Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

Partial Observability During Predictions of the Opponent’s
Movements in an RTS Game

Simon Butler, Member, IEEE, and Yiannis Demiris, Senior Member, IEEE

Abstract—In RTS-style games it is important to be able to
predict the movements of the opponent’s forces to have the best
chance of performing appropriate counter-moves. Resorting to
using perfect global state information is generally considered
to be ‘cheating’ by the player, so to perform such predictions
scouts (or observers) must be used to gather information. This
means being in the right place at the right time to observe
the opponent. In this paper we show the effect of imposing
partial observability onto an RTS game with regard to making
predictions, and we compare two different mechanisms that
decide where best to direct the attention of the observers to
maximise the benefit of predictions.

I. INTRODUCTION

When working in an adversarial environment it is of
considerable advantage to be able to recognise and predict
the movements of the opponent’s forces, so that the most
beneficial counter-strategy can be generated. Therefore it
is very important to know the detailed whereabouts of the
opposing team’s units, so that predictions about their future
behaviour can be formed.

Within certain domains, such as in Real-Time Strategy
(RTS) games, knowledge about the opponent is usually
obtained by simply assuming that perfect global information
is always available. In this domain the computer-controlled
player usually has information about the human player’s
units, even though the converse is not true: the human player
can only see their immediate surroundings. This has the
advantage of making the AI system easier to design, but
can lead the human player to feel that the game is not being
played on a level playing field, as the computer-controlled
player has gained an unfair advantage. This is potentially
damaging to a game because a perception of cheating can
result in the player feeling less immersed [1], and full-
immersion is crucial in creating an entertaining game [2].

The extent to which a computer-controlled player needs to
be bound to the same rules that the human players abide by
is largely unexplored in Al research. Even so, in this paper
we assume that, though it greatly increases the difficulty of
the problem, it is desirable to have the computer-controlled
player compete within the same framework as the human
player. This paper builds on our previous work on using
simulation-theory for prediction in a multi-agent environment
[3, 4]. Here, we try to give parity to both computer and
human players by limiting their view of the environment to
a composite of the areas that can be perceived by a scout
(or, in general, an observer). Therefore the deployment and

The authors are with the Electrical and Electronic Engineering
Department, Imperial College London, UK (email: {simon.butler,
y.demiris } @imperial.ac.uk).

coordination of the scouts that perform the observations of
the opposing units is an important issue.

In this paper we investigate how making the system
partially observable affects the number and timeliness of
predictions that can be made. We compare two methods for
deciding on where best to direct the attention of the observer,
the first being a simple round-robin scheduler, and the second
being a threat-based attention mechanism.

II. BACKGROUND

Given that the computer-controlled player has a limited
view of the environment, the problem is where to allocate the
limited resources to cover the most relevant areas. Therefore,
a potential solution to this problem is the use of an attention
mechanism.

The inputs to an attention mechanism can either be
stimulus-driven (bottom-up) or goal-directed (top-down) [5].
Stimulus-driven means attending to the most salient regions
of the environment and applying a winner-takes-all strategy
[6]. In the context of an RTS game this means the areas
of the map with, e.g., the highest concentration or fastest
movement of units. However it is well known from human
psychophysical experiments that top-down information can
affect bottom-up processing [7, 8]. Top-down information
can be derived from other sources of knowledge about the
observed actions, for example from analysing the terrain,
or by knowing the player’s goals. However, all of this
information is not available prior to the start of the game
so a method to dynamically infer the top-down information
by predicting the player’s actions is needed.

In previous work we have used an architecture (dubbed
HAMMER) that uses a mechanism derived from simulation
theory for predicting the movements of the opponent [4]. It
uses the same models for both prediction and execution, so
it can reuse behaviours to both act overtly and to simulate
actions and their consequences. Other work by Southey
et al. [9] uses hidden semi-Markov models (HSMMs) to
infer motion and potential targets from partial trajectories.
Alternative approaches to obtaining top-down information
include opponent modelling [10] or planning [11, 12] but
the type of information obtained from these approaches is
of a higher level than can be directly used by an attention
mechanism.

In this paper we incorporate the goal-directed information
with other content features to make an threat-based attention
mechanism to increase the effectiveness of the observations.
The goal-directed information can be obtained by any of
the approaches listed above, however, here we shall use

Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

World state P
(attime t) 1
Inverse C, Forward | P, /Prediction\ Confidence
—® Model —® Model [verification
1 1 (att+1)
P,
6 2
Inverse c, | Forward | P, /Prediction\ Confidence
—» Model —® Model M verification
2 2 (att+1)
Inverse e Forward | P, /Prediction’ Confidence
— Model |—® Model | verification
n n (att+1)

Fig. 1. The HAMMER architecture implements the principles of the
simulationist approach. Multiple inverse models receive the world state and
suggest possible commands (C1-C',), which are formed into predictions of
the next world state by the corresponding forward model (P1-P). These
predictions are verified on the next time step, resulting in a set of confidence
values.

HAMMER, our simulation-based architecture, to generate
predictions.

III. ARCHITECTURE
A. HAMMER

The HAMMER (Hierarchical Attentive Multiple-Models
for Execution and Recognition of actions) architecture pro-
vides a base for the predictive system (see Fig. 1). It is
comprised of three main components: the inverse models
(plan generators), the forward models (predictors) and the
evaluator [5, 13].

An inverse model (IM) takes the current world state (which
includes the location of each of the units the player controls),
a set of units to control, and, optionally, target goal(s) or
other parameters. It generates the required waypoints or other
control signals (a plan) that, according to the model, are
necessary for each unit to perform so that they collectively
achieve the implicit or explicit target goal(s). Each parallel
instance of an inverse model is paired with an instance of the
forward model (FM) that provides an estimate of the events
that will occur if the generated plan is followed. At each time
step this estimate is returned to the inverse model to tune any
parameters of the actions to achieve the desired goal(s).

To determine which of these inverse/forward-model pairs
most accurately describes the events that are occurring, on
each timestep, the output of each forward model is compared
with the actual world state. These comparisons result in con-
fidence values that indicate how closely the observed events
match each particular prediction, and they are subsequently
accumulated over time until such a point that one model
pair achieves a clear separation from the others. This model
can then be simulated further into the future to provide a
prediction of upcoming events.

The inverse and forward models used in this architecture
are application-dependent and are described in Sec. IV.

B. Partial-observability

The architecture described so far assumes the complete
state information will be available for all of the inverse

models whenever it is needed. However, as mentioned in
Sec. I, this complete state is not generally available to the
player in RTS games, and obtaining it is costly in terms
of time and resources. Therefore, we restrict ourselves to
obtaining only the information that is required for particular
inverse models. For example, a surround manoeuvre IM
might require observations of many enemy units within a
certain vicinity of a target.

The method for deciding which inverse models deserve
being attended to becomes a question of resource scheduling.
One of the most basic scheduling algorithms is round-robin
scheduling [14], where the required units are observed in a
fixed sequence. When the last unit has been observed the
sequence starts again from the beginning. We can, however,
utilise other information we have available in the system to
make a more intelligent goal-directed attention mechanism.
Such information includes: utility of making the observation;
cost of moving to the unit’s position; reliability of existing
observations; and confidence of the current prediction for the
unit.

1) Utility: The utility of an observation can be formulated
by estimating the threat of the unit requiring the prediction,
e.g., how far it is away from the nearest target.

2) Cost: 1t is very likely that the observer has to move
to make the requested observation, so this can be taken into
account with the cost being proportional to the distance from
the current position of the observer to the last-known position
of the unit.

3) Reliability: The reliability of the position information
relates to the variance from the last-known position of the
unit being requested. The variance is initially set when the
unit is first observed, and it is based on the resolution of
the observer and the distance over which it performs the
observation. The variance then increases linearly since the
time from last observation, based on the worst-case speed of
the observed unit.

4) Confidence: The confidence of the position of a unit
relates to how well an assigned model fits the previously
observed trajectory. If the confidence is high then it is
assumed that the predicted next position is accurate.

These factors can be combined in many ways—the desired
purpose of the predictions and hence the attention mechanism
affects whether, for example, attention should be focussed on
units with a high-confidence prediction to gather more de-
tailed predictions, or whether a more conservative approach
should be taken to focus on units that do not have a good
prediction but have a high utility. We combine these measures
into a threat-based attention mechanism (described in Sec.
IV-G) that optimises the observations based on the objectives
outlined below.

IV. IMPLEMENTATION

To illustrate the effects of attention, we use a simplified
RTS-style game to make predictions about the movements
of the opponent’s units. We use this information to infer the
target that they are heading towards. The main objective is
to always strive to have predictions of the opponent’s units

Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

Game state

Request
observation

Hypothesis
generation

Best predicted state

\‘ Predicted
| states

Prediction confidences
Opponent

Analysis

State

Manoeuvre|
Model
Hypothesis|
Formation
Model

Inverse Models,

Predicted
tate

Waypoints

Client: Game
engine performing

Fig. 2. System implementation—incorporating HAMMER into a partially-
observable game.

before they reach their targets, and the earlier the predictions
are made the better.

A. System overview

The implementation of the system is divided into three
main sections (as shown in Fig. 2): the game instance that
host each team of units (tanks or soldiers in this case);
the clients running the game engine in ‘hypothesis’ mode,
executing the requested internal models; and the hypothesis
manager that is responsible for generating hypotheses based
on the game state, sending the state to the client at the
required time and evaluating and analysing the predictions
to present the results to the player.

The game hosts two teams of units, n,, opposing units (the
‘red’ team) and n; targets for the opposing units (the ‘blue’
team). It is the ‘blue’ team that runs the predictive system
against the opposing ‘red’ team. Hypothesis sets HY are
formed (in the hypothesis generator) for each unit u = 1..n,
and hypothesis type s = 1..S—although there is just one
hypothesis type (go-to target) used in the experiments in
this paper. Each hypothesis instance within these sets A% (b)
is given parameters (e.g. for the go-to target hypothesis type
b = {3, e, f} where 3 is one of the targets, e is the execution
(and hence observation) duration—in this case 5 seconds, and
f is the speedup parameter of the FM—in this case 4 times
normal speed). For each hypothesis instance the assigned
unit v is then simulated by the FM (in faster than real-
time, as controlled by the speedup parameter f) using the
control signals generated by the IM (the internal simulations
block). The predicted positions of the units and the actual
positions are compared (the evaluations block) after the
specified duration—the result of which is used to calculate
the confidence that those units are achieving the goal. The
best performing hypotheses are analysed (the analysis block)
and a future predicted state is sent back to the game to be
used by the AI system.

B. Inverse Models

The inverse models depend on the type of plans and
actions available to each of the units—fortunately, for many
games, it is very likely that these models already exist as a

library of actions a computer-controlled player can perform.
For example, the go-to IM outputs a series of ideal waypoints
to route a unit to a specific goal position, or the formation
IM simulates repulsive forces between units that updates
the target positions of the units to keep them in a specific
formation [3].

These IMs are parameterised to cover the range of be-
haviour that each unit can perform. Most parameters are
real numbers (e.g., positions, speeds, distances), but in many
cases only a subset of these numbers need to be considered,
which greatly reduces the number of IMs to execute. For ex-
ample, a position parameter used by the go-fo inverse model
could hypothetically be any point on the terrain. However,
even if the possible target positions are reduced to a lower
resolution, it is not necessary to test every position because
certain targets are more likely than others. For example,
units are likely to be either heading to: attack a group of
opposing units, a good defensive position, or rendez-vous
with another group of units. This can be taken further by
exploiting relationships between sets of parameters so only
those that are sufficiently different need to be executed.

In this paper we will just be using a simple straight-line
go-to IM. In our previous work we discuss how inverse
models can be optimised to reduce the number that need
to be examined [4], however, for ease of analysis, we do not
perform this optimisation here.

C. Forward Models

The forward models depend on the game dynamics, and
could be statistical models or simplified physics models.
However, these may have fairly low fidelity as, for instance,
the actual trajectory that the unit will take will be dependent
on the interpolation used between the waypoints generated
by the IM, the type and gradient of the terrain, and any use of
local obstacle avoidance; or there may be some dynamic team
behaviour, such as the unit may have to maintain a position in
a formation. The effect of these factors cannot necessarily be
easily encoded in a statistical model, therefore, the simplest
way to get a high quality forward model is to use multiple
instantiations of the game environment itself. This enables
each instantiation to be fed different hypothesised actions of
the opponent’s units from the inverse model, and for them
to return a predicted state to be compared with the actual
state of the game. Hence, we chose to use the game engine
to simulate the outcome of the inverse models for greater
prediction accuracy.

The engine of the game is based on Delta3D [15], which is
an open-source project to integrate various software libraries
into a coherent platform for simulation and games.

The 3D engine was used to model a large outdoor terrain
(see the screenshot in Fig. 3), with the height and other
features (texture, trees, buildings, etc) of the terrain being
displayed based on 2D feature maps. The physics engine
was used to accurately model the movement of the various
characters and vehicles, with additional control of their
aiming and firing mechanisms. The noise introduced by the

Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

Fig. 3. Game screenshot showing the graphical interface for the human-
controlled teams.

physics engine provides a stochastic element to the outcome
of scenarios.

To support the use of the game engine as a forward
model, it has to be able to transfer the current state to
a new instance of the engine. This involves extracting the
pertinent position, orientation and motion properties of each
unit, along with dynamic and static attributes such as health
and firing range. This information is then serialised and
sent to an independent instance of the engine, where the
state information is initialised and executed for the specified
duration, after which the resultant unit positions are returned
to the main game engine.

D. Evaluation Process

After the inverse and forward model pair produce predicted
unit positions, we need to evaluate which of these predictions
match the observed behaviour.

After a hypothesis instance h¥ (b;) has finished executing
it returns the starting position X (recorded at the begin-
ning of the execution of a hypothesis), the actual position
Xacwal (recorded after the chosen hypothesis time), and the
corresponding predicted position Xpredictea (@s calculated by
the forward model).

From this information we can calculate the confidence
function:

if |d| < d and |p] < d,

c(hg (b)) = otherwise. M

. mmin (]@],|p])
max (|d[,|p])

ISTRE

where @ is the vector from Xy t0 Xaca fOr unit v and p'
is the vector from Xart t0 Xpredicied fOr unit u in hypothesis
h, @ and [are the normalised vectors, |@| and |p] are the
magnitude of the vectors, and d is the deadzone that below
which the unit is considered to be stationary (we used a value
of d = 1 metre for our experiments).

This confidence function is designed to be able to dis-
tinguish whether the unit is moving towards or away the
predicted position, or in some other direction. This is ac-
complished by normalising @ and 7 (to get f)’ and &) and
taking their dot product. This has the desired characteristics
that if the unit moves towards or away from the predicted
position then the confidence approaches 1 or -1 respectively,
or if it moves perpendicular to the predicted position then

the error is zero, where 1 means high confidence, 0 means
unknown confidence, and -1 means no confidence.

The dot product term tells us what direction the unit
travelled, but we would also like to know how close it got to
the predicted position. However this needs to be invariant
to the different speeds of the units, so that the error of
different unit types can be compared. Therefore we scale the
result of the dot product by the magnitude of the shortest
vector (min (|@l, |p])), as a proportion of the magnitude of
the longest vector (max (|d], |p])).

It follows that the best matching hypothesis for a partic-
ular unit v and hypothesis type s is that with the highest
confidence over all the tested parameters b:

ci = maxc (hg (b)) @

E. Observations

We restrict the observability of the opponent’s units so
high-resolution sensors (observers) are required to obtain the
exact positional information of the units for the purposes of
making a prediction. To free us from having to perform an
initial blind search for the units we assume that we have
some belief of basic low-resolution positional information
for the opposing units, but this information is insufficient to
identify their type and exact trajectory. For example there
could be aerial surveillance, or some other sensor network
to detect the areas of the environment that units occupy. Such
static sensor placement is a well-researched area [16], e.g.,
using the characteristics of the sensor and the environment
to ensure coverage. It should be noted, however, that our
approach is not dependent on this capability because, after
the initial search, the predictive system can be used to keep
track of the units.

In our implementation the observers are helicopters with a
‘camera’ attached to their underside, pointing straight down,
therefore they have a viewing circle that depends on the
altitude. The camera has a fixed resolution of 50 ‘pixels’
along the radius, so the position of each unit is quantised
to one of these ‘pixels’. Therefore whilst a unit is being
observed, the variance of its position depends on the altitude
of the observer. If the unit is not being observed then
the variance of its position grows with time, based on the
maximum speed of the unit. The low-resolution observer
provides positional information within an accuracy can be
covered by the viewable area of the high-resolution observer.

F. System operation

At the start of the game, the clients are launched that
host the inverse and forward models, which perform the
predictions. The number of clients is limited to the amount
of resources that are available, i.e. 2-3 clients per CPU
core over several machines in our current non-optimised
implementation.

An outline of how the predictive system interacts with
the observers is shown in Fig. 4. First the initial position
information for the units is gathered. The positional infor-
mation for the targets (the ‘blue’ team) is fully observable

Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

Initial positional
information

v

Initialise hypotheses
for each target

Observers

Observation It e ok
requests Move to Wait for Start state
position available client V &goal

Schedule observers Simulate

A End of Evaluate

Observation observation ' hypothesis \Predicted states
requests ;
Fig. 4. Observation-based system operation
Calculate confidence
- ; -
Hypotheses 1 2 3 4 F 9 I
1
u, Travel u | Start End
Observations - - -
u, Travel UZI Start
time —»
Fig. 5. Timing for observations using one observer, one client and four

hypotheses

as this is the team running the predictive system, however,
the positions of the opposing units must be gathered from the
available low-resolution sensors. This information is used to
create the hypotheses.

The hypotheses initialise by requesting observations of
their assigned target 3 for duration e. The scheduler takes
these requests and decides which to attend to by assigning
each observer a unit to visit (described in Sec. IV-G).

When an observer reaches the requested observation unit
u it sends the state information (the position, orientation and
current speed of the unit) it observes to the relevant hypothe-
ses. The hypotheses each wait for a client to become available
then forwards the state and the hypothesis’ parameters to it.
The inverse and forward models are executed for duration d
on the client (with a speedup of f) and the predicted position
of the unit u is returned. The hypothesis then waits for the
observer to return a real observation of the unit u for the
predictions to be compared against. The confidence for the
unit is then calculated according to Eq. 1 and the result is
averaged over a time window to get the confidence for the
hypothesis A% (b). This confidence is then fed back to the
observation scheduler, and the observer becomes idle.

Whenever an observer becomes idle, and there are pending
observation requests, it is assigned a new observation target
and the loop repeats. This loop continues until the end of
the game, i.e., when all of the hypotheses become invalid
because all of the targets have been destroyed. Fig. 5 shows
the timing for one complete observation duration and the
start of the next observation when using one observer, one
client and four hypotheses.

Observation requests with current
confidences to each target

Ranked utility of No
targets for all
requests

Highest utility target
(and corresponding
request)

Confidence of
heading
towards target

Highest confidence
of heading towards
another target for
selected request

<=0.5

Ranked utility to No
other targets for the
selected request

Highest utility target
(and corresponding
request)

Confidence of
heading
towards target

h 4
Can be visited Ranked reliability of
in time? all requests

'

—»(_ Attend to request of selected tar@@end to top ranked requ@

Fig. 6. Observation request scheduling flow diagram

G. Threat-Based Attention

The scheduler chooses the next group of agents to ob-
serve from the list of requested observations. Based on the
objectives stated in Sec. IV we have devised a utility rating
that caters for the criteria below. We shall refer to this
implementation as a threat-based attention mechanism.

The criteria we are trying to optimise for are:

« to have a prediction that the attacker is heading towards

a target before it reaches it;

« to make predictions as early as possible.

This means we need to rank the targets based on how
close they are to their nearest target, so to have the best
chance of making a prediction before the attacker reaches
the target. However we also need to take into account the
time it takes for the observer to reach the attacker to perform
the observation. Therefore we rank the utility of the targets
based on the leeway, which is the time difference between
the observer reaching the attacker and the attacker reaching
the target. In this paper we assume the attacker travels at
their maximum speed and in a straight line (likewise for
the observer). We could extend this to reuse the IM-FM
architecture, but, when deciding where to send the observer,

Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

we only have low-resolution position information available,
so we would require a corresponding low-resolution forward
model with simplified unit dynamics.

We also combine this leeway information with the confi-
dence information to find out whether the attacker is already
being predicted to head towards the nearest target. If it has
a high confidence, until the attacker moves so that another
target will have a lower leeway score, further observations
(and predictions) of this attacker are not required. This means
we are free to choose the attacker with the next lowest leeway
that doesn’t have a high confidence.

With this approach the observers may end up concentrating
on an attacker that is close to a target when the attacker has
a high confidence of heading towards another target. This
means it is harder to make predictions as early as possible for
the more-likely case that the attacker doesn’t change target.
We help mitigate this by checking other attackers with low
maximum confidences and if they have a minimum leeway
target that can be observed, executed, and returned from,
within the leeway time of the current attacker’s target, then
they should be observed.

If all of the closest leeway targets for all of the attack-
ers have a high confidence then we use the reliability of
the observation as a measure to decide which attacker to
observe. The reliability is decided based on the time since
the last observation. When this measure is used for all of
the observations, it effectively becomes the same as a round-
robin attention mechanism.

We should note that the cost of making an observation
is only indirectly taken into consideration by the leeway
calculation. If the observers had, e.g., limited fuel or needed
to avoid certain regions of the map, then this approach would
need to be extended to schedule more than one observation
into the future.

The exact algorithm is shown in Fig. 6.

V. EXPERIMENTS

We set up a scenario to test the effects of partial-
observability on a RTS-style game. The scenario takes place
within a large open environment with arbitrary terrain (i.e.,
the terrain does not affect the ability for the units to reach
their target). There are two teams—the ‘red’ and ‘blue’
teams. The blue team acts as a series of static targets for
the attacking red team. The red player is simulated by a few
simple rules: the attackers make a random choice between
the nearest three blue targets and they ‘kill’ the target when
they reach within 10m of it. The units have a maximum
speed of 8m/s. The attackers also have a 1 in 10000 chance
of re-evaluating their target choice on every frame, and the
game operates at approximately 30 frames per second. Each
trial runs until all of the targets are dead, or for 30 minutes,
whichever occurs first.

The positions of the targets are randomly chosen for each
run of the game, with the only constraint being that they
lie within a 1000m? area and are at least 150m away from
each other. The attackers are also randomly positioned within
the same area but must be at least 300m away from each

Trace of the attackers’ x-y movements

1000 v
so0l &,

soob
400}

200

Metres

0f—
-200
-400—=Y%p-
-600 -

-800 -

~1000 L " L L L
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

Metres

Fig. 7. Example scenario for two attackers (open circles) and ten targets
(filled circles). The movements of the attackers are shown by the thick
lines. The targets do not move throughout the scenario. A contour map of
the terrain is shown in the background.

100 I

il W
80
70+
60
50
40f

30

Percentage of targets correctly predicted

201

Fully observable
— — — Partially observable (1 obs)

. . I . I
1 2 3 4 5
Number of attackers

Fig. 8. No reduction on the average percentage of targets correctly predicted
between full and partial observability for small numbers of attackers.

other and their targets. This makes the scenario more realistic
as opposing units wouldn’t start near each other in an RTS
game—which allows a reasonable amount of time to perform
an observation before the first target can be acquired. An
example trace of a scenario is shown in Fig. 7.

The first set of runs shows the difference between full and
partial observability. Full observability was approximated by
using the same number of observers as attackers. Ten trials
were averaged for full observability with 1-5 attackers, and
another ten trials were performed for partial observability
with 2-5 attackers and one observer, with half of the trials
using the threat-based attention and the other half using
the round-robin attention mechanism and the result being
averaged.

The success of a game was measured by the proportion
of times a correct prediction was made before an attacker
reached a target. As can be seen from the results in Fig. 8,
partial observability doesn’t reduce the success rate—both
full and partial observability get around 95-100% of the
target predictions correct before the target is reached. The
main reason for a missed prediction is due to the attacker
being able to change target at any time (albeit with a low
probability), and this is applicable to both full and partial

Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

Full observability
50 Partial Observability (1 obs)

5 L L L L L

Number of attackers

Fig. 9. Average time difference between an attacker changing target and
getting a correct prediction is greatly increased for partial observability over
full observability for different numbers of attackers.

Predictions for 5 trials with 1 observers
110 T T T

T
Threat-based attentio
— — — Round-robin attention

100 -

90

700 ,

Percentage of targets correctly predicted
©
o
T

60 q

50 I I I I I
0 2 4 6 8 10 12

Number of attackers

Fig. 10. The average percentage of targets correctly predicted with one
observer, ten targets and different numbers of attackers is significantly better
for the threat-based attention over the round-robin scheduler.

observability. This means the attacker could be heading to
a target but then change and turn to a very close-by target
and there not be enough time to make a prediction before
the target is reached.

As can be seen in Fig. 9, partial observability does, how-
ever, have a large effect on the latency between an attacker
changing target and receiving an observation and hence a
prediction. As one would expect, full observability averages
around the 10 second mark, because predictions take between
approximately 5 and 12.5 seconds to complete, depending
on the number of targets left. However, partial observability
means that there can be a relatively long time before an
observation is made if the attacker is non-threatening (using
threat-based attention) or if it changes target just after being
observed and has to wait for all the other attackers to be
visited before getting another observation (using round-robin
attention).

110

100+

90

80

701 1

60 1

50 1

40 1

Percentage of targets correctly predicted

30r Threat-based attention (2 obs; |
20+ — — — Round-robin attention (2 obs) |
Threat-based attention (3 obs;
10- — — Round-robin attention (3 obs) |]
0
1 2 3 4 5 6 7 8 9 10 1

Number of attackers

Fig. 11. The average percentage of targets correctly predicted with 2 or 3
observers, ten targets and different numbers of attackers is not affected by
changing the attention mechanism.

The second set of runs show the effect of using different
attention mechanisms on the percentage of targets that are
correctly predicted for different numbers of attackers. Five
trials were averaged for both the threat-based and the round-
robin attention mechanisms, for 1-10 attackers. As can be
seen from Fig. 10, there is no difference between the attention
mechanisms from 1-3 attackers, however, subsequently, the
round-robin begins to perform worse and drops down to only
60% of correct predictions when there are 10 attackers. The
threat-based attention performs significantly better up until
8 attackers, after which it begins to decline at roughly the
same rate as the round-robin attention. This shows that the
threat-based attention can help reduce the negative effects of
only using one observer, but it has its limits and when the
number of attackers becomes too great then another observer
is required to keep the performance up. With two or more
observers the results shown in Fig. 11 hover around 90-100%
for the ten attackers, and there is no noticeable difference
between round-robin or threat-based attention.

VI. DISCUSSION

The results show that the quality of the predictions is
maintained even when there is only one observer, and it is
only the latency is negatively affected. This means that the
predictive system becomes much more efficient because it
effectively enforces a priority mechanism so that only the
most threatening attackers receive predictions. Therefore far
fewer inverse and forward models need to be executed to get
similar performance to the fully-observable case when there
are 8 or fewer attackers.

Furthermore the results show that, when using one ob-
server, the threat-based attention mechanism effectively
utilises the top-down information supplied by the predic-
tive system to achieve significant performance gains over
the round-robin attention mechanism. When more than one
observer is available the observations become more frequent,

Preprint version; final version available at http://ieeexplore.ieee.org/
Symposium on Computational Intelligence and Games (2010), pp: 46-53
DOI: 10.1109/ITW.2010.5593374

therefore the difference between the attention mechanisms
became less appreciable, when using up to 10 attackers.

VII. CONCLUSION

In conclusion, we have extended our predictive architec-
ture to be partially observable, hence the need to use ob-
servers to gather positional information about the opponent.
We have shown how, in the scenario used in this paper,
partial observability only marginally affects the predictions
made, when there are only a small number of units needing
observations, whilst greatly reducing the computational cost
of concurrently executing many internal models. When the
number of attackers increases the effectiveness of the pre-
dictions decreases when we restrict ourselves to use just one
observer, however, this is significantly helped by using our
threat-based attention mechanism.

The two main advantages of enforcing partial observability
when making predictions for a computer-controlled opponent
are:

o it results in a system that is more equal with the human-
player’s capabilities;

« it reduces the need to execute many internal models in
parallel, greatly reducing the computational cost of the
predictive system.

The predictive platform as a whole is attractive because
it uses the same models for both perceiving and acting,
therefore it has the scope to be useful as a basis for game
Al systems that need to anticipate the opponent’s behaviours
and to use this information to execute its own behaviours.
It also has the added benefit that these models are likely
to be already available in a typical game, and, although
the work shown here uses only a simple inverse model, the
same architecture can be applied to any action the units can
perform.

VIII. FUTURE WORK

Whilst the partial observability reduces the computational
cost, further optimisations are needed within the forward
model (such as optimising the tradoff between accuracy and
speed in the physics engine) for this approach to become vi-
able in a commercial game, using current hardware. However
with the increasing number of cores available on upcoming
hardware and the potential for GPGPU acceleration, this may
be less of an issue in the future.

In these experiments we simplified the system by using
fewer attackers and targets than might be expected in a
typical RTS game. The system could, however, easily be
scaled up by assuming that opposing units travelled in
groups, and the predictive system extended to take an average
confidence over all of the units within a group.

The threat-based attention mechanism could also be ex-
tended to make a more efficient assignment of observations
by scheduling more than one observation into the future. This
could be done by using a scaled-down version of the forward
model to quickly generate predictions that could be fed into
a travelling-salesman-style algorithm to compute the most
efficient route.

REFERENCES

[1] J. Kiicklich, “Forbidden pleasures: Cheating in com-
puter games,” in The pleasures of computer gaming: Es-
says on cultural history, theory and aesthetics, M. Swal-
well and J. Wilson, Eds. McFarland, 2008, pp. 52-71.

[2] E. Brown and P. Cairns, “A grounded investigation of
game immersion,” in Extended abstracts on Human
factors in computing systems, 2004, pp. 1297-1300.

[3] S. Butler and Y. Demiris, “Predicting the movements
of robot teams using generative models,” in Distributed
Autonomous Robotic Systems 8. Springer, 2009, pp.
533-542.

[4] ——, “Using a cognitive architecture for opponent tar-
get selection,” in Proceedings of the Third International
Symposium on Al and Games. SSAISB, 2010, pp. 55—
61.

[5] Y. Demiris and B. Khadhouri, “Content-based control
of goal-directed attention during human action percep-
tion,” Interaction Studies, vol. 9, no. 2, pp. 353-376,
2008.

[6] L. Itti, “A saliency-based search mechanism for overt
and covert shifts of visual attention,” Vision Research,
vol. 40, no. 10-12, pp. 1489-1506, June 2000.

[7] J. Wolfe, “Visual search in continuous, naturalistic
stimuli,” Vision Research, vol. 34, no. 9, pp. 1187-1195,
May 1994.

[8] S. Treue and J. C. Trujillo, “Feature-based attention
influences motion processing gain in macaque visual
cortex,” Nature, vol. 399, no. 6736, pp. 575-579, June
1999.

[9] F. Southey, W. Loh, and D. Wilkinson, “Inferring
complex agent motions from partial trajectory obser-
vations,” in IJCAI'0O7: Proc. of the int. joint conf. on
Artifical intelligence, 2007, pp. 2631-2637.

[10] S. C.J. Bakkes, P. H. M. Spronck, and H. Jaap van den
Herik, “Opponent modelling for case-based adaptive
game Al Entertainment Computing, vol. 1, no. 1, pp.
27-37, January 2009.

[11] F. Sailer, M. Buro, and M. Lanctot, “Adversarial plan-
ning through strategy simulation,” in 2007 IEEE Sympo-
sium on Computational Intelligence and Games. 1EEE,
April 2007, pp. 80-87.

[12] J. Laird, “It knows what you’re going to do: Adding
anticipation to a Quakebot,” in AGENTS '01: Proc. of
the int. conf. on Autonomous agents, 2001, pp. 385-392.

[13] Y. Demiris, “Prediction of intent in robotics and multi-
agent systems,” Cognitive Processing, vol. 8, no. 3, pp.
151-158, September 2007.

[14] W. Stallings, Operating Systems: Internals and Design
Principles. Prentice-Hall, 2000.

[15] R. Darken, P. Mcdowell, and E. Johnson, “The Delta3D
open source game engine,” IEEE computer graphics
and applications, vol. 25, no. 3, 2005.

[16] H. Qi, “Distributed sensor networks—a review of recent
research,” Journal of the Franklin Institute, vol. 338,
no. 6, pp. 655-668, September 2001.

