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Abstract 

Titanium (Ti) porous foams produced by additive manufacturing (AM) techniques are 

promising for fixation devices in orthopaedic applications. These implants should 

possess sufficient permeability to allow vascular invasion, integration with the host 

tissue and also satisfy the transport requirements of remodelling bone. The mechanical 

properties of implants should also match those of the host tissue to ensure sufficient life 

span in the body. Both macro and micro-structures of implants influence the mechanical 

and flow properties. Techniques are therefore needed to characterise the structural 

parameters and to evaluate their effects on the performance of the implant. 

This thesis focuses on computational modelling tools based on X-ray microtomography 

(µCT) images to characterise the flow and mechanical properties of porous foams. The 

aim of the study is to develop and apply these tools on Ti implants with different 

structures to investigate how the design variables offered by AM technique can be used 

to alter the implant architecture on multiple length scales to control and tailor the flow 

and mechanical properties.  

A computational fluid dynamics model was developed to predict permeability of the 

implant and how AM can be used to tailor implant flow properties by controlling 

surface roughness at a microstructual level (microns), and by altering the strut 

connectivity and density at a macroscopic level (millimetre).  

A finite element (FE) model of compression test was developed to quantify mechanical 

properties of the porous implant based on three-dimensional (3D) µCT images and the 

work is validated and compared to the in situ experiment using µCT. 

Fluid flow in bone tissue has a key role in the bone remodelling process. A 3D 

microscale numerical model that simulates the fluid flow-induced shear stress and time 

dependant bone growth was developed and showed the inter-relationship between those 

two dynamic factors.  
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1 Introduction 

Osteoarthritis of the knee is degeneration of cartilage caused by injury, obesity, wear 

and tear. It leads to pain and stiffness of the joint, restricting activities of patients. 

Around 8 million people in the UK are affected by it and knee joint replacement 

operations are often needed to improve the quality of life (Van Manen et al. 2012). 

Total knee replacement (TKR) is widely performed as a cost-effective treatment of 

osteoarthritis in knees. Though TKR has been well recognised as a successful surgical 

way to treat osteoarthritis, implant failure after TKR is a common problem, which can 

result in revision operation (Kurtz et al. 2005). Therefore, research on improving the 

life-span of implants in the body is continuously drawing attention in this field.   

Figure 1-1 shows a schematic of a human knee joint with TKR implant. The fixation 

problem of artificial patella component to the patella has been considered as one of 

most common cases of implant failure in TKR (Ayers et al. 1997).  The fixation method 

has been moved from conventional mechanical fixation (with cement and screws) to 

biological / morphological fixation. The latter involves the use of porous foams which 

are expected to provide better fixation to the host tissue by stimulating bone ingrowth.  

Porous metallic implants are common choices for orthopaedic applications (Geetha et al. 

2009). This thesis is based on a TKR component to which the project contributed to its 

commercialisation (FDA approval 2013). Porous titanium (Ti) foams demonstrate good 

mechanical properties and highly corrosion resistant materials properties in the body. 

However, understanding of how macro / micro-structures of the foam relates to the 

overall performance of the implant remains a challenge. To design the optimal structure 

for implant applications, optimising key structural parameters such as 

pore / interconnect sizes, strut connectivity and strut surface morphology are crucial, 

and it is very important to correlate them to the flow transport and mechanical 

behaviour of the implant. Therefore, characterisation of the porous structure and 

understanding the relationship between design parameters and implant function is of 

great importance.  
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Figure 1-1 Schematic of a human knee joint (lateral view) with TKR implant. 

(Figure modified from http://www.orthopale.com/total-knee-arthroplasty.php 

(Cazenave, 2008) ) 

The main objectives of this thesis are to: 

1. Develop models based on X-ray microtomography (µCT) images to characterise 

the mechanical and flow behaviour of porous Ti structures. 

2. Model the influence of foam macro/micro-structures on rate of bone ingrowth. 

The chapters are organised as follows: 

Chapter 2 describes the background and the motivation of this research. Previous 

literature on TKR, porous Ti foams, three-dimensional (3D) µCT imaging, studies on 

flow and mechanical properties and bone ingrowth models are reviewed. 

Chapter 3 presents the computational fluid dynamics (CFD) based method developed to 

quantify the permeability of the additive manufactured (AM) Ti implants. The model is 

applied on various Ti structures to demonstrate its viability as a tool to evaluate the 

influence of design parameters such as overall porosity, strut morphology and surface 

roughness on the flow property of the implant. The ability to control the permeability of 

implants by hierarchically tailoring their structural parameters at both micro and 

macroscopic levels is presented. 
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In Chapter 4, a 3D finite element analysis (FEA) model is reported to characterise the 

compressive behaviour of the implant. The model is validated against in situ 

experiments performed in conjunction with µCT imaging. Direct observation of foam 

elastic behaviour and strut failure is presented and failure mechanism proposed. Three 

types of Ti foams with different structural design were used to study the relationship 

between foam microstructure and mechanical properties. 

The importance of fluid flow inside the implant to bone remodelling is discussed in 

Chapter 5, with the study of how localised fluid flow-induced shear stress affects the 

bone ingrowth within AM Ti implants. A 3D CFD model is presented to simulate the 

body fluid flow within the foam structure and quantify bone ingrowth as a function of 

local flow shear stress. Two types of Ti foam structures are compared together with the 

description of the inter-relationship between flow-induced shear stress and time 

dependant bone ingrowth at the microscopic level.  

Chapter 6 presents the final conclusions from this thesis and suggestions for future 

work. 
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2 Literature Review 

Porous metal materials have been widely used in orthopaedic implant applications 

acting as scaffolds to augment damaged bone. The primary function of the pores is to 

allow bone ingrowth and integration. The scaffold’s properties associated with the 

structural design are being continuously investigated in the research field. The focus of 

this thesis is to computationally model the mechanical and the flow behaviour of porous 

commercially pure titanium (CP-Ti) implants designed as a bone fixation component of 

a device for total knee replacement (TKR). In this chapter, studies in the literature 

relating to the TKR operation, the design criteria of implants and the choice of using Ti 

as the implant material are reviewed. Using non-destructive three-dimensional (3D) X-

ray microtomography (µCT) imaging technique as a viable tool for modelling is also 

reviewed. Finally, reviews of previous studies on numerical simulations of fluid flow, 

bone remodelling and compression test are presented.  

2.1 Bone Fixation 

2.1.1 Total Knee Replacement (TKR) 

Osteoarthritis is one of the common musculoskeletal diseases (Kramer et al. 2005). It 

occurs when the cartilage on the gliding surface of the knee begins to degenerate, which 

causes intense pain and stiffness in the knee joint as bone on bone contact occurs. Total 

knee replacement (TKR) is an efficacious treatment for osteoarthritis of the knee, which 

can substantially reduce patients’ pain and restores movement (Dixon et al. 2004). Due 

to the growing size of the ageing population with many younger patients in need of 

surgery due to trauma, the need of TKR is continuously increasing (Grotle et al. 2008; 

Mullen et al. 2010).  

Although TKR is recognised as a successful operation, the rate of revision operations 

required by patients is growing quickly (Kurtz et al. 2005). A large number of these 

revision operations are needed because of the failure of implant fixation. Common 

reasons for failure includes implant wear, loosening and instability problems (Sharkey 

et al. 2002). Implants used in TKR operations consist of an articular element coupled 

with an element that fixes the implant to the native tissue (Mullen et al. 2009). The knee 
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joint prosthesis consists of three main parts (please refer to Figure 1-1). The femoral 

component (usually made of metal) is fixed to the distal part of the femoral condyle. 

The metal tibial component (usually made of two parts: a metal tray attached directly to 

the bone and a polymer articular insert) is fixed to the upper part of the tibia. The 

patella component is to replace the articular surface of the patella. 

Among the aforementioned implant failure cases, the failure of the patella component in 

TKR has been considered of high prevalence (Ayers et al. 1997). Early designs of the 

patella component were all-polyethylene (Huang et al. 1999) (Figure 2-1 (a) and (b)). 

Heavy body weight of some patients and the increase in activity levels brought by both 

young and older patients are the most severe risk factors for the deformation of the all-

polyethylene patella component. Metal-backed designs which consists of a metal 

substrate with a dome-shaped polyethylene cap were then developed in order to 

decrease the patella surface strain and support the polyethylene to prevent the 

deformation (Ayers et al. 1997) (Figure 2-1 (c)). However, excessive wear and the 

fracture of the polyethylene component caused by the high patellofemoral contact stress 

leads to the dissociation of the polyethylene from the metal substrate and the 

dissociation / angulation of the fixation pegs. The relative motion between the 

bone/implant interfaces leads to the ingrowth of fibrous soft tissue, resulting the 

instability of the implant. Moreover, the use of metal-backed implant has inevitably 

caused the under-utilisation of the host bone because of the high stiffness of the metal 

plate, which limited the functional life of the implant and eventually led to the failure of 

the knee joint arthroplasty (Schmalzried and Callaghan 1999). Therefore, more 

sophisticated solutions are needed to improve the fixation and stability of the implant 

(Lee and Goodman 2008). 

 

Figure 2-1 Three designs of patella implant components: (a) all-polyethylene 

component with a single peg; (b) all-polyethylene component with three pegs; 

(c) metal-backed component with a dome-shaped polyethylene cap. (After 

Parker et al. (Parker et al. 2003)) 
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2.1.2 Implant Design Criteria for Bone Fixation 

In order to reduce the negative effect caused by the wear and the fracture of the 

components, dissociation of the fixation pegs from the metal plate and the fracture of 

the metal plate etc., a better fixation method known as the biological fixation was 

introduced (Haddad et al. 1987; Poss et al. 1988; Walker et al. 1988). The biological 

fixation process involves the use of partially or fully porous materials which stimulate 

the bone ingrowth so that the bone and the implant will integrate (Mullen et al. 2009). 

(Note: when the tissue grows into a porous implant without forming a biological bond 

to the implant, the fixation method is usually termed morphological fixation.) 

Biological / morphological fixation of implants depends on implant material (intrinsic 

properties), structural design (e.g. pore size, network), mechanical loading and motion 

at the implant/bone interface. Hence, an optimal implant that is considered for bone 

fixation should fulfil the following criteria (Alvarez and Nakajima 2009; Atwood et al. 

2004; Freyman et al. 2001; Jones et al. 2006; Jones et al. 2007; Jones et al. 2006): 

i. The implant material should be biocompatible (non-toxic) and promote cell 

adhesion and activity;  

ii. It should act as a 3D template with an interconnected 3D pore network with 

pores suitable for bone ingrowth;  

iii. It should have suitable surface properties (e.g. surface chemistry, surface 

roughness, topology, orientation of struts etc.) to facilitate  cell adhesion; 

iv. An optimal implant for bone fixation and augmentation purposes should 

exhibit mechanical properties matching those of the host bone. It should 

have appropriate modulus to minimise the stress shielding effect as well as 

to provide sufficient load-bearing ability after implantation; 

v. Should be high corrosion and wear resistance to prevent excessive wear 

debris and loosening that occurs at the interface; 

vi. The shape of implants made from the processing technique should match the 

bone defect area; 

vii. It should be capable of being commercially produced in large quantities and 

sterilized to fulfil the international standards for clinical use. 

It is critical that implants possess suitable 3D networks and have sufficiently large pores 

and interconnects. Cell attachment, nutrition migration and matrix deposition are 
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achieved by the efficient nutrient and oxygen transportation within the network 

(Botchwey et al. 2003). Previous work has shown that the optimum pore size for bone 

ingrowth is in the range of 100 – 500 µm (Freyman et al. 2001; Hutmacher et al. 2004; 

Okii et al. 2001) and interconnect size greater than 100 µm can provide sufficient space 

for the blood vessel access and the vascularisation (Lu et al. 1999; Okii et al. 2001). In 

addition, since the internal surface area is as important as the outside surface in a 3D 

porous structure, surface properties including struts topology, surface roughness, struts 

orientation etc., must be considered too (Alvarez and Nakajima 2009). The surface 

roughness has a direct influence on cell adhesion, osteoblasts proliferation and 

differentiation. Rougher surfaces are believed to exhibit better cell adhesion than 

smooth surfaces (Boyan et al. 1996; Hatano et al. 1999).  

An ideal implant for bone fixation should exhibit similar mechanical and physical 

properties as the host tissue. As natural bone is a hard, load-bearing tissue, the implant 

should have sufficient strength to retain its structure and to provide the mechanical 

support for bone remodelling. Wolff’s Law (Wolff 1892) states that human bone will 

remodel in response to the loads which it is placed under. If the load placed on the bone 

increases, the bone will naturally remodel itself over time to become stronger to resist 

the load. However, remodelling will be hindered by a permanent implant with stiffness 

larger than the surrounding tissue. The implant carries a substantial and 

disproportionate amount of the load. The bone will therefore experience a much lower 

level of stress and become less dense and weaker during the bone healing process. 

Conversely, if the implant has stiffness less than the host tissue, potential implant 

failure will be expected because of the stress concentration in the implant. This uneven 

load sharing between implant and host tissue is termed ‘the stress shielding effect’ 

(Sumner et al. 1998). Hence, while the implant needs to have enough strength to retain 

its structure (Yang et al. 2001) in vivo, the modulus of the material should not exceed a 

certain limit in order to avoid the host bone being stress shielded.  

2.2 Titanium (Ti) Implants 

2.2.1 Titanium (Ti) as Orthopaedic Implant Material 

Biocompatible metallic materials such as 316 stainless steel,  cobalt chromium (Cr-Co) 

alloys and Ti and its alloys are frequently accepted as implant materials (Alvarez and 
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Nakajima 2009). Amongst the available choices of surgical metallic implants, CP-Ti 

and Ti-based alloys have been clinically used as orthopaedic implant application 

materials for more than 50 years (Geetha et al. 2009). Ti implants are used in fields 

ranging from stents (Duerig et al. 2000), replacement dental implants (Le Guéhennec et 

al. 2007), and replacement orthopaedic devices for shoulders, hips and knees (Head et 

al. 1995), etc., as reviewed by Singh et al. (Singh et al. 2010). 

Ti was found to be a nearly bio-inert and high tolerated material in the body 

environment (Niinomi 2003). The naturally formed stable TiO2 layer on the surface 

provides high corrosion resistance and excellent biocompatibility over stainless steel 

and Cr-Co alloys. (Kokubo 1996; Singh et al. 2009; Spoerke et al. 2005; Wen et al. 

2002; Xue et al. 2007).  

Ti is relatively lightweight compared to steel. Mechanically, Ti has outstanding 

properties such as high compressive and tensile strength, low modulus and low density 

compared to other metals (Geetha et al. 2009). In orthopaedic applications, closely 

mimicking the mechanical properties of host bone is the criterion that is overlooked the 

most. Human cortical bone has a modulus of 3 – 30 GPa and trabecular bone has a 

modulus of 1 – 10 GPa (Rho et al. 1993). Ti and Ti-based alloys, have lower moduli 

varying from 55 to 110 GPa (Leyens and Peters 2003) compared with stainless steel 

(210 GPa (Geetha et al. 2009)) and cobalt alloys (220 GPa (Belteridge 1982)); this 

clearly indicates that the moduli for Ti and Ti-based alloys are much closer to the 

human bone. Ti and its alloys have high strengths ranging from 220 – 1100 MPa, which 

are close to stainless steel but with a high specific strength (strength per density). 

Together with its biocompatibility and high corrosion resistance properties, it is well 

understood as to why Ti and its alloys are widely used in the biomedical implant 

applications.  

Despite the excellent biocompatibility, strength and corrosion resistance of Ti and Ti 

alloys, there are still problems associated with Ti implants in orthopaedic applications. 

The difference between the stiffness of Ti implant and the bone has been identified as a 

major cause for the surrounding bone experiencing the stress shielding effect (Thelen et 

al. 2004), see Figure 2-2 (a). This can lead to a rapid bone resorption rate, resulting in 

osteolysis (Figure 2-2 (b)). Furthermore, this mechanical property mismatch 

subsequently leads to abnormal, relative movement between the Ti implant and bone, 
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which has been shown to inhibit bone formation and ingrowth. Another critical issue 

associated with Ti implant is the generation of wear debris, which accumulated in the 

tissue, also causing the osteolytic lesion in the joint (Kalisvaart et al. 2012; Thelen et al. 

2004). The formation of wear debris can result in fibrous encapsulation leading to pain 

and to loosening of implants due to a high coefficient of friction (Galante et al. 1991). 

The fibrous encapsulation around Ti implants significantly reduces the mechanical 

bonding to the surrounding bone and can result in a reduced implant lifetime. Therefore, 

on-going research is striving to find Ti implants with a similar structure and mechanical 

properties to that of natural bone, and with the ability to integrate well with the host 

tissue (Hollister et al. 2002; Ryan et al. 2009).  

 

Figure 2-2 (a) 2D radiograph showing the result of stress shielding in the 

upper part of tibia below the implant in a knee joint after 5 years of TKR 

surgery. (b) 2D radiograph showing the osteolytic lesion around the tibial 

component. (After Kalisvaart et al. (Kalisvaart et al. 2012)) 

2.2.2 Porous Titanium (Ti) Implants for Bone Fixation 

Initial methods used to fix the metallic implants to the bone was to use bone cement and 

screws (Ryan et al. 2006). In joint replacement surgery, liquid acrylic bone cement is 

injected into the defect area before inserting the implant component. After the cement 

polymerises, the component wedged against the host bone. Alternatively, the 

component is fixed rigidly to the bone by screws or interference fits (Harris and Sledge 

1990). Such fixation methods have inevitably caused stiffness mismatch which 
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eventually leads to the need for a revision operation. Improved strategies for fixation 

could be biological/morphological fixation, which provides the mechanical interlocking 

between the implant and bone by bone ingrowth (Kienapfel et al. 1999; Pilliar 1987; 

Walker and Robertson 1988). Figure 2-3 shows a patella component that will require 

cement fixation (a) and the other (b) with a cementless design. 

 

Figure 2-3 Examples of the patella component: (a) cement and (b) cementless 

metal-backed designs. (After Leopold et al. (Leopold et al. 2003)) 

Biological / morphological fixation involves the use of porous metallic implant 

components. In general, there are three types of porous metal implants: porous coated 

solid substrates, porous metal component attached to a solid part and fully porous 

components. Greenfield (Greenfield 1909) first invented the concept of biological 

fixation in 1909 by employing a metallic framework for a tooth root. The structure 

allowed bone to grow around and in to hold the implant in position. Since then, there 

has been a continuous stream of research papers describing the use of various porous 

coatings as well as fully porous metal scaffolds (Bauer and Schils 1999; Galante and 

Jacobs 1992; Kienapfel et al. 1999; Pilliar et al. 1981). Galante et al. (Galante et al. 

1971) developed a Ti fibre-metal composite as a medium for ingrowth bone fixation 

which was used in hip and knee arthroplasty. In 1983, Pilliar et al. (Pilliar 1983; Pilliar 

et al. 1981) introduced an implant consisting of a metal substrate with a porous Ti 

coating on the surface. Recently, new highly porous metallic scaffolds have been 



- 25 - 

 

developed to be used in the orthopaedic applications, such as porous tantalum (Bobyn et 

al. 1999) and porous Ti foams (Mullen et al. 2009).  

Conventional porous metals such as Ti fiber mesh and Ti plasma spray have some 

limitations, such as high elastic moduli, low surface roughness, and the requirement of 

higher porosity to facilitate bone ingrowth (Levine 2008). In order to improve the 

performance of metal implants, the trend of developing porous metal implants is now 

towards highly porous metallic structures. It has been shown that this series of implants 

can be designed to mimic the structure of bone, providing sufficient void space and 

pathways for cell migration and nutrient transport to effectively encourage the bone 

ingrowth (Hollister 2005). Wen et al. (Wen et al. 2001; Wen et al. 2002) reported their 

porous Ti foam fabricated by powder metallurgical process which has both macropores 

and micropores in the structure. The size of the relative large macropores lay in the 

range of 200 – 500 µm, which is thought to be optimal for bone ingrowth. The presence 

of the micropores in range of several micrometers were claimed to have beneficial 

effect on osteoconductivity. Chen et al. (Chen et al. 2009) produced porous Ti foam 

with open pores and interconnected network by liquid foaming method of Ti powder. 

Large pore sizes in the range of 100 – 400 µm, which is suitable for osteogenesis was 

achieved and different porosities of the structure could be controlled by changing the 

amount of foaming agent. Mechanically, highly porous structures effectively reduce the 

Young’s modulus of the implant so that the mismatch of stiffness between the implant 

and the host bone is less pronounced (Gibson and Ashby 1999; Spriggs 1961). Gibson 

and Ashby (Gibson and Ashby 1999) suggested that the Young’s modulus, E*, can be 

approximately estimated by: 

   

  
  

  

  
 
 

       2-1 

where Es is the Young’s modulus of the solid material and ρ*/ρs is the relative density 

of the open cell foam. 

Imwinkerlried showed that Ti foams of porosity 50 – 80% can be adjusted to have the 

most ideal properties matching those of the natural bone. The elastic moduli of such Ti 

foams with 60 – 65% porosity (9 – 14 GPa) also lie in the range of the modulus of 

human bone (Imwinkelried 2007). Compressive strength of porous Ti foams can be 

tuned to match that of the natural cortical bone (130 – 180 MPa) by changing the 
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porosity in the range of 35 – 42% (Krishna et al. 2007)). Micro and macro-structures of 

the Ti foams can also be tailored to achieve desired mechanical properties by altering 

the pore architecture and 3D network connectivity (Hollister 2005). 

The ingrowth of bone in, around and through the implant can also reduce the stress 

shielding effect by sharing more evenly the load after the implantation (Spoerke et al. 

2005). Furthermore, porosity of metal implants with complete porous structure can be 

altered to balance the compressive strength and stiffness so that the implant can retain 

its own structure in the defect area as well as prevent the stress shielding. 

Fujibayashi et al. reported that porous Ti foams are found to be inert and exhibit 

potential bone induction in a non-osseous site when special chemical and thermal 

treatment was applied on the surface (Fujibayashi et al. 2004).   

Porous Ti implants being inert, highly biocompatible, exhibiting excellent corrosion 

resistance and having ideal mechanical properties that match those of the natural bone 

are therefore a promising choice for orthopaedic implants.  

In summary, to design porous Ti structures suitable for orthopaedic applications, it is 

important to consider the overall requirements of porosity, pore / interconnect size and 

the mechanical property accordingly. There are a number of methods to fabricate the 

porous Ti structures, such as sintering Ti powder, space holder method, creep expansion 

etc. (Lefebvre et al. 2008). However, producing such porous metallic foams with 

designed structural parameters presents challenges to those conventional methods. 

Novel manufacturing techniques have been therefore proposed to overcome the issue. 

In the next section, one novel technique to fabricate porous Ti foams with optimum 

parameters will be introduced.  

2.2.3 Titanium (Ti) implants fabrication by Selective Laser Melting (SLM) 

There are a number of novel manufacturing routes to produce highly porous Ti foams, 

as reviewed by Singh et al. (Singh et al. 2010). Rapid prototyping (RP) is one of such 

techniques especially for producing the open-cell porous metal foams. Components are 

built layer by layer. 

From early 1980s, RP has been used as a powerful manufacturing technique to quickly 

produce 3D objects of virtually any shape. Based on computer aided design (CAD) 
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models and by combining with computer aided manufacturing (CAM), this technique 

can generate individual components with complex geometries. Since this technique 

makes it possible to produce object with accurate pre-designed pore size, morphology, 

interconnectivity and provide possibilities to hierarchically tailor the structure of the 

object, RP technology has been developed for fabricating orthopaedic implants with 

porous structures designed for bone ingrowth (Fukuda et al. 2011; Mullen et al. 2009; 

Ryan et al. 2008; Warnke et al. 2008).  

Selective Laser Melting (SLM) is a powder-based RP technique which produces metal 

components based on 3D CAD volume. In a typical SLM building process, the 

component is built additively in z-axis in a layer by layer fashion by using a precise 

laser beam. The laser beam selectively scans over the metal powder on a substrate plate 

according to the cross-sections generated from the 3D CAD model. When the laser 

focuses on an area of powder, the powder in the beam melts, fusing the particles 

together. Thereafter, the substrate plate is lowered and a new layer of Ti powder is 

recoated on top and the process is repeated until a full 3D object is produced to replicate 

the CAD design (Wehmöller et al. 2005). Upon completion of the object the substrate 

plate is removed and excess unsintered powder is recycled. Figure 2-4 shows a 

schematic of SLM process to produce the 3D metal component using a laser beam to 

melt the metal powder layer by layer. 

 

Figure 2-4 A schematic of the SLM process used to produce 3D metal 

structures. (After Wehmöller et al. (Wehmöller et al. 2005)) 
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Warnke et al. produced porous Ti6Al4V scaffolds using SLM with pore size ranging 

from 450 – 1200 µm (Warnke et al. 2008). Scaffolds showed biocompatibility and 

proliferation of human osteoblasts in vitro in pores ranging from 500 to 600 µm. Wang 

et al. used SLM to produce porous TiH2-Ti scaffolds with high porosity greater than 

70%. The scaffold has interconnected walls and open pore structure with pore sizes in a 

range of 200 – 500 µm (Wang et al. 2010). Mullen et al. produced 3D porous Ti 

structures with both regular and randomised struts arrangements using SLM based on a 

unit cell approach (Mullen et al. 2009; Mullen et al. 2010). The method can be used to 

produce porous Ti foams with porosity ranging from 15 – 70% and unit cell sizes in the 

range of 600 – 1400 µm. The compressive strength of the Ti implants ranged from 15 to 

350 MPa at corresponding porosities between 75 to 15%. It was observed that a 1% 

decrease in porosity of the scaffold resulted in a 3 MPa gain in compressive strength. 

And the study stated that the decrease in porosity at the high levels of randomisation 

was the primary cause of the high strengths observed. The study of the flow and 

mechanical properties described in this thesis is based on these two types (regular and 

randomised) of porous Ti structures, which will be discussed in details in the following 

sections.  

2.3 X-Ray Microtomography (µCT) 

As earlier discussed in section 2.2, structural parameters such as pores / interconnects 

size, porosity and morphologically, the shape, distributions of the pores / interconnects 

and the strut surface roughness have a great influence on cell attachment, proliferation, 

nutrition transport, vascularisation, ingrowth and mechanical performance. 

Characterising these properties precisely in 3D is deeply important to help optimising 

the implant design. 

X-ray computed tomography, also termed as X-ray microtomography (µCT), has been 

established as a non-destructive technique which provides 3D images of the internal 

micro-structure of an object (Stauber and Muller 2008). The development of µCT has 

been lead by the medical research because of its ability to provide excellent contrast 

between bone and soft tissue (Feldkamp et al. 1989). Nowadays, µCT machines have 

been extensively developed for imaging porous materials in many applications. 

Together with the development of 3D image processing algorithms and analysis 
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techniques, the quantitative characterisation of the porous materials with complex 3D 

internal structure can be performed based on µCT images.  

The basic physical principle of µCT is that an object attenuates X-rays as it passes 

through it. X-rays, first discovered by Röntgen (Röntgen 1895), are a form of 

electromagnetic radiation with a wavelength range of 0.01 – 10 nm and corresponding 

energies in the range of 0.1 – 100 keV (Van Grieken and Markowicz 2001). It was 

applied to radiological imaging, which are 2D projections of the X-ray absorption when 

transmitted through an object (see review by Stock (Stock 1999)). The amount of X-ray 

attenuation through an object is related fundamentally to the composition of the object 

and the energy of the X-ray source. In the energy range used for CT imaging, the 

photoelectric effect when the matter encounters the X-ray creates the main attenuation. 

The relationship between the intensity of unattenuated, monochromatic X-ray and the 

intensity after it traverses through an object is given by (Stock 1999): 

 
     

  
 
 
   

         2-2 

where I0 is the intensity of the unattenuated X-ray beam, I is the intensity of the beam 

after it traverses through an object with a thickness of x. The energy-dependent material 

constant µ is called the linear attenuation coefficient, which varies along the beam and 

depends on both the local mass density of the sample and the energy of incident 

photons (Maire et al. 2001). It is the amount of radiation being attenuated by the 

material on an infinitely small distance. For monochromatic X-ray source, the linear 

attenuation coefficient is proportional to the density of the material. Hence µCT images 

represent different densities in different intensities. Dividing the linear attenuation 

coefficient by the density of the material (ρ) gives the mass attenuation coefficient of 

the material, which describes how strongly the material attenuates the X-ray per unit 

mass.  

Writing Equation 2-2 in differential form with respect to infinitely small thickness dx: 

   

 
  

 

 
            2-3 

As dx is an infinitely small increment, (µ/ρ) ρ is treated as a constant, written as µ. 

Adding the increments of attenuation along the X-ray propagation direction gives the 

Beer-Lambert Law, a more general form of Equation 2-3: 
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where µ(s) is the linear absorption coefficient at position s along the ray s. Therefore, an 

X-ray radiograph represents a map of the sum of all local attenuations along the X-ray 

beam (Stauber and Muller 2008). 

Rewriting the above equation leads to: 

 
           

  
 
          2-5 

which shows explicitly that assigning the correct value of μ to each position, s, along 

the ray s from a knowledge of only the values of the line integral for the various 

orientations of s is the essential problem of computed tomography (Stock 1999). 

Measuring I0 / I for many different positions s for a given s is required, thus a series of 

radiographs which measure the value of I0 / I obtained at enough directions s is 

collected in order to reconstruct the object volume. 

In CT, a set of 2D radiographs are collected while rotating the sample in very small 

steps (< 1°) around a single axis of rotation. The 3D volume image is numerically 

reconstructed (normally using a filtered back-projection (FBP) algorithm (Feldkamp 

1984; Herman 1995) from the 2D images collected in a full 360
o
 set of views.  

The quality of the CT image is limited by the X-ray energy / intensity, X-ray focus 

size, the size of the detector and the object being scanned.  

CT systems employ two main types of X-ray sources: synchrotron parallel radiation 

and Micro / Nano focus X-ray tube head. Laboratory-based CT use the Micro / Nano 

focus X-ray tube heads which generate polychromatic X-rays. The X-ray diverges from 

the source (a cone shape) and only those parts of the object which remain in the beam 

throughout the entire rotation can be used in the reconstruction process afterwards. A 

cone beam system used in lab-based CT is illustrated in Figure 2-5.  
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Figure 2-5 Illustration of a cone beam system used in lab-based CT. Figure 

modified from 

http://serc.carleton.edu/research_education/geochemsheets/techniques/CT.ht

ml (Ketcham, 2012) 

Polychromatic X-rays may introduce an artefact termed “beam-hardening”. The beam-

hardening effect occurs due to the preferential absorption of lower energy X-rays, 

which results in the mean value of energy shifting to higher values (beam hardens) as 

the X-ray traverses through the object (Stock 1999). The reconstructed image will look 

brighter at the edges than at the centre and streak artefacts may appear (Van de Casteele 

et al. 2002). To minimise this effect, one common way is to use a thin layer of metal 

filter which can pre-filter the low energy photons before the X-ray enters the material 

(Stauber and Muller 2008). Another common artefact that occurs in µCT imaging is the 

ring artefact due to individual defective pixel-elements or pieces of dust on the detector, 

which will cause a bright ring to superimpose onto the reconstructed image. The ring 

artefact can be potentially reduced by replacing the defective pixel by an average value 

of the neighbouring pixels. 

With the cone beam CT system, the magnification can be adjusted by changing the 

position of the object being scanned between the X-ray source and the detector. 

However, the maximum resolution is limited by the X-ray focal spot size (Maire et al. 

2001). The smaller the spot size, the better the resolution can be achieved. The use of 

small spot size will limit the X-ray energy that can be applied on the target and 

therefore the resulting intensity. Hence when higher X-ray power is needed, it is 

necessary to select a larger spot size which will incur a point of blur on the image. 
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The size of the detector and the sample also affect the quality of the CT image. The 

number of pixels in the detector determines the maximum spatial resolution. And the 

maximum nominal resolution that can be achieved is related to the size of the sample 

being scanned. For accurate reconstructed image quality, the size of the sample being 

scanned should not exceed the field-of-view (Stauber and Muller 2008). 

Materials characterisation using CT has emerged in a wide range of research fields, 

such as bone structure characterisation (Balto et al. 2000; Kuhn et al. 2005; Müller et al. 

1998), geomaterials (Lindquist et al. 2000; Macedo et al. 1999) and metal solidification 

(Atwood and Lee 2003). Recently, there have been a number of studies applying CT 

together with advanced image analysis techniques to characterise the structure of tissue 

engineering scaffolds (Jones et al. 2009; Maire et al. 2003; Moore et al. 2004; Otsuki et 

al. 2006; Yue et al. 2011). The quantification of pore and interconnect size, as well as 

their distributions, has been performed via CT data. In addition to structural 

quantification, CT image data can also be converted into computational fluid 

dynamics and finite element models for analysis (Jones et al. 2009; Jones et al. 2007; 

Singh et al. 2009). This thesis will focus on the characterisation of the flow and 

mechanical properties of the Ti scaffolds based on 3D images taken via CT. 

2.4 Modelling of Fluid Flow  

2.4.1 Permeability of Porous Materials 

Fluid flow through the porous implant is required as it significantly affects the transport 

of cells, nutrients and growth factors into the porous implant after implantation. The 

concept of permeability was first introduced in the establishment of the theory of 

transport phenomena in porous media (Bear 1988). Permeability is a measure of the 

ease at which liquid flows through a porous structure under a pressure gradient and is a 

convenient way to characterise the bulk flow. Permeability influences vascular invasion 

and the supply of nutrients required to sustain cell growth and also provides an outlet 

for the removal of cell debris, thereby increasing its osteoconductive potential (Yang et 

al. 2001). Hui et al. (Hui et al. 1996) highlighted the importance of implant 

permeability, reporting results that show high implant permeability enhances the 

integration of the implant with the host bone. In addition to flow, permeability can also 
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be related to the internal topology of foams, the porosity, and the surface roughness of 

the foam struts.  

At low fluid velocities, the permeate flux across trabecular bone implants is found to be 

well predicted by Darcy’s Law (Equation 2-6) (Despois and Mortensen 2005; Hui et al. 

1996; Nauman et al. 1999): 
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where R is the volumetric flow rate, A is the cross sectional area of the porous structure, 

Q is the permeate flux across the sample structure, K is the permeability, µ is the 

dynamic viscosity of the fluid and L is the length over which a pressure difference, ∆P, 

is measured. Typically during cell culture studies using bioreactors, flow rates through 

the porous structures are low and generally do not exceed 1 ml/min
 
(Cartmell et al. 

2003), remaining in the low Reynolds number, or creeping flow regime. However, 

when experimentally measuring permeability, flow rates of this order are impractically 

low for easy measurements and much higher flow rates are often employed, thereby 

creating a situation which shifts the flow from laminar flow to transitional or even 

turbulent flow. These regions are defined in terms of the Reynolds number (Re) as 

laminar flow (Re < 10), intermediate flow (10 < Re < 300) and turbulent flow (Re > 300) 

(Ziółkowska and Ziółkowski 1988), where Re for determining the flow regime of fluid 

in a porous media is defined as (Holdich 2002):  
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where ρ is the density of the fluid, v is the superficial velocity of the fluid, ε is the 

porosity of the object that the fluid flows through and Sv is the surface area per unit 

volume. 

Permeability measurements have been performed by various groups of researchers on 

bone and other biomaterials (Chen et al. 1998; Kohles et al. 2001; Sahimi 1995; 

Shimko et al. 2005), who have demonstrated that when measuring the permeability 

using water, foams of nominal characteristics (porosity > 60% and pore size range 

100 – 500 µm) show transitional or turbulent behaviour at flow rates greater than 10
-

2
 m/s. When this is the case, the Dupuit-Forrcheimer modification of Darcy’s Law must 

be used (Despois and Mortensen 2005): 
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where C is a characteristics coefficient of the fluid. 

A number of research groups have performed experimental measurements of 

permeability of cortical and trabecular bone. The permeability of bone depends highly 

on its structure and density. Grimm and Williams (Grimm and Williams 1997) 

measured the permeability of human calcaneal trabecular bone by flowing fluid through 

the sample in the mediolateral direction in a tube connected to a fluid reservoir. The 

permeability was calculated using Darcy’s Law and expressed as a function of pore 

volume fraction, ranging from 4×10
-10

 and 1.1×10
-8

 m
2
. Li et al. (Li et al. 1987) 

measured the permeability of cortical bone of canine tibiae to be 2.5×10
-13

 m
2
 by 

measuring the volume of fluid flow in a fixed time through the sample in calibrated 

containers connected to a pressurized tank. Kohles et al. (Kohles et al. 2001), who have 

worked with cubic trabecular bone samples, further confirmed the previous estimated 

range of the permeability values by measuring trabecular bone anisotropic permeability 

using direct perfusion method. The intrinsic permeabilities were found to be in the 

range of 2.3×10
-10

 to 4.7×10
-10

 m
2
, varying with both location and direction. Ideally 

implant structures could be tuned to match this order of magnitude range in values.  

Although prior Ti foams have not been designed explicitly for matched permeability, a 

number of authors have measured this property for different foam types. For example 

Shimko et al. (Shimko et al. 2005) found their tantalum porous structures with 

porosities in a range of 66-88% to have permeabilities ranging from 2.1×10
-10

 to 

4.8×10
-10

 m
2
. Ochoa et al. (Ochoa et al. 2009) used volumetric flow rates of water in 

the range of 50 – 400 ml/min
 
in bioglass based glass-ceramic scaffolds of 90 – 95% 

porosity and yielded an intrinsic permeability value of 1.96×10
-9

 m
2
. Despois et al. 

(Despois and Mortensen 2005) found the permeability increased from 1.23×10
-12

 to 

3.56×10
-11

 m
2
 as they reduced the relative density of the scaffold from 32 to 12%, 

keeping the average pore size constant at 75 µm. They also tried to change the average 

pore size from 75 to 400 µm while keeping a similar relative density, which increased 

the permeability from 3.56×10
-11

 to 7.64×10
-10

 m
2
. Since a larger value for permeability 

means easier flow, reducing density (large flow passages) or having bigger pores (less 

surface area) should increase permeability as observed. Singh et al. (Singh et al. 2009), 

characterised Ti foams of 65% porosity with a modal pore size of 440 µm, and found 
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their structures to have permeability values in the range of 1.17×10
-10

 to 1.63×10
-10

 m
2
 

depending on the flow direction. In summary, common metal foams being considered 

for implants with porosities ranging from 50 to 95% were experimentally found to have 

permeability values in the range 10
-12

 to 10
-8

 m
2
. 

2.4.2 Computational Fluid Dynamics (CFD) Simulation - Permeability 

Modern CFD analysis development began in early 1950s with the advent of the digital 

computer (Chung 2010). CFD is a general term for solving fluid mechanics problems 

using numerical methods and algorithms. The fundamental physical theory which 

defines fluid flow can be represented by partial differential equations (PDEs). CFD 

algorithms solve these PDEs using discretised methods to replace the original PDEs by 

discretised algebraic functions to produce numerical results. 

The same basic steps are followed in all CFD approaches: 

i. Pre-processing: The test geometry of the flow problem is defined. The void 

volume (volume occupied by fluid) is then divided into discrete elements 

(the mesh). The physical governing equations are defined, together with the 

boundary conditions specified.  

ii. CFD simulation: The governing equations of the fluid motion are discretised 

and the solved iteratively as either steady-state or transient. 

iii. Post-processing: The numerical results are analysed and graphical processor 

is used for visualisation of the result. 

There are many CFD solution approaches to provide the numerical solution of the fluid 

motion PDE. The most common in commercially available CFD programs are: 

 Finite volume method  

 Finite element method  

 Finite difference method  

Performing computational modelling of fluid flow using CFD algorithms overcomes 

many experimental difficulties and allows direct design and tailoring of permeability.  

2D numerical approaches of calculating permeability by solving the Navier-Stokes 

equation (N-S equation), which will be discussed later on, were reported by Nagelhout 

et al. (Nagelhout et al. 1995) on fluid flow through a square array of cylinders. The 
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author applied a finite element algorithm to compute the numerical solutions of velocity 

and pressure drop from the flow equation. Other authors (Papathanasiou and Lee 1997; 

Woods et al. 2003) have used the boundary element method to calculate permeabilities 

for both perfect square arrays of aligned cylinders and domain with randomly placed 

particles. They found that, for high porosity volumes (greater than 80%), the 

randomised structure has a slightly higher permeability than a perfect square array.  

High resolution µCT imaging techniques allow the reconstruction of the 3D 

morphology of the structure (Feldkamp et al. 1989). Its advantageous non-destructive 

3D imaging properties allow the direct computation of permeability from real 3D 

scaffold volumes. Several studies (Bernard et al. 2005; Fuloria et al. 2008; Jones et al. 

2007; Khajeh and Maijer 2012; Singh et al. 2009) performed computation of 

permeability from real 3D microstructures. For example, Jones et al. (Jones et al. 2007) 

predicted the flow in a bioactive glass scaffold with complex 3D structures. Starting 

with µCT images, the flow velocity was predicted by numerically solving the Stoke’s 

equation and by using the volume averaging code presented by Anguy and Bernard 

(Anguy et al. 1994) to determine the permeability. Figure 2-6 shows the flow inside the 

scaffold as streaklines passing through the pores and interconnects. It is clearly shown 

in this study that interconnects in the scaffold structure dominate the flow as the 

streaklines representing the flow paths all converges at those interconnects.  

 

Figure 2-6 (a) 3D rendering of a bioactive glass scaffold with streak lines of 

resultant flow inside  predicted by solving for Stokes flow (b) The scaffold 

volume is removed except interconnects, leaving the streaklines passing 

through and converging at interconnects. (After Jones et al. (Jones et al. 2007))  
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Singh et al. (Singh et al. 2009) studied the permeability of Ti foams produced by the 

space-holder technique for spinal fusion devices. The 3D structures of Ti foams with 

different levels of porosity were obtained using CT. Then a finite element mesh was 

created to obtain a discretised model from the CT image to calculate the permeability 

of the scaffold using a commercial CFD package FLUENTTM. The simulation flow 

model was assumed to be steady state incompressible flow of a Newtonian fluid. The 

nonlinear N-S equation was solved numerically by the control volume method and then 

applying Darcy’s Law to calculate the permeability. Results showed that the CT 

predicted permeability values agree well with the experimental values at high porosity. 

And the author has also stated that for an accurate evaluation of the permeability using 

CFD, the least edge length of the simulation volume should be three to five times the 

pore size. Khajeh and Maijer (Khajeh and Maijer 2012) applied a similar CFD 

numerical method to evaluate the permeability change in dendritic solidification by 

Darcy’s Law, based on the CT imaged Al-Cu alloy microstructures. The numerical 

results were validated against both physical and analytical values of permeability and 

showed accuracy within ±30%. 

The above studies have used different CFD approaches to numerically model the flow 

in porous media. Finite volume based CFD method will be employed to solve the fluid 

motion equation in both permeability and bone ingrowth models. In the latter case, the 

CFD code will be also combined with the finite difference method and the cellular 

automaton method, which will be discussed in details later on.  

2.5 Modelling of Mechanical Behaviour 

One other important criterion to consider when designing the optimal implant is that the 

structure should exhibit mechanical properties matching those of the host tissue. The 

human patella undergoes two types of force: during knee extension, it is loaded in 

tension and then during knee flexion, it is subjected to compressive stresses. Depending 

on the angle of knee flexion, the amount of compressive stress on the posterior side of 

the patella as the knee bends may be subjected to 3 - 11 MPa on either facet (lateral or 

medial patella-femoral facets) (Xu et al. 2007). 
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2.5.1 Mechanical properties of Ti Foams 

The structural properties of metallic foams such as CP-Ti scaffolds can be investigated 

through the stress-strain relationship, especially under load bearing compression 

condition. A typical compressive stress-strain curve for elastic-plastic metallic foam is 

shown in Figure 2-7. There are three distinct regions in a stress-strain curve (Gibson et 

al. 2010): 

i. An initial linear, elastic region, and its slope is the modulus of 

elasticity (Young's modulus),  

ii. A plateau region beyond the elastic limit, where permanent deformation is 

expected to occur, and eventually  

iii. A densification region where stress increases rapidly at high values of strain 

and the pores collapse and pore walls compress against each other.  

 

Figure 2-7 A typical schematic uniaxial stress-strain curve for elastic-plastic 

metal foam in compression. (After Andrews et al. (Andrews et al. 1999)) 

The curve describes the relationship between the stress and strain when a compressive 

force is applied on a deformable object. The stress, , is derived from the load applied 

on the object using 

 
  

 

 
       2-9 

where F denotes a tensile force if it is acting outward from the plane, or in this case, a 

compressive force which is acting inward to the plane and A is the cross-sectional area 

http://en.wikipedia.org/wiki/Modulus_of_elasticity
http://en.wikipedia.org/wiki/Modulus_of_elasticity
http://en.wikipedia.org/wiki/Young%27s_Modulus
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of the object the force is acting upon. The strain,  is expressed as the ratio of total 

deformation to the original length of the object on which the force is being applied: 

 
  

  

 
 

   

 
       2-10 

where L is the initial length of the material and l is the final length after compression.  

Gibson and Ashby (Gibson and Ashby 1999) claimed that the initial elastic regime of 

the curve is the result of the collective bending of foam struts oriented perpendicularly 

to the loading axis, known as a crush banding. The Plateau region is caused by a series 

of struts oriented parallel to the loading direction, leading to the collapse spread through 

the structure at nearly the same critical stress. At the stage where the foam struts begin 

to be in contact with each other, the steeply increasing stress indicates that the foam 

tends to exhibit a similar modulus to that of the monolithic materials it is fabricated 

from. 

The mechanical properties of the porous scaffold, such as compressive strength and 

elastic modulus depend on: (1) the microstructural parameters of the scaffold, i.e. the 

pore size, morphology, struts thickness, etc.; (2) the macrostructual properties of the 

structure, i.e. the spatial distribution of the pores and the overall porosity of the 

structure. Traditional methods for characterising mechanical behaviour of porous metal 

scaffolds were experimental approaches. There have been numerous studies on 

measuring the mechanical properties of porous scaffolds using static compression test, 

in which the samples are compressed between two parallel plates (Banhart and 

Baumeister 1998; Davies and Zhen 1983; Eshraghi and Das 2010; Imwinkelried 2007; 

Zhang and Wang 2005). The results from these static compression tests showed the 

general trend that increasing porosity of the metal foam will decrease the elastic 

modulus of the foam (Oh et al. 2003). However, many studies highlighted the need of 

further investigation on the effect of not only overall porosity but also other structural 

properties on the mechanical properties of the foam. For example, Zhang et al. (Zhang 

and Wang 2005) suggested that the discrepancies in the pore shapes (perfect spherical 

vs. non-spherical shaped) might lead to the difference in the stress-strain curves of 

foams fabricated by different methods but with similar porosities. Balla et al. (Balla et 

al. 2010) showed different stress-strain curves for two Ti scaffolds with similar porosity 

but random and designed pores, suggesting the need of further investigation focusing on 

the internal microstructure effect on mechanical behaviour.  
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With the development of standard and high-resolution µCT imaging, studies have 

combined the 3D imaging technique with the mechanical test so that the investigation 

of how the structure micro/macro-structures affect the mechanical properties of the 

porous scaffold is allowed (Babout et al. 2003; Elliott 2002; Maire et al. 2003; Thurner 

et al. 2006). Elliott et al. (Elliott 2002) performed the compression test on open-cell 

polyurethane foam in situ at a selection of compressive strains using high resolution 

synchrotron tomography. By analysing the profile of the average density against the 

compression axis pixels from the tomographs, a displacement map of the microscopic 

strain in the sample was constructed to show that the deformation occurred 

homogeneously in the elastic region up to a compression strain of 6%. Dillard et al. 

(Dillard et al. 2005) used the 3D µCT combined with the in situ mechanical test to 

study the deformation behaviour of open-cell nickel foam under compression loading. 

They reported that the deformation of the metal foam was associated with the strain 

localisation due to the buckling of the free-edge struts parallel to the loading direction. 

Ohgaki et al. (Ohgaki et al. 2006) later discussed about high resolution µCT 

observations of deformation behaviour of aluminium foams being compressed in in situ 

test rig. By tracking the position of the centroid of the micropores as a function of 

applied strain in sequential tomographic scans, 3D local strain distribution in the foam 

can be estimated. They reported, in terms of microscopic effect on deformation, that the 

microcracks were initiated from pores with larger diameter (above 30 µm) and the cells 

walls were more strongly damaged compared to the pores. Balla et al. (Balla et al. 2010) 

performed ex-situ compression test on Ti foams of similar total porosity (30%) but with 

random and designed porosities. Analysis of µCT images taken before and after the 

compression test showed that the random porosity sample exhibited a uniform 

deformation at low strain (below 0.28) and localised deformation at relatively high 

strain (0.28-0.45) due to buckling of the sample. The sample with designed porosity 

collapsed at a lower strain of 0.18 but showed a higher modulus/strength compared to 

the randomised sample due to its stronger and more stabilised wall structure.  

As a summary, direct observation of compression test using µCT provides better 

understanding of how internal structure, overall porosity, pore size and morphology of 

the porous scaffold affect its mechanical behaviour. The dependence of deformation on 

scaffold micro/macro-structural properties can be therefore analysed. In the following 

section, another approach, finite element modelling, which provides the computational 
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route to effectively study the 3D mechanical behaviour of the porous scaffold will be 

reviewed.  

2.5.2 Finite Element (FE) Modelling – Compression Test 

In order to evaluate accurately how microstructure influences the mechanical response 

of porous materials under compression, it is very useful to take the finite element 

analysis (FEA) approach as it can provide detailed microstructural changes of the 

scaffold under mechanical loading.  

Previously, deformation and local failure in trabecular bone under load bearing 

condition have been studied using FEA based on µCT images (Müller and Harry van 

Lenthe 2006; Nagaraja et al. 2005; Niebur et al. 2000). Bayraktar et al. (Bayraktar et al. 

2004) constructed 3D FEA models of human trabecular and cortical bone which 

simulated the mechanical loading environment. The FEA predictions of elastic modulus 

and compressive yield strength at bone failure were similar to experimentally measured 

results, indicating that the use of FEA would be a viable and accurate tool for 

understanding the insight of stress concentrations and failure mechanisms.  Simulations 

based on 2D and 3D FEA previously used to study the mechanical behaviour of porous 

scaffolds showed advantages over experimental methods and also analytical methods 

such as Gibson and Ashby’s model (Gibson et al. 2010).  The computational approach 

effectively reduces the experiment errors and is able to analyse the model under 

different loading conditions. From the analytical point of view, the FEA model gives 

details on individual elements so that the assumption of the single unit cell representing 

the bulk structure is no longer in consideration. Moreover, studies using FEA have 

shown that this approach could provide approximate evaluation of the localised stress 

and strain. Thelen et al. (Thelen et al. 2004) modelled uniaxial compressive tests using 

2D FEA to investigate the effect of pore morphology changes on the elastic modulus of 

a CP-Ti scaffold with a median porosity of 33%. Three cases with smoothed pores, 

elongated pores and elements representing pores assigned as bone were simulated. 

Results showed that the change of pore shape has increased the modulus in the 

elongation direction and the modulus of the model with pore filled with ‘bone ingrowth’ 

has doubled. However, the accuracy of the model was limited by the dimension of the 

test.  
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Ryan et al. (Ryan et al. 2009) applied 3D FEA on Ti scaffolds with repeating unit cell 

structures. Uniaxial compression tests were simulated using commercial FEA software, 

ABAQUS
TM

. Three Ti scaffolds with different porosities (51.4 – 66.8%) were tested in 

two models which were a single unit cell and a large macroscopic volume, respectively. 

The results showed that increasing the porosity reduced the elastic modulus and yield 

strength in both the axial and transversal directions under a nominal strain of 0.02. The 

difference in mechanical properties between single unit cell and the macroscopic 

volume was found to be small due to the homogeneity of the structure. However, the 

failure modes of scaffolds along both the axial and transversal directions showed 

different plastic strain concentration locations. Eshraghi et al. (Eshraghi and Das 2010) 

also performed a 3D FEA simulation in COMSOL Multiphysics
TM

 on polycaprolactone 

scaffolds with porosities ranged from 51 – 81%. Uniaxial compression test in vertical 

direction was performed using an axial strain of 0.01. The effective modulus predicted 

by the computer model agreed with the experimentally data with a percentage error of 

30%.  

In this thesis, the 3D FEM simulation was performed to model the mechanical 

behaviour of the Ti foams under compression load. The model was used to study the 

effect of structural properties of the porous Ti foam on its compressive behaviour and 

the results were compared against an interrupted static compression test characterised 

based on µCT images. 

2.6 Modelling of Bone Ingrowth 

Bone is subjected to complex mechanical stimuli in the body, which induce fluid flow 

in the tissue. The following sections discuss the effect of the fluid flow-induced shear 

stress on bone remodelling and review the previous work on determining the shear 

stress magnitude and modelling of bone ingrowth. 

2.6.1 Fluid Flow-induced Shear Stress 

During the bone remodelling process, it is well established that vascularisation plays an 

important role in bone formation. Previous studies have found that increased 

vascularisation will effectively promote the osteogenic cell proliferation and activity 

during the healing response in bone (Pelissier et al. 2003; Simmons 1979; Solheim et al. 

2001; Vezeridis et al. 2006). Increased vascularisation and osteogenesis in bone healing 
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process are related to the interstitial fluid flow in periosteum and surrounding tissues 

(Wray and Lynch 1959).  

Mechanical loading is one important mechanism to produce interstitial fluid flow in the 

bone tissue (Hillsley and Frangos 1994; Knothe Tate et al. 1998; Weinbaum et al. 

1994). Figure 2-8 shows a schematic of mechanical loading induced interstitial fluid 

flow and the mechanical movement induces the interstitial fluid flow and applies shear 

on cells.  

 

Figure 2-8 Schematic of mechanical deformation induced interstitial fluid 

flow. Fluid-induced shear stress comes from the mechanical movement, 

upregulating cell proliferation / attachment and hence the bone ingrowth. 

(After Carvalho et al. (Carvalho et al. 2001))  

The shear stress induced by the interstitial fluid flow is believed to have an up-regulated 

effect on osteoblasts proliferation and vascularisation. The study by Dillaman et al. 

(Dillaman et al. 1991) suggested that the fluid movement is significantly involved  in 

the growth of the bone. Johnson et al. (Johnson et al. 1996) hypothesised that fluid 

flow-induced shear in bone regulates continuous and rapid release of nitric oxide from 

osteoblasts and the vascularisation introduced by the fluid flow may stimulate bone 

formation. Owan et al. (Owan et al. 1997) performed osteoblast-like cell culture on 

collagen-coated plated plates and investigated the effect of the fluid flow and localised 
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mechanical stimuli on cellular response. The plate was bent by applying a 4-point 

loading, causing compressive strains on cells. Fluid shear and pressure were imposed on 

cells when the plate was pushed through the medium. They found that high magnitude 

of fluid forces significantly increased the osteopotin (noncollagenous bone matrix 

protein) expression and suggested that the osteoblasts are more responsive to the fluid 

flow than to mechanical deformation. Several studies have also modelled the 

mechanical induced flow in bone. Piekarski (Piekarski 1977) modelled the compression 

that occurs naturally in the Haversian network and showed that it produces interstitial 

fluid flow in the bone. Later Kufahl and Saha (Kufahl and Saha 1990) developed a 

model based on Piekarski’s model of the osteon system. They predicted that 

mechanically induced fluid flow which transports metabolites in canaliculi (nominal 

diameter = 0.2 µm) can sustain a maximum velocity of 0.1 mm/s. Weinbaum et al. 

(Weinbaum et al. 1994) modelled a system which relates the mechanical loading on the 

bone to the fluid shear stress applied at the surface of the cell osteocytic process and the 

predicted shear stress was in a range of 0.8 – 3 Pa, which is similar to the measured 

fluid shear stress in osteoblasts. They suggested that osteocytes, which are fully 

differentiated osteoblasts embedded in the calcified matrix of bone, can be stimulated 

by the mechanical loading induced fluid shear stress acting on the membranes and thus 

promoting bone ingrowth.  

Similar to the mechanical loading system, fluid flow-induced shear stress applied on the 

implant structure in in vitro 3D perfusion systems has also been found to have 

important stimulatory effects on cell and tissue growth (Dillaman et al. 1991; Kapur et 

al. 2003; Sikavitsas et al. 2003). Freed and Vunjak-Novakovic (Freed and Vunjak-

Novakovic 2000) used a rotating cylinder bioreactor system that continuously perfuses 

the culture media to the construct surface. The flow at the construct surface was 

assumed to be laminar and a maximum shear stress in the order of 80 mPa was 

estimated. Raimondi et al. (Raimondi et al. 2002; Raimondi et al. 2004) was the first to 

perfuse the culture medium through the 3D internal chondrocyte-seeded scaffold 

structure and predicted that a wall shear stress in the range 1.5 – 13.5 mPa was required 

for a positive effect on seeded cell viability and proliferation in vitro. Botchwey et al. 

(Botchwey et al. 2003) used a 3D culture system under flow with velocities in the range 

of 0.01 to 0.1 mm/s and applied Darcy’s Law to analytically estimate the flow rate in 

the flow. The maximum fluid shear stress acting on the exterior surface of the porous 
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scaffold in the order of 30 mPa was estimated by the Stoke’s approximation. By 

assessing the MC3T3-E1 osteoblast-like cell viability qualitatively by confocal 

microscopy and by measuring the DNA content within the bone trabecular scaffolds 

perfused at flow rates 0.01 to 1 ml/min, Cartmell et al. (Cartmell et al. 2003) suggested 

that perfusion at flow rates less than 0.2 ml/min will enhance the transport of nutrients 

and stimulate the tissue growth.  

In the direct-perfusion experiments, different design architectures and porosities of the 

construct will result in different shear stress level applied to the cells on the construct 

surfaces. Knowledge of how shear stress relates to cell growth in various design 

architectures can help optimise implant design and manufacture. An understanding of 

fluid flow-induced shear stress within porous structures, as well as induced cell 

ingrowth, is therefore crucial. In the next section, several prior numerical studies on the 

estimation of flow-induced shear stress in the perfused constructs and the prediction of 

the subsequent bone ingrowth will be reviewed. 

2.6.2 Numerical Simulations - Fluid Shear Stress and Bone Ingrowth Estimation 

Computational modelling of fluid flow using CFD algorithms has enabled the 

simulation of perfusion culture of osteoblasts through porous scaffolds. The 

computational models will allow the prediction and testing of various parameters which 

will affect the hydrodynamic environment and the tissue growth in a shorter timescale 

than perfusion culturing in bioreactors. There have been a number of authors who 

applied numerical models to evaluate the flow-induced shear stress acting on the 

scaffold walls at different perfusion rates and several of them have also predicted the 

bone ingrowth stimulated by the shear.  

Raimondi et al. (Raimondi et al. 2002) developed a 2D CFD model to characterise the 

macroscopic flow through a scaffold made of hyaluronic fibres. The model was a first 

attempt to provide the correlation between the fluid shear stress and cultured cell 

response. The 2D domain in this model was a simplified geometry based on the light 

microscopic image of the fibre geometry. The fluid flow was modelled as a laminar 

flow with a low Reynolds number of 6.34×10
-4

. The culture media was an 

incompressible, Newtonian fluid with constant density, ρ= 1×10
3 

kg/m
3 

and the 

viscosity, µ = 8.2×10
-4 

kg/ms. The CFD model applied a commercial finite-element 

code FIDAP (available in FLUENT) to solve the N-S equation. It predicted a median 
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shear value of 3 mPa and a maximal shear value of 8 mPa at a constant inlet velocity = 

44.2 µm/s. However, the accuracy of this model was limited by the 2D domain.  

With the development of µCT being applied to tissue engineering scaffold imaging and 

quantification (Jones et al. 2007; Singh et al. 2010), the simulation of flow in 3D 

constructs with real pore architectures improved dramatically (Maes et al. 2009; 

Raimondi et al. 2005; Raimondi et al. 2006). Raimondi et al. (Raimondi et al. 2006) 

applied a commercial finite volume CFD code (available in FLUENT) to predict the 

shear stress based on a partial volume of the scaffold from µCT images. The level of 

hydrodynamic shear stress acting on the outer surface of the internal spherical pores 

(nominal pore size 100 µm) was estimated at different construct inlet velocities (72-

884 µm/s) and the magnitude was calculated to be in the range 4.6 – 56 mPa. These 

results suggested a strong correlation between the hydrodynamic shear and the invoked 

biosynthetic response in chondrocyte systems. Porter et al. (Porter et al. 2005) used 3D 

Lattice Boltzmann (LB) simulations to investigate the flow in cylindrical scaffolds as a 

function of flow rates. The shear stress was calculated using a finite difference formula 

for each fluid element in the LB model. They found an average shear stress of 0.05 mPa 

was required to have stimulating effect on cell proliferation, and that higher shear stress 

would lead to subsequent upregulation of bone growth. It was also claimed that a peak 

shear stress greater than 57 mPa would have detrimental effect such as cell death within 

the constructs. 

Cioffi et al. (Cioffi et al. 2006) used the finite volume CFD model based on the work 

produced by Raimondi et al. (Raimondi et al. 2006) to evaluate the shear stress acting 

on scaffold walls based on higher resolution µCT images of a polyester urethane 

scaffold with spherical pores of nominal size 100 µm. Various flow rates were 

simulated in this model and the calculated shear stresses varied between 0 and 40 mPa 

over the scaffold surfaces. They found in their models that the average wall shear stress 

increased linearly with the flow rate. The same group then developed a combined 

macro-scale/micro-structured model to investigate the effect of the flow rates and 

scaffold microstructures on shear stress and oxygen consumption rates in the central 

region of the scaffold (Cioffi et al. 2008). Their model suggested that a flow rate of 

0.3 ml/min, at which 95% of the scaffold surface area experienced shear stresses less 

than 6.3 mPa, would maintain the oxygen supply above the anoxic level. While µCT 

has allowed significant improvements in capturing geometric effects on flow, these 
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have yet to be coupled with time dependent simulation of the influence of cellular 

parameters, such as growth rate, deposition, and the resultant time dependant porosity 

change. All these issues are crucial to the correlation of fluid induced shear stress and 

cellular growth.  

Some models took the cell proliferation and nutrient consumption into account when 

they simulated the perfusion system. Chung et al. (Chung et al. 2007) incorporated the 

nutrient mass transport by using an equation modelling the cell mass conservation. The 

flow model was based on the Brinkman’s equation for porous media which has 

predicted a macroscopic average shear stress with a 5-fold increase in correlation to cell 

growth. Recently, Liu et al. (Liu et al. 2012) presented a similar model which assumed 

the growth of cells to be evenly distributed in space and predicted the macroscopic 

average shear stress at the local flow regions. The model estimated a 10-fold increase in 

the flow rate (0.02 to 0.2 mm/s) caused the shear stress to increase by 10 times and 

suggested higher flow rate would be beneficial  to more cellular growth. Lesman et al. 

(Lesman et al. 2010) considered the effect of time dependant cellular growth inside the 

porous microstructure on the shear stress by adding cell-layers of constant thickness 

onto the pore periphery, which however in reality, greatly depends on local shear stress 

acting on the cells. All of the prior studies focused on macroscopic shear stress 

predictions.  

The above-mentioned studies used various CFD approaches to numerically simulate the 

perfusion system and evaluated the average wall shear stress either on the surface or on 

the inner pore surface of the construct. However, there has not been a comprehensive 

study on the local shear stress effect on bone cell ingrowth which inter-relates time 

dependant microscopic flow simulation with flow-induced shear stress distribution on a 

microscopic level. This is an important aim of this thesis. 
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3 Simulating the Flow Properties of Additive 

Manufactured Titanium Implants – Influence 

of Strut Architecture and Permeability* 

In this chapter, flow properties of Ti implants produced by the SLM technique were 

simulated based on 3D µCT images. Design factors such as porosity, strut ordering and 

surface roughness offered by the SLM technique are used to alter the implant 

architecture on multiple length scales to control and tailor the flow. Using 

experimentally validated CFD simulations, this chapter demonstrates how additive 

manufacturing can be used to hierarchically tailor the permeability of implants by 

controlling the surface roughness at a microstructual level (microns), and by altering the 

strut ordering and the density at a macroscopic level (millimetre).  

3.1 Introduction 

Porous Ti implants are a common choice for bone augmentation. As reviewed in 

Chapter 2, implants for joint replacement and repair of non-union fractures must 

encourage both body fluid and blood flow after implantation so that there is sufficient 

cell migration, nutrient and growth factor transport to stimulate bone ingrowth. 

Permeability is a measure of the ease with which liquid flows through a porous 

structure under a pressure gradient and is a convenient way to characterise the bulk flow. 

In addition to flow, permeability can also be related to the internal topology of foams, 

the porosity, and the surface roughness of the foam struts. 

 

 

*Note, a large portion of this chapter is now published as: 

Zhang Z., Jones, D., Yue, S., Lee P.D., Jones, J.R., Sutcliffe C.J., Jones E., Hierarchical Tailoring of 

Strut Architecture to Control Permeability of Additive Manufactured Titanium Implants, Materials 

Science and Engineering: C Materials for Biological Applications, 2013. 
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Additive manufacturing techniques such as SLM technique (Mullen et al. 2009; Mullen 

et al. 2010) can provide control over both percentage porosity and the interconnected 

network of the structure. In this chapter, open-cell Ti foams were produced from CP-Ti 

powder using SLM. Two types of the structure, regular and irregular, are investigated. 

Performing computational modelling of fluid flow using CFD codes overcomes many 

experimental difficulties and allows direct design and tailoring of permeability. 

Previous literature regarding permeability (Kohles et al. 2001; Nauman et al. 1999; 

Ochoa et al. 2009; Shimko et al. 2005; Singh et al. 2009), as reviewed in section 2.4.2,  

does not address how the changes in the structural design influence implant 

permeability. Furthermore, how they may be tailored to have the desired flow properties 

has not been studied previously.  

The aim of this study is primarily to determine how each SLM variable, such as pore 

structure randomness, percentage porosity and surface topography, affects permeability. 

The goal is to derive relationships which allow the independent tailoring of the 

permeability to optimise the design of implants. First, an experimentally validated 

computational approach for the evaluation of permeability was applied to a range of 

samples produced by the SLM process with structures modified during the manufacture 

process. Structural modifications were then made on the computer design of Ti 

structures at both microscopic (surface roughness) and macroscopic (strut architecture) 

levels. How the design factors can be used to alter to control and tailor the flow is 

discussed based on the CFD results.  

3.2 Materials and Methods 

3.2.1 Ti Foam Preparation 

Samples were produced from CP-Ti (Grade 1) metal powder (Sumitomo, Japan) by 

SLM using an MCP Realizer 2, 250 SLM system (MTT, UK). The full manufacturing 

process has been detailed by Mullen et al. (Mullen et al. 2009; Mullen et al. 2010). The 

samples were constructed using the Unit Cell (UC) approach (Mullen et al. 2009) which 

comprises the following sequences: 

i. A CAD model of the porous structure was built using the Manipulator© 

software (version 4.7) suite (University of Liverpool, UK). The 3D 

geometries were completely filled with cubic unit cells of a single defined 
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edge length.  All UCs were filled with a connected lattice structure by 

joining sets of points and vectors in 3D space to form regular octahedra (this 

geometrical shape allows tessellation).  

ii. To produce the ‘irregular’ structures, a randomisation process based upon 

perturbation of the Cartesian coordinates of each vertex of the UC while 

maintaining connectivity. The displacement of each node is generated using 

a random number generator and the boundary values for the range of 

randomisation are defined as a specific percentage of the UC size (Mullen et 

al. 2010). For example, a 30% randomisation based on a UC size of 10 mm 

will change the point [0, 0, 0] to [3, 0, 0] or [-3, 0, 0]. (Note that the 

structures produced are in fact pseudo-random as the randomness is fully 

reproducible.)  

Both the regular and irregular structures form completely open porosity that is fully 

connected to the surface.  

The points and vectors were trimmed to the CAD file of the cylinder, and then sliced 

(50 µm intervals) to produce a set of points on all layers, de-noting the firing position of 

the scanning laser. These locations, together with the laser properties (beam diameter, 

dwell time and energy), determine the strut diameter (references (Mullen et al. 2009) 

and (Mullen et al. 2010) provide details of the SLM process). Upon completion, the 

parts were removed from the argon atmosphere build chamber, wire electro-discharge 

machined (EDM) from the substrate plate and cleaned of all un-fused powder, after 

which a sintering operation was carried out under vacuum at 1400˚ C for 3 hours to heat 

treat the parts. 

In this study, cylindrical samples of equal diameter and height of 4 mm with 4 levels of 

randomness were produced. Samples evaluated were nominally 65% porous, with a UC 

size of 600 µm (named as UC600) and were produced with 0, 10, 20 and 30% 

randomisation, with the sequential operation being illustrated in Figure 3-1.  
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Figure 3-1 The UC approach: unit cell transformation from (a) a cube to (b) 

an octahedron, to (c) a tessellated octahedral wireframe structure, and finally 

to (d) a pseudo randomised structure. 

3.2.2 µCT and Image Processing 

The smaller cylindrical samples were scanned at a resolution of 9 µm per voxel using a 

commercial µCT unit (Phoenix v|tome|x, GE Measurement and Control, MA, USA). 

The X-ray tube voltage and filament current were fixed at 100 kV and 70 µA, 

respectively. A copper filter of 0.5 mm thickness was used to absorb low energy X-rays 

and reduce beam hardening (Stauber and Muller 2008). A rotation step of 0.5
o
 was set 

within an angular range of 360
o
. After acquiring the 2D radiographic images, 3D 

volumes of 512 × 512 × 512 voxel
3
 for all samples were then reconstructed using the 

commercial reconstruction software datos|x (GE Measurement and Control, MA, USA). 

Pre-processing of the 3D volume, including a 3 × 3 × 3 median filtering, and removing 

islands within the volume space was accomplished using a commercial image 

visualisation/analysis software Avizo 5 (VSG, MA, USA) and in-house developed 

codes (Atwood et al. 2004; Jones et al. 2007). 

3.2.3 Structure Characterisation 

The average strut diameter was measured to be 180 µm using SEM (JOEL JSM 700 1F 

(JOEL Ltd, Japan)) by Dan Jones (University of Liverpool), see Figure 3-2. 
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Figure 3-2 Strut diameter of UC 600 regular structure measured from SEM. 

(Figure courtesy of Dan Jones, University of Liverpool) 

True porosity calculations and pore size distribution characterisation were carried out 

based on the µCT images using the ‘Accessible Pore Volume’ method developed in-

house by Sheng Yue (Yue 2011). The general idea of this method is to mimic the 

Mercury Intrusion Porosimetry (MIP) method. A sphere kernel with a specific radius is 

pushed through connected channels from the surface and the percentage of void space 

within the structure that can be filled by the sphere is calculated.  A range of accessible 

volumes corresponding to different radii is then obtained and the pore size distribution 

can be calculated as the differential of the area under the accessible volume percentage 

curve. The structural results evaluated based on the µCT images were compared to the 

gravimetric analysis (Adam Equipment, UK, balance accuracy ±0.01 g and digital 

callipers accuracy ±0. 2 mm) and MIP data (AutoPore IV 9500), respectively (Mullen 

et al. 2010).  

3.2.4 Structural Modifications on the CAD Volume 

Computational algorithms were developed to modify foam structures, so that strut 

diameter and strut surface morphology could be controlled computationally, both of 

which can alter the surface area per unit volume.  

The SLM input file containing the coordinates of the laser melting nodes, which depict 

the building process of the Ti foams, was voxelised using bespoke convolving codes 

developed in-house. The melting nodes were first located and a perfectly spherical 
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kernel was then chosen to perform convolution on these nodes throughout the volume. 

Note that for a perfectly spherical convolving kernel, which is symmetrical in all 

directions in the 3D space, the convolving process can be achieved by a simple distance 

transform dilation process. For example, to form a strut with a diameter of 180 µm, any 

voxel (e.g. voxel size = 5 µm) with a distance less or equal to 18 from the melting node 

would be labelled as the strut voxel. This is equivalent to convolve using a spherical 

kernel of a radius of 90 µm to form the struts phase. By changing the dilation distance 

value, foams with different strut thickness were created. In this study, 4 regular Ti 

foams were created with strut thickness of 120, 180, 240 and 300 µm, respectively, as 

shown in Figure 3-3. 

 

Figure 3-3 xy-plane view of regular foams with different strut diameters 

(volume rendered directly from the CAD file): (a) 120 µm; (b) 180 µm; (c) 240 

µm; (d) 300 µm. 

To design foams with different surface morphologies, the cubic UCs were filled using 

three different lattice structures to form the octahedron shapes. The shape of the lattice 

structure was controlled by Equation 3-1 in the cylindrical coordinates system. The strut 

surface morphology was controlled by changing the coefficient   in the equation: 

 r = 1 + 0.3sin(aπz) + 0.3sin(6φ)        3-1 
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(r, z, φ) is the cylindrical coordinates of a point position, where r represents the radius 

of the strut, z is the length of the strut and φ is the angle between a reference direction 

on the cross-sectional plane of the strut and the line from the origin to the projection of 

a point on the plane. Figure 3-4 shows examples of voxelised struts with different 

surface morphology.  

 

Figure 3-4 Struts designed with different levels of strut surface roughness, by 

setting the coefficient, a, to be: (a) 0.1; (b) 0.2 and (c) 0.3. 

3.2.5 Permeability Measurements 

The experimental assessment of permeability was performed by Dan Jones using a 

simple pressure head system developed at University of Liverpool, UK. Samples of 

cylindrical shape (diameter and length 10 mm, with a solid outer wall of thickness 

0.5 mm) were used. A small pressure head (less than 60 mm) of fluid was used to 

produce flow rates through the structure corresponding to 0.01 m/s. Absolute methanol 

was used in the experiment in order to give more consistent results owing to its reduced 

surface tension with the Ti foam. Prior to being loaded into the experimental set-up, the 

foams were stored in the fluid to ensure complete wetting and removal of trapped air. A 

minimum of 6 readings were taken for each sample with 0 – 30% randomness along z-

direction (foam building direction), with the flow being allowed to stabilise prior to 

commencing the experiment. The pressure head and fluid flow rates were measured 

using a Vernier gauge (accuracy 0.02 mm) and a stop clock (accuracy 0.2 s) 

respectively for periods up to 5 minutes to maintain accuracy at the low flow rates. 

Permeability was determined graphically using the Darcy and Dupuit-Forchheimer 

equations.  
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3.2.6 CFD Model Theory  

3.2.6.1 The Governing Equations 

The fundamental basis of CFD simulations is the Navier-Stokes equation (N-S 

equation), which is obtained based on the fundamental equations of fluid dynamics.  

There are three basic equations of fluid dynamics, resulting from the following 

universal laws of conservation (Tannehill et al. 1997): 

i. Conservation of Mass 

ii. Conservation of Momentum 

iii. Conservation of Energy 

These three basic equations can be expressed as PDEs based on applying the 

conservation laws on an infinitesimal control volume of fluid either fixed in space or 

moving with the flow. Since the equation which states the Conservation of Energy will 

only be required when it involves heat transfer or in the case where density of the fluid 

varies, only the first and second governing equations are discussed below. 

Applying the Conservation of Mass law to an infinitesimal, fixed control volume of the 

fluid results the first fundamental equation called the continuity equation (Tannehill et 

al. 1997): 

 
  

  
                  3-2 

where  is the fluid density, t is the time and u is the fluid velocity.  

It is convenient to use the substantial derivative to change Equation 3-2 into the form 

   

  
                  3-3 

For an incompressible flow, ρ is a constant, therefore reducing Equation 3-3 to  

               3-4 

The second governing equation of fluid dynamics, the momentum equation, is obtained 

by applying the Conservation of Momentum law to an infinitesimal, stationary 

controlled volume through which fluid flows and by Newton’s Second Law (Tannehill 

et al. 1997): 

 
     

  
                              3-5 
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where P is the pressure,  is the dynamic viscosity and S is a source term representing 

the external force.  

Assuming the flow is incompressible, the N-S equation can be obtained: 

      

  
                    3-6 

3.2.6.2 Finite Volume Method (FVM) 

In all CFD numerical methods, it is essential that the flow governing equation (typically 

the N-S equation) is approximated by algebraic equations which give values at a finite 

number of discrete points / volumes in some domain (Anderson 1995). This process is 

called the ‘discretisation’ in CFD methods. As reviewed in section 2.4.2, the finite 

volume method (FVM) (also called control volume method) is one of the common 

approaches to discretise the N-S equation in commercial CFD software codes. 

FVM consists of (1) dividing the domain of interest into small control volumes and then 

(2) integrating the flow governing equation about each volume, yielding a discretised 

equation on a control-volume basis.  

The flow governing equation (Equation 3-5) can be rewritten as a generic equation for 

transport of an arbitrary variable φ: 

      

  
                                3-7 

where г is the diffusion coefficient for φ. 

Over a control volume V, the integration form of Equation 3-7 takes the form: 

 
 

     

   

             
 

           
 

    
 

   3-8 

By Divergence Theorem, Equation 3-8 is: 

 
 

     

   

             
 

           
 

    
 

   3-9 

where V is the control volume, n is the vector normal to the surface dA (Figure 3-5). 
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Figure 3-5 Sketch of finite volume V, and infinitesimal surface element dA 

with normal vector n. 

Equation 3-9 is then applied to each finite volume in the domain and the discretisation 

of the equation gives: 

      

  
           

 

 

         

 

 

                 3-10 

where N is the number of faces enclosing the finite volume/cell, Af  is the area of the 

face f, φf  is the value of φ convected through face f,  φf  is the gradient of φ at face f, ρf 

uf Af  is the mass flux through the face f. 

This discretisation scheme can be applied to obtain the discretised momentum and 

continuity equation, which can be solved to obtain the velocity field.  

3.2.7 CFD Model Theory – Permeability Simulation 

Permeability was determined using the commercial CFD package FLUENT (Version 

6.3.26, ANSYS, Inc., PA, USA) using the finite volume method to solve the N-S 

equation assuming incompressible flow.       

The simulation includes the following operations: 

i. Segmentation of the empty space (void region with the fluid flow) and 

solid Ti struts by thresholding the 3D volume based on the histogram 

using ScanIP software (Simpleware Ltd., Exeter, UK).  
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Choosing an optimum threshold value is an important step in the image-to-

model process. It has direct impact on the accuracy of the porosity estimation. In 

this study, the thresholding is also called binarisation process as there are only 

two phases (solid Ti phase and void phase) that need to be separated. To binarise 

the image, a simple global threshold was used. The threshold value was chosen 

from the voxel intensity histogram of the image, equidistant between the two peaks 

corresponding to the Ti phase and void phase (Figure 3-6).  

 

Figure 3-6 A typical histogram of the image: the threshold value is 

determined by finding the equidistant value between the two peaks 

corresponding to the Ti phase and void phase. 

ii. An entirely fluid region of 720 µm in length, which is 10% of the total 

length of the test structure, was added both up and down stream to act as 

a diffuser and to allow the flow to stabilise on the upwind and downwind 

flow faces (procedure followed from a previous similar work done by 

the group (Singh et al. 2010)). (See Figure 3-7 Region A and B).  
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Figure 3-7 Schematic of the permeability derivation in the x direction, 

showing the boundary conditions applied. 

iii. Up / down-wind end faces of the model in the desired flow direction 

were set as fluid inlet/outlet boundaries. 

iv. The finite element tetrahedral mesh of the fluid flow regions was created 

using ScanFE software (Simpleware Ltd., Exeter, UK).  

A mesh size of 18 µm was chosen to keep the total number of elements less than 

5 million while ensuring the accuracy of the model. Change in result was within 

1%. Convergence test was performed using the regular structure (0% 

randomness) with mesh sizes of 9, 18 and 36 µm (Figure 3-8).  

 

Figure 3-8 Convergence test on different mesh sizes: mesh size of 18 µm 

was chosen to achieve both accuracy of the model and the 

computational efficiency. 
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v. The model was then imported into FLUENT. Boundary conditions and 

fluid properties were set as follows (also shown in Figure 3-7):  

a. A constant inlet flow velocity of 10
-4

 m/s was applied across the 

entire upwind face. 

b. A zero velocity boundary condition was set on the 4 faces normal 

to flow. 

c. A free pressure outlet boundary condition was set on the 

downwind face. 

d. No-slip wall condition was set on surface of struts. 

e. The fluid properties were set to methyl alcohol liquid (CH3OH), 

as used in the experiments, with a density of 7.85×10
2
 kg/m

3
 and 

viscosity of 5.495×10
-4

 kg/ms. Note that the Reynolds number, 

Re, was << 1 (around 0.06) to ensure that the flow is in the 

laminar regime and it is valid to apply Darcy’s Law (Despois and 

Mortensen 2005). 

The model was then run using the conjugate gradient solver until the normalised 

residual was reduced to 10
-6

. After a converged solution was reached, the following 

steps were performed to calculate the effective permeability: 

vi. Multiple surfaces normal to the flow direction were set and the average 

pressure across these surfaces was then determined. The variation in 

pressure across the model in the flow direction was then plotted to find 

the pressure gradient (∆P/L) (Figure 3-9). Note that only the region in 

between the two dashed lines, LREV shown in Figure 3-7 where the flow 

was stabilised was included in the calculation of the pressure gradient. 

For all simulations, the pressure gradient was calculated between the two 

surfaces located 1.4 mm from the inlet and outlet ends. 

The size of the representative elementary volume (REV) was selected by 

growing the REV until a stable permeability was reached. The volume which 

gives the final stabilised result was then denoted as the smallest volume required 

being representative of the bulk property, or minimum REV. For more details on 

REV, see reference (Gitman et al. 2007). 
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Figure 3-9 A typical curve is shown for calculating the pressure 

gradient in the stable flow region (marked as red line). 

vii. Darcy’s Law (Equation 2-5) was then applied to calculate the Darcian 

permeability. 

3.3 Results 

3.3.1 Structure Characterisation 

Table 3-1 shows the porosity of Ti foams with randomisation levels of 0, 10, 20 and 

30%. The estimated porosities based on µCT images show 2.3 – 10.3% higher values 

compared to the measured porosity by the gravimetric analysis. Note that the porosity 

was calculated based on µCT images with the original resolution of 9 µm per voxel and 

the histograms for all scans were normalised prior to choosing the threshold.  

Table 3-1 Porosities of Ti foams measured by gravimetric analysis (Data 

provided by Dan Jones, University of Liverpool) and estimated based on the 

3D µCT images.  

Unit Cell Size  

(µm) 

Randomisation  

(%) 

Target Porosity 

(%) 

Gravimetric 

Porosity (%) 

Porosity based 

on µCT (%) 

600 0 65 63.8 ± 0.2 67.4 

600 10 65 63.4 ± 0.3 69.9 

600 20 65 66.2 ± 1.0 67.7 

600 30 65 64.7 ± 0.2 67.5 

Figure 3-10 (a) shows the pore distribution of each sample estimated by the accessible 

volume method based on 3D µCT scans. The mode value of pore diameter increases 
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from 203 to 302 µm, and the distribution widens as the randomisation level increases. 

These are compared to Figure 3-10 (b), which shows the experimental data on the same 

set of samples. The mode values of measured pore diameter are in the range of 225 to 

281 µm. The pore size distribution obtained from the µCT quantification matches with 

the experimental results.  

  

Figure 3-10 Pore size distributions of UC600 samples at 0, 10, 20 and 30% 

randomisation measured using (a) accessible volume method based on µCT 

images and (b) mercury intrusion porosimetry. (Figure (b) modified from 

Mullen et al. (Mullen et al. 2010))  

SEM images of the UC600 with increasing randomisation of 0, 10, 20 and 30% are 

shown in Figure 3-11. This allows a detailed understanding of how the structures 

changed with randomising the regular lattice. These modifications to the structures can 

be seen in the longitudinal view of µCT scanned images (Figure 3-11 left). The internal 

pore structure can be seen to be strongly affected by the randomisation. The illustrations 

show that the perturbation of the strut coordinates forming the octahedral shape by the 

specified amounts in the x, y and z directions were significant in changing both the 

appearance and the pore characteristics of the structures. 
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Figure 3-11 Left: Rendering of µCT volumes of unit cell size 600 µm at (a) 0%, 

(b) 10%, (c) 20%, and (d) 30% randomness level. Right: SEM images of Ti 

implants produced by SLM at (a) 0%, (b) 10%, (c) 20% and (d) 30% 

randomness level. (SEM images courtesy of Dan Jones, University of 

Liverpool) Real Ti implants produced by SLM shown on the bottom right 

corners of each µCT images.  All scale bars represent 1000 µm. 
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3.3.2 Permeability Prediction 

With µCT imaging, direct computation of permeability from real 3D microstructures 

should provide both an accurate value for permeability and a tool to tailor permeability 

to requirements. The CFD approach simplifies the N-S equation by assuming stationary, 

incompressible flow, and that the viscous drag has a linear relationship with fluid 

velocity. The Reynolds number has a very low value (Re << 1), which ensures the flow 

regime is laminar. With these assumptions, Darcy’s Law is applicable for permeability 

calculations (Despois and Mortensen 2005). It was determined by a sensitivity study 

that the REV lengths were significant, and the attainment of steady state flow 

conditions differed with respect to the randomness of the structure. Figure 3-12 shows 

two such structures (0% and 30% randomised) illustrating this point, and also shows 

that the permeability of foams is anisotropic. For ease of calculation, a single REV 

length, 4.2 mm was used for all test cases. 

 

Figure 3-12 Permeability of regular (0% randomness) and 30% randomised 

structures versus representative elementary volume lengths of unit cells. 
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The permeabilities calculated for all structures are presented in Table 3-2, and show that 

anisotropy increases as the structure is randomised, with the regular sample showing a 

narrow range of change. The experimentally measured values for both the Ti foam and 

human cancellous bone are also shown (Kohles et al. 2001). Simulations were 

performed directly on both µCT scans of real SLM manufactured samples and the 

voxelised computer aided design (CAD) models (i.e. design of the foam structure to be 

used as the input in the SLM manufacturing process).  

Table 3-2 CFD predicted permeability in x, y and z direction via CFD 

simulation using the µCT data and voxelised CAD design volume. 

Experimental results and measurement of permeability in bone are also 

shown. 

Direction 
CFD predicted permeability (×10

-10
 m

2
), K 

0% 10% 20% 30% 

x 7.2 ± 0.6   8.8 ± 1.3   7.7 ± 1.0   8.1 ± 0.9 

y 7.0 ± 0.5   9.0 ± 1.6   6.9 ± 0.7   9.5 ± 1.2 

z 9.1 ± 0.1   8.6 ± 1.3   8.5 ± 0.6 10.2 ± 0.6 

Average 7.8 ± 0.4   8.8 ± 1.4   7.7 ± 0.7   9.3 ± 0.5 
Experimental  
(z-direction) 

9.9 ± 0.1   8.9 ± 0.1   7.1 ± 0.1   8.8 ± 0.1 

CAD model 8.9 ± 0.2   7.9 ± 0.4   7.3 ± 0.3   9.2 ± 0.3 

Bone 1.2 to 80.5 reviewed by Kohles et al. (Kohles et al. 2001) 

A comparative plot of results obtained by experiment and simulation techniques is 

shown in Figure 3-13. Average permeability value of repeated measurements for each 

sample is plotted with the error bar representing the standard deviation. CFD 

simulations were performed on 3 child volumes selected at different locations within 

each sample and the average value of permeability was calculated. The error bar 

represents the standard deviation. The plots show that generally there is a good 

agreement in the two approaches, in that the values are within 17%, and also 

demonstrate that randomness does not significantly affect the bulk flow.  
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Figure 3-13 A comparative plot of permeability predicted in the z direction by 

using CFD simulation models and experimental measured values. 

3.3.3 Effect of Structural Parameters on Flow Property  

By running permeability simulations for both the voxelised 0% and 30% randomised 

foams, the localised velocity profiles of flow through implants with different 

internal structures can be visualised (Figure 3-14). In the 30% randomised structure 

compared to the 0% randomised structure, the minimum velocity was found to be 

8.41×10
-5

 m/s compared to 3.74×10
-5

 m/s respectively, which was an increase of 

56%. The maximum velocity of fluid in the 30% randomised structure was   

1.68×10
-3

 m/s compared to 7.49×10
-4

 m/s in the 0% randomised structure, which had 

an increase of 50%. Preferential flow channels form much more easily in the 

random structure foams due to greater variations in channel width and pore size 

compared to the uniform channel size in the regular structure, giving a much greater 

range of local shear in the flow, which has been shown to stimulate tissue growth 

(Kapur et al. 2003; Sikavitsas et al. 2003). Detailed study of the effect of the flow 

shear stress on bone ingrowth will be discussed in Chapter 5.  
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Figure 3-14 Voxelised 3D child volumes of (a) regular and (b) 30% 

randomised scaffold structures. Flow velocity profiles of same scale in Ti 

foams (regular, (c) and 30% randomised structure, (d)). Red represents the 

highest velocity. 

Voxelisation of the 3D foam structures allows the thickness/diameter of the Ti struts to 

be computationally changed to compare the effect of strut thickness on permeability. 

The effect of altering strut thickness on permeability is shown as a function of porosity 

in Figure 3-15 (a). Roughness of the strut was kept constant as 1.5. The reduction in 

porosity caused by increasing the strut diameter gives a decreasing trend in permeability. 

The values of permeability decreased by an average of 46% when porosity decreased by 

20%. To examine the effect of surface roughness of the strut on permeability, 4 

volumes with different surface roughness were created by changing the value of 

coefficient a in Equation 3-1. The overall porosities were kept at 65 ± 1%. Permeability 

of foams with different strut morphologies is shown in Figure 3-15 (b). Permeability 

decreased from 12.5×10
-10

 to 3.9×10
-10

 m
2
 as the surface roughness increased.   
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Figure 3-15 (a) Effect of strut diameter on permeability plotted as a function 

of porosity. (b) Permeability predicted based on foam structures with 

different levels of strut surface roughness. Average value of permeability was 

calculated for child volumes chosen. The error bar represents the standard 

deviation.  

3.4 Discussion  

SLM can be used to specify and produce new implant designs which maximise control 

of pore networks and their permeability. The UC approach was taken to form porous 

structures of 65% nominal porosity and pore size in the range 200 – 500 µm. 

Randomising these gridded cells by perturbation of their Cartesian coordinates allows 

the tortuosity and pore size distribution within the structures to be varied to modify the 

permeability characteristics. As already noted, these structures are not truly random, but 

pseudo-random, as the randomisation was based on an underlying regular structure and 
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the degree of randomness in any specific structure is exactly reproducible. It is 

important that the implants possess suitable pore networks and large enough 

interconnects for cell seeding and nutrition migration to stimulate expected bone 

ingrowth and vascularisation. Since permeability is one of the standard measures of a 

porous material’s ability to transport fluid (Wang et al. 2005), we took permeability as a 

quantity reflecting the performance of implants, which depends on the structure’s 

intrinsic pore size and internal network topology (Hui et al. 1996). The CFD prediction 

of permeability via 3D structure quantification data together with the practical 

measurements is discussed below. 

3.4.1 Ti Foam Structure Quantification 

Prior to undertaking permeability studies, preliminary characterisation of the porous 

microstructures was carried out to confirm that they lay within the acceptable range of 

pore characteristics. There is a discrepancy of 2.3 – 10.3% between the estimated 

porosities based on µCT images and the measured porosities by the gravimetric analysis. 

Though an optimum threshold value was chosen upon normalisation of the greyscale 

histograms in order to keep the estimation unbiased, the resolution of the µCT scan 

affects the accuracy of the porosity estimation. Higher resolution images will be ideal in 

this case. The mode value of pore diameter for the structures increases as the 

randomisation level increases. It is particularly apparent in the 30% randomised 

structures that large pores with diameters ≥ 302 µm have been formed. This illustrates 

that the use of the SLM additive manufacturing technique is viable for producing Ti 

implant with controlled pore size, and structure morphology, by designing the lattice 

structure in the CAD model. The results from both the computational quantification and 

mercury porosimetry experiments showed that the pore size distribution widened as a 

result of randomisation, with the distribution changing from a narrow, tightly controlled 

band for regular structure, to a much broader band for the 30% randomised structures, 

as shown in Figure 3-10. The volume percentage of large pores greater than 302 µm in 

the 30% randomised structure is almost twice as much as the value in the regular 

structure. This is the result of changing the coordinates of the octahedron vertices that 

causes larger pores and wider channel spaces in the internal structure. Confirmation of 

this data can also be appreciated from the visualisations displayed in Figure 3-11. The 

difference between the quantification results and experimental data is in the range of 
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6.0 – 9.8%, demonstrating the ability of the µCT technique for porous structure 

quantification. 

3.4.2 Ti Foam Structure Modification 

The voxelisation of the CAD model allows the hierarchical design of the foam structure. 

As noted previously (Kohles et al. 2001; Nauman et al. 1999; Ochoa et al. 2009; 

Shimko et al. 2005; Singh et al. 2009), the studies on calculating permeability of the 

porous foams does not address how small changes in internal structure influence flow. 

The algorithm developed in this study provides a useful tool to evaluate the effect of 

changing porosity, strut ordering and strut surface morphology on permeability. The 

direct modification in the CAD volume allows cost-effective pre-evaluation of the 

influence of designing factors on the implant performance before the real foam is 

manufactured and provides the tool to alter the microstructure locally with bespoke 

design to achieve optimal properties. In this study, strut diameter was changed to alter 

the overall porosity of the foam from 28 to 89%, increasing in steps of 19 – 22% each 

time. The strut surface roughness was changed while keeping the overall porosity 

constant, to alter the permeability at a different scale from percentage porosity. The 

roughness was calculated (also non-dimensionlised) as the product of the surface area 

per unit volume and the characteristic length of the system. The latter term was chosen 

as the inverse of the specific surface area of the structure with smooth struts. 

3.4.3 Permeability 

From a practical perspective, the underlying principle for permeability is based on 

Darcy’s law, which assumes that the pressure drop of the fluid passing through the 

porous structure is linear. Darcy’s Law, however, breaks down when Reynolds number 

is greater than 10. That is when the flow becomes turbulent and, consequentially, 

inertial effects are no longer insignificant. Methanol was used as the fluid in the 

experiment to minimise surface tension and wetting effects, and also correcting for 

higher resultant flow by incorporating the Dupuit-Forchheimer correction factor. The 

data also show how randomising the structure has changed the permeability properties. 

It can be seen from the graphs (Figure 3-13) that the changes followed a consistent 

trend. The most permeable structure was the regular (0%) structure. On a macro scale, 

this structure had the smallest pores, and at first instance this would appear to be at 

variance to the results. However, by visualising the 3D structure offered by µCT, the 
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computational quantification algorithms (see Figure 3-11 and Figure 3-14) shows that 

the randomised structures are much more tortuous, and have a wider distribution of pore 

sizes, both increasing the path length that the fluid has to take, and presenting 

occasional narrow constrictions. As randomisation increased, the tortuosity increases 

and localised microscopic flow dominates. The permeability level drops from 0, to 10% 

and then    20% randomisation, despite the increase in pore size (Figure 3-10). There 

was, however, a reversal in this trend at the 30% randomised level, and it is postulated 

that the further pore size increase starts dominating more. It should be noted that these 

variations are all very small when compared to the 2 to 4 orders of magnitude change in 

the permeability of foams and bone. 

Table 3-2 gives the three main components (x, y, and z) of CFD predicted permeability 

values for structures of 4 different levels of randomness. The 30% randomised structure 

was found to have the largest permeability amongst all the structures modelled. The 

mean permeability of this structure (30% randomised) revealed an increase of 5 – 17% 

compared to other structures. This increase in ease of flow (larger permeability) in the 

most randomised structure was due to the formation of preferential flow channels that 

formed in regions where the nodes were moved outwards. This also causes the 

formation of more tortuous channels, however, since the ease of flow is proportional to 

the square of the channel diameter (assuming Hagen-Pouiseuille flow (Park and 

Bronzino 2003)), the formation of the large diameter channels caused a net gain. This 

was considered to have the greatest effect at allowing fluid to pass through more easily 

in the 30% randomised structure since more randomised structures exhibited large 

connected void spaces. Additionally, in the aspect of localised microscopic flow, 

preferential flow channels in the 30% randomised structure create areas of increased 

flow shear stresses (More detailed study regarding the shear stress will be discussed in 

Chapter 5).  

Previous studies showed that LREV of at least 4-6 interconnects in the flow direction are 

required to determine the bulk representative permeability in materials ranging from 

fibres to bioactive glass scaffolds (Jones et al. 2007; Papathanasiou and Lee 1997). 

Figure 3-12 shows the study of LREV used in the simulation. For the regular structure, it 

was found that a minimum edge length of 5 UCs was needed to reach a stable 

permeability independent of the volume chosen in the simulation. When it comes to the 
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most randomised structure, the LREV required a minimum of 7 UCs because of the 

uneven distribution of pore spaces.  

Figure 3-15 shows the effect of changes in the internal structure on permeability. From 

Figure 3-15 (a), it is clear that higher porosity gave more void space for the fluid to go 

through. An alteration of 20% in porosity results in an average permeability change of 

46%, illustrating a strong effect of porosity change on the bulk flow properties. This 

suggests that the higher porosity will provide more spaces for flow/nutrition transport 

and bone ingrowth. However, the porosity will also interact with the strut ordering 

locally. From an implant’s performance point of view, the regular structure with high 

porosity may result in a lower flow shear stress locally which may affect the ability of 

cell attachment and subsequent proliferation.  

The strut surface roughness again has a significant effect on the flow property. There is 

a 68% difference in permeability between the smooth cylindrical strut and the roughest 

model. The localized roughness can therefore be adjusted to reach designated localized 

shear stress so that it allows bone ingrowth into certain areas when different density 

region design is wanted.  

3.4.4 Sources of Errors 

Figure 3-13 shows a comparison of the measured and modelled permeability in the z 

direction along which the Ti porous structure was stacked by layers of Ti powder in the 

SLM system. The permeability predicted by CFD simulations agreed well with the 

experimentally measured results (less than one order of magnitude).  The main reasons 

that can potentially lead to the deviation of the three sets of results are considered:  

First, there is an inevitable scan resolution versus sample size limitation when using the 

µCT. The resolution of the µCT scans of true volume was restricted to 9 µm per voxel 

due to the field of view. In order to achieve a large enough volume scan to represent the 

bulk structure the magnification was decreased which resulted in insufficient voxel size 

to represent the true surface roughness. Clearly, a rougher surface causes more 

resistance to flow. An underestimation of surface roughness will lead to a higher 

permeability value compared to the predicted permeability results for CAD models 

which were designed to have an intrinsic resolution of 5 µm per voxel. Higher 

resolution scans are required to represent the true structure so that the computational 
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modelling technique can be further refined. Secondly, there is a trade-off between the 

levels of down-sampling and the time needed for the simulation process. A very fine 

mesh model will certainly illustrate the surface roughness and true internal morphology 

of the structure better than the actual element size that was applied in this simulation. 

Thirdly, in the experimental methods used to measure the permeability, it is difficult to 

control the fluid flow rate at sufficiently low levels in order to achieve the same 

Reynold’s number (Re) as applied in the simulation, owing to surface tension issues 

between fluid and porous structure. In CFD simulations, Re numbers were kept << 1 to 

ensure the laminar flow, while in experimental situations, Re numbers > 10 were 

employed. Finally, regarding the threshold value chosen for image processing, the 

misidentification of struts and pore space will lead to inaccurate determination of the 

interconnect size. This was considered to have a large effect on the overestimation of 

the permeability in the randomised structures due to the complex internal strut 

morphology.  

Moreover, this CFD model assumes that the fluid passing through the porous structure 

is strictly Newtonian fluid. In reality, body fluids such as blood exhibit non-Newtonian 

behaviour, the viscosity depends on the shear stress and strain rate in the fluid flow. 

When the stress increases, corpuscles in blood deform and become preferentially 

oriented to facilitate flow. The viscosity therefore decreases with an increasing rate of 

shear stress, in which case there will be changes in the permeability microscopically. 

Advanced model can be developed to incorporate the shear thinning property of the 

blood so that the real biological situation can be modelled.  

In summary, this study suggests that structure porosity, strut surface roughness and 

internal structure perturbation can be used for designing hierarchical additive 

manufactured implants with tailored properties. Each of the structural factors can be 

tuned to get designated flow properties independent of others. In particular, altering the 

surface roughness was demonstrated to vary the permeability by over 300% (reduced 

from 12.5×10
-10

 m
2
 to 3.9×10

-10
 m

2
 as roughness increased), but such changes are 

unlikely to have more than a small influence on static mechanical properties (e.g. 

Mullen et al. (Mullen et al. 2010) (Mullen et al. 2010) showed a 15% change in 

strength with a major change in strut arrangement). These variations in roughness could 

be implemented in the additive manufacturing process by varying laser spot size, power, 

and Ti powder size. There is good agreement between the computationally predicted 
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permeability and the experimentally determined values, which was validated by the 

simulation approach. Furthermore, the CFD predicted values in this study compare well 

with the measured human trabecular bone permeability in previous studies ranges 

between 1.2×10
-10

 and 8.05×10
-9

 m
2
 as reviewed by Kohles et al. (Kohles et al. 2001).  

3.5 Conclusions 

This chapter investigated the effect of various input variables for the SLM additive 

manufacturing technique on the flow properties of Ti foams. The study demonstrated a 

computational approach to predict permeability in order to improve design of 

hierarchical implants using 3D µCT data quantification. Furthermore, a computational 

tool has been developed to allow scaffold designers to independently vary the porosity, 

strut surface roughness, each having a separate effect on the permeability. This 

approach, combined with additive manufacturing, allows an engineered hierarchical 

design, tailored for producing desired flows in implants.  
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4 Characterisation of the Mechanical Behaviour 

of Additive Manufactured Titanium Implants 

– in situ Compression Test and FE Modelling 

In the previous chapter, the influence of AM Ti implant structures on flow properties 

was investigated. It is equally important to characterise the mechanical properties of the 

implant under load bearing environments. In this chapter, interrupted in situ 

compression tests were performed on an AM Ti implant with a designated structure. 

The results were compared to the FEA study and the influence of internal strut 

architecture on the mechanical behaviour of the implant was discussed.  

4.1 Introduction 

Porous foams such as polymers, ceramics, metals etc. have been widely accepted as 

implant materials in the field of orthopaedic industry (Ryan et al. 2009). Although the 

implant should provide sufficient void space and interconnected networks to support 

cell migration, nutrient transport and ingrowth, the mechanical performance of the 

implant is equally important for effective integration with the surrounding bone tissue 

(Freyman et al. 2001). Metallic foams such as porous Ti structures have increasingly 

drawn attention in orthopaedic applications due to their excellent strength-to-weight 

ratio, toughness and corrosion resistance (Müller et al. 2006; Singh et al. 2010; Wen et 

al. 2002).  

Implant structural factors including macroscopic porosity, open or closed pores and 

microscopic strut morphology affect the mechanical properties of implants. As 

discussed in the previous chapters, novel RP technology such as SLM allows both 

macro and micro-structures of the implant to be controlled and therefore provides the 

opportunity to tailor implant design to match desired mechanical properties of the 

porous scaffolds (Ryan et al. 2006).  

As reviewed in Chapter 2, there have been a number of studies focusing on the static 

compression test of the porous foams (Banhart and Baumeister 1998; Davies and Zhen 
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1983; Eshraghi and Das 2010; Imwinkelried 2007; Zhang and Wang 2005). Later the 

combination of µCT and in situ loading experiment takes advantage of being able to 

provide direct visualisation of how the spatial distribution and internal microstructure 

affect the global mechanical behaviour (Babout et al. 2003; Elliott 2002; Maire et al. 

2003; Thurner et al. 2006). Analytically, Gibson and Ashby’s model (Gibson and 

Ashby 1999) evaluates the mechanical properties of porous foams by assuming 

uniformity in the foam porosity and ignoring any axial or shear displacement of the 

strut during compression. The accuracy of the model is therefore largely affected by the 

nature of the porous structure. To obtain more accurate prediction of mechanical 

properties, FEA models based on µCT images have been developed (Eshraghi and Das 

2010; Gorny et al. 2011; Ryan et al. 2009; Thelen et al. 2004). This modelling 

approach can not only overcome the simplification problem associated with the 

analytical model but also provide an insight into the stress concentrations in the 

structure.  

In this chapter, three types of porous CP-Ti foam with different structural design 

(regular, randomised and combination of regular and randomised internal structure) 

were used to study the relationship between mechanical properties and foam 

microstructure. The implant is designed to be used in the surgical treatment of replacing 

the patella component in TKR (see Figure 4-1), where the implant functions as a 

fixation device between the artificial knee-cap and the native bone tissue. Therefore, the 

implant must firstly withstand the loading environment in the knee, and allow long-term 

biomechanical movements of the joint when the patient moves. 
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Figure 4-1 Porous CP-Ti implants designed for TKR with three fixation pegs. 

An interrupted in situ compression test was performed on the implant structure and the 

mechanical data was then used as input material properties in the 3D FEA model. The 

failure mechanism was simulated by FEA and compared to the experimental 

observation in µCT. By modelling the mechanical performance of different implant 

structures computationally, the approach can be used as a guideline to tailor the porous 

foam design before manufacture to match mechanical properties locally within the 

structure. 

4.2 Materials and Methods 

4.2.1 Ti Foam and Sample Preparation 

In this study, three different porous Ti implant structures designed by Mullen et al. 

(Mullen et al. 2010) using the UC approach were used to illustrate the effect of internal 

strut architecture on the mechanical performance. Details of the UC approach to make 

both regular and randomised structures were introduced in section 3.2.1. For the in situ 

compression test, the implant with a combined design of both regular and irregular 

structure was used (Figure 4-2).  The implant consists of the regular (0% randomisation) 

structure of height 2 mm on the top and inside a ‘U’-shape solid metal plate of 0.5 mm 

in thickness; the 30% randomised structure of height 3.5 mm was built below the solid 

metal plate. The implant has a diameter of 5 mm. The foam has a nominal porosity of 

65% and all pores are open and connected. For the FEA simulations, pure regular and 
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30% randomised structures of size 4 mm in diameter and 4 mm in height were also 

included to further test the link between the internal strut microstructure and the 

mechanical behaviour of the foam under compression.  

 

Figure 4-2 (a) & (b): 3D µCT images of the implant with a combined design of 

both regular and 30% randomised strut architecture. The red line indicates 

the position of the solid metal plate in the structure. (c): An image of the real 

implant.  

4.2.2 Compression Tests  

Two types of tests were performed to characterise the mechanical properties of the 

porous Ti implant: (1) static compression test to obtain the mechanical properties of the 

foam and (2) interrupted compression test along with µCT to provide a direct link 

between the foam microstructure and compressive behaviour.  

The static compression test was performed using a 100 kN load cell servo-hydraulic 

universal testing machine (Zwick, GmbH, Germany). The tests were carried out up to a 

strain of 0.5 with a constant test speed of 0.001 m/s. The Young’s modulus of the foam 

was calculated as the gradient of the regression line corresponding to the linear elastic 

region of the stress-strain curve. The yield strength was taken as the stress at the 

intersection of the regression lines corresponding to the linear elastic region and the 

plateau region.  

The interrupted compression test was performed with in situ µCT. A screw-driven 

10 kN compression rig (Figure 4-3) was designed for the test. The interrupted 

compression test was performed using a nominal strain of 0.05 each time. A µCT scan 

was performed after each compression at a resolution of 15 µm per voxel using a 
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commercial µCT unit (Phoenix v|tome|x, GE Measurement and Control, MA, USA). 

The X-ray tube voltage and filament current were fixed at 100 kV and 70 µA, 

respectively. 720 projections were collected on a 512 × 1024 detector at a rotation step 

of 0.5
o
. Images were then reconstructed using the commercial reconstruction software 

datos|x (GE Measurement and Control, MA, USA). Pre-processing of the 3D volume, 

including a 3 × 3 × 3 median filtering and removing islands within the volume space 

was accomplished using a commercial image visualisation/analysis software Avizo 6.3 

(VSG, MA, USA) and an in-house developed codes (Atwood et al. 2004; Jones et al. 

2007). 

 

       

Figure 4-3 Compression rig used in the in situ mechanical test with a 10 kN 

load cell. (Design provided by Mr R. Hamilton, Imperial College London, UK) 

For each step of the deformation, two load readings were recorded at the beginning and 

the end of the scan respectively and the arithmetic average value of the load readings 
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was used as the averaged load in the stress-strain analysis. Vertical displacement and 

the cross-sectional area of the sample after each compression test was calculated based 

on the 2D tomography images in a public domain image processing programme ImageJ 

(NIH, USA).  

4.2.3 Model Theory 

4.2.3.1 FEA Method 

FEA is an effective method to solve for the approximate solution of governing 

differential equations in the mechanics of deformable solids. The ODEs or PDEs are 

converted into a linear combination of a finite set of algebraic functions and solved. The 

process starts with discretisation of the region of interest into a number of 2D or 3D 

elements (meshing).  The meshing elements are connected by sharing common points 

(nodes) and each node is associated with the unknowns (e.g. displacement, temperature) 

to be solved.  

The basis of the FEA method is known as the ‘principle of virtual work’. The principle 

can be expressed in terms of an equilibrium equation of loads, where the work done by 

external loads for a virtual displacement should equal to the internal virtual work 

absorbed by the element during that displacement. Mathematically, it can be written as: 

 
          

 

               4-1 

where σ is a set of internal stresses, ε is the expression for internal strains,    is a set of 

external forces and     is the virtual displacement. 

The strain can be expressed in terms of the virtual displacement: 

                      4-2 

where [B] is the strain-displacement matrix.  

The stress can then be written as: 

                         4-3 

where [D] is the matrix of elasticity. 

Hence Equation 4-1 becomes: 
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               4-4 

Rearrange to obtain: 

 
                     

 

                  4-5 

Let the integral in Equation 4-5 be a matrix, [k], which denotes the stiff matrix. 

The above equation can be written as: 

              4-6 

Now the governing equation becomes a system of matrix equations, which contains n 

equations for n choices of     to solve. 

4.2.3.2 Compression Test Simulation 

µCT images of three porous Ti structures (regular, 30% randomised and combination of 

the regular and 30% randomised design) were segmented using the same thresholding 

method described in section 3.2.7 (i) (Figure 3-6). Tetrahedral elements were chosen as 

they generate a smoother surface which enables a more accurate calculation of loading 

at the surface of the structure (Ulrich et al. 1998). Images were resampled to 30 µm per 

voxel. Meshes were generated using commercial FEM meshing package, ScanIP 

(Simpleware Ltd., UK).  A convergence test was run using two regular models with 

resolutions 15 µm and 30 µm respectively to validate the mesh refinement. Each model 

was meshed using element sizes of both 15 µm and 30 µm.  FEM analysis software 

Abaqus/CAE-Standard v6.10-1(Dassault Systemes Simulia Corp., USA) was used to 

perform the simulations. All cases were run on the Imperial College High Performance 

Computing system using 2 nodes, each of which has 4 cores.  

Figure 4-4 shows the schematic of the 3D FEA model and the boundary conditions 

applied in the simulation. To match the in-situ compression test, the top surface node 

set was assigned a displacement equivalent to a maximum strain of 0.05 along the z-

direction in each compression step; the bottom surface was restricted from moving in 

the z-direction. To prevent the structure slipping, 4 equidistant nodes on the edge of the 

bottom surface were constrained from moving in both x-direction and y-direction. No 

boundary contact surfaces condition was set for the densification region. The elastic 

modulus was calculated as the gradient of the elastic region of the stress-strain curve 
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and the compressive strength was estimated by using the same procedure described in 

section 4.2.2. Other materials properties used in the simulation are listed in Table 4-1. 

Though the whole sample was used in the simulation, a sensitivity test was performed 

on both regular and randomised structures with increasing size in the compression 

direction (z-axis) to check if the volume used is appropriate to represent the REV for 

the FEA analysis. All the volumes were made to have similar overall porosity (63 –

 65%).  

Table 4-1 Parameters used as input materials properties in FEA simulations: 

Property  Value Unit  References  

Density (ρ)  4500 kg/m
3 

 Mullen et al. (Mullen et al. 2010) 

Young’s modulus (E)  116 GPa Singh et al. (Singh et al. 2010) 

Poisson ratio (ν) 0.3   --  Singh et al. (Singh et al. 2010) 

Yield Stress (σ) 45.6 MPa Mullen et al. (Mullen et al. 2010) 

 

                           

Figure 4-4 Schematic of the 3D FEA simulation: the model has a top node set 

which was assigned a displacement equivalent to a maximum strain of 0.03 

along z-direction in each deformation step and a constrained bottom node set.  
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4.3 Results 

4.3.1 In-situ Interrupted Compression Test 

Figure 4-5 shows the xz-plane view of each deformation step obtained by µCT. The 

displacement in z-direction and the cross-sectional area of the sample were measured 

directly from µCT images. Plastic deformation started to occur after a strain level of 

0.086, indicated by the collapse of the struts. Figure 4-6 shows a clearer 3D view of 

local strut deformation. The red ellipsoids in Figure 4-6 (a) & (b) indicate a single unit 

cell before and after the elastic deformation. The cell wall collapsed in the next 

deformation step, as seen in Figure 4-6 (c).  
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Figure 4-5 (a)-(e): 2D and 3D xz-plane views of deformation steps obtained from µCT datasets. True strain of each deformation step was 

calculated based on the tomography images. 

  



- 85 - 

 

 

Figure 4-6 Localised collapse of the regular strut at low strain levels (shown in 

red ellipsoids): (a) undeformed implant structure before loading, (b) implant 

structure after the first deformation step, (c) collapse of the struts occurs at 

the second deformation step.   
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4.3.2 FEA Simulation 

Table 4-2 shows the convergence test result to validate the mesh refinement. The 

resulting yield strength obtained from the two tests showed trivial differences of 

approximately 4%. A mesh size of 30 µm changed the results by 4.1% when the 

resolution was doubled. Hence, to accommodate both the mesh accuracy and the 

computational cost, the element size was chosen to be 30 µm for all models. 

Table 4-2  Convergence test results showing numerical yield strengths 

predicted using different mesh refinements. 

 Model 1 Model 2 Model 3 Model 4 

Image resolution (µm) 15 15 30 30 

Mesh size (µm) 15 30 15 30 

Yield Strength (MPa) 28.5 27.1 27.3 28.2 

 

In Figure 4-7 (a) and (b), results from the REV study of the FEA model are shown. It 

was found that for the regular structure, an REV length along the compression direction 

of at least three unit cells was needed to stabilise the mechanical parameters obtained 

from the model. The REV length required by the randomised foam was found to be 

greater than the regular foam because of the in-homogeneous nature of the structure. All 

sample volumes used in simulations were confirmed as appropriate because the 

dimensions are much greater than the REV length. 
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Figure 4-7 (a) & (b) REV study: FEA simulation results of modulus and yield 

stress values of the regular and 30% randomised foams as a function of the 

REV length along the compression direction.  

Figure 4-8 shows a zoomed-in part of the stress-strain curve obtained from the FEA 

simulation on the implant with the mix regular / randomised structure, in particular, 

showing the behaviour of the implant at initial low strain levels. The curve shows 

elasto-plastic behaviour from a strain level of 1% on this curve, indicating that there 

were local plasticity changes occurring during early stages of the deformation. 
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Figure 4-8 Compression test via the FEA simulation: stress-strain curve of the 

implant with the combined regular-randomised design. Inset: xz-plane view of 

the stress distribution inside the implant structure during its elastic 

deformation step. 

To further examine the influence of the structure design on the mechanical performance 

of the implant, FEA simulations were performed on Ti implant with regular and 30% 

randomised design. Figure 4-9 shows a comparison plot of the stress-strain curves of 

both regular and the 30% randomised structures. The effective yield stress for the 

regular and the 30% randomised structures were 28 MPa and 39 MPa respectively and 

the effective Young’s modulus for the regular and the 30% randomised structures were 

calculated as 1.7 GPa and 2.1 GPa respectively. The local stress distributions of both 

structures at the same strain level are compared in Figure 4-10. More areas of yield can 

be seen from the regular structure as compared to the 30% randomised. Furthermore, 

the distributions of stress during the deformation in the two different structures suggest 

that the stress is more uniformly distributed in the regular structure while more 

localised distribution of stress is found in the 30% randomised design. 
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Figure 4-9 Comparison plot of the compression stress-strain curves of both 

regular and 30% randomised structures, data obtained from the FEA 

simulation. 

 

 

Figure 4-10 2D yz-plane views of local stress distributions in (a) the regular 

and (b) the 30% randomised structures. 

4.3.3 Comparison 

From the average load readings and the sample cross-sectional area obtained in the 

interrupted compression test, the compressive stress was calculated and from the 

displacement and the initial sample height, the strain was calculated. The stress-strain 
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curve is shown in Figure 4-11. This curve shows the typical mechanical behaviour of 

porous metals under compression. The initial linear regime shows the elastic 

deformation of the structure up to a strain of 0.02, followed by a plateau regime which 

corresponding to the collapse of the struts and finally a densification regime. The elastic 

modulus calculated based on this curve was 1.5 GPa, which falls within the range of 

stiffness of human trabecular bone (1 – 10 GPa) (Mullen et al. 2010). The yield strength 

was 32 MPa, which was taken as the stress at the intersection of the linear regression 

lines corresponding to the elastic and the plateau regions. The stress-strain curve 

obtained from the static compression test is shown in the same figure for comparison. 

The Young’s modulus and the yield strength estimated from the static compression test 

were 0.4 GPa and 33 MPa, respectively. A corrected stress-strain curve was plotted 

when the sample is in full contact with the compression platform to eliminate the 

contact surface effect. This was done by subtracting the stress and strain in the initial 

non-linear region. The stress-strain curve from the FEA uniaxial compression test 

simulation of the implant with the same design is also shown in Figure 4-11. The 

effective Young’s modulus and the yield strength predicted in this case were 2.2 GPa 

and 30 MPa, respectively. 

 

Figure 4-11 Comparison of the static, in situ interrupted mechanical tests and 

the FEA simulation: compression stress-strain curves of the porous Ti implant 

with the mixed regular and randomised design. 
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4.4 Discussion 

Both experimental and computational modelling approaches have been employed in the 

study to investigate the mechanical behaviour of the Ti implants under compression 

loading. µCT imaging technique was coupled with the interrupted compression test to 

provide a direct observation of the deformation and the failure mechanism of the 

structure. The FEA compression model based on µCT images of real Ti structures 

further revealed a more detailed examination of how the foam internal microstructure 

affects the mechanical performance of the implant during the elastic deformation. 

4.4.1 Compression Tests and mechanical behaviour of the implants 

The mechanical properties experimentally measured by both static and interrupted 

compression tests were compared in Figure 4-11. The stress-strain curves obtained by 

both approaches showed the typical compressive behaviour of porous metal foam. The 

yield strength calculated from both methods agreed well with each other. However, 

there exists a significant difference in elastic moduli of the implant. The static 

compression test measured the elastic modulus of the sample to be less than a third of 

the value measured by the interrupted test. The low value of modulus measured in the 

static compression test was mainly due to the non-planar surfaces of the sample and the 

contact compliance between the test sample and the two metal compression plates. 

(Note that in both the interrupted compression test and the FEM, the top and bottom 

surfaces were made planar.) These caused the non-linear behaviour of the implant 

before the yield strength was reached on the stress-strain curve, which indicates that 

some inelastic phenomena were present during the initial compression stage (Müllner et 

al. 2008). The other cause of the non-linearity in the stress-strain relationship was that 

there might be changes in the orientation of the struts which will change the apparent 

elastic modulus at moderate strain levels. The corrected stress-strain relationship which 

eliminates the initial non-linear region gave a closer match of elastic modulus (1.0 GPa). 

This, however, affected the estimate of the yield stress. To further assess if an early 

stage compressive behaviour of the foam is elastic of plastic, a loading-unloading cycle 

can be applied to the structure to check the reversibility of the stress-strain relationship. 

A hysteresis loop in this relationship can then be attributed to plasticity. 
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Compared to the static compression test, FEA simulation provided a closer match to the 

interrupted compression test results for both elastic modulus and the yield stress. 

However, the elastic modulus of the implant derived from the FEA study is 1.5 times 

greater than the value obtained from the interrupted test. The deviation may be 

explained by the torque in the strain-locking process when the compression load was 

applied manually by turning the screw at the top of the compression rig. The sample 

slipped on the rig platform and was slightly rotated. A reliable correlation of the FEA 

model to experiment requires a close match of the FE boundary conditions to the 

experimental conditions (Jacobs et al. 1999). Hence, modification for the parallel plate 

compression test is needed to overcome the error due to the contact boundary behaviour. 

For example, sample can be fixed to the end-caps of the compression rig so that slip 

condition at the bottom surface can be prevented. 

To compare with the literature, Mullen et al. (Mullen et al. 2010) experimentally 

measured mechanical properties of the same regular and 30% randomised structures 

and reported higher Young’s moduli (3.5 – 6.5 GPa) and yield strengths (49 MPa for 

the regular and 56 MPa for the randomised) than those predicted in FEA simulations. 

Apart from the difficulties associated the mechanical tests as discussed earlier; there are 

also potential reasons that may cause the inaccuracy of the FEA prediction, which will 

be discussed in the next section. 

To compare with the analytical model of open cell foam with homogeneous structure 

developed by Gibson and Ashby (Gibson and Ashby 1999), the Young’s modulus, E*, 

and the yield strength, σ* of the regular structure were calculated by:  
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where Es and σs are the Young’s modulus and the yield strength of the solid material 

and ρ*/ρs is the relative density of the open cell foam. The analytical model predicts the 

Young’s modulus and yield strength of the regular structure to be 37 MPa and 15.9 GPa, 

respectively. The analytical model predicts significantly higher modulus than both 

experiment and FEA model (5 – 10 times). For yield strength, the analytical prediction 

is 32% higher than FEA but 24% lower than experimental measurement. The 
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overestimation is due to the inability of the model to account for the interconnectivity of 

the struts phase, which is indeed considered in the FEA analysis.  

Overall, the elastic modulus of the porous Ti implant tested falls within the range of the 

human trabecular bone (1 – 10 GPa). The yield strength of the structure also satisfies 

the typical requirement for structures suitable for orthopaedic applications (~40 MPa) 

(Mullen et al. 2009). This indicates that these Ti structures are suitable for implant 

applications.  

4.4.2 Limitations of the FEA model 

The machine contact compliance problem associated with the static compression test 

and the difficulty of obtaining low strain level deformation in the stepwise compression 

test can be avoided in the FEA simulation, so that a linear elastic behaviour of the foam 

at low strain levels can be obtained (Figure 4-9).  Although the FEA model gave the 

closest match to the literature values for both elastic modulus and the yield strength, 

there were still several limitations associated with the current model which can be 

improved to obtain more accurate results. 

First of all, the original resolution of the µCT images has a significant effect on the 

accuracy of the image based FEA model (Yeni et al. 2005). Due to the size limit of the 

field of view in the µCT, the resolution was set at 15 µm per voxel. The fine micropores 

and surface roughness inside and on the surface of the strut might not be fully captured. 

Furthermore, for the best computational efficiency, the µCT images were resampled to 

30 µm. This may lead to the inaccuracy in predicting the strength of the material as it 

smoothes fine strut surface roughness on struts so that the thickness of the strut was 

either reduced or enlarged depending on the neighboring voxels. The accuracy of the 

FEA stress analysis also depends on the threshold value chosen in image processing. 

Hara et al. (Hara et al. 2002) found that a variation of 0.5% in threshold resulted a 

difference of 9% in stiffness of the trabecular bone (porosity > 85%) and 3% when 

porosity is less than 80%. Thus it is important to use an optimum threshold for accurate 

estimation of the mechanical properties in FEA analysis. Advance thresholding 

technique other than the plain threshold method will be more ideal in processing images 

with low resolution (Homminga et al. 2001). 
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Secondly, the mesh quality of the FEA model is also of great importance in assuring the 

accuracy of the simulation (Moazen et al. 2011). The influence of the element size on 

the FEA model accuracy was discussed in several studies (Cahill et al. 2009; Depalle et 

al. 2013; Jones and Wilcox 2008; Lacroix et al. 2006; Migliavacca et al. 2002). Both 

Cahill et al. (Cahill et al. 2009) and Depalle et al. (Depalle et al. 2013) suggested in 

their studies that at least 3 - 4 elements across the strut thickness (diameter) are needed 

for accurate stress field prediction. Jones and Wilcox (Jones and Wilcox 2008) 

suggested in their study of vertebral body FE model that a choice of mesh resolution is 

considered as refined when the change in the result is less than 5% when the resolution 

is increased. In addition to the mesh resolution, choice of element type also has an 

impact on the FEA modelling accuracy. Depalle et al. (Depalle et al. 2013) compared 

the results obtained using different types of FEA meshing elements for stress evaluation 

for human trabecular bone. It was found that for low resolution images, the use of linear 

elements or reduced integration leads to inaccurate prediction of the stress distribution 

due to stiffening errors and severe smoothing. Quadratic elements are preferred for 

stress field estimation in low resolution models. However, this type of element will 

have high computational cost.  

4.4.3 Influence of the Strut Architecture on Mechanical Properties 

Although the in situ interrupted compression test provided a visualisation of the 

deformation of the struts, the initial elastic behaviour at very low strain level and the 

stress concentration within the structure could not be easily obtained. The FEA 

simulation instead, was able to predict not only the mechanical properties of the implant 

but also the initial elastic deformation and the localised stress distribution inside the 

structure.  

Figure 4-8 shows the compressive stress-strain curve during the deformation of the 

implant at low strain levels. The structure showed elastic deformation behaviour up to a 

strain of 1% and local plasticity changes occur afterwards. The regular structure on top 

of the solid plate took more load during the compression and struts broke more quickly 

than in the bottom randomised part. This was confirmed in Figure 4-9 where the 

comparison of the strength and modulus properties of the regular and the 30% 

randomised structures shows the same trend. Furthermore, the regular struts inside the 

‘U’-shape solid plate also showed less concentration of stress. In this case, the solid 
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metal plate is believed to act as a load bearing feature to retain the overall structure of 

the implant under the loading. The failure mechanism of the top part of the implant was 

consistent with the homogeneous model suggested by Gibson and Ashby (Gibson et al. 

2010) where the collapse of the first pore is followed by the collapse of its neighbour 

pores normal to the loading direction. Hence the local plasticity deformation progressed 

layer by layer along the compression direction. 

FEA models created for pure regular and randomised foams showed clearer comparison 

of stress distributions between the two structures. The stress was more uniformly 

distributed in the regular structure while more localised distribution of stress was found 

in the randomised design (Figure 4-10). The load is more easily transformed axially in 

the regular foam due to its highly oriented design so the failure involves the entire cross 

section in contrast to the randomised structure. For the 30% randomised structure, high 

stress concentration regions were found where random initiation of the strut failure 

occurs. Due to the in-homogeneity of the structure, load propagates locally so that the 

collapse of struts was more isolated compared to entire failure of the load bearing plane 

in the regular structure.  

4.5 Conclusions 

This chapter presents both experimental and the direct 3D FEA approaches to determine 

the mechanical properties of the porous Ti foams and to characterise the elastic and 

post-yield deformation behaviour under compression. 

The FEA simulation provided the closest predictions of both the strength and modulus 

properties to the ones experimentally measured and the literature values. This indicates 

the viability of the computational approach to characterise the highly porous Ti 

structure used for the orthopaedic implants. The results showed that the randomised 

bone-like structure has better mechanical performance as compared to the regular 

structure. The FEA study provided an improved understanding of the mechanical 

performance of the foams at their earlier deformation stage; in particular, the different 

stress distributions throughout implants with different internal strut architecture were 

observed. Therefore, the current model can provide useful information in understanding 

the failure mechanisms in porous metallic foams used as implants in the loading 

environment inside the body.  
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5 Modelling of Time Dependant Localised Flow 

Shear Stress and Its Impact on Bone Ingrowth 

within Additive Manufactured Titanium 

Implants* 

In this chapter, a 3D transient model of bone ingrowth based on the N-S equations will 

be presented. The model simulates the body fluid flow and stimulation of bone growth 

as a function of local flow shear stress. The model’s effectiveness is demonstrated for 

two AM Ti scaffolds, with regular and randomised strut architectures as described in 

section 3.2.1, respectively. Applying CFD methods at a microscopic level taking into 

account the detailed scaffold structures, this study demonstrates the potential new 

insights that can be gained via the modelling tool, and how the model can be used to 

perform what-if simulations to design AM structures to function. 

5.1 Introduction 

As reviewed in Chapter 2, implants for bone augmentation are expected to stimulate 

bone ingrowth to enable fixation to the host bone. Vascularisation and osteogenic cell 

proliferation are promoted in bone healing process due to the interstitial fluid flow in 

periosteum and surrounding tissues (Wray and Lynch 1959). Moreover, flow through 

porous foams with different internal structures will result in tortuous paths (Fourie et al. 

2007). This will impact the fluid shear distribution which can stimulate cell growth 

(Holtorf et al. 2005; Kapur et al. 2003; Reich et al. 1990; Sikavitsas et al. 2003) and the 

motion of cells along preferential routes.  

 

*Note, a large portion of this chapter is submitted for publication: 

Zhang Z., Yuan, L., Lee P.D., Jones E., Jones, J.R., Modelling of Time Dependant Localised Flow Shear 

Stress and Its Impact on Bone Ingrowth within Additive Manufactured Titanium Implants, Journal of 

Biomedical Materials Research Part B: Applied Biomaterials, 2013 
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Previous studies regarding flow-induced shear stress occurring in in-vitro perfusion 

systems (Dillaman et al. 1991; Freed and Vunjak-Novakovic 2000; Kapur et al. 2003; 

Sikavitsas et al. 2003), reviewed in section 2.6.1, showed the important influence of 

fluid flow-induced shear on cell land tissue growth. Prior studies (Chung et al. 2007; 

Cioffi et al. 2006; Coletti et al. 2006; Lesman et al. 2010; Liu et al. 2012; Porter et al. 

2005; Raimondi et al. 2011; Raimondi et al. 2004; Raimondi et al. 2006) focused on 

macroscopic average shear stress predictions; however, these have yet to be coupled 

with time dependent simulation of the influence of cellular parameters, such as growth 

rate, deposition, and the resultant time dependant porosity change. All these issues are 

crucial to the correlation of fluid-induced shear stress and cellular growth. A 

comprehensive study on the local shear stress effect on bone cell ingrowth which inter-

relates time dependant microscopic flow simulation with flow-induced shear stress 

distribution on a microscopic level is therefore of great usefulness. 

Two of the porous open cellular Ti foams (regular and 30% randomised) designed using 

the UC approach described earlier will be investigated in this chapter. The CFD model 

is applied directly on the voxelised CAD designs as a demonstration of the applicability 

of the simulations to help analyse real designs. 

The aim of this chapter is to provide a better understanding of the complex coupling of 

how flow and porous scaffold struts architecture impact osteointegration. The goal is to 

quantify local flow shear stress to predict bone ingrowth at microscopic level, and then 

feed the results bone growth back into flow simulations to interrelate the resultant 

porosity change to shear distribution. A 3D microscale CFD model based on finite 

volume method has been developed to simulate the flow system first. The fluid flow-

induced shear stress was then calculated with a finite difference method and the time 

dependant cell growth and the inter-relationship between the two dynamic factors was 

estimated by the cellular automaton (CA) method. The model was applied to study the 

influence of strut architecture design in AM Ti implants, with the inter-relationship 

between the flow-induced shear stress and the time dependant cell growth at the 

microscopic level.  
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5.2 Materials and Methods 

5.2.1 Ti Foam Microstructures 

Two different porous Ti implant structures designed via the UC approach by Mullen et 

al. (Mullen et al. 2010) were selected as the input structures for this study. The regular 

(0% randomisation) and 30% randomised designs were chosen as the illustration of how 

different internal strut architecture influence the bone ingrowth. Details of the design of 

these two structures were introduced in section 3.2.1. The grid mesh is based on the 

voxelised CAD volume, which has been discussed in section 3.2.4.  

Note that the variability has been quantified both by Mullen et al. (Mullen et al. 2010), 

and also in terms of baseline flow properties in Zhang et al. (Zhang et al. 2013), 

therefore only one example of each design type will be studied, and only as a virtual 

model. The overall porosities of the two test volumes are similar at 67.5% and 69.2%, 

respectively. The effects of randomising the regular lattice are that the mode value of 

the pore size increases from 203 to 302 µm and the overall distribution is shifted to a 

wider range. This has brought about a difference of 3.4% in their intrinsic permeability 

property as investigated in Chapter 3.  

5.2.2 Model Theory  

5.2.2.1 Projection Method – CFD Model  

N-S equations (Equation 5-1) together with the continuity equation (Equation 5-2) are 

used to fully describe the fluid flow system within the Ti structure. They are repeated 

here for convenience: 

      

  
                    

 

  5-1 

 

   

  
                         5-2 

where  is the fluid density and u is the fluid velocity, P is the pressure,  is the 

dynamic viscosity of the fluid and S is the source term.  

The N-S equations were solved using a projection method (Kim and Moin 1985) based 

on a finite volume defined on a staggered grid, which was modified from Chorin 

(Chorin 1968). Assuming incompressible Newtonian fluid with laminar flow in the 
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bone ingrowth system, the continuous equations are discretised using a first order 

explicit method as: 

        

  
        

     

 
 
      

 
                 5-3 

 with 

                               5-4 

where u is the discrete velocity, P is the discrete pressure, H is the discrete convective 

operator, G is the discrete gradient, L is the discrete Laplace operator and D is the 

discrete divergence operator.  

The momentum equation (Equation 5-3) is first solved for an intermediate velocity, u*, 

which is an approximation of u
n+1

: 
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Note that this velocity, u
*
, will not satisfy the continuity equation (Equation 5-4). A 

velocity correction must be applied: 
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where φ is a pressure correction, such that the LHS of Equation 5-6 satisfies continuity. 

Substituting Equation 5-6 into Equation 5-4:  
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By rewriting Equation 5-8, a Poisson equation (Equation 5-8) for the pressure 

correction term, φ, is obtained by  

 
           

      

  
        5-8 

The pressure correction term is then solved and the pressure is updated as: 

                               5-9 

where P* is the intermediate pressure. 

Equation  5-5 is then solved again using new pressure to obtain a new corrected 

velocity at the n+1 time, and the new approximated velocity is again corrected with a 
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pressure correction term to enforce the continuity. The process is repeated until the 

solution to Equation  5-5 is converged. 

5.2.2.2 Finite Difference (FD) Model - Shear Stress Estimation  

A finite difference (FD) technique is employed in the shear stress estimation (Atwood 

and Lee 2003; Lee et al. 2004). The FDM employed in this model runs on the same 

staggered grid mesh as the flow simulation. A simple 2D illustration of the grid is 

shown in Figure 5-1.  

 

Figure 5-1 2D illustration of the staggered grid to show the concept of the 

model: the solid black circles indicate the pressure locations, the velocity 

components are defined at the centre of each cell, dotted lines represent the 

boundary faces of the cell. 

Velocity components are specified at the centre of each cell, and gradients were 

evaluated linearly along velocity nodes to the cell boundary face. The estimation of 

velocity gradient used a forward difference based on a first order linear estimation: 

    
       

  
                    5-10 

where ∆x is the grid size. 

5.2.2.3 Cellular Automata (CA) Method – Bone Ingrowth Simulation  

A cellular automaton (CA) is an array of discrete variables such as space, time, 

velocities etc. that follow local interaction rules (Wolfram 1986). Initially in the CA 

model at time step t, each meshed cell is assigned a ‘state’ to represent for example, a 

liquid or a solid status. For each cell, a set of neighbourhood cells is defined to be 

relative to the specified cell. A new array is created at time step t+1 according to some 
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fixed rule (e.g. a mathematical function) that determines the new state of each cell 

which is a function of the current state of the cell and the states of its neighbourhood 

cells.  Generally, every cell has the same rule for updating the status. Each time the rule 

is applied to the whole grid simultaneously and a new array is created.  

The CA concept has been widely used for modelling physical systems in materials 

science (Wolfram 1998). The bone ingrowth simulation illustrated here is a similar 

concept to the growth of dendritic crystal model developed by Atwood et al. (Atwood 

and Lee 2003) and Wang et al. (Wang et al. 2003). The model was successfully 

extended by Yuan et al. (Yuan and Lee 2010; Yuan et al. 2009) to model the 

interdendritic fluid flow effect on the dendritic growth. The model has been adapted as 

a point model with a specific ODE describing the change in a quantity, which the status 

of the cell will then depend on. Each cell in the bone ingrowth model has one of the 

three possible statuses: liquid, solid or growing interface. The propagation of state of 

the cells from ‘fully liquid’ to ‘growing interface’ to ‘fully solid’ is determined by the 

amount of cellular growth, which depends on the ingrowth rule incorporated with the 

flow induced-shear stress. In the next section, details of the cellular growth simulation 

will be discussed.  

5.2.3 Model Theory - Simulation 

5.2.3.1 Momentum and Mass Transport 

A microscale model was developed to study the flow-induced shear stress and the bone 

ingrowth that solves the N-S equations interactively with the growth of the bone. The 

CFD model employed here was based on a prior 3D open-source microscale 

solidification model, µMatIC, which incorporated momentum and mass transport in 

liquid-solid phases (Wang et al. 2003; Yuan and Lee 2010). Therefore, only a summary 

of how the mass transport was simulated in the model is given below (for details see 

(Dong and Lee 2005; Lee et al. 2002; Lee et al. 2004; Wang et al. 2003; Yuan and Lee 

2012; Yuan et al. 2009)) with details of the development of fluid shear stress evaluation 

and henceforth bone ingrowth prediction.  

The flow occurring through porous media materials was assumed to be laminar and the 

fluid was incompressible and Newtonian. Based on the control volume fixed in space, 

the conservation of momentum takes the form (Patankar 1980): 
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where    is the velocity vector in fluid, t is the time step, P is the pressure, ρ is the fluid 

media density and µ is the fluid media viscosity. In order to unify the equation in the 

entire domain including fluid, bone and growing cells, the velocity field was defined as  

       5-12 

where f is the fraction of fluid in a single controlled volume. Note that the change in f 

was assumed to be slow compared to changes in the flow velocity. When f = 1, the 

volume represents pure fluid in the porous space; when f = 0, it represents the bone 

structure itself, which ensures   = 0 in the bone; and when 0 < f < 1, it represents the 

growing cell at the surface. Therefore, this transition from fully liquid (f = 1) to fully 

dense bone (f = 0) can represent the deposition of osteoblasts and their subsequent 

densification. 

The conservation of mass equation, therefore, applied: 

                          5-13 

The flow governing equations above were solved by a projection method described 

above based on the regular orthogonal grid mesh using a control volume method. The 

pressure Poisson equation deduced in the projection method was solved using the 

preconditioned conjugate gradient solver. In order to take into account the momentum 

sink at the bone/fluid interface, the standard projection method was modified in the 

following way. The intermediate velocity, u*, explicitly evaluated from the previous 

time step and the pressure gradient  P were multiplied by the liquid fraction to obtain 

the new velocity,      .  

                                    5-14 

 

                                 5-15 

where F is the discrete convection and diffusion term in the N-S equations. The method 

has been validated against analytical solutions (Al-Rawahi and Tryggvason 2002). This 

modification does not introduce extra computational effort but provides a dynamic 

solution to the transient growth of the bone.  
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5.2.3.2 Shear Stress and Bone Ingrowth Model 

This part of the model was developed within this study and implemented in the existing 

µMatIC code. Shear stress on the bone surface was calculated through the velocity 

gradients neighbouring the growing cells. Based on the definition of fluid shear being 

the components of stress coplanar with the cross section of a control volume (Granger 

1995), the shear stress component in x direction was defined as: 
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where v and w are the velocity tensors on the tangential plane of the fluid flow. A 

similar definition is then applied to     and   . 

The local shear stress magnitude was calculated as:  
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For a simpler calculation and less intensive computational requirement, the subsequent 

cell growth rule was set to be a simplified linear relationship with the shear stress 

(original reference of the concept in (Liu et al. 2012)) . The absolute growth (%) on 

each cell, i.e. the fraction of solid that are taking into account as the growing bone is 

defined as: 

                                               5-18 

where A is a constant, termed as the growth factor;    is the time step. The value of the 

growth factor, A, was chosen so that the maximum growth rate matches previous 

recorded value in literature (Chung et al. 2007; Freed et al. 1994).  

5.2.3.3 Parameters and Initial / Boundary Conditions 

Figure 5-2 shows the schematic of the boundary and initial conditions used in the 

simulations. A fully liquid region is placed up- and down-stream to act as a fluid 

buffering zone and to allow the flow to stablise on the upwind and downwind flow 

faces.  Up / down-stream end faces of the buffer zone in the desired flow direction were 

set as fluid inlet/outlet boundaries. Four different constant inflow velocities, 0.02, 0.05, 

0.1 and 0.2 mm/s were simulated (note all producing laminar, low Reynolds number 

flows). A pressure outlet was imposed on the outlet boundary. A no-slip condition was 

used on the pre-defined bone-fluid interface and zero-flux on other bounderies.  
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Figure 5-2 Schematic of the flow system used for the bone ingrowth 

simulation: regions A&B are fluid buffer zones; boundary and initial 

conditions are labelled.  

The other simulations parameters are given in Table 5-1. The inflow velocities were 

chosen based on values used in similar numerical studies in literature for ease of 

comparison. A mesh grid size of 36 µm was chosen for better simulation efficiency. 

The dimension of the sample was kept the same as the previous CFD study on 

permeability to ensure that the REV of the structure was included in the simulation.  

It should also be noted that, as previously reported by Cartmell et al. (Cartmell et al. 

2003) and Raimondi et al. (Raimondi et al. 2006), shear stress greater than 0.05 mPa 

will promote the cell proliferation/stimulation while a shear stress exceeding 56 mPa 

causes cells to be washed out and therefore slows down the cellular growth rate. A 

minimum and a maximum shear stress constraint were incorporated in the model. In 

this case, the growth vanishes when the calculated shear stress magnitude is less than 

0.05 mPa or greater than 56 mPa (i.e. the growth factor is set to be zero when the shear 

is out of range). The ingrowth simulation was run both with and without the upper 

constraint 56 mPa so that the effect of high shear stress on decreasing the cell growth 

can be quantified. 
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Table 5-1 List of simulation parameters used in the numerical model: 

Property  Value  Unit  References  

Initial inflow velocity (v
in

)  

2×10
-5

  

5×10
-5

  

1×10
-4

  

2×10
-4

  

m/s 
Liu et al. (Liu et al. 2012) 

Raimondi et al. (Raimondi et al. 2011) 

Medium density (ρ)  1009  kg/m
3 

 Coletti et al. (Coletti et al. 2006) 

Medium viscosity (µ)  8.4×10
-4

  kg/ms Coletti et al. (Coletti et al. 2006) 

Growth factor (A)  1.5×10
-4

  --- Based on Liu et al. (Liu et al. 2012) 

Max growth rate  1.5×10
-5

  s
-1

  Coletti et al. (Coletti et al. 2006) 

Min (critical) shear stress (τ)  0.05 mPa Cartmell et al. (Cartmell et al. 2003) 

Max shear stress (τ)  56 mPa Raimondi et al. (Raimondi et al. 2006) 

Grid size  36  µm  
 

5.3 Results 

The model is applied to calculate the bone ingrowth in the regular and 30% randomised 

structures with similar porosities characterised based on the 3D CAD design. For each 

sample, the velocity profiles, the shear stress magnitude and distribution, the pressure 

drop, the growth rate and corresponding volume fraction of bone ingrowth over 120 

hours at each inflow velocity were calculated. 

The overall pressure drop in both implant structures at inflow velocity of 0.02 mm/s are 

shown in Figure 5-3. Pressure in the 3D volume of the regular design (0% 

randomisation) varies from 0 to 1.5 mPa. Simulation in the 30% randomised structure 

reveals a maximum pressure variation 2.4 times greater than the regular due to the 

uneven distribution of velocities of fluid passing through more torturous channels. 2D 

slices of yz-planes are selected at the centre to show the velocity and shear stress 

distributions in Figure 5-4. 
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Figure 5-3 3D volume images showing the overall pressure changes in (a) the 

regular and (b) the randomised structures. (Inflow velocity: 0.02 mm/s, time 

point: 0hrs) 

Figure 5-4 shows the 2D cross-sectional view of velocity and shear stress distributions 

at the centre of both (a) regular and (b) 30% randomised structures when the inflow 

velocity is 0.02 mm/s. In the regularly ordered implant structure, higher velocity flow 

occurs in the narrow channels with weak flow in the open channel (labelled as region 

‘(N)’ in Figure 5-4 (a)). The shear stress is almost zero in ‘(N)’ regions. The maximum 

values of velocity along the flow direction within the regular (0.13 mm/s) and 

randomised structures (0.16 mm/s) exhibit a difference of 23.1%. The average velocity 

throughout the entire structure is also compared: the 30% randomised structure has a 

higher average velocity value of 22.7% greater than that of the regular structure at the 

final stage of growth. Higher shear stress values are seen at the locations where the 

changing in velocity is significant. The maximum value of shear applied on the solid in 

the randomised structure is 3.4 times greater than the regular one. Note that CFD 

simulation in FLUENT on same structures without bone ingrowth were performed to 

validate the initial stage results, and the overall pressure changes and velocities agreed 

with each other within same order of magnitude. 
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Figure 5-4 (a) & (b):2D cross-sectional views of local velocity distributions in 

the regular and 30% randomised structures. (c) & (d): 2D cross-sectional 

views of local shear distributions in the two structures. (Inflow velocity: 

0.02 mm/s, time point: 0hrs) 

The distributions of local shear stress throughout the regular and randomised implants 

are shown in Figure 5-5 as fluid volume normalised histograms. Shear stress values 

corresponding to all the interfacial cells are counted and normalised by the total fluid 

volume. Five key parameters are extracted in Table 5-2: the mean, standard deviation of 

shear stress and the mode, skew and kurtosis of the distribution at both early and final 

growth stages. The strong influence of inflow velocity and strut structure on local shear 

stress is clearly shown. In the regular structure, more local cells have higher shear stress 

with the increase of inlet velocity. This trend is also shown for the randomised structure. 

However, in the 30% randomised structure, both the shifts in modal values of the shear 

stress from 2.6 to 71.1 mPa at early stage and 5.8 to 71.1 mPa at final stage, which is  
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revealed to be greater ranges than those in the regular structure ((Figure 5-5 (b)). 

Skewness measures the concentration of the shear stress in the distribution. In both 

regular and randomised structures, lower inflow velocity cases showed moderate 

changes from approximately symmetric to slightly positively skewed distributions. For 

higher inflow velocity, the shear distribution became highly skewed (skewness greater 

than +1) towards the higher stress region as the time increases, indicating high shear 

stress concentration due to larger amount of deposited bone cells compared to the low 

velocity cases. Kurtosis gives information on how the height and sharpness of the peak 

of the distribution compare to the shape of a normal distribution. The range of shear in 

the regular structure narrowed more significantly compared to the randomised structure, 

suggesting constrictions in open channels causing localised stress concentration.     

Table 5-2 List of key parameters obtained from shear stress distribution at 

final growth stage.  

  
Inflow 

velocity 

(mm/s) 

Regular Randomised 

16.7 hrs 120 hrs 16.7 hrs 120 hrs 

Mean shear stress 

(mPa) 

0.02 4.3 6.7 3.9 6.4 

0.05 13.1 18.5 12.2 19.0 

0.1 30.3 50.1 29.3 48.0 

0.2 66.9 105.2 66.9 90.4 

Mode shear stress 

(mPa) 

0.02 5.3 10.2 2.6 5.8 

0.05 11.3 24.5 12.3 12.3 

0.1 35.3 35.3 20.2 54.9 

0.2 60.6 60.6 71.1 71.1 

Standard deviation 

(×10
-3

) 

0.02 4.6 6.9 4.8 7.6 

0.05 14.6 20.9 15.9 28.3 

0.1 34.1 86.6 39.3 85.1 

0.2 75.7 304.1 90.9 162.3 

Skew  

0.02 0.3 0.5 0.7 0.8 

0.05 0.5 0.5 0.8 1.0 

0.1 0.8 1.2 0.9 1.3 

0.2 0.8 1.4 0.9 1.3 

Kurtosis 

0.02 -1.5 -0.6 -1.1 -0.9 

0.05 -1.4 -0.8 -0.9 -0.4 

0.1 -0.5 1.4 -0.7 0.4 

0.2 -0.5 0.9 -0.8 0.6 



- 109 - 

 

 

Figure 5-5 Local shear stress histogram distributions at different time points 

with the vertical axis showing the frequency density with a given shear range 

(log-based bin range).  (a) & (b) At time point 16.7 hrs, shear distributions at 

four different inflow velocities in the regular and 30% randomised structures. 

(c) & (d) At inflow velocity 0.2 mm/s, shear distributions at four different time 

points in the regular and 30% randomised structures.  

In the regular structure, at earlier time points up to 16.7 hours (Figure 5-5 (a)), a factor 

of 10 increase of the inflow velocity (0.02 to 0.2 mm/s) causes a 11.4 times increase in 

the mode of the shear stress (5.3 to 60.6 mPa). Although shear stress distributions at 

later time points, especially in the regular structure, show a less steep increase in the 

mode of the shear, there is a large difference in distributions between the regular and 

randomised structures at higher inflow velocities. For example, in Figure 5-5 (c) and (d), 

significant reduction in regions with high shear stress values (> 1500 mPa) is found in 

the randomised structures as time increases. And the randomised structure has a broader 

distribution of shear with a maximum shear stress of 1.7 times larger than the regular 

structure. 

A comparative plot of volume fraction of bone ingrowth over time in the two structures 

is shown in Figure 5-6 (a). A 10-fold increase in inflow velocities causes a 9 times 



- 110 - 

 

increase in bone ingrowth (1.9 to 17.5%) in the regular structure after 120 hours while 

in the randomised structure, bone growth is initially similar for all inflow velocities, but 

after 60 hours, it shows a faster bone ingrowth with a 11.5 times increase in bone 

volume (1.7 to 19.5%).  

Several prior experimental studies suggested that there is also a maximum shear stress 

beyond which osteoblasts will not attach and there will be no bone formation. This is 

simulated by applying the upper shear constraint for bone ingrowth. Results in      

Figure 5-6 (b) show significant decreases in bone growth by 80.1% and 81.0% in the 

regular and 30% randomised structures with the constraint of maximum shear value, 

56 mPa, respectively. Furthermore, by comparing the two structures, it is found that an 

8.8% more decrease of bone ingrowth volume fraction is found in the randomised 

structure. 
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Figure 5-6 a) Comparative plot of bone ingrowth vs. time between the regular 

and 30% randomised structures at different inflow velocities. Insets: I 

showing the blockage of the channels in the regular structure at later time 

stage; II showing the concentration of shear stress in the randomised 

structure, where indicates more ingrowth at later stage of growth after 70 hrs. 

(b) Effect of maximum shear constraint on bone ingrowth at inflow velocity of 

0.2 mm/s in the regular and 30% randomised structures. (i) & (ii) showing the 

final growth at 120 hrs without capping the shear stress. (iii) & (iv) showing 

zoomed in features of bone growth (coloured red). (v) & (vi) showing the final 

growth at 120 hrs with the shear constraint. Contour coloured by shear stress. 

The comparison of the total volume fraction of bone ingrowth without constraints in 

both structures is shown in Figure 5-7 as a function of the average local shear stress 

(volume and time averaged). Both regular and 30% randomised structures show similar 

ingrowth at inflow velocities less than 0.1 mm/s; however by looking at the shear 

distributions in the 3D structures, factors which may hinder the ingrowth in the regular 

and randomised structure appear differently, and are discussed in the following section. 
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At an inflow velocity of 0.2 mm/s, the regular structure experiences higher average 

shear stress due to channels being blocked by fast deposited cells and therefore shows 

less increase in bone volume fraction at late stage when compared to the randomised 

structure.  

 

Figure 5-7 Comparison between the regular and 30% randomised structures 

at final stage of growth: volume fraction of bone ingrowth vs. average shear 

stress at different flow inlet velocities (without shear constraint). 

Figure 5-8 shows the comparison of average shear stress and average growth rate at 

different time points between the regular and 30% randomised structures with 

increasing inflow velocities. At all velocities, the 30% randomised structure was found 

to have more stabilised growth rate at larger time points (typically > 40 hours) 

compared to the regular structure. A maximum of 19% of the variation in growth rate 

after 40 hours was found in the randomised structure while a decrease of 20 – 44% in 

growth rate was predicted in the regular model. 
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Figure 5-8 Comparison of average shear stress and average growth rate at 

different time points between the regular and 30% randomised structures 

(without shear constraint): (a)-(d), regular structure with increasing inflow 

velocities; (e)-(h), 30% randomised structure with increasing inflow velocities.  
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The comparison of overall growth rate (calculated by averaging the growth rates at all 

the time points) for regular and randomised structures is shown in Figure 5-9. It 

suggests that at velocities greater than 0.5 mm/s, the randomised structure would exhibit 

a generally better performance of bone ingrowth under the prevalence of the fluid flow 

induced shear stress.  

 

Figure 5-9 Comparison between the regular and 30% randomised structures: 

overall growth rate (average value at different time points) vs. inflow velocity 

(without maximum shear constraint). Inset: I, II, III & IV showing final 

growth in the regular structure; i, ii, iii & iv showing the final growth in the 

randomised structure. Contour coloured by shear stress. 

5.4 Discussion 

A numerical model is presented which simulates the microscopic flow shear stress and 

cell growth, reveals for the first time their complex inter relationship as osteogenesis 

occurs, especially at a microscopic level. Although a few prior computational 

approaches have been proposed to evaluate the shear stress on porous scaffold surfaces 

(Chung et al. 2007; Cioffi et al. 2008; Maes et al. 2010; Raimondi et al. 2006), and 

after imposed bone deposition (Lesman et al. 2010), the time dependent changes in 

flows and distribution of bone ingrowth have not, to our knowledge, been previously 

simulated. This model is applied to study complex 3D AM structures, allowing 
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quantitative prediction of the effect of shear stress distribution within the real implant 

structure on cellular growth, and locates the actual areas where the cellular response 

takes place.  

5.4.1 Model Validation 

The numerical model was compared with the FLUENT CFD model in Chapter 3 

(Figure 5-10). The results from the current model match well with the FLUENT 

prediction of velocity components and permeability. 

 

Figure 5-10 Plot of the velocity components in flow direction (x-direction) 

through the central line of the domain in both FLUENT and numerical bone 

ingrowth model. 

Comparison with the literature is not straightforward since the shear stress estimation 

will be greatly affected by the choice of simulation parameters and the 

porosity/microstructure of the structure being tested. Our predicted levels of shear stress 

agree reasonably well with Raimondi et al.’s work (mean shear stress of 16 mPa at an 

inlet velocity of  0.22 mm/s) (Raimondi et al. 2006). Compared to Maes et al.’s work 

(Maes et al. 2009) at similar inflow velocity (0.03 mm/s), the average stresses were the 

same order of magnitude (1.4 mPa). The amount of ingrowth at five days agrees with 

Raimondi et al.’s prediction but a direct comparison is not possible as the void fraction 

and shear stress levels were not given in that publication. Note that although simulation 

was performed up to an inflow velocity of 0.2 mm/s for comparison, at velocity above 



- 116 - 

 

0.1 mm/s the shear stress predicted will be too high for cell attachment (Raimondi et al. 

2006). 

5.4.2 Local Shear Stress Distribution and its Impact on Bone Ingrowth 

The model was applied to investigate the local shear stress distribution within two types 

of implant structures, regular and 30% randomised with four different fluid inflow 

velocities. As shown in Figure 5-4 (c) and (d), the randomised structure had a much 

broader range of shear stress (maximum shear is > 4 times that of the regular structure). 

The distribution of the shear stress in the regular structure showed a regular pattern with 

relatively high local stress concentration in strut channels, but little shear in areas within 

pores. This promotes bone growth in the narrow channels, but not across the bulk of the 

regular structure. In the randomised structure, the fluid flow was more evenly 

distributed (Figure 5-4 (b)).  

Analysis of shear stress histograms at various time points reveals that in the regular 

structure, the distribution of shear varied more significantly than in the randomised 

structure, especially at later stages of growth (see Figure 5-5 (c) and (d)). At lower 

inflow velocities (0.02 mm/s and 0.05 mm/s), there was a two-fold increase in the mode 

of the shear stress with increasing time during early stage of growth. At higher inflow 

velocities (0.1 mm/s and 0.2 mm/s), a three-fold increase in the mode of the shear stress 

took place in the middle stage of the growth. However, after about 9% bone ingrowth, 

the growth rate (mode) dropped and the distribution narrowed. As the bone ingrowth 

continues, high stress regions were formed (regions with shear greater than 1000 mPa). 

This indicates that in the regular structure, the cellular growth which results in a greater 

bone layer thickness, may cause constrictions in the interconnect regions, which further 

reduces shear in the bulk regions (pores).  

In the randomised structure, at all inflow velocity magnitudes, the shear stress 

distributions showed a similar skew trend at all time points. This demonstrates that in 

this particular structure arrangement, the cellular growth followed similar paths in the 

naturally formed preferential flow channels. Generally, the magnitude of shear stress 

increased as the bone grows. The average growth rate decreased as bone volume 

accumulates, indicating that the impact of shear on cellular growth diminishes as the 

shear experienced by cells decreases. The results indicate that the internal structural 

difference may be useful for the bespoke design of implants. For example, at earlier 
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stages of implantation, the structural flow-channels need to be formed to serve as a 3D 

template for guiding the desired bone ingrowth. More uniformly distributed shear with 

a stable average magnitude may be required during later treatment period.  

The total amount of bone ingrowth in both types of structures is compared at different 

inflow velocities (Figure 5-6). In general, the amount of cellular ingrowth is directly 

proportional to the inflow velocity. In the regular structure, the growth increased almost 

three-fold from 1.8 to 4.7%, at inflow speed from 0.02 to 0.05 mm/s. For the 

randomised design, the result showed similar volume fraction of bone ingrowth as the 

regular structure for inflow velocities < 0.1 mm/s. However, at high flow velocities and 

longer times, the rate of ingrowth in random structures increased by 11% over the 

regular strut architecture. This finding can be explained by the fact that in the regular 

structure, due to the ordered design, there are channels where there is little flow in 

contact with the struts wall and therefore less shear, resulting less amount of bone 

ingrowth in those areas. Also at later stage of the growth, the prevalence of equally 

constricted channels in the regular design, due to the localised growth of bone, can 

hinder the subsequent growth more noticeably. The presence of narrowed channels 

causes large amounts of flow media to be forced to pass through a relatively small part 

of the entire void space. This implies that narrow flow channels may result in less 

vascularisation and transportation of oxygen and nutrients in the implant so that part of 

the desired ingrowth amount is compromised in this case. 

Raimondi et al.(Raimondi et al. 2006) suggested that beyond a certain shear stress 

magnitude, cells would be washed out hence the growth might be hindered. In order to 

examine the potential of excessive shear stress on cellular growth, our numerical model 

with maximum shear constraint provides a quantitative result on the effect of its cell 

wash out effect. The simulation with the highest inflow velocity was picked to examine 

the impact of the maximum shear on cellular growth. It was found that with the 

maximum shear stress constraint, the amount of ingrowth decreases significantly in 

both designs (by more than a factor of 5). This suggests that the high inflow velocity 

(0.2 mm/s) simulation results might be unrealistic. The impact of maximum shear on 

bone ingrowth is still unclear, and further experiments need to be performed to 

understand the relationships, that can be used to find the best perfusion inlet velocity 

and correlate this finding to the bone growth rate.  
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The relationship between the volume fraction of bone ingrowth and the shear stress is 

shown in Figure 5-7. Local shear stress increases with the amount of new bone grown 

into the structure, which in turn blocks part of the flow channel, causing fluid to pass 

through narrower space, resulting in the increase of the fluid velocity in the porous 

structure and consequently the shear applied on surface cells. It is interesting to see that 

for the highest inflow velocity case, regular structures shows a higher local shear profile 

than the randomised structures for less bone ingrowth. This agrees with the observation 

that at high velocity, regular channels become blocked by fast deposited ingrowth, 

which results in a less optimal environment for later stage bone growth.  

The comparison of average growth rate at different time points between the two 

structures in Figure 5-8 further confirmed the previous observation that the internal strut 

morphology of 30% randomised structure may have positive influence on later stage 

bone ingrowth.    

From Figure 5-9, which shows the plot of average values of growth rate at different 

time points with different inflow velocities, it can be concluded that the overall growth 

rate depends, to a large extent, on the flow inlet velocity.  Comparing the performance 

of the two types of structure, greater overall growth rate may occur at higher flow 

velocities in a randomised structure. However, the shear stress and the location of the 

ingrowth depend greatly on the internal structure at a micro level. Further simulations 

are required on a statistical basis to test the model on structures with different internal 

strut and pore morphology.  

5.4.3 Limitations of the Model 

Although the proposed linear cell growth function depending on shear stress has been 

used in the simulation, this function can be easily altered in the model as more data 

become available, such as dependency on local nutrient concentration, mechanical shear, 

etc. Also, the growth coefficient will depend on the choices of the culture fluid and cells. 

For the study of quantifying shear constraint effect on bone ingrowth, more appropriate 

growth function may be needed to avoid possible artefacts in flow behaviour caused by 

sharp drop of growth factor. For example, a nonlinear term for shear based removal of 

cells can be incorporated into the current linear function to accommodate the 

diminishing effect. 



- 119 - 

 

Further modification should be made to this microscopic model to include the nutrition 

and oxygen transport in order to provide more accurate results of bone ingrowth with 

local shear stress distribution once this data becomes available. Improvements such as a 

statistical analysis can be performed to further test the accuracy of the model by 

applying the model on different samples with same level of randomisation and also 

samples with different levels of randomisation, or only completely different structures, 

such as apatite foams (Jones and Hench 2003) or bioglass foams (Jones et al. 2006). In 

addition, the current model assumes laminar fluid flow inside the implant. However, 

modifications can be made to simulate pulsating flow inside body, which should more 

closely mimic the in-vivo situation. 

Another limitation is a paucity of quantitative experimental validation data for these 

dependencies. At present, it is only possible to compare the average values of shear 

stress provided by macroscopic computational modelling results.  

In summary, this study provides a microscopic evaluation of shear stress within the 

implant structure, and reveals direct quantitative results of cellular growth related to 

shear stress distribution. By simulating the flow in implants with different internal 

structures, the model provides potential guidelines to optimise the implant construction 

for stimulating bone ingrowth. 

5.5 Conclusions 

A microscale numerical model, based on the N-S equations, was developed to study the 

time dependent bone ingrowth and flow shear stress under two proposed AM Ti 

scaffold structures. The bone ingrowth as a function of time and shear was simulated in 

3D structures on a microscopic scale for the first time and its subsequent influence on 

the flow was determined.  

The influence of local fluid shear stress on bone ingrowth as a function of increasing 

inflow velocities, implant structures and time was investigated. The increasing inflow 

velocity enlarges the range of shear stress and has a positive relationship to the overall 

growth rate. The results indicate that the 30% randomised structure produces a much 

higher variation in flow shear than the regular structure. During initial stages of growth, 

this may not affect osteogenesis significantly; but interestingly as bone ingrowth 

progresses, the randomised structure sustains high growth rates due to preferential flow 
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channels forming. In the regular structure, localised growth may hinder the bone 

ingrowth at later stage which reduces the overall growth rate. Quantitative effect of 

excessive shear stress predicted that higher inflow velocities, greater than those shown 

in experiments, can be used as guidelines for designing the optimal perfusion rates in 

the cell culturing study. The model provided a viable tool that can be used to determine 

the influence of hierarchical structure design in AM Ti implants.  

The CFD approach developed in this study can be used as another modelling tool in 

addition to the flow property and the FEA models reported in previous chapters to 

characterise porous orthopaedic implant materials. Combination of the three models and 

study on the interaction of flow, mechanical properties and bone ingrowth are expected 

to have a profound effect on the optimal design of implant in the medical research field.  
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6 Conclusions and Future Work 

6.1 Conclusions 

In this thesis, three computational models of porous titanium (Ti) foams produced by 

additive manufacturing (AM) were developed based on X-ray microtomography (µCT) 

imaging to characterise: (1). flow properties; (2). mechanical properties and (3). bone 

ingrowth. The applications of these models provided viable pathways to help predict the 

performance of the implant prior to manufacturing, making the evaluation of individual 

design factors on overall performance in the implant design process possible.  

Firstly, using the µCT based in-house quantification technique and commercial 

computational fluid dynamics (CFD) model developed to simulate the flow inside the 

porous Ti implant, the following conclusions were made: 

 The pore size of AM Ti implants made via the UC approach was found to be in 

the range 200 – 500 µm, which satisfies the requirements for transport and 

subsequent ingrowth. The pore size modal value increases as the randomisation 

level increases.  

 The Navier-Stokes equations (N-S equations) based CFD method was combined 

with 3D non-destructive µCT imaging technique to characterise flow properties 

of the porous structure. The model, which was validated against experimental 

measurement, demonstrated its suitability to quantify the permeability of the Ti 

implants. Four structures of different levels of randomisation between 0 and 30% 

and a nominal porosity of 65% were tested. The CFD predicted permeability 

values ranging from 6.9×10
-10

 to 1.0×10
-9

 m
2
 compare well with the previous 

studies of permeability of human trabecular bone.  

 By comparing flows in both regular and 30% randomised structures, it was 

observed that structure variation has a profound effect on local flows. 

Preferential flow channels form much more readily in the randomised structure 

due to greater variations in channel width and pore size compared to the uniform 

channel size in the regular structure, giving a much greater range of local shear 

in the flow, which was later shown to stimulate bone ingrowth. 
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 Using the technique developed to voxelise the foam structure and to alter the 

design of the strut thickness / surface morphology, a computational tool has 

been developed to allow implant designers to independently vary the overall 

porosity and strut surface roughness, each having a separate effect on the 

permeability. This approach, combined with the AM technique, allows an 

engineered design, hierarchically tailored for producing desired flows in 

implants. 

Secondly, a finite element analysis (FEA) model was developed to characterise the 

compressive properties of the implant. The following points were concluded:  

 The model was applied on three different structures (regular, 30% randomised, 

mixed regular-randomised). The predictions of both the strength and modulus 

properties by FEA simulation agreed well with experimental measured and the 

literature values. This confirms that the viability of this computational approach 

to characterise the highly porous Ti structure used for orthopaedic implants.  

 The regular structure has an effective elastic modulus of 1.7 GPa and a yield 

stress of 28 MPa. The 30% randomised structure has an effective elastic 

modulus of 2.1 GPa and a yield stress of 39 MPa. The implant with a mixed 

design exhibits an elastic modulus of 2.2 GPa and a yield stress of 30 MPa. The 

properties of these structures satisfy the typical requirement for implant used for 

orthopaedic applications. 

 The comparison results showed that the randomised structure has better 

mechanical performance as compared to the regular structure. The failure 

mechanism of the regular structure followed the model suggested by Gibson and 

Ashby (Gibson and Ashby 1999) in a layer-wise manner, whereas the 

randomised structures showed a more localised stress concentration and 

therefore the local failure of struts were more isolated.  

Lastly, building on Chapters 3 & 4, a novel model of the time dependant, microscopic 

flow-induced shear driven, bone ingrowth model was developed. The bone ingrowth as 

a function of time (up to 120 hrs) and shear stress was simulated in 3D on a 

microscopic scale for the first time and the model takes the subsequent influence of 

ingrowth on the flow into consideration.  
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 The first microscale CFD model, based on N-S equations, was developed to 

study time dependent bone ingrowth and flow-induced shear stress within the 

porous AM Ti structures. The model was applied to regular and 30% 

randomised structures with four different inflow velocities (0.02, 0.05, 0.1 and 

0.2 mm/s).  

 The range of shear stress, overall growth rate and the total amount of bone 

ingrowth largely depends on the inflow velocity. The growth increased from 1.8 

to 4.7% at inflow velocity from 0.02 to 0.05 mm/s in both types of structures.  

 At higher flow velocities, rate of ingrowth in randomised structures increased by 

11% over the regular structure. It is suggested that a greater overall growth rate 

may occur at higher flow velocities in a randomised structure.  

 Regular and 30% randomised structures showed different distributions of shear 

especially towards the later stage of the growth.  In the regular structure, the 

overall growth rate dropped after about 9% of bone ingrowth at higher inflow 

velocities (0.1 and 0.2 mm/s). Constrictions in the interconnect regions in the 

regular structure were found due to the formation of high stress regions with 

shear greater than 1000 mPa. While in the randomised structure, the growth 

followed pre-designed preferential channels so that it facilitated better ingrowth 

at later time points. This finding indicates that the internal structure difference 

may be useful for designing the implants to be used in different defect places in 

the body where localised bone ingrowth may be required.  

 The quantitative effect of excessive shear stress greater than 56 mPa predicted 

that higher inflow velocities, greater than those shown in experiments, can be 

used as guidelines for designing the optimal perfusion rates in the cell culturing 

study. 

In summary, the thesis demonstrates that the CFD and FEA models are able to quantify 

the flow and mechanical properties of various Ti porous implant structures. Combining 

the effects of different structural factors on the performance of implant, bespoke design 

of the optimal implant with a combination of the regular and randomised structures may 

be recommended. For example, depending on the shape of the defect area, randomised 

structure that has better mechanical performance can be used in stress bearing location 

with partial volume of the regular structure with added strut roughness to enhance fast 

early stage bone ingrowth to fix the implant at the defect site. Furthermore, as the 
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porosity and the randomisation level of the structure have separate influences on the 

bulk and localised flow respectively, one should consider the interactive effect of 

altering the overall porosity and the randomisation level. To further provide a 

quantitative recommendation for implant design, a study combining the three models 

will be essential to investigate the complex interactions between loading, fluid flow and 

porosity changes due to ingrowth.  

6.2 Future Work 

In Chapter 5, the model of predicting the bone ingrowth was based solely on the shear 

stress induced by the flow within the structure. Further modification can be made to the 

microscopic model to include the nutrition and oxygen transport in order to provide 

more accurate results of bone ingrowth with local shear stress distribution.  

Statistical analysis is recommended to further test the accuracy of the model by 

applying each model to more types of scaffolds such as bioglass and polymer foams.  

The predicted amount of bone ingrowth from this model is recommended to be 

compared to in vivo samples with implanted foams to further confirm the finding of the 

study.  

The three models developed in this thesis simulate the flow, bone ingrowth and the 

mechanical behaviour separately. Combination of the three models and study on the 

complex interaction of flow, mechanical properties and bone ingrowth are 

recommended.  
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