). Furthermore, prospective studies have 

identified EMFAs and desaturase activities as predictors for incident T2D (181, 202, 203). 

 

2.6.2.3 Ketone bodies 

The two main ketone bodies (KBs), 3-hydroxybutyrate (BHB) and acetoacetate (AcAc) play a 

vital role in serving as a major source of body fuel in the fasting state. The low availability of 

carbohydrates enables fat-derived energy to be generated in the liver which is utilized by many 

organs, such as brain, heart, kidney and skeletal muscle. For instance, after an overnight fast, 

KBs supply 2-6% of the body energy requirement, whereas after a 3-day fast, they supply 30-

40% of energy requirements (204).  

 

During fasting, increased lipolysis in the adipose tissue results in the release of FFAs into the 

plasma (Figure 4). FFAs are degraded through β-oxidation in the liver mitochondria, resulting 

in the production of acetyl-CoA. Acetyl-CoA is then either incorporated into the tricarboxylic 

acid cycle or channeled into the ketogenesis pathway. Ketogenesis takes place in the liver, 

stimulated by an excess FFA availability in the liver. Insulin plays a central role in regulating 

KB levels and inhibiting ketogenesis by triggering dephosphorylation of HSL and hindering the 

breakdown of TGs to FFAs and glycerol. Ketogenesis takes place mainly during a state of 

insulin deficiency and glucagon excess (205, 206). 

 

Abnormal KB levels have been implicated in diabetic ketoacidosis due to the impairment in 

insulin secretion (207, 208). Elevated levels of KBs have been shown to be associated with 

insulin resistance and T2D (209). In contrast, a recent study using a metabolomics approach 

revealed that the levels of KBs were associated with increased insulin sensitivity (210). 

Furthermore, a strong correlation has been found between plasma glucose and FFA with KB 

levels (211). Several small studies reported that KB levels were decreased in obese women 

compared to lean women, and KBs levels were higher in obese individuals with abnormal 

glucose tolerance than in obese individuals with normal glucose tolerance (212, 213). 
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4 Subjects, Materials and Methods 
 

4.1 SUBJECTS 

The original METSIM cohort includes 10,197 Finnish men with varying degrees of glucose 

tolerance at baseline. Subjects included in this study were randomly selected from the 

population register of Kuopio town, Eastern Finland. The cross-sectional Studies I-III included 

only non-diabetic subjects and individuals with newly diagnosed T2D (none of the participants 

were receiving antidiabetic medication) and the follow-up study included only non-diabetic 

individuals at baseline (Figure 5). 

 

 
 
Figure 5. Study subjects 

 

4.1.1 Baseline study 

Studies I & III. The cross-sectional analysis included 9,398 Finnish men from a population-

based METSIM (METabolic Syndrome In Men) study performed during 2005-2010 (age 57±7 

years, BMI, 27.0±4.0 kg/m2, mean ± SD). Characteristics of the subjects included in the baseline 

studies are given in Table 2. Glucose tolerance was classified according to the ADA criteria (6). 

Among participants 3,034 (32.3%) had normal glucose tolerance, NGT; 4,344 (46.2%) had 

isolated impaired fasting glucose, IFG; 312 (3.3%) had isolated impaired glucose tolerance, IGT; 

1,059 (11.3%) had both IFG and IGT, and 649 (6.9%) had newly diagnosed T2D). Individuals 

with previously diagnosed type 1 or type 2 diabetes were excluded from all statistical analyses. 
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Table 2. Characteristics of the participants included in the METSIM study 

Variable 
No of 
Cases Mean ± SD Range 

Age, years 9,398 57.3 ± 7.1 45 - 74 

Body mass index, kg/m2 9,395 27.0 ± 4.0 16.2 - 55.4 

Fasting glucose, mmol/L 9,398 5.8 ± 0.7 3.5 - 20.0 

2h plasma glucose, mmol/L 9,396 6.4  ± 2.4 1.4 - 38.2 

Fasting insulin, pmol/L 9,394 52.3 ± 39.3 6.0 - 611.4 

2h insulin, pmol/L 9,386 334.9 ± 345.8 10.8 - 5191.2 

Matsuda Insulin Sensitivity Index, mg/dL, mU/L 9,337 6.7 ± 4.2 0.5 - 42.5 

Insulin AUC0-30 / Glucose AUC0-30, pmol/mmol 9,343 30.7 ± 21.3 1.95 - 313.3 

Glycerol x 100, mmol/L 9,349 6.1 ± 2.6 0.0 - 27.3 

Fasting free fatty acids x 10, mmol/L 9,395 3.7 ± 1.5 0.6 - 17.8 

Total triglycerides, mmol/L 9,397 1.4 ± 1.0 0.3 - 37.6 

Omega-3 fatty acids, percentage of total FAs 9,285 4.5 ± 1.4 1.5 - 16.3 

Docosahexaenoic acid, percentage of total FAs  9,282 1.9 ± 0.7 0.0 - 6.1 

Omega-6 fatty acids, percentage of total FAs 9,285 32.9 ± 4.3 12.8 - 47.7 

Linoleic acid, percentage of total FAs 9,280 27.9 ± 4.4 8.9 - 42.3 

Monounsaturated fatty acids, percentage of total FAs 9,285 30.3 ± 4.1 11.0 - 53.2 

Saturated fatty acids and omega-7&-9 fatty acids, 

percentage of total FAs 9,285 62.6 ± 4.5 49.5 - 85.3 

Acetoacetate, mmol/L 9,243 0.06 ± 0.04 0.0 - 0.58 

β-hydroxybutyrate, mmol/L 9,307 0.14 ± 0.11 0.0 – 2.67  

SD, standard deviation; AUC, area under the curve; FAs, fatty acid. 

 

Study II.  EMFAs were measured in 1,346 Finnish men (age 55 ± 6years, BMI, 26.5 ± 3.5 kg/m2, 

mean ± SD). A total of 1,346 men for the EMFA analysis were selected randomly with equivocal 

percentages of each glucose category as compared to the original METSIM cohort of 10,197 

men. Baseline characteristics of the study participants are shown by means and SDs (Table 3). 

Glucose tolerance category was classified according to the ADA criteria (6) as follows: 456 

(33.9%) had normal glucose tolerance, NGT; 681 (50.6%) had isolated impaired fasting glucose, 

IIFG; 32 (2.4%) had isolated impaired glucose tolerance, IIGT; 118 (8.8%) had both IFG and IGT, 

and 59 (4.4%) had newly diagnosed T2D. Individuals with previously diagnosed type 1 or type 

2 diabetes at baseline were excluded from this study.  
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Table 3. Clinical and laboratory characteristics of the cross-sectional METSIM cohort 

Variable 
No of 
Cases     Mean ± SD         Range 

Age, years 1,347 54.9 ± 5.7  45 - 70 

BMI, kg/m2 1,346 26.5 ± 3.5  17.4 - 48.1 

Fasting glucose, mmol/L 1,347 5.8 ± 0.6  4.1 - 13.7 

2h-glucose, mmol/L 1,346 6.0 ± 2.1  2.2 - 21.1 

Fasting Insulin, pmol/L 1,346 45.5 ± 31.2  6.6 - 370.8 

2h insulin, pmol/L 1,344 268.7 ± 268.5  19.2 - 2111.4 

Matsuda Insulin Sensitivity Index 1,341 7.5 ± 4.4  0.5 - 27.7 

Insulin AUC0-30 / Glucose AUC0-30, pmol/mmol 1,343 28.1 ± 18.0  2.4 - 166.6 

Disposition index (DI30) 1,341 164.7 ± 72.8  16 - 588.3 

16:0 (palmitic acid), %  1,346 22.5 ± 0.9  19.6 - 25.9 

18:0 (stearic acid), % 1,346 15.5 ± 0.5  13.4 - 17.5 

Total SFAs, % 1,346 46.0 ± 1.0  43.2 - 49 

16:1n-7 (palmitoleic acid), % 1,346 0.4 ± 0.2  0.1 - 1.9 

18:1n-7 (vaccenic acid), % 1,346 1.1 ± 0.1  0.8 - 2.6 

18:1n-9 (oleic acid), % 1,346 11.9 ± 0.8  9.6 - 15.4 

Total MUFAs, % 1,346 19.5 ± 1.0  16.3 - 26.4 

18:2n-6 (linoleic acid), % 1,346 8.3 ± 1.1  4.0 - 12.9 

20:3n-6 (dihomo-gamma-linolenic acid), % 1,346 1.5 ± 0.3  0.8 - 3.2 

20:4n-6 (arachidonic acid), % 1,346 11.9 ± 1.1  8.1 - 15.1 

20:5n-3 (eicosapentaenoic acid), % 1,346 1.5 ± 0.6  0.4 - 4.9 

22:4n-6 (adrenic acid), % 1,346 1.9 ± 0.4  0.6 - 3.5 

22:6n-3 (docosahexaenoic acid), % 1,346 6.2 ± 1.1  2.4 - 10.6 

Total PUFAs, % 1,346 34.5 ± 1.2  27.9 - 38.2 

Ratio (16:1n-7/16:0) (SCD1) 1,346 0.018 ± 0.006  0.007 - 0.078 

Ratio (20:3n-6/18:2n-6) (∆6 desaturase) 1,346 1.7 ± 0.3  1.0 - 3.2 

Ratio (20:4n-6/20:3n-6) (∆5 desaturase) 1,346 8.1 ± 1.6  3.5 - 13.7 

Ratio (18:1n-7/16:1n-7) (elongase) 1,346 3.0 ± 0.9  0.8 - 8.5 
        

SD, standard deviation; AUC, area under the curve; SFA, saturated fatty acid; MUFA, 

monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SCD1, stearoyl coenzyme A 

desaturase 1. 

 

4.1.2 Follow-up study 

Studies I & III. In the period 2010-2013, a total of 4,335 non-diabetic subjects from the original 

METSIM cohort of 10,197 men had been so far re-examined (mean follow-up time of 5 years); 

4,059 were non-diabetic and 276 had newly diagnosed T2D at follow-up. The diagnosis of new 

diabetes was based either on an OGTT at the follow-up study or drug treatment for diabetes 

started between the baseline and follow-up studies. 

Study II. The analysis of the prospective ongoing 5-year follow-up study (between 2010-2013) 

included only men who were non-diabetic at the baseline study. Thus, individuals with 
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previously diagnosed T2D were excluded. A total of 735 non-diabetic individuals with EMFA 

measurements at baseline have so far participated in the follow-up study of whom 705 

remained non-diabetic and 30 developed newly diagnosed T2D (7 of them were diagnosed with 

T2D between the baseline and the follow-up studies and all of them were receiving anti-diabetic 

medication; 23 had newly detected T2D in an OGTT performed at the 5-year follow-up visit).   

All the studies were approved by the Ethics Committee of the University of Eastern Finland and 

Kuopio University Hospital, and were conducted in accordance with the principles of the 

Helsinki Declaration. All study participants provided written informed consent. 

 

4.2 MATERIALS AND METHODS 

Anthropometric measurements 

Height and weight were measured to the nearest 0.5 cm and 0.1 kg, respectively. BMI was 

calculated as weight (kg) divided by height (m) squared. Waist and hip circumference were 

measured to the nearest 0.5 cm. 

Oral glucose tolerance test 

A 2-hr OGTT (75 g of glucose) was performed and samples for plasma glucose and insulin were 

drawn at 0, 30, and 120 min.  

Laboratory measurements 

Plasma glucose was measured by enzymatic hexokinase photometric assay and plasma insulin 

was determined by immunoassay. In Study I, serum total TG levels and FFAs were measured 

by enzymatic colorimetric methods. NMR spectroscopy was used to measure fasting glycerol, 

FFAs and serum FA profile (omega-3 FAs, omega-6 FAs, omega-7 and -9 FAs, saturated FAs, 

total FAs, linoleic acid (LA), other polyunsaturated FAs, docosahexaenoic acid (DHA), and 

monounsaturated FAs, relative to total FAs) (214). The results for FAs are expressed relative to 

total FAs and given as percentages in all tables and figures. In Study II, EMFAs were 

determined as previously described (215), with modifications (216). EMFAs were measured by 

gas chromatography. The proportion of each FA is expressed as mole percentage of total FAs in 

all tables. In Study III, NMR spectroscopy was used to measure fasting levels of acetoacetate 

(AcAc) and β-hydroxybutyrate (BHB) levels (mmol/L) in serum samples. NMR methods have 

been previously described in detail (214).  

Calculations 

The trapezoidal method was used to calculate the glucose and insulin areas under the curve 

(AUC) in an OGTT based on samples collected at 0, 30, and 120 min. The calculation of insulin 

sensitivity (Matsuda ISI), insulin secretion (InsAUC0-30/GlucAUC0-30) and disposition (DI30) 

indices have been previously described (217, 218). In Study II, desaturase and elongase enzyme 
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activities were evaluated as EMFA product to precursor ratios as follows: palmitoleic acid 

16:1n-7/palmitic acid 16:0 as a marker of stearoyl coaenzyme A desaturase 1 (SCD1) activity, 

dihomo-gamma-linolenic acid 20:3n-6/linoleic acid 18:2n-6 as a marker of ∆6 desaturase (D6D) 

activity, arachinodic acid 20:4n-6/20:3n-6 as a marker of ∆5 desaturase (D5D) activity, and 

vaccenic acid 18:1n-7/16:1n-7 as a marker of elongase activity. 

Genotyping  

In Study III, the genotyping of 62 SNPs associated with the risk of T2D or hyperglycemia (63, 

73, 111, 219) was primarily based on Illumina HumanExome-12v1_A Beadchip (71). SNPs that 

were not available from the exome array were genotyped using either the Applied Biosystems 

TaqMan Allelic Discrimination Assay or Sequenom iPlex Gold SBE assay. All SNPs were in 

Hardy-Weinberg equilibrium at the significance level corrected for multiple testing by the 

Bonferroni method (P < 0.0012). 

Gene expression analysis  

In Study III, subcutaneous fat biopsy samples (N = 200) were obtained from a random sample of 

the participants of the METSIM baseline study (age 55.6 ± 4.9 years; BMI 26.6 ± 3.3 kg/m2). Total 

RNA was isolated from these samples using Qiagen miRNeasy Kit. Only high-quality samples 

were used for transcriptional profiling with the Illumina Human HT-12 v3 Expression 

BeadChip.  

Statistical analysis  

Statistical analyses were conducted using SPSS version 19 (SPSS, Chicago, IL). All traits, except 

for age were log-transformed to correct for their skewed distributions. In Studies I-III, glycerol, 

FAs, EMFAs proportions and KBs were compared across the FPG and 2hPG categories using 

the general linear model. The linear regression model was used to evaluate fasting levels of 

glycerol, FAs, EMFAs proportions and KBs measured at baseline as predictors for changes in 

Glucose AUC in an OGTT at the 5 year-follow-up study. Unstandardized effect sizes (B [SE]) 

per copy of the risk alleles of the SNPs investigated were estimated by linear regression 

analysis. Logistic regression analysis was used to assess the association of the levels of glycerol, 

FAs, EMFAs proportions and KBs with incident T2D during the follow-up.  

The thresholds of statistical significance in linear and logistic models were P < 5.5 x 10-3 (Study 

I), P < 2.8 x 10-3 (Study II), P < 4.0 x 10-4 (Study III). P < 0.05 was considered as nominally 

significant in all studies. Statistical power calculation was performed in all studies using 

Bioconductor’s GeneticsDesign package version 1.14. Pearson correlation coefficients for 

adipose tissue mRNA expression levels of major enzymes involved in the synthesis and 

degradation of KBs were calculated with insulin sensitivity and insulin secretion.  
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5 Results  

5.1 GLYCEROL AND FATTY ACIDS IN SERUM PREDICT THE DEVELOPMENT 

OF HYPERGLYCEMIA AND TYPE 2 DIABETES (Study I) 

This study evaluated first the association of glycerol, FFAs and serum FAs in non-diabetic 

individuals (N=8,749) and individuals with newly diagnosed T2D (N=649) in the FPG and 2hPG 

categories in a cross-sectional setting. Secondly, these biomarkers were evaluated as predictors 

for the worsening of hyperglycemia and the conversion to type 2 diabetes among non-diabetic 

individuals at baseline in a 4.5-year follow-up study. 

Glycerol and FFAs across the categories of glucose tolerance at baseline 

Fasting glycerol levels were significantly higher across the FPG (P = 4.5x10-28) and 2hPG (P = 

1.2x10-99) categories. Similarly, fasting FFAs levels were significantly higher across the entire 

range of FPG (P = 4.3x10-51) and 2hPG (P = 2.2x10-217) (Figure 6). 

 

Figure 6. Mean values and their 95% CIs of fasting levels of glycerol (A, B) and FFAs (C, D) across 

the entire range of fasting and 2hPG categories. P values (from ANOVA post hoc tests) indicating 

statistical significance with respect to the reference category (fasting or 2hPG <5.0 mmol/L) are 

coded as follows: *P<0.05, **P<0.01. P values for trends, adjusted for age and BMI, were as 

follows: A) 4.5 x 10-28, B) 1.2 x 10-99, C) 4.3 x 10-51, D) 2.2 x 10-217 
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Serum fatty acids 

The levels of omega-3 FAs were significantly lower across the FPG (P = 1.0x10-3) and 2hPG (P = 

1.9x10-4) categories, however the levels were slightly higher within the NGT category. Levels of 

omega-6 FAs were also lower across the FPG (P = 4.3x10-63) and 2hPG (P = 1.2x10-146) categories 

especially in participants with newly diagnosed diabetes (-20 and -16%, in the FPG and 2hPG 

categories, respectively) (Figure 7).  

Fasting levels of monounsaturated FAs were significantly higher across the FPG (P = 3.9 x 10-41) 

and 2hPG (P = 2.0 x 10-78) categories. Also fasting levels of saturated FAs, and omega-7 and -9 

FAs were significantly higher across the FPG (P = 5.1x10-52) and 2hPG (P = 6.1x10-132) categories 

(Figure 7).  
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Figure 7. Mean values and their 95% CIs of omega-3 FAs of total FAs (A, B), omega-6 FAs (C, D), 

monounsaturated FAs (E, F), and saturated FAs and omega-7 and -9 FAs (G, H) across the entire 

range of fasting and 2hPG categories. P values (from ANOVA post hoc tests) indicating statistical 

significance with respect to the reference category (fasting or 2hPG <5.0 mmol/L) are coded as 

follows: *P<0.05, **P<0.01. P-values for trends, adjusted for age and BMI, were as follows: A) 1.0 

x 10-3, B) 1.9 x 10-4, C) 4.3 x 10-63, D) 1.2 x 10-146, E) 3.9 x 10-41, F) 2.0 x 10-78, G) 5.1 x 10-52, H) 

6.1 x 10-132 
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Glycerol and FAs as predictors for hyperglycemia and incident type 2 diabetes 

During a mean 4.5-year follow-up (range 2.5-6.2 years) a total of 276 from 4,335 men developed 

incident T2D. Fasting levels of glycerol (P = 9.1x10-39), FFAs (P = 4.6x10-42), total TGs (P= 3.4x10-

21), monounsaturated FAs (P = 6.4x10-16), and saturated FAs, and omega-7 and -9 FAs (P= 3.3x10-

26), adjusted for age, BMI, smoking and physical activity, predicted an increase in the Glucose 

AUC (Table 5). In contrast, levels of omega-6 FAs (including LA) were associated significantly 

with lower Glucose AUC at follow-up (P = 1.8x10-26). In the logistic regression analysis, fasting 

levels of glycerol (OR 1.18, 95% CI, 1.12-1.24), FFAs (OR 1.19, 95% CI, 1.10-1.29), total TGs (OR 

1.26, 95% CI, 1.11-1.44), monounsaturated FAs (OR 1.09, 95% CI, 1.06-1.12), and saturated FAs, 

and omega-7 and -9 FAs (OR 1.09, 95% CI, 1.06-1.12) significantly predicted an increase in the 

risk of incident T2D.  In contrast, fasting levels of omega-6 FAs significantly predicted a 

decrease in incident T2D (OR 0.92, 95% CI, 0.89-0.95). Omega-3 FAs (including DHA) did not 

predict changes in Glucose AUC or incident T2D.  

Adjustment for Matsuda ISI slightly weakened most of the associations of glycerol, FFAs, total 

TGs, omega-6 FAs, monounsaturated FAs, saturated and omega-7 and -9 FAs with Glucose 

AUC and incident diabetes (Table 5). In contrast, adjustment for insulin secretion (Insulin AUC0-

30/Glucose AUC0-30) did not have any major effect on these associations. However, adjustment 

for DI30 (Matsuda ISI x Insulin AUC0-30/Glucose AUC0-30) had an effect on all the variables with 

incident T2D but not with Glucose AUC.  
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5.2 ASSOCIATION OF ERYTHROCYTE MEMBRANE FATTY ACIDS WITH 
CHANGES IN GLYCEMIA AND RISK OF TYPE 2 DIABETES (Study II)  

Proportions of EMFAs across different glucose tolerance categories at baseline 

This study investigated the proportions of EMFAs and their ratios across the different glucose 

tolerance categories in non-diabetic individuals (N=1,287) and in individuals with newly 

diagnosed T2D (N=59). In comparison with the NGT reference category, saturated FAs did not 

vary significantly across the glucose tolerance categories. In contrast, age and BMI adjusted 

levels of monounsaturated FAs 16:1n-7 were nominally higher from +2 to +24% (P=0.016) across 

the abnormal glucose tolerance categories. Among the PUFAs 18:2n-6 levels were significantly 

lower (P=3.7x10-8), and 22:4n-6 levels were nominally higher (P= 0.044) across the glucose 

tolerance categories. Among the FA ratio’s, 18:1n-7/16:1n-7 was nominally lower (P= 0.027) and 

16:1n-7/16:0 (P=7.2x10-3) and 20:3 n-6/18:2n-6 (P=3.9x10-3) were nominally higher across the 

glucose tolerance categories. 

Association of EMFAs with insulin secretion and insulin sensitivity in the 5-year follow-up 

study 

Insulin sensitivity 

Palmitic acid (P=4.9x10-4) and vaccenic acid (P=3.7x10-6) were significantly associated with 

increased insulin sensitivity, and dihomo-gamma-linolenic acid (P=6.5x10-6) with decreased 

insulin sensitivity. With respect to the EMFA ratios, 16:1n-7/16:0 (SCD1 activity, P=3.1x10-4) and 

20:3n-6/18:2n-6 (D6D activity, P=1.1x10-7) were significantly associated with reduced insulin 

sensitivity, whereas 20:4n-6/20:3n-6 (D5D activity, P=3.6x10-4) and 18:n-7/16:1n-7 (elongase 

activity, P=1.2x10-5) were significantly associated with increased insulin sensitivity.   

Insulin secretion 

Palmitoleic acid (P=3.9x10-4), and the 16:1n-7/16:0 ratio (SCD1 activity, P=4.3x10-5) were 

significantly associated with decreased insulin secretion (DI30), whereas linoleic acid (P=1.6x10-

4) and the 18:1n-7/16:1n-7 ratio (elongase activity, P=4.3x10-5) were significantly associated with 

increased insulin secretion. 

EMFAs proportions as predictors for hyperglycemia and incident type 2 diabetes 

SFAs did not predict changes in Glucose AUC or in incident T2D (Table 6). The levels of 

palmitoleic acid (P=2.8x10-7), dihomo-gamma-linoleic acid (P=2.3x10-4), the 16:1n-7/16:0 ratio 

(SCD1 activity, P=1.6x10-8) and the 20:3n-6/18:2n-6 ratio (D6D activity, P=9.4x10-7) significantly 

predicted an increase in Glucose AUC at follow-up after the adjustment for confounding 

factors, whereas linoleic acid (P=0.0015), and the 18:1n-7/16:1n-7 ratio (elongase activity, 

P=1.5x10-9) significantly predicted a decrease in Glucose AUC.  Palmitoleic acid (OR 1.35, 95% 

CI, 1.07, 1.69, P=0.010) and the 16:1n-7/16:0 ratio (OR 2.23, 95% CI, 1.29, 3.85, P=0.004) nominally 

increased, and linoleic acid (OR 0.54, 95% CI, 0.35, 0.82, P=0.004) nominally decreased the risk of 

incident diabetes. 
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All statistically significant associations persisted after further adjustment for baseline insulin 

sensitivity, insulin secretion, FPG, 2hPG, or the Glucose AUC.  
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5.3 ASSOCIATION OF KETONE BODY LEVELS WITH HYPERGLYCEMIA AND 
TYPE 2 DIABETES (Study III) 

Levels of KBs across the categories of glucose tolerance at the baseline study  

This study examined the association of AcAc and BHB, in non-diabetic individuals (N=8,749) 

and individuals with newly diagnosed T2D (N=649) in the FPG and 2hPG categories (Figure 8). 

In the FPG category, AcAc levels were significantly lower (P < 0.01) in individuals with IFG and 

significantly higher (P < 0.01) in individuals with newly detected diabetes. In the 2hPG 

category, AcAc levels were significantly higher (P < 0.01) in subjects with IGT as well as in 

newly diagnosed diabetes as compared with the reference category. 

 
Figure 8. Mean values and their 95% confidence intervals of fasting levels of AcAc (A, B) and BHB  
(C, D) across the fasting and 2hPG categories. P values (from ANOVA post-hoctests) indi-  
cate statistical significance with respect to the reference category (FPG ≤5.4 mmol/L, 2hPG  
≤5.9 mmol/L). *P<0.05, **P<0.01  

In the FPG category, BHB levels were significantly lower (P < 0.01) in subjects with IFG and 

significantly higher (P < 0.01) in the diabetic range. Considering 2hPG, BHB levels were 

nominally higher in IGT (P < 0.05) and in newly diagnosed T2D (P < 0.01), as compared with the 

reference category.  
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KBs as predictors for hyperglycemia and incident type 2 diabetes 

Follow-up data of 4,335 participants were available from the ongoing prospective METSIM 5-

year follow-up study. A total of 276 participants developed incident diabetes between the 

baseline and follow-up studies. AcAc and BHB levels adjusted for confounding factors known 

to increase the risk of diabetes (age, BMI, smoking, and physical activity) predicted an increase 

in the Glucose AUC evaluated as a continuous variable at follow-up (P=2.3×10-4, P=5.7×10-6, 

respectively (Table 7).  

Table 7. Association of baseline levels of acetoacetate and β-hydroxybutyrate as predictors of 

Glucose AUC and with incident type 2 diabetes at 5-year follow-up. Statistical analyses were 

performed with Glucose AUC as a continuous variable and as the highest quartile (Q4) vs. the three 

lowest quartiles (Q1-Q3) combined and type 2 diabetes as a categorical variable (yes/no) 

Glucose AUC at follow-up as a 

continuous variable 
B SE P* P† P§ 

Acetoacetate, mmol/L 39.5 10.1 2.3x10-4 9.9x10-7 9.3x10-4 

β-hydroxybutyrate, mmol/L 51.6 11.1 5.7x10-6 2.7x10-9 6.2x10-5 

Glucose AUC at follow-up as a 
categorical variable (Q4 vs. Q1-Q3) 

OR 95% CI P* P† P§ 

Acetoacetate, mmol/L 1.56 1.33-1.84 7.9x10-8 9.1x10-11 5.5x10-7 

β-hydroxybutyrate, mmol/L 1.46 1.25-1.72 3.4x10-6 2.1x10-8 1.8x10-5 

No diabetes vs. Newly diagnosed 

type 2 diabetes 
OR 95% CI P* P† P§ 

Acetoacetate, mmol/L 1.32 1.00-1.74 0.047 0.012 0.125 

β-hydroxybutyrate, mmol/L 1.03 0.77-1.36 0.864 0.085 0.345 

 

B and SE were obtained from multiple linear regression. Odds ratios (OR) and their 95% confidence 

intervals were obtained from logistic regression analyses. P*, adjusted for age, BMI, smoking, and 

physical activity. P†, adjustment for age, BMI, smoking, physical activity and Matsuda ISI. P§, 

adjustment for age, BMI, smoking, physical activity and InsAUC0-30/GlucAUC0-30 .Statistically 

significant results are marked in bold. 

The highest quartile of AcAc adjusted for age, BMI, smoking and physical activity predicted 

conversion to T2D, OR 1.32 (95% CIs, 1.00, 1.74; P=0.047; Table 7), and also after further 

adjustment for FPG (OR 1.41, 95% CIs 1.06-1.89, P=0.019). Adjustment for 2hPG, instead of FPG, 

abolished statistical significance (P=0.423). When analyzed in the glucose tolerance categories, 

AcAc predicted incident diabetes in individuals with IFG (OR 1.49, 95% CI 1.12-1.99, P=0.007) 

after the adjustment for confounding factors.   

Additional adjustment for insulin sensitivity strengthened the association of KBs with 

development of hyperglycemia and conversion to T2D, whereas insulin secretion 

weakened/abolished these associations. 



35 

 

Association of risk SNPs for type 2 diabetes or hyperglycemia with the levels of ketone 

bodies 

After correction for multiple testing (threshold of statistical significance, P<4.0×10-4), the glucose 

increasing C allele of rs780094 of GCKR showed a significant association with elevated levels of 

BHB (effect size +5.6% per the C allele, P=3.7×10-6 after adjusting for age and BMI) and a 

nominally significant association with AcAc (+3.9%, P=0.003).  Additionally, there were 

nominally significant associations for SNPs of ANK1, GIPR, HMGA2, SLC2A2 and FADS1 with 

the levels of both AcAc and BHB. Also several other SNPs were nominally associated with 

either AcAc or BHB alone (Table 8). 

Table 8. Risk SNPs for type 2 diabetes or hyperglycemia associated (P<0.05) with fasting 

acetoacetate and β-hydroxybutyrate 

 

Gene 
 

SNP 

 Allele 
Risk 
allele Acetoacetate β-hydroxybutyrate 

N maj/min frequency %B P P* %B P P* 
ADAMTS9 
rs4607103 8120 C/T 74.1 -3.7 0.007 0.009 -3.3 0.067 0.079 
ANK1 
rs516946 8120 C/T 80.5 +3.4 0.042 0.036 +3.4 0.014 0.011 
CENTD2 
rs1552224 8119 A/C 74.7 1.9 0.022 0.025 1.8 0.099 0.133 
CRY2 
rs11605924 8108 A/C 52.9 1.7 0.124 0.097 3.4 0.002 0.001 
DGKB 
rs2191349 8120 G/T 42.8 1.3 0.152 0.160 2.3 0.038 0.047 
FADS1 
rs174550 8119 T/C 57.7 -3.2 6.7x10-4 5.5x10-4 -3.1 0.151 0.112 
FAM148B/C2CD4B, 
rs11071657 8118 A/G 69.1 -0.1 0.446 0.505 -2.7 0.032 0.019 
GCKR 
rs780094 8120 C/T 62.2 3.9 0.005 0.003 5.6 8.3x10-6 3.7x10-6 
GIPR 
rs10423928 8302 T/A 21.6 -3.8 0.001 0.001 -3.7 0.004 0.003 
HMGA2 
rs2612067 8353 T/G 6.90 -5.9 0.005 0.006 -6.0 0.009 0.010 
KCNQ1 
rs231362 8388 G/A 51.9 -1.8 0.050 0.041 -1.7 0.261 0.199 
KLF14 
rs972283 8120 G/A 57.5 -2.8 0.055 0.066 -2.7 0.009 0.014 
MC4R 
rs12970134 8120 G/A 17.5 -3.6 0.006 0.005 -2.0 0.129 0.100 
PPARG 
rs1801282 8119 C/G 84.9 3.0 0.036 0.037 

-
0.03 0.996 0.918 

SLC2A2 
rs11920090 8120 T/A 86.7 -3.8 0.011 0.011 -4.9 0.018 0.017 

 
Major/minor (maj/min) alleles of each SNP are shown. Risk alleles for hyperglycemia or T2D are 

underlined. Effect sizes (indicated as % of B from the mean) per risk allele. Significant P-values are 

given in bold (P<0.05) or bold and underlined (P< 4.0×10-4). P is unadjusted. P* is adjusted for age 

and BMI. Of 62 risk SNPs for T2D or hyperglycemia were studied, only SNPs that are associated with 

single or both traits presented in this table. 
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Gene expression of genes involved in ketone body metabolism 

Significant correlations were found with adipose tissue mRNA expression levels of several 

genes associated with ketolysis with glucose metabolism parameters (Table 9). Of these genes, 

ACAT1 expression had the most significant correlations with Glucose AUC (r=-0.314, P=6.1×10-

6), Matsuda ISI (r=0.479, P=7.1×10-13), and insulin secretion (r=-0.444, P=7.0×10-11). Similarly, the 

expressions of other genes regulating ketolysis, BDH1 (β-hydroxybutyrate dehydrogenase, type 

1), OXCT1 (3-oxoacid CoA transferase 1), and ACSS2 (acyl-CoA synthetase short-chain family 

member 2) were inversely correlated with Glucose AUC and insulin secretion and positively 

correlated with Matsuda ISI.  

Table 9. Pearson correlations of adipose tissue mRNA expression of major enzymes involved in fatty 

acid oxidation, ketogenesis and ketolysis with Glucose AUC, Matsuda ISI and Matsuda ISI- 
adjusted InsAUC0-30 /GlucAUC0-30 

Function /Gene 
Glucose AUC Matsuda ISI 

InsAUC0-30/ 

GlucAUC0-30 

r P r P r P 

Fatty acid 

oxidation 
      

CPT1A 0.198 4.9x10-3 -0.229 1.1x10-3 0.168 0.019 

CPT2 -0.068 0.340 0.249 3.7x10-4 -0.274 1.0x10-4 

Ketogenesis       

HMGCS2 0.078 0.273 -0.013 0.851 0.006 0.936 

HMGCS1 -0.042 0.557 0.088 0.217 -0.068 0.342 

Ketolysis       

BDH1 -0.222 1.6x10-3 0.425 3.4x10-10 -0.408 3.0x10-9 

OXCT1 -0.121 0.088 0.232 9.4x10-4 -0.182 0.011 

ACAT1 -0.314 6.1x10-6 0.479 7.1x10-13 -0.444 7.0x10-11 

ACSS2 -0.108 0.130 0.307 9.7x10-6 -0.274 1.0x10-4 

 

CPT1A, carnitine palmitoyltransferase 1A; CPT2, carnitine palmitoyltransferase II; HMGCS2, 3-

hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial); HMGCS1, 3-hydroxy-3-methylglutaryl-

CoA synthase 1 (soluble); BDH1, 3-hydroxybutyrate dehydrogenase, type 1; OXCT1, 3-oxoacid 

CoA transferase 1; ACAT1, acetyl-CoA acetyltransferase 1; ACSS2, acyl-CoA synthetase short-chain

family member 2. 
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6 Discussion 

6.1 REPRESENTATIVENESS OF THE STUDY POPULATION 

This study was based on a large population-based well-characterized METSIM cohort having a 

relatively long follow-up period (around 5 years) to ensure good statistical power. 

Studies I and III included a total of 9,398 non-diabetic men from the cross-sectional METSIM 

study examined in 2005-2010. Subjects, aged from 45 to 73 years, were randomly selected from 

the population register of the Kuopio town in Eastern Finland. In Study II, 1,346 non-diabetic 

men were selected randomly with equivocal percentages from each glucose category compared 

to the original METSIM cohort. All subjects included in Studies I-III had a 1-day outpatient visit 

to the Clinical Research Unit at the University of Eastern Finland, including an interview on 

their history of previous chronic diseases and current drug treatment, physical exercise, 

smoking, alcohol intake and cardiovascular risk factors. The diagnosis of T2D was based on an 

OGTT. Insulin sensitivity and insulin secretion were evaluated using validated OGTT-derived 

indices.  

Detailed phenotyping using the NMR method was applied to all individuals involved in 

METSIM study, and EMFAs were determined in a subset of the METSIM study population 

using gas chromatography. Measuring individual metabolites with these techniques carries a 

high potential in detecting and validating new biomarkers. All risk SNPs for 

hyperglycemia/T2D known at the time of the study were genotyped in the entire METSIM 

cohort, ensuring the identification of those SNPs associated with biomarkers of interest. 

Additional advantage of the METSIM study is that it includes a long-term follow-up (mean 

follow-up about 5 years), which permits an evaluation of the prospective significance of the 

identified biomarkers as predictors of worsening of hyperglycemia and incident T2D. The 

diagnosis of new diabetes was based on an OGTT. The main limitation of this series of studies is 

that the METSIM cohort includes only Finnish men and we did not have detailed dietary data 

which somewhat limits the conclusions drawn from Studies I-III. Study II, had a relatively small 

number of individuals who developed diabetes during the follow-up. Although the METSIM 

Study is large in size, the power was limited to detect genetic association with KB levels (Study 

III). 
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6.2 GLYCEROL AND FATTY ACIDS AS PREDICTORS OF HYPERGLYCEMIA 

AND INCIDENT TYPE 2 DIABETES (Study I) 

The phenotype represents both genetic predisposition and environmental influences, including 

diet, physical activity and smoking, and therefore assessing the concentration of different 

metabolites provides information on individual profile of physiological and pathophysiological 

markers. 

Glycerol is an important intermediate in glucose and lipid metabolism. Study I, revealed that 

fasting levels of glycerol and FFAs were higher not only in newly diagnosed diabetes but also in 

IFG and IGT in a cross-sectional analysis of the METSIM Study. Glycerol has a direct effect on 

glucose levels and gluconeogenesis and its levels have been shown to be elevated in obese 

individuals and in patients with type 2 diabetes (211, 220), highlighting the potential 

importance of glycerol homeostasis. We observed that fasting levels of glycerol, total TGs and 

FFAs predicted an increase in Glucose AUC and the development of new-onset T2D during this 

prospective 4.5-year follow-up of the METSIM cohort, independent of known risk factors for 

T2D. None of the previous studies have indicated glycerol to be a significant predictor of 

hyperglycemia and incident T2D. 

By measuring insulin sensitivity and insulin secretion with validated indices (217) we were able 

to evaluate statistically the possible mechanisms by which glycerol, total TGs and FFAs predict 

hyperglycemia and T2D. Our follow-up study of the METSIM cohort suggested for the first 

time that insulin resistance was the most important mediator for the association of levels of 

glycerol, total TGs and FFAs with the development of hyperglycemia. This conclusion is 

supported by our statistical evaluation revealing that adjustment for insulin sensitivity 

(Matsuda ISI) attenuated and/or abolished the association of glycerol, total TGs and FFAs with 

Glucose AUC and with incident T2D. High levels of glycerol and FFAs have been shown to 

increase insulin resistance in skeletal muscle (171). In contrast, adjustment for insulin secretion 

did not alter these associations, although previous studies have shown that long-term exposure 

of β-cells to FFAs can lead to impaired insulin secretion (172). 

Elevated levels of omega-3, omega-6 FAs, monounsaturated FAs, and saturated and omega-7 

and -9 FAs have been linked to hyperglycemia in some previous studies (179, 180, 185-187), 

although the evidence is conflicting. Human intervention trials have also provided somewhat 

contradictory results, but they suggest that saturated FAs induce insulin resistance (221). We 

demonstrated that the fasting levels of monounsaturated FAs, saturated FAs, and omega-7 and 

-9 FAs were increased in IFG, IGT and in newly diagnosed diabetes in this cross-sectional 

analysis of the METSIM cohort, whereas the levels of omega-3 and omega-6 FAs were reduced 

in individuals with newly diagnosed T2D. 

Monounsaturated FAs and saturated and omega-7 and -9 FAs predicted the worsening of 

hyperglycemia and the development of T2D in the METSIM cohort, independent of known risk 

factors for T2D. Three previous studies are in line with the present findings and have linked the 
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elevated risk of T2D with the levels of omega-7 FAs (palmitoleic acid) (185-187), but not with 

omega-9 FA (oleic acid).  Studies published on the association of omega-3 FAs and omega-6 FAs 

with incident T2D are somewhat conflicting and inconclusive (179, 180, 185). The present study 

detected a significant association of omega-6 FAs (mainly linoleic acid) with reduction in the 

development of both hyperglycemia and T2D. Linoleic acid is derived mainly from the diet, but 

it can be metabolized to longer chain unsaturated FAs. In the current study, the 

monounsaturated FAs, especially palmitoleic and oleic acids, were associated with an increased 

risk of abnormal glucose metabolism and T2D. This may be explained by the fact that the major 

saturated FAs are desaturated to monounsaturated FAs, and that in the Western diet, the levels 

of saturated FAs and monounsaturated FAs are positively correlated (222-224). 

To investigate the mechanisms underlying the associations of hyperglycemia with FAs, we 

evaluated their associations with insulin sensitivity and insulin secretion. We observed that 

insulin sensitivity was positively correlated with the levels of omega-6 FAs explaining at least in 

part the preventive effect of omega-6 FAs on the development of hyperglycemia and incident 

diabetes. In contrast, levels of monounsaturated FAs and saturated and omega-7 and -9 FAs 

showed negative correlations with insulin sensitivity, which is in agreement with previous 

findings of an inverse association of omega-7 FAs with insulin sensitivity (223, 225). Moreover, 

omega-9 FAs (dietary oleic acid) influence fat oxidation (226) suggesting that they may have 

negative effects on insulin sensitivity.  

Additional evidence that insulin resistance is a potent mediator for the association of omega 

FAs with hyperglycemia emerges from our multivariate models. The adjustment for Matsuda 

ISI, but not for insulin secretion, attenuated the associations of omega-6 FAs (including linoleic 

acid), monounsaturated FAs and saturated FAs, and omega-7 and -9 FAs with Glucose AUC 

and incident T2D. These results might imply that insulin sensitivity is the major causal 

mechanism explaining the association of these FAs with hyperglycemia and the risk of incident 

T2D.  Similarly, the preventive effect of omega-6 FAs was mediated via high insulin sensitivity. 

FAs are important structural components of cell membranes, and they are precursors of long 

chain FA derived molecules, which may affect insulin sensitivity. Furthermore, FAs modify 

gene expression and receptor binding (227), thus making them an important candidate in the 

search of risk factors for T2D and related glucose abnormalities.  

In summary, Study I suggested that high levels of glycerol, FFAs, serum monounsaturated FAs, 

saturated FAs, and omega-7 and -9 FAs are not only indicators of diabetic hyperglycemia but 

are also markers of disturbed glucose metabolism in the prediabetic state. However, this study 

does not necessarily imply that insulin resistance is a causal mechanism linking elevated levels 

of glycerol and FAs with the worsening of hyperglycemia and incident T2D, since dietary and 

other factors could also play an important role in these associations. 
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6.3 ERYTHROCYTE MEMBRANE FATTY ACIDS AS PREDICTORS OF 

HYPERGLYCEMIA AND INCIDENT TYPE 2 DIABETES (Study II) 

Previous studies have not investigated the association of EMFA proportions and their product 

to precursor ratios with hyperglycemia. This present cross-sectional analysis of the METSIM 

cohort demonstrated that the levels of palmitoleic acid (C16:1n-7), SCD1 (16:1n-7/16:0) and D6D 

(20:3n-6/18:2n-6) were significantly higher not only in individuals with newly diagnosed T2D 

but also in individuals with IFG, IGT and both. In contrast, linoleic acid (C18:2n-6) was 

significantly lower in newly diagnosed T2D.  

In our prospective follow-up study, high levels of palmitoleic acid, dihomo-gamma-linolenic 

acid and the ratios of 16:1n-7/16:0 (SCD1 activity) and 20:3n-6/18:2n-6 (D6D activity) 

significantly predicted the worsening of hyperglycemia, whereas linoleic acid and the 18:1n-

7/16:1n-7 ratio (elongase activity) predicted a decrease in Glucose AUC at follow-up. Moreover, 

palmitoleic acid and the 16:1n-7/16:0 ratio (SCD1 activity) nominally increased the risk of 

incident T2D, independent of known confounding factors, whereas linoleic acid was preventive 

of diabetes. Our conclusions are in line with three previously published longitudinal studies 

(181, 202, 203). The ratios of 20:3n-6/18:2n-6 (D6D activity) and 18:1n-7/16:1n-7 (elongase 

activity) predicted incident T2D in our study, but these associations were abolished after 

adjusting for confounding factors. In contrast, the levels of n-3 polyunsaturated FAs were not 

associated with the worsening of glycemia or the risk of diabetes, in line with a recent meta-

analysis (228).  

We also evaluated the role of insulin sensitivity and insulin secretion as potential mediators for 

the associations of EMFAs proportions and their ratios with incident T2D.  Previous studies 

have hinted that the FA composition especially in skeletal muscle could alter membrane 

fluidity, ion permeability, and insulin receptor binding and affinity, or insulin action (184, 227). 

Cross-sectional studies have reported that the altered D5D and D6D activities could be related 

to insulin resistance (177, 229). In our study, adjustment for insulin sensitivity somewhat 

weakened P values but did not abolish statistical significance. Similarly, adjustment for insulin 

secretion did not essentially change these results suggesting that the role of genes could be 

important in these associations. However, the ratios of 20:3n-6/18:2n-6 (D6D activity) and 16:1n-

7/16:0 (SCD1 activity) which were associated with abnormal glucose tolerance at baseline, also 

predicted decreases in insulin sensitivity and insulin secretion at the follow-up study. 

Therefore, EMFAs may decrease insulin sensitivity and insulin secretion, although it is not 

possible to conclude the direction of causality because dietary and other factors can also 

influence insulin sensitivity. 

6.4 KETONE BODY LEVELS AS PREDICTORS OF HYPERGLYCEMIA AND 
INCIDENT TYPE 2 DIABETES (Study III) 

High levels of KBs are a characteristic finding in individuals with diabetes (230), but there is a 

lack of information about the KB levels in the non-diabetic glucose range. We observed an 
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increase in KB levels with increasing glucose levels in an OGTT in a cross-sectional analysis of 

the METSIM study cohort. These results agree with a previous finding indicating that elevated 

glucose levels are associated with increased levels of KBs (211).  

In the prospective analysis of the METSIM cohort we observed that the levels of AcAc and BHB 

significantly predicted the worsening of hyperglycemia in non-diabetic individuals, but these 

associations were abolished after adjustment for Glucose AUC at baseline.  This could point to 

an important link between the levels of KBs and glucose metabolism. AcAc, but not BHB, 

predicted the development of new T2D in our prospective follow-up of the METSIM cohort, 

independent of known risk factors for T2D. The reason why KBs predicted very significantly 

the worsening of glycemia, but not so clearly incident T2D, are FPG and 2hPG levels at the 

diagnosis of T2D which were often only marginally elevated (FPG in the range of 7.0-7.5 

mmol/L, 2hPG in the range of 11.1-12.0 mmol/L), whereas the levels of KBs were significantly 

increased at higher glucose levels (FPG levels exceeding 8.0 mmol/L, and 2hPG levels exceeding 

12.0 mmol/L, Figure 8).  

To study the mechanisms by which KBs increase the risk of hyperglycemia and T2D, we 

investigated the association of KB levels with insulin sensitivity and insulin secretion. 

Surprisingly, we found that high levels of KBs were associated with high insulin sensitivity in 

the non-diabetic glucose range at baseline, similar to recent findings in young Finnish adults 

(210). Furthermore, it was noted that insulin sensitivity was significantly correlated with the 

key enzymes of ketolysis, which suggests that in insulin sensitive individuals KBs are rapidly 

converted to acetyl-CoA, which stimulates oxidative phosphorylation and mitochondrial 

generation of ATP. However, it is not likely that insulin resistance is an important mechanism 

in the prediction of hyperglycemia by elevated KB levels. This was clearly demonstrated by our 

METSIM follow-up data which showed that adjustment for Matsuda ISI did not weaken the 

association of KBs with the development of hyperglycemia. In contrast, including a marker of 

insulin secretion in the model substantially weakened or abolished the association of KBs with 

the development of hyperglycemia and the conversion to T2D. These findings emphasize the 

crucial role of impaired insulin secretion as a regulator of hyperglycemic effects of KBs. 

Adequate insulin secretion relative to insulin sensitivity maintains low levels of KBs by 

suppressing the expression of hormone sensitive lipase and thus prevents the release of FFAs 

from adipose tissue which is the major source of hepatic ketogenesis and high circulating levels 

of KBs (206, 231). 

We also investigated the association of risk SNPs for hyperglycemia and T2D with KB levels. Of 

the 62 SNPs analyzed, only the glucose increasing major C allele of rs780094 of GCKR (encoding 

glucokinase regulatory protein) was significantly associated with increased BHB levels and 

nominally associated with AcAc levels. Glucokinase (GCK) is ‘a sensor’ of the glucose level 

which plays a crucial role in whole body glucose homeostasis.  The activity of GCK is regulated 

by GCKR in the liver (141). The C allele of rs780094 of GCKR has been previously reported to be 

associated with fasting glycemia, risk of T2D, insulin resistance, and decreased levels of total 
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and VLDL, TGs, decreased levels of alanine and isoleucine, and elevated levels of glutamine 

(62, 142, 161, 232, 233). The significant association of rs780094 with KB levels adds further to the 

pleiotropic effects of GCKR. 

 

6.5 CONCLUDING REMARKS 

There is still a lack of reliable biomarkers for the detection of the metabolic alterations 

associated with T2D highlighting the need for the development of early diagnostic and 

prognostic markers for T2D. A detailed understanding of the pathophysiology of T2D and 

identification of early metabolic alterations is essential for identifying individuals at high risk of 

this disease. Recent advancements in the application of high throughput methodologies, 

including deep metabolic phenotyping and genotyping in a large, well powered and 

characterized population cohorts has made possible the rapid progress in the field of biomarker 

discovery.  

Previous studies and recent studies based on the application of metabolomics have identified 

several biomarkers predicting incident T2D including total TGs, HDL cholesterol, inflammatory 

markers, adiponectin, liver enzymes, fetuin-A, aromatic amino acids  and branch-chain amino 

acids which have been measured from biofluids or tissue samples (151). In the present studies, 

NMR and gas chromatography were utilized and the analysis revealed that levels of glycerol, 

serum FAs, proportions of EMFAs and KBs can be considered as biomarkers for the 

development of hyperglycemia and incident T2D. However, the clinical importance of these 

biomarkers needs to be validated in other populations and also in women.   

Our series of studies show that it is possible to obtain important information on the 

mechanisms how different metabolites can impair glucose tolerance and further to incident T2D 

if reliable markers of insulin sensitivity and insulin secretion are applied. It is important to 

measure both of these pathophysiological abnormalities since the mechanisms by which an 

individual metabolite increases the risk of hyperglycemia and T2D are likely to differ. For 

example, insulin resistance seems to be a more likely causal mechanism how high 

concentrations of certain serum FAs increase the risk of T2D, whereas impaired insulin 

secretion is likely to be a causal mechanism how KBs lead to the worsening of hyperglycemia 

and elevated risk of T2D. However, several other factors are likely to play also a significant role 

in these associations, namely dietary factors and gene variants.  

GWAs and meta-analyses have uncovered several novel risk loci for T2D that are consistent 

across all ethnic groups. Revealing biological functions of these common variants has been 

challenging. Recently exome sequencing has accelerated the potential to identify new low-

frequency and rare variants in complex diseases, including T2D. However even taking the 

applications of exome sequencing and exome chip into account, studies on the genetics of T2D 

need other approaches. Gene-gene and gene-environment/lifestyle interaction analyses are 
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urgently needed as well as studies on epigenetics (methylation of promoters and histone 

modifications).   

In conclusion, we have identified novel biomarkers for the estimation of the risk for the 

development of hyperglycemia and incident diabetes beyond classical clinical indicators and 

laboratory measurements. Our findings indicate that plasma metabolites predict the onset of 

T2D and provide important information beyond standard clinical markers.   
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7 Summary 

 

The main findings of Studies I – III were as follows: 

Study I: High fasting levels of glycerol, FFAs, monounsaturated FAs, and saturated FAs, and 

omega-7 and -9 FAs predicted the worsening of hyperglycemia and incident type 2 diabetes, 

whereas high levels of omega-6 FAs were associated with a reduced risk of hyperglycemia and 

type 2 diabetes.  Insulin resistance explained these associations, at least in part. 

Study II: High levels of palmitoleic acid, dihomo-gamma-linolenic acid, 16:1n-7/16:0 and 20:3n-

6/18:2n-6 ratios predicted the worsening of hyperglycemia, whereas linoleic acid and 18:1n-

7/16:1n-7 ratio predicted the improvement of hyperglycemia. The high levels of palmitoleic acid 

and 16:1n-7/16:0 nominally predicted incident type 2 diabetes, whereas linoleic acid prevented 

type 2 diabetes. These associations were largely independent of insulin sensitivity, insulin 

secretion and glucose levels. 

Study III: High levels of acetoacetate and β-hydroxybutyrate predicted the worsening of 

hyperglycemia, and acetoacetate predicted incident type 2 diabetes. Impaired insulin secretion, 

but not insulin resistance, explained these associations. One common variant of GCKR was 

significantly associated with β-hydroxybutyrate levels.  
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