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Abstract
Response inhibition is an important act of control in many domains of psychology
and neuroscience. It is often studied in a stop-signal task that requires subjects to
inhibit an ongoing action in response to a stop signal. Performance in the stop-
signal task is understood as a race between a “go process” that underlies the action
and a “stop process” that inhibits the action. Responses are inhibited if the stop
process finishes before the go process. The finishing time of the stop process is not
directly observable; a mathematical model is required to estimate its duration.
Logan and Cowan (1984) developed an independent race model that is widely used
for this purpose. We present a general race model that extends the independent
race model to account for the role of choice in go and stop processes, and a special
race model that assumes each runner is a stochastic accumulator governed by a
diffusion process. We apply the models to two data sets to test assumptions about
selective influence of capacity limitations on drift rates and strategies on thresholds,
which were largely confirmed. The model provides estimates of distributions of
stop-signal response times, which previous models could not estimate. We discuss
implications of viewing cognitive control as the result of a repertoire of acts of

control tailored to different tasks and situations.
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Introduction
The cognitive system can deploy many acts of control to direct thought and action
toward its goals. These acts include shifting attention (Posner & Cohen, 1980),
changing task sets (Logan & Gordon, 2001), resolving and adapting to conflict
(Botvinick, Braver, Barch, Carter & Cohen, 2001; Cohen, Dunbar & McClelland,
1990), trading speed for accuracy (Ratcliff, 2006; Forstmann et al., 2008, 2010),
detecting and preventing errors (Holroyd & Coles, 2002), and inhibiting
inappropriate responses (Logan & Cowan, 1984). Theorists often address each act
of control separately, focusing on one empirical phenomenon and proposing the
control processes and subordinate processes that produce it. We present a theory
that allows us to address different of acts of control within the same mathematical
framework and suggest constraints on the set of acts of control in the cognitive
system'’s repertoire.

We address the acts of control underlying the ability to inhibit inappropriate
responses. We focus on the stop-signal paradigm, in which subjects must respond
to a “go” task as quickly as they can but inhibit their response to the go task when
they hear an occasional stop signal. The stop-signal paradigm is widely used in
studies of response inhibition, elucidating the underlying neural structures (e.g.,
Aron & Poldrack, 2006; Hanes, Patterson & Schall, 1998), the development and
decline of inhibitory ability over the lifespan (e.g., Huizinga, Dolan & van der Molen,
2006; Williams, Ponesse, Schachar, Logan & Tannock, 1999), individual differences
in inhibitory ability (e.g., Friedman, Miyake, Young, Defries, Corley & Hewitt, 2008;
Miyake, Friedman, Emerson, Witzki, Howerter & Wager, 2000), and the deleterious
effects of psychopathology (e.g., Chambers, Garavan & Bellgrove, 2009; Schachar &
Logan, 1990) and neurological disorders (e.g., Aron, Fletcher, Bullmore, Sahakian &
Robbins, 2003; Dimitrov et al., 2003).

The purpose of this article is to propose a theory of response inhibition in the
stop-signal paradigm that accounts for choice. Choice is pervasive in stop-signal
experiments (for reviews, see Logan, 1994; Logan & Cowan, 1984; Verbruggen &
Logan, 2008), but no current theory of response inhibition accounts for it (for a

review, see Verbruggen & Logan, 2009b). We account for choice by integrating race



models with stochastic accumulator models (Usher & McClelland, 2001) to create
general and special theories of response inhibition in the stop-signal paradigm. We
test the theories by fitting them to data from a new experiment that varied the
number of choice alternatives and a previous experiment that manipulated
strategies (Verbruggen & Logan, 2009c).

The general theory is a race model. It describes stop-signal performance as a
race between a stop process and a go process (Logan & Cowan, 1984) and it
describes choice in the go process as a race between alternative responses (Brown
& Heathcote, 2005, 2008; Van Zandt, 2000b). It makes minimal assumptions about
the underlying processes, predicting relations among response time (RT)
distributions and response probabilities that hold for all distributions. It
accommodates but does not explain changes in RT with strategies and conditions.

The special theories are stochastic accumulator models embedded in a
general race model. The special theories make specific assumptions about the
underlying processes: Each runner in the race is a stochastic accumulator that
accumulates information to a threshold (Ratcliff & Smith, 2004; Teodorescu &
Usher, 2013). The special theories predict the shapes of the RT distributions and
explain changes in RT with strategies and conditions as the result of changes in the
parameters of stochastic accumulation: the rate of approach to threshold (drift
rate), the threshold, and the time for perceptual and motor processing (non-decision
time).

The special theories allow us to formulate alternative models that test strong
hypotheses about essential properties of subordinate and executive processing. We
develop models within each theory that hold parameters constant or vary them
between conditions, and we compare their fit to the data to determine which
parameters produce which effects. The parameters map directly onto psychological
processes, and that allows us to test hypotheses about which effects are due to
subordinate processing and which are due to executive processing. This is an
advance over previous models of the stop-signal paradigm, which focused primarily
on a single condition or described but did not explain differences between

conditions (Boucher, Palmeri, Logan & Schall, 2007; Logan & Cowan, 1984).



We use the theory to explain two acts of control in the stop-signal task. One
act is the stop process that is the main focus of much stop-signal research. It begins
with the stop signal and ends with an attempt to inhibit the current response that
succeeds or fails. The other act of control modulates the balance between stopping
and going, which is becoming a popular topic of research. This act of control occurs
before trials and between trials. It appears as proactive slowing of go RT when stop
signals become relevant (Verbruggen & Logan, 2009c¢) or occur more frequently
(Bissett & Logan, 2011; Logan, 1981; Ramautar, Kok & Ridderinkhof, 2004), and as
reactive slowing of go RT after a stop signal occurs (Bissett & Logan, 2011; Emeric et
al,, 2007; Gauggel & Rieger, 1998; Verbruggen, Logan, Liefooghe & Vandierendonck,
2008).

Our theory explains the stop process as another runner in the race (Logan &
Cowan, 1984). We model its duration (stop-signal response time RT or SSRT) and
we model its effects on performance: if it wins the race, the go response is inhibited;
if it loses, the go response is executed. Our theory explains modulatory acts of
control as adjustments of the parameters of stochastic accumulation (Logan &
Gordon, 2001). We model the effects of these acts of control as changes in
thresholds, drift rates, or non-decision times in the subordinate processes but we do
not model the time it takes to implement these effects. We hypothesize that
experimental manipulations will selectively influence parameters of the stochastic
accumulators (cf. Sternberg, 1969). Manipulations of structure, like the number of
choice alternatives, the difficulty of perceptual processing, and the load on capacity,
should affect drift rate. Manipulations of strategies, such as those that produce
proactive slowing, should affect threshold. We test the selective-influence
hypothesis by fitting special race models to data from an experiment that
manipulates the number of choice alternatives and an experiment that manipulates
strategies (Verbruggen & Logan, 2009c¢).

The special theories allow us to estimate the entire distribution of SSRT.
This has not been feasible in previous theories of response inhibition (Colonius,
1990; DeJong, Coles, Logan & Gratton, 1990; Logan & Cowan, 1984; but see Matzke,
Dolan, Logan, Brown & Wagenmakers, 2013). The distribution of SSRTs may be



useful in studies of neuroscience, lifespan development, individual differences,
psychopathology, and neurological disorders, as RT distributions have provided
useful information in these domains (Balota & Yap, 2011; Ratcliff & Smith, 2004;
Van Zandt, 2000a).

The Stop-Signal Paradigm

The first stop-signal experiment was published in 1948 by Margaret Vince
(Vince, 1948). A few experiments were reported in the 1960s and 1970s (Lappin &
Eriksen, 1966; Ollman, 1973; Slater-Hammel, 1960) but stop-signal research did not
begin in earnest until the 1980s, when it was organized around independent race
models of the stop and go processes (Logan, 1981; Logan & Cowan, 1984; Osman,
Kornblum & Meyer, 1986). The 1990s saw the first applications to clinical
psychology (Schachar & Logan, 1990; Tannock, Schachar, Carr, Chajczyk & Logan,
1989), developmental psychology (Kramer, Humphrey, Larish, Logan & Strayer,
1994; Schachar & Logan, 1990), neuroscience (De Jong et al., 1990; Hanes, Patterson
& Schall, 1998), and individual differences (Logan, Schachar & Tannock, 1997).
Since the turn of the century, stop-signal research has gained momentum and the
stop-signal paradigm is now a popular procedure for the study of response
inhibition and cognitive control in cognitive science, clinical science, and
neuroscience (see Verbruggen, Chambers & Logan, 2013; for reviews, see Logan,
1994; Logan & Cowan, 1984; Verbruggen & Logan, 2008b). Stop-signal performance
is considered to be an endophenotype for attention deficit disorder (Schachar et al.,
2005), drug addiction (Ersche, Jones, Williams, Turton, Robbins, & Bullmore, 2012),
and obsessive-compulsive disorder (Chamberlain & Sahakian, 2007).

The stop-signal paradigm requires the deliberate inhibition of a voluntary
response. Subjects are engaged in a go task that requires a speeded response. The
go task usually involves choice between alternative responses, but some studies
have addressed simple RT tasks (Logan, Cowan & Davis, 1984). Occasionally, a stop
signal is presented that instructs subjects to withhold their response on that trial.
The stop signal is usually a tone, but some studies have used visual (Lappin &

Eriksen, 1966; Verbruggen, Aron, Stevens & Chambers, 2010) or tactile stop signals



(Ackerfelt, Colonius & Diederich, 2006). The most important independent variable is
the delay between the onset of the stimulus for the go task and the onset of the stop
signal (stop-signal delay).

When given a stop signal, subjects either inhibit their response to the go task,
producing a signal-inhibit trial, or they fail to inhibit their response, producing a
signal-respond trial. The probability of inhibiting the response (P(inhibit)) depends
on stop-signal delay. It decreases as stop-signal delay increases. Many researchers
plot the complementary probability of responding given a stop signal
(P(respond|signal)), which increases as stop-signal delay increases. The plot of
either probability against stop-signal delay is called the inhibition function. Typical
inhibition functions are plotted in Figure 1 (for a discussion of inhibition functions,
see Logan & Cowan, 1984; Verbruggen & Logan, 2009b).

The inhibition function is determined by stop-signal delay but it also depends
strongly on RT in the go task; the probability of responding given a stop signal is
lower the longer the go RT (Logan, 1981; Logan & Cowan, 1984). Differences in go
RT shift the inhibition function to the left or right along the stop-signal delay axis.
Often, shifts due to go RT differences between conditions, strategies, tasks, and
subjects can be compensated for precisely by re-plotting the inhibition function as a
function of the difference between go RT and stop-signal delay (Logan, 1981; Logan
& Cowan, 1984; cf. Salinas & Stanford, 2013). Researchers have also adjusted stop-
signal delay with a tracking procedure to produce equivalent probabilities of
inhibition in different conditions, strategies, tasks, and subjects, essentially aligning
the inhibition functions (e.g., Logan, Schachar & Tannock, 1997; Osman et al., 1986).

The second panel of Figure 1 shows typical inhibition functions plotted
against RT minus stop-signal delay. Note that the functions for ].C. and G.L. align
better than the function for ].M. This happened because ].M. had greater variability
in go RT than ].C. or G.L. Transformations that take go variability into account
produce better alignment (see Logan & Cowan, 1984, Figure 3).

The alignment of inhibition functions suggests that it is profitable to think of
response inhibition as an act of control with a specific latency. The difference

between go RT and stop-signal delay reflects the time that is available to execute the



act of control, that is, to detect the stop signal and heed it before inappropriately
executing the go response. The alignment also motivates race models of stop-signal
performance: the response can be inhibited only if the act of control finishes before
the go response (Logan, 1981).

Another important dependent variable is go RT on signal-respond trials. Itis
usually faster than go RT on trials with no stop signal, and faster for shorter stop-
signal delays than for longer ones. When plotted as a cumulative distribution, the
minimum go RTs are about the same for signal-respond RTs from different stop-
signal delays and for go RTs from no-stop-signal trials. The distributions fan out at
the higher quantiles, rising more slowly the longer the stop-signal delay (Osman et
al,, 1986). Example distributions of go RTs from signal-respond and no-stop-signal
trials are plotted in Figure 2.

The relation between signal-respond RT and no-stop-signal RT also suggests
that the act of control underlying response inhibition has a specific latency. Signal-
respond RTs are the go responses that are faster than the act of control that
underlies response inhibition. The shorter the stop signal delay, the sooner the act
of control finishes, so the faster the go RT has to be in order to finish before it. This
relationship and the relationship between inhibition functions and go RT motivated

the development of race models of stop-signal performance.

The Independent Race Model

Logan and Cowan (1984) proposed an independent race model to account
for stop-signal performance. The model assumes that a stop process, initiated by
the stop signal, races in parallel against a go process, initiated by the go stimulus,
and performance is determined by the process that wins the race. If the stop
process wins, the go response is inhibited; if the go process wins, the go response
escapes inhibition. The finishing times of the stop process and the go process are
assumed to be independent random variables, whose probability density functions
were fswop(t) and fyo(t), respectively. We assume fsop(t) and fgo(t) are continuous and
0 for all t < 0. The model predicts the probability of responding, P, given a stop

signal at delay tq as



P(t,) = jfga(t)(l ~F,,(t~1,))dt (1)
0

where Fyop(t - tq) is the cumulative distribution function of finishing times for the
stop process at delay ta.

Equation 1 predicts the inhibition function through the term 1 - Fsop(t - ta).
Increasing stop-signal delay decreases Fiiop(t — tq), which results in a higher
probability of responding. Equation 1 also explains the effect of go RT on the
inhibition function. Increasing mean go RT will decrease the probability that the go
process will beat the stop process, so the inhibition function will shift to the right, as
observed (see Figure 1). The model also predicts that changes in stop-signal delay
can compensate for changes in go RT to align inhibition functions from different
conditions, strategies, tasks, and subjects (Logan, 1981; Logan & Cowan, 1984). This
prediction justifies the common practice of adjusting stop-signal delay with a
tracking procedure to produce a desired probability of inhibition (Logan et al., 1997;
Osman et al., 1986).

The independent race model also provides the distribution of signal-respond
RTs at a given stop signal delay, fi-(t|ta), as

Fot18) = £ (0= F,, (= 1) YE(2,) (2)
The model explains why signal-respond and no-stop-signal RT distributions share a
common minimum and fan out at higher quantiles with a steeper rise for shorter
stop-signal delays. The term 1 - Fsp(t - t4) decreases monotonically as ¢ increases
and acts as a filter that compresses the upper tail of the go RT distribution, fgo(t).
The longer the stop-signal delay, the less the go RT distribution is compressed at a
given value of ¢, so the shallower the rise of the cumulative distribution. In the limit,
the signal-respond RT distribution will approach the no-stop-signal RT distribution.

Perhaps the most important contribution of the independent race model was
to provide methods for estimating the time it takes to inhibit a response (i.e., SSRT).
Estimates of SSRT have served as measures of cognitive control in studies of

cognition, lifespan development, individual differences, psychopathology, and
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neuropathology (for reviews, see Logan, 1994; Verbruggen & Logan, 2008b). This is
an important contribution because SSRT is not directly observable.

The mean method involves using the tracking procedure to tie the race
between stopping and going, so each wins 50% of the time (Logan et al., 1997;
Osman et al,, 1986). When the race is tied, mean go RT = mean stop-signal delay +
SSRT. SSRT can be calculated by subtracting mean stop-signal delay from mean go
RT on no-stop-signal trials. This method can estimate SSRT accurately, but it is
susceptible to distortion from skew and strategic slowing, and so it should be
interpreted with caution (Verbruggen et al.,, 2013).

The integration method is more general than the mean method. It can be
used no matter how SSDs are set and it is more robust to skew and strategic slowing
(Verbruggen et al,, 2013). It assumes SSRT is a constant, so any go RTs that finish
before stop-signal delay + SSRT will be executed, and any go RTs that finish after it
will be inhibited. Thus, the probability of responding on a stop signal trial equals
the proportion of the go RT distribution that is faster than stop-signal delay + SSRT:

SSRT +t,

Ra)= [ f,@ad (3)

where t; is stop-signal delay. The integration method inverts the relationship in
Equation 3, using the go RT distribution, the probability of responding given a stop
signal, and stop-signal delay to identify SSRT. The go RT distribution is integrated
until the integral equals the probability of responding given a stop signal. At that
point, ¢t = ts + SSRT, and SSRT is estimated by subtracting ¢, from t (see Logan, 1994;
Logan & Cowan, 1984). In practice, calculating SSRT with the integration method
involves rank-ordering the N go RTs in the no-stop-signal distribution, finding the
Mt go RT, where M = N x P(respond|signal), and subtracting stop-signal delay from
the Mt go RT (see Logan, 1994).

The distribution method calculates the unobserved distribution of SSRTs from
the observed distributions of no-stop-signal RTs and signal-respond RTs by

rearranging Equation 2:

F;rop(t_td)=1_f;/‘(tItd)Pr(td)/fgo(t) (4)
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(Colonius, 1990; De Jong et al.,, 1990). Estimating SSRT distributions with Equation
4 is impractical because it depends heavily on accurate estimates of the tails of the
distributions, which require a lot of observations (Matzke et al., 2013). Our model

allows us to estimate the SSRT distribution more efficiently.

Independence Assumptions

The independent race model assumes two kinds of independence: stochastic
independence and context independence (Colonius, 1990; Logan & Cowan, 1984).
Stochastic independence means that the finishing times of the stop process and the
go process are independent on a given trial. More precisely, it means that

P(Tgo <t,,NT,, < tmp) = P(T;,U < tgo)' P(Tswp <lypp) (5)
for all t5o and tswop. Context independence means that the distribution of finishing
times for the go process is the same whether or not a stop signal is presented. More
precisely, it means that

P(T,, <t Ino stop signal) = P(T,, <t lt,) (6)
for all t and ta.

The independent race model does not assume functional independence of the
stop and go processes (Ashby & Townsend, 1986). Functional independence means
that factors that affect the distribution of finishing times for the go process do not
affect the distribution of finishing times for the stop process and vice versa. More

precisely, functional independence means that
[£., (01 A) = £, | B)|A[ fory 0V A) = £, (t | B)] = True (7a)
or

[£,,(t1C) = £,,(t | D)|A[ £,y (11 C) = £.,,, (¢ 1 D)] = True (7b),

or both 7a and 7b are true (where A denotes logical conjunction). A and B are
different conditions that affect the go task but do not affect the stop task, and C and
D are different conditions that affect the stop task but not the go task. Itis
important to note that violations of functional independence do not imply violations
of stochastic or context independence. Equations 5 and 6 could hold when Equation

7 is violated.
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This article explores the functional independence of stop and go processes by
examining the hypothesis that they share capacity. Capacity sharing is a common
explanation of dual-task interference (Kahneman, 1973; Pashler, 1994; Posner &
Boies, 1971) and several studies have asked whether the stop process and the go
process share capacity (Logan, 1981; Logan & Burkell, 1986; Yamaguchi et al.,
2012). We ask the question more rigorously, using parameters of our stop-signal
models to measure capacity and assess functional independence (Townsend &

Ashby, 1983).

Benefits and Costs of Generality

The independent race model is very general. This generality allows the race
model to apply to any stop-signal task in any response modality, including key
presses (Logan, 1981), hand squeezes (De Jong et al., 1990), wrist and arm
movements (Brunamonti, Ferraina & Paré, 2012), eye movements (Logan & Irwin,
2000), typewriting (Logan, 1982), and speech (Xue, Aron & Poldrack, 2008) or in
any subject population, including children (Schachar & Logan, 1990), the elderly
(Kramer et al., 1994), psychiatric and neurological patients (Aron et al., 2003;
Thakkar, Schall, Boucher, Logan & Park, 2011), monkeys (Hanes et al., 1998), and
rodents (Eagle & Robbins, 2003). No parameters have to be estimated.

The independent race model does not specify the mechanisms that produce
the finishing time distributions, so it cannot explain the effects of structural and
strategic manipulations on stopping performance and go RT. We address this
limitation by proposing special race models that address such effects. The
independent race model does not specify the mechanism that inhibits the response
after the stop process wins the race, so it cannot explain recent investigations of the
neural interactions that cause stopping (Aron & Poldrack, 2006; Hanes et al., 1998;
Paré & Hanes, 2003). We do not address this limitation in this article. The
interaction occurs in a stage subsequent to the race, and the duration of that stage is
very brief (Boucher et al., 2007). Moreover, our current modeling of the interactive

stage suggests several viable mechanisms that are difficult to distinguish in



13

behavioral and neural data, so we defer questions about the nature of the

interaction until we learn more about it.

Alternative Models

The independent race model went unchallenged for 20 years and is still used
to estimate SSRT in virtually every published stop-signal study. In the last few
years, several alternative models have been proposed. All of these models assume a
race between stop and go processes, so they predict inhibition functions and signal-
respond RTs, like the independent race model. The alternative models focus more
directly on mechanism, asking what the stop process does to stop the go process.

Boucher et al. (2007) proposed an interactive race model, in which the stop
process has two stages: an afferent stage that detects the stop signal and
apprehends its significance, and an interactive stage that inhibits the go response.
The go process is modeled as a single diffusion to a threshold and the interactive
stage of the stop process is modeled as a single diffusion that inhibits the growth of
activation in the go process. Responses are inhibited if the interactive stage
prevents the go process from reaching threshold (cf. Salinas & Stanford, 2013). In
fits of the model to data from two monkeys, the afferent stage occupied most of
SSRT. The interactive stage was very brief and the inhibition from the stop process
on the go process was very strong. Thus, the race was independent for most of its
duration, and the interaction was brief and potent. Lo, Boucher, Paré, Schall, and
Wang (2009) developed a spiking-neuron version of the interactive race model and
Wong-Lin, Eckhoff, Holmes, and Cohen (2010) developed a version that explains the
optimization of reward rate.

These models are important because they specify the underlying
mechanisms and connect mathematical models to underlying physiology (also see
Forstmann, Wagenmakers, Eichele, Brown & Serences, 2011; Gold & Shadlen, 2007;
Purcell, Heitz, Cohen, Schall, Logan & Palmeri, 2010). They all assume that
responses are stopped by inhibiting go activation (but see Salinas & Stanford, 2013).
They all find that the afferent stage of the stop process is much longer than the

interactive stage, so they all approximate the independent race model.
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All of these models share a common limitation: They do not deal with choice.
The go task is represented by a single accumulator that is guaranteed to reach
threshold on every trial. There are no errors of choice. This is an important
limitation because go tasks that involve choice RT are pervasive in the stop-signal
literature (Logan, 1994; Logan & Cowan, 1984; Verbruggen & Logan, 2008b), and
models of RT that address choice are pervasive in the mathematical modeling
literature (Logan, 2004; Ratcliff & Smith, 2004; Teodorescu & Usher, 2013).

The goal of this article is to develop and test general and special independent
race models that deal with choice in the stop signal paradigm. The general model
assumes that choice involves a race between all possible responses, including the go
alternatives and the stop response. The special models assume that each runner is a
single diffusion process, whose duration depends on drift rate, threshold, and non-
decision time parameters. We test special models by fitting them to data from a new
experiment that manipulated the number of choices in the go task and a previous
experiment that manipulated strategic slowing in anticipation of stop signals

(Verbruggen & Logan, 2009c).

General Independent Race Model

The general independent race model extends the original independent race
model (Logan & Cowan, 1984), describing the go task as a race between alternative
responses. The general model assumes a race between a set A of possible responses
that includes the stop response as well as each of the possible responses in the go
task. It assumes stochastic independence for all runners (Equation 5) and context
independence for the stop process (Equation 6). Functional independence
(Equation 7) is an empirical question, which we address through our tests of special
race models. The general independent race model includes the original
independent race model as a special case, in which the set A contains just two
members: the stop process and the go process. The general independent race model
addresses distributions of finishing times without specifying the form of the
distributions or the processes that generate them. It provides a cognitive

architecture in which more specific models can be articulated.
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Our decision to represent the go process as a race between alternative
responses represents a stronger commitment to cognitive architecture than the
original independent race model made, and consequently, it is more controversial.
On the one hand, several successful models of RT assume a race between
independent runners (e.g., Brown & Heathcote, 2005, 2008; Logan, 1988; Smith &
Van Zandt, 2000b; Van Zandt, 2000b; Van Zandt, Colonius & Proctor, 2000). On the
other hand, other successful models assume competition between alternative
responses, including random walk (e.g., Nosofsky & Palmeri, 1997), diffusion (e.g.,
Ratcliff, Van Zandt & McKoon, 1999), and competitive leaky accumulator models
(Usher & McClelland, 2001). In direct comparisons, some specific race models have
not accounted for behavioral data as well as some specific competitive models
(Ratcliff & Smith, 2004; Teodorescu & Usher, 2013), but in other contexts, race
models sometimes do a better job of accounting for behavioral (Leite & Ratcliff,
2010) and physiological data (Ratcliff, Cherian & Segraves, 2003; but see Purcell et
al, 2010). An important virtue of race models for our present purposes is their
mathematical simplicity and the transparent way they allow us to formulate and test
mathematical models that assume specific forms of stochastic accumulation.

The general independent race model assumes that each runner in the race is
a stochastic accumulator (Ratcliff & Smith, 2004; Teodorescu & Usher, 2013). The
model assumes that stochastic accumulation proceeds independently for each
response in the response set 4, and that the chosen response and the time at which
it is chosen are determined by the accumulator that reaches its threshold first. Let
fi(t) be the probability density function of the time ¢t that accumulator i reaches its
threshold. Let fsop(t-ts) be the probability density function of the time ¢ that the stop
accumulator reaches its threshold given that stop-signal delay is tq. Both fi(t) and
fstop(t-ta) are zero for values of their arguments that are less than zero, and both
depend on the specific stochastic accumulator model that is proposed (diffusion,
Poisson counter, etc.). The general race model does not commit to any particular
stochastic accumulator model.

Given these assumptions, the probability that go response i will occur is
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P(esp i) = [ £ T (1-F,@)(1- F,(u-1,)) du (82)

JEA, j=i
where Fj(t) is the cumulative distribution function for go response j. On no-stop-
signal trials, t;s = oo, so the stop process has no chance of winning the race. On stop-
signal trials, ts << o0, and the probability that the stop process wins the race is

P(stop) = [ £, (=1 [(1- Fw)) du (8b)

0 €A

Thus, for the general race model, the inhibition function is

B.(t,)=1-P(stop) =1~ [ £, (u=1,)] [(1- F(w))du (9)

0 €A

The general race model assumptions also allow us to specify the joint
probability density function of RT given response i, which is

faliy=|f(0(1-F,,(t-1,)) H (1-F,)|/ P@,). (10)

JEA, j=i

If there is no stop signal, then t; = co and Equation 10 gives the distribution of RTs
for response i. If there is a stop signal, then t4 << o0 and Equation 10 gives the
distribution of signal-respond RTs for response i. Signal-respond RTs will
necessarily be faster than no-stop-signal RTs because the term 1 - Fop(t - tq) will
compress the upper tail of the go distribution. The cumulative distribution of SSRTs
can be calculated with the Colonius-De Jong method (Equation 4), using

L= > fo [l (-FEo)(1-F,@-1))|/ B, (11)

IEA, j=stop JEA, j=i,j=stop

for the distribution f-(t) of signal-respond RTs and
L= fo JI (1-F®) (12)

IEA, i=stop JEA, j=i,j=stop

for the distribution fyo(t) of go RTs.

Special Independent Race Model: The Diffusion Race Model
We developed special independent race models that describe the racing processes

as stochastic accumulators. Each model specifies the finishing time distribution for
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each runner in the race in terms of three parameters that capture most of the
important effects in the RT literature: rate, threshold, and non-decision time
(Ratcliff & Smith, 2004). We use the best fitting parameter values to assess the
nature of capacity limitations and strategies in the stop signal task. Rates address
capacity limitations, and thresholds address strategies.

We investigated three special independent race models: a diffusion model
(Ratcliff et al., 1999), a Poisson counter model (van Zandt et al., 2000), and the
linear ballistic accumulator model (Brown & Heathcote, 2008). We fit them to the
multiple-choice stop-signal task described below. All three models fit the data well,
and the model fits led to the same conclusions regarding processing capacity and
number of choices (see Supplementary Information). This suggests that the
constraints in the general independent race model were doing most of the work.
We chose to focus our investigation on the diffusion model. It fit better than the
other models in the majority of cases, and it has been investigated more extensively.

Diffusion models are popular models of choice RT (e.g., Ratcliff et al., 1999;
Ratcliff & McKoon, 2008), accounting for RT and error data in a wide variety of tasks
from attention (Smith & Ratcliff, 2009) and intelligence (van Ravenzwaaij, Brown, &
Wagenmakers, 2011) to lexical decision (Wagenmakers, Ratcliff, Gomez, & McKoon,
2008) and recognition memory (Ratcliff, 1978). Our diffusion race model assumes a
race between N independent diffusion processes, each of which has a single
boundary (Usher, Olami & McClelland, 2002). The finishing time distribution for
each runner is simply the Wald distribution (see below). The finishing time
distribution for the winner of the race is not the Wald, but instead is the distribution
of the minima of the Wald distributions for all of the runners in the race.

The diffusion race model assumes that each stochastic accumulator is a
Wiener diffusion process with a drift rate &, a starting point at 0, and a threshold
(absorbing boundary) at z. We assume a drift coefficient equal to 1. The
accumulator for the stop process does not begin until stop-signal delay expires.

Under these assumptions, the finishing time distributions fi(t) are given by inverse
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normal (Wald) densities with parameters determined by the drift rate and

threshold. Thus, for the go process

ﬁ<r>=z<2m3>’2exp[—%(&r—z)z] (13)
and for the stop process
B PRt —% _ 1 VRN
fup®=2(27(=1,)") exp[ 2(t—td)(§(t 1) z)] (14)

if t > t4 and 0 otherwise.

The model expressed in Equations 13 and 14 assumes no variability in
threshold across trials, although threshold variability is important in accounting for
fast error RT distributions (Ratcliff & Smith, 2004). We investigated a diffusion race
model with threshold variability, to capture fast error RTs. We assumed threshold
was a uniform random variable ranging from z - a to z + a, with a mean of z and a
variance of a?/3. The finishing time of a runner unconditioned over the variable

threshold z is found by computing

g(r1z,8)= (2a)'1sz,.(t lz,x,)dz (15)
where (2a)! is the probability density function of the uniform threshold. The
probability density function for Equation 15 can be computing analytically. Noting
that ¢(x) and ®(x) are the density and cumulative distribution functions of the
standard normal distribution, respectively, and letting & = -(z - a - t§) /Vtand 8= (z
+a - t&/Vt, then

g,(112,8,a)= (2a)" [¢(a) - () - §(P() - D(B))] (16)
for £>0and a> 0. Ifa =0, then gi(t|z &) = fi(t) (Equation 13) or fsp(t) (Equation
14). If §=0 then

g(t1z,a)=(2a)" [¢p(e) - $(B)] (17)

We substituted Equations 16 and 17 for the generic distributions in

Equations 8 and 10 to generate likelihood functions to fit the diffusion race model to

the data. We used the best-fitting parameters to estimate the distribution of SSRTs.
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This parametric method for estimating SSRT distributions is less susceptible to
noise in the tails of the distributions than the non-parametric methods of Colonius
(1990) and De Jong et al. (1990).

Our model fits yield estimates of drift rate, threshold, and non-decision time
parameters in each condition of the experiments we fit. We assume that thresholds
are determined mostly by strategic factors, like expectancies of events and rewards
(Ratcliff, 2006; Ratcliff & Smith, 2004). We assume that drift rates are determined
partly by structural factors, like capacity limitations, the quality of stimulus
information, and the quality of memory representations (Nosofsky, Little, Donkin &
Fific, 2011; Ratcliff et al., 1999), and partly by strategic factors, like division of
attention among stimuli (Logan, 1996; Logan & Gordon, 2001; Smith & Ratcliff,
2009) or stimulus dimensions (Logan & Gordon, 2001; Nosofsky & Palmeri, 1997).
When there is no competition for attention, we predict selective influence of
experimental manipulations on model parameters: structural factors should affect
drift rates and strategic factors should affect thresholds. There is usually no
competition for attention in the stop signal paradigm. The go stimulus is presented
by itself without any conflicting information from irrelevant distractors or stimulus

dimensions to filter out. Thus, the predicted selective influence should be observed.

Capacity Limitations in Stop and Go Processes

The concept of processing capacity has had a long history in cognitive
psychology. From Posner and Boies (1971) and Kahneman (1973) onward,
researchers have proposed that central processes share capacity, such that one
process performs less effectively when a concurrent process is active. There are
many demonstrations of dual-task interference in the literature that are consistent
with this proposal (for a review, see Pashler, 1994). Stop and go processes do not
seem to share capacity in this way. SSRT is as fast as simple RT in many
experiments and does not seem to be affected much by the demands of the go task
(e.g., Logan, 1981; Logan & Burkell, 1986). Yamaguchi et al. (2012) measured SSRT

in a dual-task experiment, in which subjects had to stop one of two go tasks. They
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found that SSRT was unaffected by the temporal overlap of the two tasks and no
different in single- and dual-task conditions.

Previous stop-signal studies used estimates of mean SSRT to test the
hypothesis that stop and go processes share capacity. Here, we test the hypothesis
more rigorously, using the diffusion race model to measure capacity in terms of

parameters of the underlying stochastic accumulation processes.

Modeling Capacity Limitations

Townsend and colleagues formalized the concept of processing capacity as a
measure of the rate of processing, distinguishing between unlimited, limited, and
fixed capacity (Townsend & Ashby, 1983). Processing capacity for an individual
process, like the it runner in a race, can be measured as the rate v; at which the
process operates, and processing capacity for a set of N processes, like a processing
stage or a set of runners in a race, can be measured as the sum of the rates of the
component processes, 2Ni-1 vi. Unlimited, limited, and fixed capacity are defined in
terms of the rates for individual processes and the sum of the rates over all
processes.

A process has unlimited capacity if its rate is unchanged when another
process enters the race. Thus, the rate of processing for the ith process is the same

whether there are N or N+1 runners. That is,

Vin = Vi (18).
A set of processes has unlimited capacity if the sum of the rates of the components
increases without limit as more components are added to the race. Thus,
N N
Evi < Evi +Vya
i=1 i=1 (19).
A set of processes has fixed capacity if the sum of the rates of the runners is

fixed at a constant value, C, regardless of the number of runners. Thus,

N+1

N
S-S -c
i=1 i=1

(20).
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A process has fixed capacity if its rate decreases when another runner is added to
the race but the sum of the rates for all the runners remains the same. If capacity is

divided equally among all runners in the race, then
C C

=—>v

LY iIN+1 =m 21).

Limited capacity processes fall between unlimited and fixed capacity models.
The rate of processing for an individual process decreases as more runners enter
the race, but the decrease is not as great as it would be if capacity were fixed. The
sum of the rates of processing over all runners in the race increases as more runners
enter the race, but the increase is not as great as it would be if capacity were fixed
(also see Bundesen, 1990; Eidels, Donkin, Brown & Heathcote, 2010). Since RT
depends on processing rates, fixed and limited capacity are essentially violations of

context independence.

Capacity Limitations in the Diffusion Race Model

Equations 18-21 apply to situations in which we can identify the processing
rate associated with a particular stage of processing. This is not always possible.
Townsend and colleagues (Townsend & Altieri, 2012; Townsend, Houpt & Silbert,
2012; Townsend & Wenger, 2004; Wenger & Townsend, 2000) developed
techniques for assessing capacity limitations from RT distributions, which reflect
the sum of the durations of all stages of processing. We do not need to use such
general techniques. Our diffusion race model allows us to assess the rate of
processing in the perceptual and conceptual stages of the stop and go processes,
which are the processes whose capacity limitations are at issue, so we can apply
Equations 18-21 to estimated rate parameters from fits of the models to data.
Changes in the rate parameter with number of choices tell us whether capacity is
unlimited, limited, or fixed. These assessments of capacity limitations allow us to

assess the functional independence of stop and go processes.

Capacity Limitations in Multiple Choice RT Tasks



22

It has been known since the 19t century that RT increases monotonically
with the number of alternative responses (Merkel, 1885). The increase is important
because it means that RT depends not only on the stimulus that is actually
presented, but also on the set of alternative stimuli that could have been presented
(see Garner, 1962). The increase is linear with the logarithm of the number of choice
alternatives, which led Hick (1952) and Hyman (1953) to formulate a law that
describes this increase, couched in terms of information theory. They interpreted
the slope of the linear increase with the logarithm of the number of choice
alternatives as the maximum rate at which humans could process information - the
capacity for processing information. The link to capacity is supported by converging
operations: Dual-task interference increases with the number of alternative
responses in a choice RT task (Logan, 1979; Smith, 1969; van Selst & Jolicoeur,
1997).

The idea that multiple choice RT reflects capacity limitations is supported by
modeling: Schneider and Anderson (2011) accounted for multiple-choice RT in
terms of interference from memory retrieval, which increased with the number of
alternatives and lowered the rate of processing for the chosen alternative. This is
consistent with fixed capacity. Leite and Ratcliff (2010) fitted a large family of
stochastic accumulator models to multiple-choice RTs and found that the models
that fit the best allowed processing rate for the chosen alternative to decrease as the
number of alternatives increased, consistent with limited capacity. However, the
best-fitting models also allowed non-decision time and response threshold to vary
with number of alternatives. Usher and McClelland (2001) accounted for multiple-
choice RT by holding input constant for the chosen alternative and varying the
number of competing alternatives, which reduced the effective processing rate for
the chosen alternative (also see Bogacz, Usher, Zhang & McClelland, 2007). This is
consistent with limited capacity. Usher et al. (2002) showed that multiple-choice RT
could be accounted for by changes in response threshold with no changes in
processing rate. This is consistent with unlimited capacity.

Our interpretation of rate parameters as measures of processing capacity

allows a precise test of the hypothesis that stop and go processes share capacity. If
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they do, then the stop process is another runner in the same race that competes for
capacity with the runners for each go response. The rate parameter for the stop
process should decrease with the number of alternative responses, just as the rate
parameters for the go processes do. If the stop process does not share capacity with
the go process, then the rate of stop processing should not vary with the number of
alternative responses.

The hypothesis that stop and go processes share capacity should be
distinguished from the hypothesis that the stop process is limited in capacity. The
stop process may have its own capacity limitations even if it does not share them
with the go process. The stop-process rate parameters must depend on the
discriminability and intensity of the stop signal (Cavina-Pratesi, Bricolo, Prior &
Marzi, 2001; Salinas & Stanford, 2013), and that could be interpreted as a capacity
limitation (see Bundesen, 1990; Logan, 2002).

To evaluate the diffusion race model and test the hypothesis that stop and go
processes share capacity, we conducted an experiment in which six subjects each
performed a multiple-choice RT task combined with a stop-signal task for 12
sessions. The multiple-choice task required subjects to identify a single visually-
presented 5-letter word by pressing a key on a computer keyboard. Each session,
subjects performed three blocks of 240 trials, one with two choice alternatives, one
with four choice alternatives, and one with six choice alternatives, for a total of
8,640 trials per subject. The stop signal was a tone that was presented on 25% of
the trials at stop-signal delays that were set separately for each subject and each
choice condition to correspond to the 15t%, 35th, 55th 75th and 95t percentile of the
subject’s go RT distribution for that condition. The stop-signal delays were based on
a practice block with no stop signals in the first session and remained the same
throughout all 12 sessions. New words were used each session to keep go RT
relatively constant (Logan, 1979). Further details of the procedure are presented in
Appendix A.

We manipulated the number of choice alternatives to vary the load on
capacity in the go task. If the stop task shares capacity with the go task, then SSRT

should increase as the number of choice alternatives increases. If the stop task does
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not share capacity with the go task, then SSRT should not vary as the number of
choice alternatives increases. We tested this hypothesis more rigorously by fitting
the diffusion race model to the data.

If the number of choice alternatives affects the load on capacity, then the rate
parameters for the go process in the diffusion race model should decrease as the
number of choice alternatives increases. This would imply that the go process has
limited capacity.

If the rate parameters decrease such that their sum remains constant over
the number of choice alternatives (Equations 20-21), then the go process has fixed
capacity.

If the go process has limited or fixed capacity, we can ask whether it shares
capacity with the stop process. If the go process and the stop process share
capacity, then the rate parameters for the stop process should decrease as the
number of choice alternatives in the go task increases. If the go process and the stop
process share a fixed capacity, then the sum of the rate parameters for the stop
process and the go processes should remain constant over the number of choice
alternatives (Equations 20-21).

Alternatively, if the go process and the stop process do not share capacity,
then the rate parameter for the stop process should not be affected by the number
of choice alternatives in the go task and the sum of the rate parameters for the stop

process and the go processes need not be constant over choice alternatives.

Results: Behavioral Data

Mean RTs for correct responses, collapsed across subjects and sessions, are
plotted as a function of number of choice alternatives in Figure 3. Mean no-stop-
signal RT increased with number of choice alternatives, as is typical in multiple-
choice tasks, increasing by 132 ms from 2 to 4 alternatives and 101 ms from 4 to 6
alternatives (Hick, 1952; Hyman, 1953). Error rate increased with the number of
alternatives as well (Brown, Steyvers, & Wagenmakers, 2009). These effects were
stable across sessions (see Appendix A) because we introduced a new set of words

each session to reduce item-specific learning (Logan, 1988), and they were stable
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within sessions because we include 72 practice trials before collecting data. These
effects were stable across subjects: go RT increased with number of alternatives for
each subject. The increase in go RT with number of alternatives is important
because it suggests that the go process has limited or fixed capacity. Demonstrating
a limited or fixed capacity go process is the first step in asking whether the stop
process shares capacity with the go process. However, increases in go RT with the
number of alternatives can also occur if the go process is unlimited in capacity (see
i.e., by increasing threshold; see Usher et al., 2002), so we need to analyze the
processing rates in the underlying stochastic accumulators to reach firm
conclusions.

The data from stop-signal trials were typical of stop-signal experiments.
Inhibition functions across subjects and sessions are plotted as a function of the
number of choice alternatives in Figure 4. The probability of responding given a
stop signal increased with stop-signal delay in each choice condition (Logan, 1981;
Logan & Burkell, 1986; Logan & Cowan, 1984; Logan et al., 1984). Mean signal-
respond RTs were faster than no-stop-signal RTs (Logan & Cowan, 1984). Their
distributions had similar lower tails and differed primarily in their upper tails (see
Figure 5; Osman et al,, 1990). Mean signal-respond RTs also increased with the
number of choice alternatives, by 94 ms from 2 to 4 alternatives and 64 ms from 4
to 6 alternatives.

The effect of number of choice alternatives on SSRT is important
theoretically because it addresses whether the stop process shares capacity with the
go process. We calculated mean SSRT for each subject using the integration method
(Equation 3; Logan, 1994; Logan & Cowan, 1984) and plotted the means across
subjects as a function of number of choice alternatives in Figure 3. Mean SSRT was
not affected much by the number of choice alternatives, increasing by 7 ms from 2 to
4 choices and 5 ms from 4 to 6 choices. These differences are small compared to the
differences in no-stop-signal and signal-respond RT, suggesting that the stop task
and the go task do not share capacity.

Analysis of individual subject data showed that SSRT increased with number

of choice alternatives in two of the six subjects (see Appendix A). For Subject 1,
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SSRT increased by 77 ms from 2 to 6 choices. For Subject 2, SSRT increased by 20
ms from 2 to 6 choices. These differences suggest the stop process was limited in
capacity (but see Usher et al,, 2002). Analysis of the rates of stochastic accumulation
will be necessary to rule out unlimited capacity processing. For the remaining
subjects, SSRT did not increase with number of alternatives (differences between 2
and 6 choices were 0, -11, 7, and -33 ms for Subjects 3-6, respectively). Their results
are consistent with an unlimited capacity stop process. Analysis of the rates of

stochastic accumulation will provide stronger evidence.

Results: Diffusion Race Model Fits

To evaluate the nature of capacity limitations in the stop and go processes,
we fit eight versions of the diffusion race model to the multiple-choice data for
correct and error responses (see Table 1). To fit the diffusion race models, we used
Equations 16 and 17 to generate likelihood functions. For each model, we assumed
there was one runner in the race for each choice alternative in the go task and one
runner for the stop task. Each go runner was characterized by a rate and a
threshold parameter. Within a set of choice alternatives, the correct response had a
rate parameter of & and each incorrect response had a rate parameter of ¢. The
rates were the same for each incorrect response in the set. There was one threshold
zi for all responses in a set of choice alternatives, though in different models the
threshold could vary between sets of choice alternatives. The stop process had one
rate parameter, &:op and one threshold, zsop. There were two separate non-decision
time parameters, one for the stop process and one for the go process, because stop
and go stimuli were presented in different modalities. Within each process, non-
decision time was not allowed to vary with number of choice alternatives (cf. Leite &
Ratcliff, 2010). The threshold of the stop and go diffusions was allowed to vary
uniformly between z - a and z + a to capture error RT distributions.

The eight versions of the diffusion race model differed in their assumptions
about whether rates and thresholds for the go and stop processes were fixed or

varied with the number of choice alternatives. We tested hypotheses about capacity
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limitations in the go process by comparing models in which go rates were fixed
(unlimited capacity) or varied (limited capacity) with the number of choice
alternatives. We tested hypotheses about shared capacity limitations in stop and go
processes by comparing models in which stop rates were fixed (unshared capacity)
or varied (shared capacity) with the number of choice alternatives. The models and
their assumptions are presented in Table 1.

The fitting procedure found the parameter values that maximized the
likelihood of the data (Myung, 2003; Van Zandt, 2000a). Each version of the model
was fitted to the distributions of correct and error no-stop-signal RTs, the
distributions of signal-respond RTs at each stop signal delay, and the inhibition
function. Each subject’s data was fitted separately. Details of the fitting process are
presented in Appendix B. Model fits were evaluated with the Bayesian Information
Criterion (BIC; Schwartz, 1978; Raftery, 1995; Wagenmakers, 2007),

BIC =-2log L, +k;log N (22)
where L; is the maximized likelihood for model i, k; is the number of parameters in
model i, and N is the number of data points. Models with more parameters have
greater flexibility and generally produce lower (i.e., better) negative maximum
likelihood values (-2 log L;). The last term in Equation 22 penalizes models with
greater flexibility, adding k; log N to the negative maximum likelihood value. Models
with lower BIC scores are preferred over models with higher BIC scores. We
calculated aggregate BIC values over subjects by summing likelihoods, summing
parameters, and summing numbers of observations and then applying Equation 22.
Our use of aggregate BIC values assumes that the same model fit best for all subjects,
and that all subjects are independent of one another. We also calculated separate
BIC values for each individual subject. The individual subject BIC values allow us to
evaluate consistency in the model fits across subjects.

The aggregate BIC values for each model are presented in Table 1. The
model with the lowest aggregate BIC score assumed a limited-capacity go process
and a stop process that did not share capacity with the go process (i.e., varied go

rate and threshold, fixed stop rate and threshold; see row 2 in Table 1). The
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predicted mean go RTs, mean SSRTs and error rates (lines) are plotted with the
observed values (points) in Figure 3. The model predicts no-stop-signal RT and
signal-respond RT well but it over-predicts error rate for six-alternative choices.
The predicted inhibition functions (lines) are plotted with the observed inhibition
functions (points) in Figure 4, showing close agreement. The predicted RT
distributions (lines) are plotted with the observed values (points) in Figure 5. Like
the observed values, the predicted values fanned out from a common minimum,
with longer upper tails for longer stop-signal delays. This follows from the race
model: The faster go RTs are fast enough to win the race regardless of the stop-
signal delay but the longer go RTs can be fast enough to win only when stop-signal
delay is longer.

The values of the best-fitting rate and threshold parameters for the model
with the best aggregate fit (limited-capacity-go, unshared-capacity stop), averaged
across subjects, are presented in Table 2 and Figure 6. The rate parameters for the
go process decreased as number of choice alternatives increased, indicating limited
capacity (see Equation 17). The sum of the rates decreased from two choices (&z2g0 +
€290 = 0.252) to four choices (&4g0 + 3€440 = 0.205) to six choices (&sg0 + 5€690 = 0.153),
indicating stronger capacity limitations than a fixed-capacity model would predict
(see Equation 18). One interpretation of this hyper-limited capacity is that it takes
capacity to share capacity: preparing and coordinating several response alternatives
consumes capacity that could be used for processing information (e.g., Logan, 1978,
1979; Pashler, 1994). Whatever the interpretation, the model fits suggest the go
process is limited in capacity, and that allows us to ask whether the stop process
shares the same capacity. In the best-fitting model, the rate parameters for the stop
process were constrained to be the same for each number of choice alternatives,
suggesting that the stop process and the go process do not share capacity.

The fits to the individual subject data were consistent with the aggregate fits.
The number of subjects fit best by each model is presented in Table 1. The models
of the go task differed between subjects: Some required rate changes, some

required threshold changes, and some required both. The models of the stop task
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were more consistent: Five of the six subjects were fit best by an unshared-capacity
stop model. A shared-capacity stop model fit best for Subject 2, whose “observed”
SSRTs (estimated from the data with the integration method; Equation 3) increased
with number of choice alternatives, indicating a shared-capacity stop process.

The aggregate and individual subject fits required similar changes in
parameters to account for the data. We selected the best-fitting model for each
subject and averaged the best-fitting parameter values across subjects. The average
rate and threshold parameters for the stop and go processes are presented in Figure
6. As with the aggregate fits, the rate parameters for the go task change the most
with the number of choice alternatives. Thus, go-task capacity is limited. The rate
parameters for the stop task do not change much with the number of choice
alternatives. Thus, the stop task does not share capacity with the go task (Logan &
Burkell, 1986; Yamaguchi et al., 2012).

The threshold parameter for the go task increases slightly with number of
alternatives in both the aggregate fits and the average of the best fits to individual
subjects. We interpret this as an adjustment subjects make to keep error rate low.
The variability in stochastic evidence increases as drift rate decreases, and subjects
may adjust threshold strategically to compensate for the increased noise.

SSRT distributions. The diffusion race model assumes that SSRT is a
random variable, so the model fits allow us to estimate the distribution of SSRT.
Two SSRT distributions are relevant. One is the “parent” distribution of SSRT from
which runners in the race are sampled. The other is the “winning” distribution of
SSRTs that are faster than the go process on individual runs of the race (i.e., on
individual trials). The rate, threshold, and non-decision times for the stop process
give the parent distributions. We calculated the winning distributions for the
middle three stop-signal delays, using parameters from model with the best
aggregate fit and Equations 10, 13 and 14, and we plotted them as cumulative
distribution functions in Figure 7. The winning SSRT distributions shift to the left as
stop-signal delay increases; the race is more biased against the stop process the
longer the delay, so only the faster SSRTs win. This trend is opposite to the

rightward shift in signal-respond RT distributions (see Figures 5 and 6), where
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increasing stop-signal delay biases the race in favor of the go process, allowing
progressively slower go RTs to win the race.

The ability to estimate SSRT distributions is an important advance.
Previously, Colonius (1990) and De Jong et al. (1990) proposed a non-parametric
method for estimating SSRT distributions (see Equation 4), but their method is not
practical. It requires very large amounts of data to produce stable estimates
because calculations depend on the tails of the observed distributions, which are
noisy. Matzke et al. (2013) developed a parametric method, which assumes that the
SSRT distribution is ex-Gaussian. They provide powerful Bayesian methods that
allow accurate estimation of ex-Gaussian parameters even with small amounts of
data. However, their approach is descriptive, aimed at characterizing SSRT
distributions and not the processes that generate them. Our method assumes a
parametric form for the SSRT distributions (Equations 13-17) and the parameters
(rate and threshold) are readily interpretable as psychological processes.

Error RTs. The ability to fit error probabilities and RTs has become an
important criterion for evaluating models of RT. The diffusion race model predicted
error probabilities relatively well but could not capture the distribution of error RTs
(Figure 8, top panel). In developing the current model, we first fit a diffusion race
model that assumed no variability in threshold. The diffusion model with no
threshold variability predicted error probability relatively well but predicted error
RTs that were much longer than observed error RTs. Then we fit the current
diffusion race model that assumes variability in threshold, which often allows
models to capture error RT distributions (Ratcliff & Smith, 2004). However, the
diffusion race model with threshold variability did not do much better than the
model with no threshold variability. Predictions from the current diffusion race
model, which assumes threshold variability, are shown in the top panel of Figure 8.
The estimated threshold variability was small - less than 10% of the threshold in
the best-fit to the aggregate and less than 5% of the threshold in the average of the
individual subject fits (see Table 2).

We suggest two interpretations of this failure to fit error RT distributions.

One interpretation is that the diffusion race model does not fit the data well and
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should be rejected. Another interpretation is that there were not enough error data
to allow the model to fit the errors. The overall error rate was less than 2%, so the
contribution of error likelihood to the overall likelihood was very small. The fitting
routine will be dominated by the vast majority of correct responses. To illustrate,
we plotted the correct and error RT data as defective distributions in the bottom
panel of Figure 8. Defective distributions are analogous to cumulative frequency
distributions but describe the probabilities of observing an RT less than some value
and the response is correct or incorrect. Rather than ranging from 0 to 1, they range
from 0 to the probability of the response being correct or incorrect. The defective
distributions for correct response rise nearly to 1.0, while the defective
distributions for error responses barely reach 0.02. At this scale, the failure to
predict error RT distributions does not look very substantial.

We also tried fitting the data with a version of the linear ballistic accumulator
model, which has fit error RT distributions successfully (Brown & Heathcote, 2008).
The model assumed each runner involved a linear increase to a threshold, and the
slope of the linear increase for each runner was drawn from a normal distribution
with a mean of & and a standard deviation of 1.0. The model fit the data set about as
well as the diffusion race model, but also failed to fit the error RT distributions.
Predicted error RTs were much longer than observed error RTs. The linear ballistic
accumulator model has fit error data well in other contexts (Brown & Heathcote,
2008), so we interpret its failure to capture error RTs as a limitation of our data set
rather than the model.

We ran simulations of the diffusion race model and found that it could
predict fast errors when threshold variability was high. In Appendix C, we report
the results of one simulation in which we reduced the difference between correct
and error drift rates to produce a mean error rate of 36% and set threshold
variability equal to 75% of the threshold. Error RTs were faster than correct RTs.
We then fit the model to the simulated data and found that it accounted for fast
errors and recovered the parameters accurately. Thus, we conclude that the

diffusion race model is capable of producing fast errors, and we interpret the poor
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fits to the current error RTs as indicating that error rate was too low to allow us to

evaluate error RTs properly.

Discussion

The analysis of the data and the analysis of the models suggest that the stop
process does not share capacity with the go process. Go RT increased dramatically
as the number of choice alternatives increased, suggestive of limited capacity
(Townsend, 1971, 1990; Townsend & Ashby, 1983), but mean SSRT increased only
slightly. The fits of the diffusion race model allowed us to interpret the increase in
go RT with the number of choice alternatives as evidence of capacity limitations
because limited-capacity models of the go process were necessary to fit the data.
The same fits allowed us to conclude that the stop process did not share capacity
with the go process. The best-fitting models assumed that the stop processing rates
were constant across numbers of choice alternatives, indicating that the stop
process did not share capacity with the go process. This conclusion is consistent
with functional independence between go and stop processes (Equation 6).

Our finding that the stop process does not share capacity with the go process
is remarkable because many processes share capacity (Pashler, 1994), especially
control processes (Logan, 1978, 1979; Shiffrin & Schneider, 1977). Itis worth
speculating on reasons why the stop process may escape the limitations that apply
to other processes. One possibility is that the stop task is given higher priority than
other tasks, and high priority tasks are given first access to limited processing
capacity (Meyer & Keiras, 1997). In everyday life, the act of control underlying stop-
signal inhibition is recruited to compensate for errors, for sudden changes in input,
or sudden changes in goals that make the current course of action inappropriate or
irrelevant. Compensating for these changes should have a higher priority than
continuing an inappropriate or irrelevant course of action. This suggests that stop
signals might produce dual task interference in processing subsequent go stimuli
(e.g., Horstmann, 2003), which might explain post-stop-signal slowing (Bissett &
Logan, 2011; Rieger & Gauggel, 1999). Further research is required to explore this
possibility.
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Another possibility is that control is hierarchical, and stop-signal inhibition is
recruited by a higher-level system that is not subject to the same capacity
limitations as the lower-level system that chooses responses and executes them
(Logan & Cowan, 1984; Logan & Crump, 2011). However, the evidence for
hierarchical control is controversial despite the widespread appeal of the idea (see
Cooper & Shallice, 2000, 2006 vs. Botvinick & Plaut, 2004, 2006) and it is not clear
that higher-level processes rely on different capacities than lower-level ones (see
Logan, 1979). More research is required to evaluate this possibility.

A third possibility is that the versions of the stop and go tasks that we have
investigated are not sufficiently demanding to show evidence of capacity limitations.
The stop task involves a single response to a single tone, like a simple RT task, and
so may not demand much processing capacity. More difficult stop tasks that require
discrimination among stop signals produce longer SSRTs (Bedard, Nichols, Barbosa,
Schachar, Logan, & Tannock, 2002) and sometime produce violations of the race
model (Bissett & Logan, 2013). “Change” tasks that require an overt response to the
stop signal in addition to inhibiting the go response also increase SSRT (Logan &
Burkell, 1986). Go tasks that require inhibition of competing alternatives also
produce longer SSRTs, suggesting capacity limitations (Kramer et al., 1994;
Ridderinkhof, Band & Logan, 1999; Verbruggen, Liefooghe, & Vandierendonck, 2004;
but see Verbruggen, Liefooghe, & Vandierendonck, 2005; Verbruggen, Liefooghe,
Szmalec, & Vandierendonck, 2005). Thus, the conditions under which SSRT is
affected by complexity in the stop task and go task require further research. The
special race models developed in this article may be useful in determining whether

the increased SSRTs reflect capacity limitations or strategies.

Control Strategies in the Stop-Signal Task
The stop-signal task presents subjects with diametrically opposing demands.
The faster they perform the go task, the less likely they are to succeed at stopping;
the slower they perform the go task, the more likely they are to succeed at stopping.
Subjects often cope with these demands by strategically slowing performance on the

go task to increase their likelihood of stopping: Go RT is slower when stop signals



34

occur more frequently (Bissett & Logan, 2011; Logan, 1981; Logan & Burkell, 1986;
Ramatur, Kok & Ridderinkhof, 2004) and when subjects are given signals that
indicate that stop signals are likely (Chikazoe et al., 2009; Verbruggen & Logan,
2009c). This strategic slowing may be severe enough to subvert the experiment
(Leotti & Wager, 2010), invalidating estimates of SSRT (Verbruggen et al,, 2013).
Researchers try to eliminate strategic slowing by introducing the go task before the
stop task so subjects can learn how quickly they can respond to it without
competing demands, by instructing subjects to avoid slowing, or by rewarding fast
go responses. However, subjects often slow strategically when stop signals are
introduced despite these precautions (Ramautar et al., 2004; Verbruggen, Liefooghe
& Vandierendonck, 2004, 2006).

Researchers have assumed that slowing in anticipation of a stop signal is
strategic because it is proactive and occurs rapidly in response to changes in stop
signal probability and cues. Our diffusion race model addresses the mechanism
underlying strategic slowing, attributing the slowing to parameters of the model
that the executive system can adjust strategically. Thus, we expect that proactive
slowing to be explained by threshold adjustment and not by changes in drift rate.
Proactive slowing may also be explained by delaying the onset of stochastic

accumulation (Pouget et al.,, 2011), measured as an increase in non-decision time.

Explicitly Cuing Stop-Signal Relevance

We fit the diffusion race model to an experiment by Verbruggen and Logan
(2009c) that showed strategic slowing in response to explicit cues indicating
whether subjects had to stop when stop signals occurred. Eighteen subjects were
given the explicit cues “all” or “none” that told them how many of the stop signals
required stopping in the next four to eight trials. The go task involved classifying
characters (discriminating Z and /). The stop signal was a tone. Tones occurred on
33% of all trials. Stop-signal delay was adjusted by a tracking algorithm that
produced successful stopping on 50% of stop-signal trials. The cue was presented

for 1,000 ms before the first trial in a run and remained on the screen throughout
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the run. Each subject performed 576 trials, divided evenly between “all” and “none”
conditions.

Verbruggen and Logan (2009c) designed their experiment to evoke strategic
slowing. The blocks of “all” and “none” trials were cued explicitly and were very
short (4-8 trials). This led to very rapid changes in RT on the first trial after a cue
change. Thus, we should expect differences in diffusion race model parameters that
executive processes control strategically, like threshold and maybe onset. We
should expect no differences in diffusion race parameters that reflect structural and
informational limitations, such as drift rate.

Results. The observed go RTs, signal-respond RTs, SSRTs and error rates
from Verbruggen and Logan (2009c) were averaged across subjects and plotted in
Figure 9. The data show that subjects responded in accord with the cues. They
inhibited responses on 53% of the trials when the stop signal was relevant (“all”
cues) but only on 2% of the trials when the stop signal was irrelevant (“none” cues).
Subjects also slowed strategically following the cues: Go RT was 501 ms when stop
signals were relevant and 408 ms when stop signals were irrelevant. The slowing
was accompanied by an increase in accuracy, suggestive of a threshold adjustment:
Accuracy was 97% when stop signals were irrelevant, and 99% when stop signals
were relevant. Further analysis showed that slowing occurred on the very first trial
in a run after the cue changed, supporting the idea that the slowing was strategic.
When stop signals were relevant, SSRT was 263 ms.

Verbruggen and Logan (2009c) fit the Fast-dm version of the two-choice
diffusion model (Voss & Voss, 2007) to the no-stop-signal go data and found that
threshold and non-decision time changed with stop-signal relevance but drift rate
did not. These results are consistent with our hypothesis that strategies in the stop-
signal task affect threshold but not drift rate. Our modeling addresses more of the
data.

Diffusion race model fits. We fit a set of eight diffusion race models to the
data (see Table 3), fitting no-stop-signal RT distributions for correct and error
responses when stop signals were and were not relevant, and signal-respond

distributions for correct responses as a function of stop-signal delay. The set of
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models was generated from the factorial combination of fixing versus varying
threshold, rate, and non-decision time between the relevant stop signal and
irrelevant stop signal conditions (see Table 3). We also fixed and varied the
variability in a uniform distribution of thresholds, in an attempt to capture error
RTs. We fixed variability in threshold between conditions whenever we fixed
threshold between conditions, and let it vary between conditions whenever we let
threshold vary between conditions. We did not see much theoretical value in
allowing threshold variability to vary while threshold was fixed between conditions,
so we excluded those conditions to reduce the number of models we fit from 16 to
eight.

For each of the eight models, we assumed there was one runner in the race
for each of the two choice alternatives in the go task and one runner for the stop
task, and each runner was characterized by a rate and a threshold parameter. The
correct go response had a rate parameter of & and the incorrect response had a rate
parameter of &. There was one mean threshold z; for both go responses. The stop
process had one rate parameter, &s0p and one threshold, zs:p. Both stop and go
thresholds were allowed to vary uniformly between z; — a; and z; + a; to capture
error RT distributions. The stop and go processes had separate non-decision times.
The eight models differed in whether these parameters were fixed or were allowed
to vary between “all” and “none” trials.

We fit the models to the data by maximizing the likelihood using the methods
described in Appendix B. We used BIC to evaluate goodness of fit, calculating an
aggregate BIC and BICs for individual subjects.

The BIC values for the aggregate fits are presented in Table 3. The best-
fitting model was one in which threshold varied but rate and non-decision time
stayed constant as stop signal relevance was manipulated (row 3 in Table 3). This
model fit best in 9 of the 18 individual subject fits. The next most popular model,
which fit best in 5 of the 18 subject fits, was one in which threshold and non-
decision time varied but rate remained constant as stop signal relevance was

manipulated (row 4 in Table 3). This model is similar to the one that Verbruggen
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and Logan (2009c¢) fit to their data. Overall, 15 of 18 subjects were fit best by a
model with variable threshold, 14 of 18 were fit best by a model with fixed rate, and
12 of 18 were fit best by a model with fixed non-decision time.

The mean go RTs, signal-respond RTs, SSRTs and error rates predicted from
the best-fitting model (threshold varied, rate, and non-decision time fixed) are
plotted along with the observed values in Figure 9. There is good agreement
between predicted and observed values for all measures, except for SSRT. All
predicted values fell within the 95% confidence intervals of the observed values,
except for predicted SSRT, which was 41 ms faster than observed SSRT (estimated
from the data with the integration method).

The predicted and observed RT distributions for correct no-stop-signal RTs
in the “all” and “none” conditions and for signal-respond RTs in the “all” condition
are plotted in Figure 10. There is good agreement between predicted and observed
values.

The values of the best fitting parameters for the go task are plotted as a
function of stop signal relevance in Figure 11. The top panels present the
parameters from the model that fit the aggregate best, which assumed varied
threshold, constant rate, and constant non-decision time. The bottom panels
present the average parameter values for the best-fitting model for each subject as a
function of condition. The patterns are similar: Threshold and threshold variability
were larger in the “all” condition than in the “none” condition in both aggregate and
individual-subject fits. Drift rate and non-decision time were the same for “all” and
“none” in the aggregate fits. They both decreased from “none” to “all” in the
individual-subject fits, trading off their effects on RT: The reduced drift rate would
slow RT but the reduced non-decision time would speed it. Altogether, these results
are consistent with selective influence and our hypothesis that strategies affect
thresholds more than rates.

The predicted distribution of SSRT is plotted in Figure 12. For the best
aggregate fit, the mean stop rate and threshold were 0.160 and 0.684, respectively.
For the individual subject fits, the mean stop rate and threshold were 0.153 and

0.998, respectively.
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The predicted and observed distributions for correct and error RTs are
presented in Figure 13. The top panel presents cumulative distribution functions,
which asymptote at 1.0. The bottom panel presents defective distributions, which
asymptote at response probability. As before, the model captured correct RT
distributions and error probabilities well, but over-predicted error RTs. Again, we
note that error rate was very low (2%), so there may not have been enough errors
to allow the model to fit the error RTs (see Appendix C).

Discussion. The model fits suggest that the strategic slowing reported by
Verbruggen and Logan (2009c) is best described by a model in which threshold and
threshold variability change when stop signals become relevant but rate and non-
decision time stay constant. This model fit is consistent with our hypothesis that
executive processes adjust threshold and perhaps onset of accumulation
strategically, but they do not adjust drift rate. The present results, together with the
multiple-choice results, show a predicted selective influence of experimental
manipulations on diffusion model parameters. Manipulations that loaded capacity
changed drift rate but not threshold. Manipulations that shifted strategies changed
threshold but not drift rate

Percentage of Stop Signals

Bissett and Logan (2011, Experiment 1) conducted an experiment in which
24 subjects performed a stop-signal task in which stop signals occurred on 20% or
40% of the trials, pitting the priority of the go task against the priority of stopping.
RT became slower as percentage of stop signals increased (also see Logan, 1981;
Logan & Burkell, 1986; Ramataur et al., 2004; Verbruggen & Logan, 2009c). We
modeled this slowing by fitting a set of 16 diffusion race models to the data. The set
of models was created from the factorial combination of fixing versus varying go
rate, go threshold, go non-decision time, and stop-process parameters between the
20% and 40% stop signal conditions. Summaries of the results and model fits are
presented in Supplementary Information.

The fits were good but there was not much consensus on the best-fitting

model. Ten of the 16 models fit best for at least one subject: No model fit best for
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more than four subjects. Collapsing across models, there was consistency for the
stop process: 20 subjects were fit best by models with stop rates and thresholds
fixed for 20% and 40% stop signals. There was less consistency for the go process:
Nine subjects were fit best with go rates fixed and 11 were fit best with go
thresholds fixed. This inconsistency challenges the selective influence hypothesis:
for some subjects, strategies were mediated by changes in drift rate. We discuss

possible top-down influences on drift rate in Supplementary Information.

General Discussion

We developed a general independent race model that construed the go
process as a race between alternative responses and the stop process as another
runner in the race (Equations 8-10). We developed special race models in which
each runner in the race is a single diffusion process (Equations 13-17) whose
parameters are selectively influenced by structural and strategic factors.

We tested the selective influence of capacity limitations on drift rate in a new
multiple-choice stop-signal task. Increasing the number of choice alternatives
decreased drift rate but had little effect on threshold, consistent with selective
influence. Analysis of drift rates showed that the stop process and the go process
did not share capacity (Logan & Burkell, 1986; Yamaguchi et al., 2012). The stop
process may have its own capacity limitations, but it did not share them with the go
process.

We tested selective influence of strategy on threshold by fitting data from an
experiment by Verbruggen and Logan (2009c¢) in which the relevance of stop signals
was manipulated. Increasing stop-signal relevance increased threshold but had
little effect on drift rate or non-decision time, consistent with selective influence.
We note that selective influence was not strongly evident in the fits to Bissett and
Logan (2011; see Supplementary Information).

More generally, the studies of selective influence illustrate the use of the
special model to generate specific hypotheses about the stop and go processes and
test them rigorously by competitive model fitting. The independent race model

(Logan & Cowan, 1984) described stop-signal performance in terms of relations
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among observed RT distributions. The special diffusion race model explains stop
signal performance in terms of changes in its parameters between experimental
conditions. This is an important advance over previous theories.

An important strength of both general and special race models is that they
deal with choice in the go task. No previous model of stop-signal performance has
dealt with choice in the go task (Boucher et al.,, 2007; Lo et al,, 2010; Logan & Cowan,
1984; Wong-Lin et al,, 2010). Some of these models dealt with stopping saccadic
eye movements, where choice errors almost never happen. However, most stop
signal tasks use keypress responses, where most subjects make choice errors. Thus,
the ability to deal with choice is an important step forward, and our manipulation of
the number of choice alternatives was a significant challenge. The general model
characterizes choice as a race and defines the race architecture. The special model

characterizes each runner as a diffusion process and specifies its parameters.

SSRT Distributions

The diffusion race model provides an estimate of the distribution of SSRT and
relates it to the parameters of stochastic accumulation of evidence about the stop
signal. This is an important advance. Previous models provided point estimates of
SSRT (Logan & Cowan, 1984) and non-parametric methods for estimating SSRT
distributions that required impractical numbers of trials to overcome noise in the
tails of the distributions (Colonius, 1990; De Jong et al., 1990). The ability to
account for RT distributions is an important desideratum in developing models of
cognitive processes (Balota & Yap, 2011; Ratcliff & Smith, 2004; Van Zandt, 2000a).

The diffusion-race-model estimates of SSRT distributions complement recent
Bayesian hierarchical methods for estimating SSRT distributions developed by
Matzke et al. (2013). Their methods also parameterize the stop and go processes,
characterizing their finishing-time distributions as ex-Gaussian (i.e., the convolution
of an exponential distribution and a normal, or Gaussian, distribution). The ex-
Gauss describes RT distributions accurately and is used widely in the literature
(Balota & Yap, 2011; Ratcliff & Murdock, 1976). However, its parameters do not

map directly onto psychological processes, like rates and thresholds in stochastic
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accumulators (Matzke & Wagenmakers, 2009), so the ex-Gauss fits provide limited
insight into the underlying stop and go processes. The diffusion race model
provides greater insight.

An advantage of Matzke et al.’s (2013) Bayesian hierarchical method is that it
can be applied to rather small data sets provided there are lots of subjects. The
diffusion race model did well with large (multiple choice) and small (Verbruggen &
Logan, 2009c) data sets. It would be interesting to see how few data it requires. It
should be possible to implement the diffusion race in Bayesian hierarchical

modeling to gain the same advantages as the Matzke et al. model.

Go RT Distributions

The diffusion race model accurately predicted response probabilities and go
RT distributions for correct responses on no-stop-signal trials and signal-respond
trials. It accurately predicted error probability, but it over-predicted error RT
distributions. The fit to the correct RT distributions and response probability is an
important advance (cf. Boucher et al., 2007; Lo et al., 2010; Logan & Cowan, 1984;
Salinas & Stanford, 2013; Wong-Lin et al,, 2010). Moreover, the model captured the
relation between no-stop-signal and signal-respond RT distributions accurately in
most of the fits. Most likely, this follows more from the general race architecture
than the special diffusion race model. It is a general property of an independent
race (Logan & Cowan, 1984).

The over-prediction of error RT is troublesome, because the ability to predict
error RT distributions is an important criterion for evaluating stochastic
accumulator models (Ratcliff & Smith, 2004; Teodorescu & Usher, 2013). We
interpret the over-prediction as a result of error rates that were too low to influence
goodness of fit. They were 2% in the multiple-choice experiment and 2% in
Verbruggen and Logan (2009c). The model can simulate and fit fast errors in data
with a higher error rate (36%) and larger threshold variability (see Appendix C).

Over-prediction of error RT is not unique to the diffusion race model. We
found it when we fit the Poisson race model (Van Zandt et al., 2000) and the linear

ballistic accumulator model (Brown & Heathcote, 2008) to the multiple-choice data.
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The linear ballistic accumulator model accounts for error RT distributions in
conditions with higher error rates, so its failure to account for error RT distributions
here should not be viewed as a limitation of the model.

Our analysis in Appendix C suggests the over-estimation can be overcome by
running stop-signal experiments with higher error rates, for example, by
manipulating the discriminability of the go stimuli (Logan, 1981). However, the
stop-signal task is used with many special populations whose cognitive capacities
are impaired or have not yet developed, and these populations work best with go
stimuli that are easy to discriminate and so produce low error rates. Hence, it may
be better to use the standard tasks to get high-quality data and set aside concerns

about predicting error RT distributions.

Other Special Race Models?

The general independent race model places two main constraints on the
special race models implemented within it: The stop process must race with the go
process, and the go process must also be a race among choice alternatives. Many
special race models are possible within these constraints, with different
assumptions about the stochastic accumulators for each runner. We tried a Poisson
counter model (Van Zandt, 2000b) and the linear ballistic accumulator model
(Brown & Heathcote, 2008) but we focused on a diffusion to a single threshold. We
hope to explore other alternatives. The leaky competing accumulator model (Usher
& McClelland, 2001) is promising because it applies to multiple-choice tasks. It
assumes interaction between alternative responses instead of an independent race,
so the stop-signal task would have to be modeled as a race between two runners:
the stop process and the go response that wins the competition in the leaky
competiting accumulator model. Wenger and Townsend (2004) provide a useful
analysis of channel interactions in this model. It would also be tempting to model
the go process as the standard two-choice diffusion model that pervades much of
the literature (Ratcliff, 1978; Ratcliff & McKoon, 2008). However, the standard
diffusion model cannot deal with more than two choices, so it could not account for

our multiple choice data (but see Leite & Ratcliff, 2010). It assumes competition
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between the two alternative responses, so the stop process would race against the
go response that wins the competition.

We are most strongly committed to the assumption that the stop process
races with the go process. It follows from the original independent race model
(Logan & Cowan, 1984). We are less strongly committed to the assumption that the
go process is arace. We prefer race models, but we have no problem with special
models in which the go process is interactive (Ratcliff & McKoon, 2008; Usher &
McClelland, 2001). We are least strongly committed to the assumption that each
runner in the race is a diffusion process and we are open to the possibility that other
stochastic accumulator models may fit better. Our theory addresses the parameters
of stochastic accumulators - thresholds, rates, and non-decision times - that are
common to all models. We are committed to the assumption that the runners in the
race are stochastic accumulators, but we are not strongly committed to any specific

model.

Acts of Control

We believe we can understand cognitive control by understanding the acts of
control that implement it (Logan, 1985; Logan & Cowan, 1984; Logan & Gordon,
2001). We can characterize the acts of control in the executive’s repertoire by
listing all of them or by describing features that are common to all of them. We see
merit in both approaches.

Acts of control are like other acts a person performs. They are like the
perceptual-motor acts in typical RT experiments. They are instigated by a condition
of the external or internal environment, they have a duration, which we assume
depends primarily on stochastic accumulation, and they end with an action that
changes the state of a subordinate process (Logan, 1985). Acts of control are
different from other acts in that some of their inputs and all of their outputs are
changes in states of subordinate processes. Thus, acts of control must be grounded
in a theory of the subordinate processes they control (Logan & Gordon, 2001).

Our theory of executive processing is grounded in our theory that

subordinate processes are stochastic accumulators. The parameters of the
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stochastic accumulators are the points of contact that allow the executive to control
the subordinates. Some parameters are set by the executive and some are set by the
environment and the person’s history. A task set is a set of drift rate, threshold, and
non-decision time parameters that program the stochastic accumulator to make a
task-relevant choice. Changes in task set are accomplished by acts of control that
change these parameters (Logan & Gordon, 2001).

[t is tempting to suggest a taxonomy of acts of control, depending on the
immediacy and extremity of their effects (cf. Norman, 1981). Stopping is immediate
and extreme. SSRT is short and the response is either inhibited or executed.
Shifting attention is immediate but less extreme. Attention shifts quickly but it
modulates ongoing responses rather than preventing or enabling them. Proactive
slowing is less immediate and less extreme. It occurs before or between trials and it
modulates performance on the next trial.

However, commonalities among acts of control may be more important than
the differences. In our theory, all acts of control have an instigating condition, a
duration, and an effect, and all effects are the same: they change the parameters of
the stochastic accumulators. The change may be more or less extreme, but
parameters always change. The act of control that stops a response requires a
change in drift rate that is large enough to keep the accumulators from reaching
threshold (Boucher et al., 2007; Salinas & Stanford, 2013). The act of control that
shifts attention requires smaller a change in drift rate to facilitate processing at the
cued location (Logan & Gordon, 2001). The act of control that produces proactive
slowing requires a change in threshold or non-decision time (Dutilh et al.,, 2012;
Pouget et al, 2011).

Our theory suggests further commonalities between acts of control and the
“controlled subordinate actions” they govern. They are built on the same
substrate—stochastic accumulator models. They differ primarily in the conditions
that trigger them and the actions they take—in content rather than form. Acts of
control represent and change the state of the cognitive system, whereas controlled
acts represent and change the state of the world. They both act in the same way, by

stochastic accumulation to a threshold.
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In this respect, our theory is similar to production system theories of
cognitive control, in which performance is modeled as the application of if-then
rules to perceptual, memory, and motor systems (Anderson, Bothell, Byrne,
Douglass, Lebiere, & Qin, 2004; Meyer & Kieras, 1997; Newell, 1990). All
productions have the same structure. There is a condition (“if”) that triggers the
production and an action (“then”) that is taken when the production is triggered.
The difference between productions representing acts of control and productions
representing controlled acts is in content, not form.

It may be profitable to think of stochastic accumulator models and
production rules as different perspectives on the same mental operations. The
condition term in the production rule specifies the input that drives the stochastic
accumulator. The action term in the production rule specifies the action that is
taken when the stochastic accumulator hits threshold. The two perspectives
provide a more complete description that may be useful in identifying, measuring,
and cataloging acts of control (and controlled actions).

Our theory that acts of control and controlled acts are both implemented as
stochastic accumulators suggests they should be affected similarly by habit and
strategy. Controlled actions show Stroop (1935) and Stroop-like effects that are
modulated by strategy (Logan & Zbrodoff, 1979; Tzelgov, Henik & Lesser, 1992).
We see similar effects in acts of control. SSRT is faster when stop signals repeat
(Bissett & Logan, 2012) and SSRT is slower when the stop signal is “GO” than when
itis “STOP” (Verbruggen & Logan, 2009a). Acts of control can be associated with
stimuli and processing episodes, just as controlled actions are (Logan & Etherton,
1994), suggesting short-term and long-term priming effects. Subjects associate
stopping with go stimuli that are paired with stop signals, and show longer go RTs
when the go stimuli repeat, even at long retention intervals (Lenartowicz,
Verbruggen, Logan & Poldrack, 2011; Verbruggen & Logan, 2008b, 2009a;
Verbruggen et al., 2008). Subjects may even automatize control (Verbruggen &
Logan, 2008a) and transfer it to other situations (Verbruggen, Adams & Chambers,
2012). All of these effects are readily interpretable as changes in drift rates,

thresholds, and non-decision times in stochastic accumulators.



46

Our theory suggests that cognition and cognitive control are driven by
events. Some events trigger acts of control. Other events trigger controlled acts.
Our theory suggests that cognition and cognitive control involve discrete acts that
begin with some event (like a go stimulus) and end with another (like a keypress).
The reaction time experiment is its paradigm case: a stimulus followed by a
response (Donders, 1868; Sternberg, 1969). We do not address more continuous
control or hierarchical control (Logan & Crump, 2011). We do not believe that all
cognitive control is event driven and discrete, but it may be a useful alternative
hypothesis in searching for more continuous hierarchical control. At present, we
know the act of control triggered by a stop signal is event driven and discrete.

Future research will address other acts and other kinds of control.

Limitations

There are two major limitations to our theory: We have no theory of drift
rate and we have no theory of how top-down parameters should be set. A theory of
drift rate would allow us to separate structural factors, like similarity and
discriminability (Logan, 2002; Nosofsky & Palmeri, 1997), from strategic factors,
like attention and task set (Logan & Gordon, 2001; Smith & Ratcliff, 2009). For now,
drift rate is a free parameter. We allow it to vary to optimize the fit to the data. We
do not constrain it with a theory that says how it is calculated. A theory of drift rate
is an important step in the future development of special race models.

A theory that explains how top-down parameters are set would be an
important step toward a theory of executive control. The diffusion race model tells
us how much the threshold increases when stop signals become relevant, but that
quantity reflects what is required to optimize the fit. It does not come from a theory
that says what information the executive considers in deciding the value of the
threshold and how the executive chooses a value based on that information. We
need a theory that explains these phenomena. That is an important goal for future

research.

Conclusions
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The general and special independent race models extend the original
independent race model in important directions. They account for choice, which is
an important advance over previous stop-signal models (Boucher et al., 2007; Lo et
al,, 2010; Logan & Cowan, 1984; Salinas & Stanford, 2013; Wong-Lin et al., 2010).
They predict response time distributions and response probability, so they can be
compared with models of RT (Ratcliff & Smith, 2004; Teodorescu & Usher, 2013).
They provide estimates of SSRT distributions, which have been elusive until recently
(Matzke et al.,, 2013). They allow precise tests of hypotheses because of their
commitment to stochastic accumulators. They frame hypotheses in terms of drift
rates, thresholds, and non-decision times, and they test hypotheses with RT
distributions and response probabilities. We implemented a special race model that
assumed each runner was a diffusion process, and we fit it to two data sets to test
hypotheses about selective influence of capacity limitations on rate parameters and
strategies on threshold parameters. The model fit well and the parameters behaved

as expected.
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Appendix A: Experiment 1 Method and Results
Method

Subjects. Six people from the Vanderbilt University community participated
for monetary compensation ($12/hour). All subjects had normal or corrected-to-
normal vision and all were naive as to the purpose of the experiment.

Apparatus and stimuli. The experiment was run on a Pentium 4 PC running
Tscope (Stevens, Lammertyn, Verbruggen & Vandierendonck, 2006). The stimuli
were presented on a 21-inch cathode ray tube monitor. In the go task, subjects
indicated which word in a set of 2, 4, or 6 was presented by pressing one key on a
QWERTY keyboard. The words were presented centrally in a white uppercase
Courier font (size = 24) on a black background. In the 2-choice condition, subjects
pressed F for one word and ] for the other word; in the 4-choice condition, subjects
pressed D, F, ], or K; in the 6-choice condition, subjects pressed S, D, F, ], K, or L. We
used different words in each session and in each condition to reduce practice effects.
In all conditions, the mapping of words onto response keys was randomized. On
stop-signal trials, a loud and clear auditory signal (80dB, 100 ms, 500Hz) was
presented through closed headphones (Sennheiser eH150), using stop-signal
presentation functions of STOP-IT (Verbruggen, Logan & Stevens, 2008).

Procedure. The experiment consisted of 12 sessions. At the beginning of the
first session, instructions were given orally by the experimenter. Subjects were
instructed to respond as quickly and accurately as possible. In each session, there
were three conditions: 2-choice, 4-choice, and 6-choice. Each condition started with
the presentation of the words that could occur in the block and the word-key
mapping. The order of the conditions within each session was randomized.

All trials started with the presentation of a fixation sign (++++++), which was
replaced by a single word after 250 ms. The word remained on the screen for 2,000
ms, regardless of RT. The following trial started 250 ms after the offset of the word.
On 25% of the trials, a stop signal was presented at a variable delay after the onset
of the go stimulus. The delay was based on performance in the signal practice block

in Session 1 (see below). In each choice condition, stop signal delay was 15%, 35%,
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55%, 75%, or 95% of the corresponding mean RT in the practice phase. Delays
were randomized and occurred with equal probability.

Each choice condition started with a practice block of 36 trials without stop
signals. This no-stop-signal block was followed by another practice block of 36 trials
with stop signals. After the two practice blocks, there were two experimental blocks
of 120 trials. At the end of each block, we presented the number of no-stop-signal
errors, the mean RT, and the probability of stopping. Subjects had to pause for 10

seconds between each block.

Results

Mean no-stop-signal RTs, signal-respond RT, SSRTs, and error rates,
collapsed across subjects and sessions, appear in Figure 3. SSRTs were estimated
using the integration method (Logan, 1994; Logan & Cowan, 1984; Verbruggen &
Logan, 2009). For each number of choice alternatives, the no-stop-signal RTs were
rank-ordered, and the nth RT was selected, where n was obtained by multiplying the
number of RTs in the distribution by p(respond|signal) at a given delay. To estimate
SSRT, stop-signal delay (SSD) was subtracted from the nth RT. This process was
repeated for each SSD for each subject. The results were then averaged across SSDs
for which p(respond|signal) for larger than .05 but smaller than .95.

We subjected the go RTs, signal-respond RT, SSRTs, and error rates to
separate one-way analyses of variance (ANOVAs) with number of choice
alternatives (2, 4, 6) as within-subject factor. Summary tables for these ANOVAs
appear in Table A1. Number of choice alternatives affected go RT, signal-respond
RT, and error rate, but did not affect SSRT.

The top panel of Figure A1l plots go RTs from no-stop-signal trials for 2, 4,
and 6 choices as a function of session. The figure shows that performance was quite
stable across sessions, most likely because we changed the words in each choice set
each session. The top panel of Figure A2 plots go RTs from no-stop-signal trials for
2,4, and 6 choices as a function of block within a session. The figure shows that

performance was quite stable across blocks within a session, most likely because the
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72 trials of practice at the beginning of each choice condition absorbed initial

changes in performance due to learning.

Appendix B: Fitting Models to Data

To understand how the models were fit to the data, we must expand the
simplified notation used in the text. Each subject provides RTs in each Condition ¢
(2, 4, or 6 choices in the multiple choice experiment; none vs. all conditions in
Verbruggen & Logan, 2009c) under different stop signal delays tq. A trial can be
either a go trial or a stop trial. To simplify exposition, we will set stop-signal delay ¢4
equal to infinity for go trials. On any trial, a response may be correct, incorrect, or
inhibited, and the RT of that response will depend on a set of parameters 6. that are
appropriate for Condition ¢ and stop-signal delay ts. We can then write the finishing
time distribution of response i under condition c as fi(t|6,ts). We write an observed
RT from an individual subject on trial j in Experiment 1 as Tji.. We also define Rjjc =1
if a response is made on trial j (if Tjc > 0) and 0 otherwise. Let Akjc = 1 if the
response k is correct on trial j and 0 otherwise, so that a number (2, 4, or 6) of Agjcs
are defined for each trial j. An individual subject’s data can then be written as the set
of vectors {To R {Ac}}.

The models were fit to the data in the multiple choice task and Verbruggen
and Logan (2009c) using maximum likelihood (Myung, 2003; Van Zandt 2000a).
The likelihood is a function that reflects the probability of the data given a set of
parameter values. We define the likelihood by way of Equations 8-12, the
probability of a response P-(ts), and the joint probability f{t;i) of response i at time t.
Expanding the notation of Equations 8-12, we write the probability of a response on
a stop trial as Pr(tq4|6c) and the joint probability of response i at time t as
[frr(t:1] 6jic,ta), making explicit the dependence of these probabilities on the model
parameters 6. on trial j and the stop-signal delay t4 on trial j.

For the diffusion race model in the multiple-choice experiment and the
Verbruggen and Logan (2009c) experiment, the parameters 6. for condition ¢

include the thresholds zgc and zs for the go and stop processes, respectively, the
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correct drift rates & c and & for the go and stop processes, respectively, the
incorrect drift rate & for the go process, and the non-decision times t; and ¢; for the
go and stop processes, respectively. If response i is observed on trial j at time Tjc = ¢,

the joint likelihood of that response is
F11,,0,)= [t =112 Ay &y + (1= Ay e, ) X
(1= Fp (1 =1, =1, 1240, 800) %
[[(-FG-1,120, A4 E0 + (- Ay)e)

k=i

The likelihood of an inhibited response on trial j is
1 - Pr(td) = ff;'t()p (t - t.\' - td | Zslc ’gslc)]i[ (1 - E( (t - tg I Zgl(" Akj\cgg\c + (1 - Akjlv)gc )) dt
0 k .

The likelihood for the model, for the data from Condition ¢ and stop-signal delay tq is

L(Gc l Y—VL"RL"AC’td) = l_[(l - Pr(td))]_Rﬂc f(t7 l tl/aai\c)Rl‘c

JjEC
The total likelihood across all conditions in the experiment is

LOIT,RA) =] [[[LO.IT..R.. A1)
c d

Model fits were obtained by minimizing the negative log total likelihood
-logL (6| T,R,A) over all conditions and stop-signal delays simultaneously. We used
the Nelder-Mead simplex algorithm as programmed in R’s “optim” function. We
obtained starting values by minimizing -logL((6:|T¢R,Ac) (multiple choice
experiment) or -logL((6:| T R,As) (Verbruggen & Logan, 2009c¢) separately for each
condition ¢. We then used those values to minimize -logL(6|T,R,A) over all
conditions, repeating until there was no further change in the final values of -
logL(6|T,R,A) or -logL(6|T,RA,P). Outliers faster than 150 ms were excluded but
were very rare. Observations that returned likelihoods of 0 (log likelihoods of -c0)
were given log likelihoods of -750 (a value orders of magnitude larger than those

obtained when the parameters assumed reasonable values). Non-decision time was

bounded between 0 and the minimum RT.
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Appendix C: Diffusion Race Model Can Produce Fast Errors

The best-fitting diffusion race models predicted error RTs that were slower
than observed error RTs and often slower than correct RTs. We attributed this to
the low frequency of errors (2% or less), so error RTs had little influence on the
fitting routine. Here, we report a simulation of the diffusion race model that
produces fast errors, and we show that the fits of the diffusion race model to the
simulated data predict fast errors and recover the parameters of the simulation.

We began with the parameters of the best-fitting model in the aggregate fits,
in which go threshold and rate varied with the number of choice alternatives but
stop threshold and rate did not (see Table 2). We increased error rate by reducing
the difference in drift rate between correct and incorrect response alternatives to
simulate the effect of reducing the discriminability of the choice alternatives in the
go task. We produced fast errors by fixing threshold variability to equal 75% of the
threshold. We simulated 8,640 trials to produce data similar to individual subject
data in the multiple choice experiment. The simulated (“observed”) RT
distributions for correct and error responses are plotted in Figure C1. The
simulated mean RTs for correct and error responses and simulated error
probabilities are presented in Table C1. The parameters used to generate the
simulated data are presented in Table C2.

Overall, the simulated error RTs were 115 ms faster than the simulated
correct RTs. Figure C1 shows that the distributions of error RTs were consistently
faster than the distributions of correct RTs. This simulation demonstrates that the
diffusion race model can predict fast errors. The simulated error rate was 0.36.

We fit a diffusion race model, in which go rate and threshold varied with
choice alternatives but stop rate and threshold did not, to the simulated data. The
predicted distributions are plotted with the observed distributions in Figure C1.
The means for correct RT, incorrect RT, and error rate appear in Table C1. The best-
fitting parameter values appear in Table C2. The model fit the simulated data well,
recovering the parameters accurately and predicting error RTs that were faster than

correct RTs. The fit demonstrates that the model can fit fast errors when error rate
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is high (0.36). Threshold variability was fixed in the simulation that generated the
data, but it was a free parameter in the fits. The fits produced estimates of threshold
variability that were close to those in the simulated data (see Table C1), indicating
that our model fits can recover threshold variability well when there are enough
errors to contribute significantly to the likelihood.

The simulation and the fit demonstrate in principle that the diffusion race
model can generate and fit fast errors when error rate is high. Whether the
diffusion race model can fit error RTs in real data with high error rate is a question

we will address in future research.



68

Author Notes

Gordon D. Logan, Department of Psychology, Vanderbilt University, Nashville, TN,
Trisha Van Zandt, Department of Psychology, The Ohio State University, Columbus,
OH, Frederick Verbruggen, Department of Psychology, University of Exeter, Exeter,
England, and Eric-Jan Wagenmakers, Department of Psychology, University of
Amsterdam, Amsterdam, the Netherlands. This research was supported by National
Science Foundation grants BCS 0957074 and BCS 1257272 to Gordon D. Logan,
National Science Foundation grant SES 1024709 to Trisha Van Zandt, Netherlands
Organization for Scientific Research (NWOQ) VIDI grant to Eric-Jan Wagenmakers,
and European Research Council grant 312445 to Frederick Verbruggen. We are
grateful to Andrew Heathcote, Jim Townsend, and Marius Usher for helpful
comments on the manuscript.

Correspondence may be addressed to Gordon D. Logan, Department of
Psychology, Vanderbilt University, Nashville TN 37240 or

gordon.logan@vanderbilt.edu



69

Table 1

Models fitted to the multiple choice data. The best-fitting model in the aggregate fits

is in bold italic font.

Go Go Rate Stop Stop Rate | Go Stop Param Aggregate N
Threshold Threshold Capacity Capacity BIC Fit
Best

1 Varied Varied Varied Varied Limited Shared 17 590976 0
2 Varied Varied Fixed Fixed Limited Unshared 13 590736 2
3 Varied Varied Varied Fixed Limited Unshared 15 590964 0
4 Varied Varied Fixed Varied Limited Shared 15 590881 1
5 Varied Fixed Varied Varied Unlimited Shared 13 594388 0
6 Fixed Fixed Varied Varied Limited Shared 15 591510 0
7 Varied Fixed Fixed Fixed Unlimited Unshared 9 593518 2
8 Fixed Varied Fixed Fixed Limited Unshared 11 591367 1

Note: Varied = parameter is allowed to vary with number of choice alternatives;
Fixed = parameter is held constant across number of choice alternatives; Param =

Number of Parameters.
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Mean values across subjects for the best fitting diffusion race model parameters for

the multiple choice data in the aggregate fits and for the best fitting models for

individual subjects.

Best Aggregate Fit
Choice | Go Thresh | Correct | Incorrect | Non- Stop Thresh | Stop | Non-
Threshold | Var Rate Rate Decision | Threshold | Var Rate | Decision
Time Time
2 64.265 5.735 | 0.210 0.042 164 5.107 0.837 | 0.068 | 241
4 66.848 6.403 0.157 0.016 164 5.107 0.837 | 0.068 | 241
6 68.606 6.335 | 0.134 0.004 164 5.107 0.837 | 0.068 | 241
Best Fit for Individual Subjects
Choice | Go Thresh | Correct | Incorrect | Non- Stop Thresh | Stop | Non-
Threshold | Var Rate Rate Decision | Threshold | Var Rate | Decision
Time Time
2 61.890 2.139 | 0.200 0.039 160 4.882 8.837 | 0.089 | 241
4 66.375 3.086 | 0.154 0.016 160 4.882 8.837 | 0.082 | 241
6 68.173 3.155 | 0.134 0.004 160 4.882 8.837 | 0.077 | 241

Note: Thres Var = Threshold variability
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Table 3

Models fitted to the Verbruggen and Logan (2009c) data. The best-fitting model in
the aggregate fits is in bold italic font.

Go Go Rate Go Go Param Aggregate N
Threshold Threshold Non-Decision BIC Fit
Variability Time Best

1 | Fixed Fixed Fixed Fixed 9 97954 0
2 | Fixed Fixed Fixed Varied 10 96920 0
3 | Varied Fixed Varied Fixed 11 96438 9
4 | Varied Fixed Varied Varied 12 96595 5
5 | Fixed Varied Fixed Fixed 11 96712 2
6 | Fixed Varied Fixed Varied 12 96674 1
7 | Varied Varied Varied Fixed 13 96622 1
8 | Varied Varied Varied Varied 14 96785 0




Table A1

72

Summary tables for one-way analyses of variance evaluating the effects of
number of choice alternatives on go response times (RTs), signal-response RTs, stop-

signal RTs (SSRT), and error rates in Experiment 1.

Dependent F ratio Degrees of Mean Squared | p
Variable freedom Error

Go RT 28.0 2,10 2920 <.001
Signal- 37.7 2,10 1344 <.001
Respond RT

SSRT 2.2 2,10 305 >.16
Error Rate 27.5 2,10 0.00008 <.001
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Mean correct and incorrect response times and error rates and error rates as a
function of number of choice alternatives (2, 4, 6) for observed (simulated) and
predicted (fitted) data generated from a diffusion race model with a limited capacity

go process and an unshared capacity stop process.

2 4 6

Predicted Observed Predicted Observed Predicted Observed
Correct RT 707 702 811 812 945 941
Error RT 627 652 692 701 742 758
P(Error) 0.206 0.204 0.411 0.410 0.450 0.447

Note: RT = response time




parameters (predicted) from fitting a model with the same structure to the simulated

data.

Table C2

74

Parameters from a diffusion race model with a limited-capacity go process and
an unlimited-capacity stop process used to generate simulated data (observed) and

Observed (simulated)

Choice | Go Thresh Correct | Incorrect | Non- Stop Thresh | Stop Non-
Threshold | Var Rate Rate Decision | Threshold | Var Rate Decision
Time Time
2 64.000 48.000 0.105 0.040 132 5.000 3.750 0.070 164
4 67.000 50.250 0.080 0.020 132 5.000 3.750 0.070 164
6 69 51.75 0.065 0.004 132 5.000 3.750 0.070 164
Best Fit for Individual Subjects
Choice | Go Thresh Correct | Incorrect | Non- Stop Thresh | Stop Non-
Threshold | Var Rate Rate Decision | Threshold | Var Rate Decision
Time Time
2 61.363 45.750 0.101 0.036 156 9.816 0.000 0.0904 | 193
4 65.347 48.721 0.078 0.019 156 9.816 0.000 0.0904 | 193
6 68.646 51.181 0.066 0.004 156 9.816 0.000 0.0904 | 193
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Figure Titles

Figure 1. Panel A: Inhibition functions for three subjects plotted as a function
of stop-signal delay. Panel B: Inhibition functions for the same three subjects re-
plotted as a function of mean go response time minus stop-signal delay. Data are
taken from Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and
action: A theory of an act of control. Psychological Review, 91, 295-327.

Figure 2. Quantile average response time distributions for no-stop-signal
trials and signal-respond trials with stop-signal delays of 153, 241, and 329 ms.
Data are taken from the two-choice condition of the multiple-choice experiment
reported later in the article.

Figure 3. Mean observed (points) and predicted (lines) go response time (Go
RT), signal-respond response time (SR RT), stop-signal response time (SSRT), and
error rate (P(Error)) for diffusion race model as a function of number of choice
alternatives in the multiple choice experiment. Error bars are 95% confidence
intervals.

Figure 4. Observed (points) and predicted (lines) inhibition functions for
diffusion race model averaged over subjects as a function of number of choice
alternatives (2, 4, 6) and stop-signal delay in the multiple choice experiment.

Figure 5. Diffusion race model fits to response time distributions for correct
trials from the multiple choice experiment. Quantile average response time
distributions for no-stop-signal and signal-respond trials for the three middle stop-
signal delays (153, 241, and 329 ms for two choice; 227, 358, and 488 ms for four
choice; 281, 441, and 602 ms for six choice). The points represent the observed
data. The lines represent predictions from the best diffusion race model, which
assumed a limited-capacity go process and an unshared-capacity stop process.
Panel A: Two choice alternatives. Panel B: Four choice alternatives. Panel C: Six
choice alternatives.

Figure 6. Values of the best-fitting rate and threshold parameters for the stop
process and the go process in diffusion race model fits to the multiple choice data.

The top panel contains parameters from the model that fit the aggregate data best
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(limited-capacity go; unshared-capacity stop). The bottom panel contains the
average of the parameters for the best-fitting model for each subject.

Figure 7. Distributions of stop-signal response times that won the race
against the go process estimated from the limited-capacity go, unshared-capacity
stop diffusion race model in the multiple-choice experiment. Top panel = two choice
go task; middle panel = four choice go task; bottom panel = six choice go task.

Figure 8. Distributions of correct and error response times for no-stop-signal
trials for two, four, and six choice alternatives in the multiple choice experiment.
The top panel presents cumulative distribution functions that asymptote at 100%.
The bottom panel presents defective distribution functions that asymptote at the
response probability.

Figure 9. Mean observed (points) and predicted (lines) go response time (Go
RT), signal-respond response time (SR RT), stop-signal response time (SSRT), and
error rate (P(Error)) for diffusion race model for conditions in which none of the
stop signals were relevant and all of the stop signals were relevant in Verbruggen
and Logan (2009c). Error bars are 95% confidence intervals.

Figure 10. Diffusion race model fits to response time distributions for correct
trials from Verbruggen and Logan (2009c). Quantile average response time
distributions for no-stop-signal trials in the condition in which none of the stop
signals were relevant and for no-stop-signal and signal-respond trials in the
condition in which all of the stop signals were relevant. The points represent the
observed data. The lines represent predictions from the best diffusion race model.

Figure 11. Values of the best-fitting rate and threshold (left panels) and
threshold variability and non-decision time (right panels) parameters for the
diffusion race model fits to the Verbruggen and Logan (2009c) data. The top panels
contain parameters from the model that fit the aggregate data best. The bottom
panels contain the average of the parameters for the best-fitting model for each
subject.

Figure 12. Distributions of stop-signal response times that won the race
against the go process estimated from the diffusion race model with the best

aggregate fit to the Verbruggen and Logan (2009c) data.
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Figure A1l. Mean response time for no-stop-signal trials as a function of
number of choice alternatives and session (top panel) and block within session
(bottom panel).

Figure C1. Observed (simulated) and predicted response time distributions
for correct and error responses from a diffusion race model with limited capacity in
the go task and unshared capacity in the stop task for 2 (top panel), 4 (middle

panel), and 6 (bottom panel) choice alternatives.
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Figure 3
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Figure 5
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Figure 11 Left Panel
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Figure 11 Right Panel
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Figure 12
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Figure 13
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