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From the author

The book was written in the eighties of the last century. Being encour-
aged by the editorial board of monthly Delta in the person of Professor Marek 
Kordos, the author’s first aim was a  collection of essays about Peano maps, 
lakes of Wada, and several singularities of real functions. But it was the time 
when university duties stopped and the author could freely meditate whether 
this curious mathematics had its roots in the forgotten past. He remembered old 
authors who began their books with the words “already the ancient Greeks…  .”

The celebrated nineteenth century, the century of concepts, was preceded 
by the century of calculations. Going further back we can see Newton, but 
what and who was there before? Were the centuries between the Ancients and 
Newton a vacuum in mathematical sciences? Accidentally, the treatise De con-
tinuo by Thomas Bradwardine, the Archbishop of Canterbury, led the author 
into an unknown and strange world of medieval scholastic thought, showing 
to him the lost thread joining our times with Zeno, Aristotle and Democritus.

However, to find this forgotten link a  step should be taken beyond pure 
mathematical thinking. In this extended surrounding we can observe the unity 
of mathematical concepts being non-existent in the realm of pure mathematics.

The translation into English is a  gift from Professor Abe Shenitzer. Al-
though the translation runs as closely as possible to the Polish original text, 
the author has a  right to regard the book as a  joint work with the Translator. 
The first chapter of the original text, according to Translator’s suggestion, was 
“somewhat baffling for reading.” That is why the author decided not to enclose 
it in the English version and consequently the numeration of chapters is shifted 
by one with respect to the Polish edition.



The author is truly indebted to his daughter, Elżbieta and granddaughter, 
Berenika for scanning the drawings and consolidating the text consisting of 
separate mails into a computer whole and forming it into a volume for the 
home use, which was a base for the further work.

The drawings are taken from the Polish edition; those of pure mathematical 
character were created professionally by the late Krzysztof Biesaga.

The publication was possible thanks to the goodwill and the support of the 
Faculty of Mathematics, Physics and Chemistry in the person of the Dean Pro-
fessor Alicja Ratuszna, and the kind cooperation with the University of Silesia 
Press. The author expresses his special gratitude to MSc Joanna Zwierzyńska 
for her careful look at the final version of the text and making it more coher-
ent, and for saving the text from numerous inaccuracies.
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Introduction

There are two areas of mathematics, namely, arithmetic and geometry. They 
are independent, yet clearly separated. Arithmetic deals with numbers, geom-
etry deals with space. Whereas the notion of number is rooted in our thinking 
that most creators of mathematics were inclined to accept it without discussion, 
views on space have always been subject to deep splits. Whether space should 
be treated as a mathematical object — that is as an object of thought — or as 
a physical object is a question which we will not answer. Parmenides, one of the 
first philosophers of nature whose views we will have occasion to investigate, 
identified space with ideal existence, and thus with existence that is invariant, 
homogeneous, infinite, and forming an entity.

The people noted more specific characteristic of space. One of them is 
continuity.

This characteristic of space is so much part of our notions that we lose our way 
in its analysis. In ancient Greece the continuity of space meant like the possibil-
ity of subdividing it indefinitely. This was the view of Anaxagoras who said that 
“there is no least in the small.” Translated into non-archaic language, this means 
that one can subdivide every part of space. Aristotle took this characteristic of 
space as the starting point of his investigations. But there is another characteristic 
of continuity which ensure the cohesiveness of continuous existence: two parts into 
which we separate it mentally adhere to one other. A mathematical formulation of 
this characteristic was discovered only a little more than a hundred years ago.

A continuous object, that is, one infinitely divisible and cohesive, has been 
called already in antiquity a  continuum. The root of this word is the Latin 
continere, whose Greek prototype is syn-echein, which roughly means to bond.
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Space is not the only object to which we ascribe continuous structure. The 
intensity of stream, or of color, seem to have this quality. But, above all, it is 
the flow of time that is continuous.

A  loose and free structure, composed of isolated elements, is the opposite 
of a  continuous structure. Such a  structure is said to be discrete. The word 
“discrete” is derived from the Latin discretus, separate, detached from other 
things. “Discrete” thus means “consisting of, or pertaining to, distinct and 
individual parts.”
The numbers

1, 2, 3, …
form a  discrete structure.

Could space be discrete? This cannot be ruled out a priori. Nor can we rule 
out of possibility that the flow of time might be discrete.

●

Geometry, the mathematical science of space, has also another, more mun-
dane origin. The two relevant Geek word are gea — land (we mean arable land) 
and metrein — to measure. Proclus (ca. 410—485), a commentator of works of 
his predecessors, wrote that “Many people assert that geometry was invented 
by Egyptians for measurement of land. They needed it because the inhabitants 
of the Nile washed out balks.”

From balks to infinitely divisible existence — a  breathtaking span.

●

Space is a  composite object made up of elements that enable us to realize 
the nature of the whole. We single out points — places in space. This is not 
a definition but just another term of language. Points are not parts of space: we 
do not attribute them a material nature even when we are prepared to attribute 
a material nature to space. They are not a  raw material out of which space, or 
a  part of it, is composed. When we think of a  point, we think of its location. 
A point is a  synonym of its neighbourhood. Only if the space is not uniform, 
these neighbourhoods may be different.

Nevertheless, we are willing to imagine points as independent existences, 
and the thought that they could be the raw material of space does not always 
strike us as alien. This dilemma is one of the difficulties we encounter when 
we think of the notion of a  continuum.

Another difficulty is the infinitude of space, a  notion which suggest itself 
irresistibly when we think of straight lines, yet another element of space.

After a few attempts we give up the idea of defining a straight line. It seems 
to be as primitive as the concept of space. One can also adopt the reverse view 
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point: it is straight lines that suggest to us the notion of space. We see and 
move along straight lines. Moving along the straight line, we move towards 
an objective. We are not always sure of the possibility of reaching it. Hence 
straight lines give us the initial sense of the possible nature of the infinite.

Planes are yet another element. We see in space at least one plane, the plane 
we seem to be in. The initial stage of geometry codifies our notions related to 
our staying in that plane. Space notions came later. Then we begin to notice 
other planes as well.

The mutual disposition of points, straight lines and planes is subject to 
definite rules (such as say, that two different straight lines can have at most 
one common point, that they adhere to planes, and so on). That are truths that 
must be accepted without proof (which does not mean on faith). Such truths 
are called postulates. It is arguable whether postulates are facts so obvious 
that nature thrusts them before our eyes and all we need do is note them, or 
whether they statements are the result of slowly growing knowledge that is 
finally spelled out, knowledge of which we do not know whether it is final 
and beyond doubt. The evolution of geometry tells us that what is true is the 
latter rather than the former.

It is also arguable whether the formation of geometric postulates belongs in 
the domain of mathematics, or philosophy, the guide of learning. Aristotle was 
believed that the issue belongs to philosophy. This statement should be interpret-
ed as saying that the issue is metamathematical, i.e. lies beyond mathematics.

We attribute the quality of continuity to plans and straight lines.
But straight lines are continua with the earnest structure. A  point divides 

straight line into two parts, each of which is again a continuum. This property 
of a straight line enables us to order the set of its points. We say that a straight 
line is an ordered continuum. We also say that it is one-dimensional. Neither 
a  plane nor space have this property.

What is space? Why does it exceed our imagination and why must 
a  child learn about it? Why do even accomplished painters lose their way 
when dealing with perspective, a  subject whose knowledge is only a  few 
century old, and produce either “flat” paintings or “space” paintings that are 
frequently flawed? Why can’t we exit from space into an extra dimension 
the way we exit from a  plane? Is it because of a  limitation of our senses 
or is it because of the nature of space? While the first of these views is 
very popular and opens the door to a  variety of speculations, the three di-
mensionality of space is a  physical fact; no mathematical premise supports 
the number 3. Kant linked the number of dimensions with the form of the 
law of gravitation. Can it be that counting dimensions is a  necessity of our 
thought processes?

●
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Time is very troublesome. The 19th century provided a simple mathematical 
description of time but behind it hides a  physical phenomenon that is hard to 
grasp. There is also a subjective sense of time. The two are connected. Explana-
tion of this connection is a task of natural sciences: for physics, physiology, and 
psychology. In spite of its vagueness, time is subjectively the most continuous 
of all continuities: if we cannot imagine a  break in the space then we cannot 
possibly imagine a  break in time.

It seems that time is a stream of events with a direction. It isn’t clear whether 
the notion of direction of time is due to our senses or is part of the nature of 
things. Time seems to flow continuously. If not much is going on, then we notice 
changes of the intensity of its flow, momentary atrophies and turnings. We seem 
to flow with the stream. We do not know if the flow of time is everywhere 
the same and whether it will always be the same. We cannot imagine its ever 
coming to an end and its ever beginning. We experience the physical nature 
of time most having intensely when we can turn time back. Preconditions for 
this are: a small number of phenomena and not much happening. Then we can 
turn the time back by restoring earlier positions of moved objects. To turn the 
time back in the full sense of the word we would need all the energy in the 
world, if not more. Aristotle, with Plato in mind, said that “Some claims that 
time is the motion of the whole world.” St. Augustine agreed with Plato and 
thought that time began at the moment of creation, and added that before that 
moment eternity ruled.

We tend to think of a moment as a point separating the past of the future. 
This means that we are willing to treat time as the ordered continuum, a uni-
versal continuum for all phenomena, but, strictly speaking, we never ascertain 
this universality. Each range of phenomena seems to have its own time stream. 
The time notion we use is always a  strand we attribute to the stream of phe-
nomena in which we move. In that strand a  moment seems to have a  definite 
content. In mathematical problems we restrict phenomena so that time takes 
on the structure of a  straight line.

The ancients removed time from the range of mathematics. Their geometry 
— as Aristotle stated succintly — was limited to consideration of motionless 
existences. They had definite reasons for so doing. We will talk of these rea-
sons. Modern mathematics has included time in its deliberation as a schematic 
existence devoid of all the varied properties suggested by its nature.

●

We speak of space and time as of things. We have no right to do this be-
cause these are qualities of things rather than things, qualities we might call 
spaceness and variability. But when speaking about qualities of things we some-
times find it convenient to elevate them to the level of things. Then we forget 
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about the origin of the new existences and treat them like things. Plato called 
these existences ideas, and maintained that they are the only things worthy of 
deliberation. Let’s not argue about this. An issue more worthy of argument is 
probably the issue of the origin of ideas. In spite of the fact that we are their 
makers (or, at least, we think we are), we make them as a result of the pressure 
of phenomena, and this endows them with a quality of objectivity. If we do not 
want to limit ourselves to the manipulation of objects and events, then ideas 
are indispensable for our thinking. We fix their properties so as to enable to 
think about these properties as if they were characteristics of external objects.

But it is an exaggeration to follow the believers in Plato for whom the world 
of objects and phenomena is a  mere reflection of the world of ideas. We can 
go further in this opposition to Plato, like Aristotle we can say that ideas are 
the only things we can investigate in a  rigorous manner.

In spite of the fact that ideas evolve, the evolution of mathematical ideas is 
very slow. This gives the impression that the structure of mathematical knowl-
edge grows like a building. The notion of number does not change, and when 
we look at the three millennia of the evolution of geometry, to the period for 
which we have documentary evidence, the changes of concepts are minimal. 
The concepts of physics are less durable. But we hasten to add that it took two 
millennia to replace the physics of Aristotle with its opposite, the physics of 
Newton. Some claim that the most durable principles are the principles of logic.

●

Time to pose a  more basic question. To what extent are the mathematical 
notions we form independent of the way we observe or even of the nature of 
our senses?

This question was posed by Kant. Roughly speaking his answer was that 
in our choice of motions bearing on time and space we are limited by our 
nature. Once equipped with such notions — whether inherited, learned at an 
early age, or picked up with the rest of the culture of our environment — we 
use them in fixed form.

According to extreme views connected with this orientation, man is 
equipped with a  sense of time and space which imposes a  definite pattern on 
the knowledge he forms. We cannot completely reject this possibility, but in 
line with what we’ve said thus far, we state a  reservation. Even if it is true 
that our sense of time and space depends on the limitations of our nature, this 
sense was shaped under the influence of the outside world, and thus contains 
a  general cognitive element. To use Kant’s terminology, this is a  cognitive 
element a  priori.

Kant’s views are a good reference to a veritable maze of presentations phi-
losophy which can serve and that admits to mathematics. We took a step away 



from Kant’s view in a direction that admits the evolution of what Kant called 
reason. But one can take a step in a direction that ascribes to reason in Kant’s 
sense invariability and absolute infallibility. The invariability of mathematical 
truths seems to justify this view. Many thinkers, such as the Pythagoreans, 
Parmenides, Plato (the key representative of this viewpoint), St. Augustine, 
and among more recent figures, Bolzano and Cantor, are inclined to accept it.

●

For the Greeks, the notion of continuum emerged from the philosophy of 
nature, that is, contemporary physics. Attempts of its mathematization failed. 
The famous aporia of Zeno of Elea paralyzed these attempts. Such failed at-
tempts are found in the works of Aristotle, which include an accent of his 
own view. Aristotle concentrated the key difficulty in the question whether the 
continuum can be viewed as made up of points.

An affirmative answer leads to difficulties. Aristotle was sufficiently open 
minded to admit that it also leads to a  logical contradiction. But the negative 
answer deprives us of methods.

Attempts were made to get around these difficulties by erecting certain 
thought barriers. The construction of Euclid’s Elements rules out the possibility 
of stating Zeno’s aporias in the language used there.

We know more of the continuum than the Greeks, but the area of igno-
rance has not decreased. Every now and again discoveries are made. They are 
undoubtedly important but are unnecessarily advertised as epochal, discoveries 
that claim to have solved the problem.

We will try to show that this view is false. We will give a historical account 
of the problem and show how philosophers and mathematicians, both famous 
and not very famous, lost they way in the labyrinth of the continuum, what 
was the outcome of their efforts, and in what sense their labors, so seemingly 
Sisyphian, were actually not.
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At the present moment the flying arrow is not in 
motion. It rests in the air and covers no distance; 
this is so in every other moment. But time consists 
of moments, hence the arrow cannot advance in the 
air but must be at rest.

Zeno of Elea1

Space is infinitely divisible. We cannot escape from this view.
But there comes an afterthought. We are following a  train of thought, but 

does it not lead to where it gets completely confused? That is why the first 
philosophers who encountered the idea of infinite divisibility built definite 
barriers around it.

Acceptance of the notion of infinite divisibility does not imply its realiz-
ability. Infinite divisibility is just as possibility. Each point can be a  point of 
division of a straight line. But we ward off the thought that a straight line could 
be totally divided and split into points. This would lead to the conclusion that 
points are the building material out of which it would be possible to construct 
a  straight line.

We can see a  straight line composed of segments, however small. But we 
cannot image its being composed of points.

A  realized subdivision of a  straight line into points leads to difficulties of 
understanding motion.

When moving, we pass the points of a  straight line, but if we are at any 
one of them we do not move, because a point has no length. Similarly, the idea 
that time is composed of moments leads to difficulties. When moving, we are 
at rest at every moment, because a moment has no duration.

This is what Zeno of Elea pointed out in his most troublesome aporia: the 
aporia of the flying arrow.

	 1	 Władysław Tatarkiewicz, Historia filozofii. Warszawa 1978, p. 37. Translated by Abe 
Shenitzer.

Chapter I The flying arrow • Aristotle’s view of the 
aporia of Zeno • Its influence on the evolution 
of geometry and on the science of motion 
• Democritus’s version of this aporia • On 
mathematical atomism
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Aporia means a difficulty. When talking of an aporia, and especially of the 
aporia of flying arrow, we should stick to “difficulty” and not to gravite towards 
“paradox” or “inconsistency.” A paradox involves an element of surprise. And 
when it comes to an inconsistency, we must prove that it is one. The aporia of 
the arrow is troublesome but no surprising (Figure 1). We can eliminate it by 
claiming that, in spite of the appearance of rigor, its reasoning has gaps. But 
we are aware that this argument is just a dodge. This dodge has been tried by 
some philosophers. The problem remains a  problem.

Fig. 1. The flying arrow

When pondering Zeno’s difficulty, the first conclusion we arrive at is that 
certain simple notions about motion resist rigorous description. According to 
our rules of logic, one should fault the assumptions of Zeno’s reasoning for the 
resulting difficulty. Clearly, the “guilty” assumption is the one that states that 
continua — in this case a  straight line and time — consists of points.2

Some say that when Zeno — perversely and not quite explicitly — assumed 
the realization of the infinite divisibility of time or of a  road he wanted to 
prove the impossibility of motion. After all, he was a Parmenides’s disciple, and 
Parmenides, and another one of his disciples Melissus, argued that existence is 
“unchangeable and motionless.”

This is a  half truth. If one wants to present the ideas of Parmenides 
and the Eleatic philosophers in a  non-trivializing way, then one has to go 
deeply into concepts known only to philosophers. In Parmenides’s system 
existence was close to what we think of as absolute space, the basis of all 
phenomena, and this basis was to be motionless in principle. This guarded 
against the extreme position of Heraclitus who claimed that “everything 
flows.” The Eleatic philosophers did not deny the possibility of motion of 
fragments of existence, although they stipulated — as did Melissus — that 
we are dealing with an “appearance of motion,”3 a  statement whose mean-
ing they did not explain.

We will not derive conclusions from the aporia of the flying arrow, conclu-
sions we may be unable to understand.

Motion exists, and we will seek in mathematical conventions a  confirma-
tion, rather than a  denial of its existence. We will treat Zeno’s aporia as an 

	 2	 “It follows from the supposition that the time is composed from a series of “now.” If this 
supposition is not assumed, the conclusion does not follow” — Arystoteles, Fizyka [Physics]. 
Warszawa 1968, p. 209, Book VI, 239b. Translated by Abe Shenitzer. The rules of logic are 
created at that time in some modest form than ours.
	 3	 After Diogenes Laertius, Żywoty i poglądy sławnych filozofów, Warszawa 1982, p. 530. 
Translated by Abe Shenitzer.
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argument for basing the science of motion on a  convention different from the 
realized infinite divisibility of a  continuum.

This was Aristotle’s interpretation of Zeno’s arrow aporia.

●

Aristotle doesn’t like Zeno and never admits that he is right. But his phi-
losophy is a  model of honest thinking and of solid argument against his own 
theses, and along the line of own thoughts he echoes Zeno’s words.4 The realized 
infinite divisibility of a continuum is for him an intellectual necessity. He want 
to free himself from it but not by following the aporia of flying arrow, which 
in his view makes no sense, but by a  direct argument. He writes:5

If someone assumed that a body is a certain everywhere divisible con-
tinuum, he would encounter a  difficulty. For if a  continuum is every-
where divisible, then it could, in the end, be everywhere divided. And 
if this [were done] what would eventually be left? [Then the divided 
existence] will either be made up of points and its components will be 
devoid of continuity, or it will be completely a nonexistence, in which 
in this case it would have arisen from nothing, and the whole would 
have been a  mere substance of something. Again, if it were made up 
of points, then it would not be continuous, for even the conjunction of 
all [points] yields no continuum.

These sentences are not always clear. Elsewhere in Physics he puns it soc-
cinctly: “things without magnitude cannot yield a  magnitude.”

He concludes that a  straight line cannot be made up of points, things he 
grants no magnitude. By the same token, time cannot be composed of moments. 
But in spite of the categorical conclusions the arguments are not persuasive. 
It seems that Aristotle himself views them as incomplete, because he repeats 
them obsessively after inessential modifications. But sometimes he uses a genu-
inely different argument: a continuum cannot be made up of points because in 
a  continuum “a  point is not in contact with a  point.”6

●

	 4	 An Alfréd Rényi’s phrase from Triłłogija po matiematikie [Trilogy on mathematics]. 
Moskwa 1969, p. 74. Translated by Abe Shenitzer.
	 5	 Arystoteles, O powstawaniu i ginięciu [On origine and decline]. Warszawa 1981, p. 9. 
Translated by Abe Shenitzer.
	 6	 Arystoteles, Fizyka, p. 177. Translated by Abe Shenitzer.
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Aristotle is aware that his arguments and conclusions may provoke the 
charge of putting restrictions on mathematics. He anticipates the charge and 
writes that “our reasoning which rejects the realization of infinity does not 
deprive mathematicians of their theories; after all, they have no need of such 
an infinity and they do not use it; all mathematicians need is that the segment 
they consider, while bounded, be as large as necessary,”7 and, of course, as 
small as necessary, which he adds in many other places.

The ancients distinguished two kinds of infinity, potential and actual. 
A potential infinity is the possibility of considering arbitrarily large finite sets. 
An actual infinity is greater than any finite.

We, today, can understand this difference, but we forget about it or ignore 
it most of the time. Euclid say that “for any given number of prime numbers 
there is a  larger one.” We say that the set of primes is infinite without paying 
much attention to the fact that in this way we introduce new entity, the actu-
ally infinite set of primes. If it weren’t for the fact that we do not fear infinity 
because of our lack of sensivity, a lack acquired over centuries, we might enjoy 
this lack of fear of the infinite. In addition to having gotten rid of the fear of the 
infinite we have also gotten rid of the fear of treating space as a  set of points 
and time as a  set of moments. Hence the aporia of the flying arrow does not 
reach our imaginations with the acuteness wish which it reached the imagina-
tions of the ancients. This lack of sensitivity is one of the clearly perceivable 
characteristics of the mathematics of our time.

I think that — like Zeno before him — Aristotle wanted to project the logi-
cal contradiction which would presumably appear if we admitted in our reason-
ing the actual division of the continuum into points. We now know that, from 
a  logical point of view, this argument did not suffice; we know this because, 
following Dedekind, we can build continua made up of points and can even give 
them the status of numbers. But we think that for Aristotle and his contempo-
raries the difficulties presented in their reasonings were enough of a deterrent 
to make them abandon doubtful notions and to adopt other conventions.

A  consequence of this step was the exclusion of the science of motion 
from rigorous mathematical arguments. Greek mathematics was by definition 
static. Aristotle wrote in Metaphysics: “It is a  science dealing with motionless 
existences.”8 Euclid left us such a  mathematics in his Elements.

Euclid geometry deals with straight lines and circles. But a point does not 
move on a circle. Nor does it move on a straight line. True, there is superposition 
of segments but this is a one-step activity rather than a point by point activity. 
A  similar remark applies to a  rotation through a  definite angle.

	 7	 Arystoteles, Fizyka, p. 91. Translated by Abe Shenitzer.
	 8	 Arystoteles, Metafizyka [Metaphysics]. Warszawa 1985, p. 284. Translated by Abe Shen-
itzer.
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Official recognized geometry did not include kinematic curves, such as 
spirals, epicycloids, and so on. These curves were known but insisted on the 
right to exist. Archytas from Tarentum showed by a  kinematic construction 
how to solve the problem of doubling a  cube. But Plato did not recognize his 
solution. In his view, the only admissible geometric constructions were ruler and 
compass constructions. Archytas tried to debate this view but the debate lost.

There are many authors — including the Polish poet Norwid9 — who took 
side with Archytas, the representative of applied mathematics. In our delibera-
tions we will seldom take Plato’s side, but in his argument with Archytas we 
say he was right. Granted, his views were at times extremely arbitrary, but in 
fighting Archytas he was trying to save mathematics from being reduced to an 
experimental science. Aristotle too always took Plato’s side in this matter, in 
spite of the fact that he later opposed many of Plato’s views, including some 
of his mathematical views.

●

Thus the science of motion remained outside mathematics. It was, inciden-
tally, part of a more general science of change and, more generally, on increase 
and decrease. But in a  narrower sense this change was motion; it was change 
that consisted of change of place; a  body was shifting from one location to 
another.

One could talk on speed. For example, one could say that a  body moved 
twice as fast as another body. This meant that it covered twice the distance 
covered in the same time by the slower body. But speed was viewed as a state 
of motion, as a  characteristic which has duration.

Aristotle stated in Physics that “all motion lasts for a certain time.” This was 
a natural consequence of the recognition of Zeno’s difficulty. Aristotle’s system 
could not accommodate the motion of speed at a  certain moment, the basis of 
our contemporary approaches. But in spite of the modest means he adopted, 
he was able to create a  science of motion. His science was later criticized but 
it has the characteristic of scientific theory — it was systematic.

In Aristotle’s system the connection between motion and force was different 
from the one we adopt. We admit the notion of vacuum, and it is motion in 
a  vacuum we describe mathematically. Starting with a  description of such an 
idealized motion we employ certain modifications and obtain the description 
of real motions in resisting media, such as water and air.

A vacuum as a phenomenon was unknown in Aristotle’s time. All observed 
motions always took place in a  certain environment. In fact, it seemed that 

	 9	 Cyprian Kamil Norwid, Plato i  Archita. In Dzieła Wybrane [Selected Poems], t. 1. 
Wrocław 1968, p.  270.
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the environment made possible the motion. It seems that the standard example 
was the motion of boat moved by earsmen (Figure 2). In this case, the speed 
is proportional to the constantly supplied force transmitted to the boat by the 
environment — water. Aristotle carried over this way of looking at motion to 
the motion of a  projectile in the air — a  much rarer environment. We know 
that Aristotle had doubts about the validity of this analogy. Here is the first 
sentence of a  substantial fragment of his Physics:

When it come to things moving in space, one should begin by noting 
a  certain difficulty …

Aristotle explained that the difficulty has to do with the fact that during 
the motion the causing factor — say, the person who threw the projectile — 
has no contact with the moving object, and so cannot maintain the motion. 
The only material thing in contact with the projectile is air, whose particles 
the perpetrator set in motion. The air particles can transmit this motion to one 
another by changing their position so as to make space available for the moving 
projectile. Imagine a  person moving in a  crowd. He occupies the space made 
available by some members of the crowd and is pushed towards that space by 
other members of the crowd. The motion of the crowd is a  disturbance that 
spread like a wave.

I do not claim to have understood Aristotle, I must add that I had not given 
a detailed account of his argument. But I understand his reluctance to explain 
motion by the momentum imparted to the projectile at the moment of throw-
ing it. How does the inanimate projectile know throughout its motion of the 
momentum imparted to it at a  certain moment? Regardless of the formulation 
of his doubts, Aristotle dismissed the thought that motion could take place 
without constant and direct action of a  perpetrator.

But, on the other hand, how can air particles propel a projectile? This was 
a  question that tormented post-Aristotelian philosophers. They did not reject 
Aristotle’s views because they wanted to avoid of explanations of a  theological 
nature.

Thus, in Aristotle’s system not only was no motion in a vacuum in a physi-
cal sense but such motion was inconceivable. A vacuum was thinkable. But it 
was known that “nature abhors a  vacuum.” That much was consistent.

Fig.  2. � Below we use the plural form of the noun “oarsman.” Slavery being a  standard com-
ponent of the golden age of Greek science we hardly ever have need of “earsman”
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On one other thing must not be forgotten. In Aristotle’s system motion 
that involved change of position was a  “unitary” phenomenon, “from — to,” 
from one state of natural rest to another. A  projectile thrown upward is first 
subject to forced motion caused by the perpetrator. When the motion of the 
air which propels the projectile stops, then it begins to fall down and returns 
to its place of rest. The downward motion was called natural motion. The 
transition stage between forced motion and natural motion troubled the an-
cients. During this stage the projectile was presumably at rest. This rest period 
was dictated by the doctrine which maintained that every state of motion has 
a  duration. As Aristotle put it: “In puncto regressus mediat quies” (Figure 3).

      

Presumably, the reasoning behind this was that the obliquely thrown pro-

jectile stopped at certain moment and then began to fall vertically. At the 
turning point the track broke; this was stated by Avicenna and Leonardo da 
Vinci. If we relay on direct observation, then it is very difficult to get a  clear 
picture of what is happening. What is easy to verify after a  long enough time 
is the verticality of the descent of the projectile;10 see Figure 4. Recall what 
was mentioned before: the forced upward motion and the natural down ward 
motion were regarded as to separate motions.

I  have summarized Aristotle’s view of motion to the best of my ability, 
and have stressed, above all, the caution of his formulations. Knowing this 
characteristic of his philosophy one can be sure that he would have modified 

	 10	 See Georg Hamel, Theoretische Mechanik. Berlin—Heidelberg 1949.

Fig. 3. Path of a  projectile according to Avi-
cenna

Fig. 4. �The path of the projectile has a vertical 
asymptote. Its existence follows from 
Newton’s laws of the motion if the air 
resistance will be respected
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his theory had he come by new observations, as was done by later philoso-
phers brought up on his thought. By sticking to physical descriptions — free 
of mathematical fictions, such as instantaneous motion, which we use freely 
today — he protected the science of motion from Zeno’s paradoxes which in-
variably turned up as soon as one considered motion at a moment and motion 
at a  point. By keeping the science of motion out of mathematics he protected 
it from vague reasoning that entered it in subsequent periods.

There is yet another characteristic of Aristotle’s views which must not be 
ignored. The motion of the celestial spheres was not subject to the restrictions 
discussed thus far. These restrictions were valid in the sublunar world. The 
motion of the celestial spheres was eternal and uniform and did not require 
the constant intervention of a  perpetrator. It took place in vacuum. And the 
motion was actually the motion of spheres and not of celestial bodies which 
were attached to the rotating spheres. Mathematics could deal with these 
ideal rotations.

We are buffled by this division of the world into two parts subject to differ-
ent laws, and we are not prepared to tolerate such a division. This is so because 
our minds are shaped by the all-unifying physical theories of the 19th century 
beuf on the discovery of universal laws that rule all phenomena.

But for ancient Greeks a division into earth and sky was natural. Philoso-
phers such as Parmenides and Plato may be said to have promoted unifying 
tendencies but no such stress was exerted by religion. Such stress did come 
from Christianity and Islam, two great theological systems, which after centu-
ries replaced the semi-atheistic views of the Greeks, and it is this stress which 
led to the unification of science in the form we are familiar with.

The division in philosophy implied the division in the component of that 
philosophy included mathematics. The motion of celestial spheres, and thus 
astronomy, belonged to mathematics. So too did music. But not the motion of 
projectiles.

We have devoted much space to the science of motion and thus to me-
chanics, although we are interested in considering a  continuum, an object of 
pure thought. The two topics seem to be far apart. We saw that restrictions 
in the way we look at the structure of a  continuum influence the evolution 
of the science of motion and restrict it to virtually an observational science. 
It took centuries to remove the barrier which prohibited the consideration of 
instantaneous velocity. This led the breakdown of the barrier associated with 
the point structure of the continuum. This did not happen suddenly and was 
not due to a  single mind.

●
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Democritus, a  member of generation that preceeded the generation of Ar-
istotle, also thought of the aporia of the flying arrow. Here is his variant of 
this difficulty:11

If we cut a cone by plane parallel to the base what should we think of 
the areas of sections? Are they equal or not? If they are equal, then 
the cone can be seen as a cylinder, which is an absurd. If they are not 
equal then the cone is nonuniform, since it contains many stepwise 
indentations.

The imperceptible, continuous change of the areas of sections of a  cone 
is a  difficulty very much like that associate if atoms are indivisible with the 
flying arrow. Of the two possibilities in his aporia Democritus chose the one 
in which the cone has a  stepwise structure. In other words, he chose the Ar-
istotelian solution (Figure 5).

Fig. 5. Democritus’s cone

But Democritus’s solution was viewed as opposed to Aristotle’s solution. 
This was due to the fact that Democritus’s views were linked with his view of 
the structure of physical substances. From this people derived the conclusion 
that, like proponents of physical atomism, Democritus wanted to carry this 
view over to mathematics.

Physical atomism had powerful justification in Greek antiquity. It was ar-
gued that if matter were indefinitely divisible, then, when broken into smaller 
and smaller fragments, it would irretrierably lose its structure. But the witness 
is the opposite phenomenon, namely the ability of matter to regain its initial 
form. Hence there must exist atoms, indivisible and indestructible particles.

Tradition credits the Democritus and his teacher Leucippus the discovery 
of atomism. But in reality this is very old notion shared by many natural 
scientists and philosophers of different schools and epochs. In particular, the 
Pythagoreans submitted to an unusual form of atomism.
	 11	 From Plutarch’s De communibus notitiis. Quoted after Herbert Westren Thurnbull, “The 
Great Mathematicians.” In James R. Newman, The World of Mathematics. London 1956, p. 95.
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Strabo wrote in Geographica Hypomnemata that the ancient atomic theory 
was the invention of Mochos of Sydon, who lived before the Trojan war.

One of the characteristics of the atomic view is it obvious illogicality. To 
report Aristotle’s view: If the atoms are indivisible, then they have no magni-
tude. And if so, then how do they add up to the whole which has magnitude? 
Like modern physicists, the atomists tried to save bolster the logic of their 
view as best they could. For example, they placed atoms of matter far from 
one another in empty space devoid of physical characteristics and assigned to 
them motion. This is how they explained the generation of heat.

In spite of its logical shortcomings, the atomic view — as already men-
tioned — had certain advantages. Even today, when reading Lucretius’s poem 
On the nature of things we are struck by the aptness of his explanations, by 
which we mean that his explanations do not differ greatly from the explanations 
we inherited from 19th-century particle physics. We defend physical atomism 
because we do not assume that the logic of nature is our logic.

Our logic is not neutral vis-a-vis the objects it talks about. The terms 
“every” and “exists” impose on the point structure of logic. Our logic arose on 
a  finitistic ground and — so it seems — could not be applied to objects other 
than finite objects, and thus not to a continuum if it grants its point structure. 
The mathematical conventions accept the applicability of this logic without 
imposing this restriction. Hence the illogicalities we run into are perhaps proofs 
of just the inappropriateness of the method.

The density of matter in space varies, but in small volumes this variation is 
not significant. The same applies to the intensity of color lighting, and so on. 
The width of a  river changes along its banks but may be viewed as constant 
on small stretches. Speeds stay the same for a  while — recall Aristotle. We 
do not know how small must be the atoms that describe such phenomena but 
we postulate their existence.

Thus we postulate that processes that occur along a  continuum, such as 
motion in time, the width or intensity of a  stream along its banks, and so on, 
stabilize on small stretches of the relevant continuum; we do not know how 
small, but on stretches that are small enough. We give an example of how this 
construction works.

Consider two solids whose intersections by the same horizontal plane have 
always the same areas. Our postulate enables us to prove that the two solids 
have the same volumes.

In fact, according to the accepted postulate, each level belongs to a  layer 
of levels with the same areas. Hence both solids have the same volumes in the 
layer in question. But then both solids have the same volumes, since they are 
split into layers with the same volumes.
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This may be the kind of reasoning adopted by Democritus to prove that 
two pyramids with the same base and attitude have the same volumes, the kind 
of reasoning underlying mathematical atomism.

In the 17th century Cavalieri who would not admit similar arguments as 
acceptable mathematical conventions, replaced Democritus’s argument with the 
following geometric postulate: If two solids lying between two parallel planes 
have equiareal sections with planes parallel to the two planes mentioned earlier, 
then they have equal volumes (Figure 6).

Fig. 6. Figures with the same volumes (according to Democritus)

Democritus’s method was qualitative. The solids were compared in terms 
of volumes rather than measured. One did not ask for numerical values of 
volumes. The Greeks did not have the notion of a  continuous number which 
we use. If we ignore simple counting connected with the successive laying 
of segments, then we can say that initially geometry had no quantitative 
methods. This initial stage of geometry can be compared with the stage of 
evolution of arithmetic when one did not know how to count but one could 
say that the number of object in each of two sets was the same because one 
could establish between them what we now call a  one-to-one correspondence. 
The difference between geometry and arithmetic is that the existence of this 
stage of evolution of arithmetic is a  guess rather than a  fact, a  guess popular 
among mathematicians interested in set theory and logic. On the other hand, 
geometry did go through this stage of evolution. This stage lasted almost 
through all of Greek antiquity. In fact, if we adopt not so rigorous criteria, 
then we can say that this period lasted much longer.

Democritus’s method did not become part of canonical Greek mathemat-
ics. This was so because it ignored the deductive system of geometry estab-
lished earlier. The Cavalieri’s postulate — which is essentially the invention 
of Democritus — is a  postulate the ancients could do without when solving 
the problems they posed. In Democritus’s time, Eudoxus and Euclid worked 
out a  rigorous method, subsequently expanded by Archimedes, of comparing 
geometric magnitudes (areas and volumes) based on a geometrically more eco-
nomical postulate. We will discuss this issue in the next chapter.



Plato disliked Democritus and his works. According to Diogenes Laertios, 
he wanted to burn them. Be that at is may, he never referred to him in his 
writings.

Already in antiquity, Democritus’s method was not accepted as a  method 
of proof. But it was a  heuristic method, and Archimedes viewed Democritus 
as the discoverer of the formula for the volume of a  cone.

There are many misunderstandings involving the method of Democritus. 
His method is identified with mathematical atomism. All one can say is 
that atomism was the source of Democritus’s method. That is why it was 
later defended in a  very unfortunate way from this position. Specifically, it 
was defended using attempts to formalize reasoning involving the concepts 
“infinitesimals,” some time called “indivisibles.” These attempts are reviewed 
in our eclectic age. We will have occasion to show that these concepts are 
not indispensable for developing Democritus’s ideas.
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The fastest runner cannot catch up to the slowest 
one. Achilles cannot catch up to a  tortoise if the 
tortoise is ahead of him by a  tiny amount. For he 
who chases must first reach the place left by the 
chased one, so that the slower one is always some-
what ahead.

Zeno of Elea1

It is not unusual to have the impression that regardless of the steady moving 
forward the objective remains at the same distance from us.

A  child without much experience of space walking in the direction of the 
setting sun (Figure 7) can have this impression. The continuum — a  straight 
line — may be said to hide in itself this unknown.

Fig. 7. The aporia of the wanderer

It is possible that Zeno of Elea, author of the famous aporia of Achilles 
and the tortoise, has this in mind when he stated his famous aporia. We quoted 
it at the beginning of the chapter because of its historicity and not because it 
describes the difficulty just stated.

	 1	 After Arystoteles, Fizyka, p. 208. Translated by Abe Shenitzer.

Chapter II Aporia of the wanderer • The Archimedean 
postulate • The Eudoxian exhaustion lemma • 
Non-Archimedean continua • Another Zeno’s 
difficulty: Stadium
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That Archimedes could conceivably interpret Zeno’s aporia in this way we 
described can be concluded indirectly from the contents of the postulate used 
by him in geometric investigations. The postulate was stated by Euclid, and its 
authorship is traditionally ascribed to Eudoxus, a mathematician who preceded 
Euclid by a  generation.

The postulate of Archimedes.2 Let AB and AZ be segments of the line such 
that B < Z. If the points B = B1 < B2 < … are such that the segments BmBm+1 are 
congruent to AB, then, for some value n, we will have Bn ≤ Z < Bn+1 (Figure 8).

Fig. 8

Less formally: if we lay off on a straight line a segment AB successively so 
that the end of each laid-off segment is the beginning if the next one, then, after 
a  certain number of steps, we will cross any preassigned point Z  of a  straight 
line; the number of segments needed to achieve this can be minimized.

Yet another version: using congruent segments laid off in succession we 
can cover a whole straight line.

The Archimedean postulate removes the doubts of a  wanderer: by walk-
ing with equal steps along a  straight line he will always reach any intended 
point. One can give many examples of situations at which we deal with non 
accessibility. We can constantly increase the speed by the same unit but will 
never exceed the speed of the light. Ascending the graph of a tangent function 
(Figure  9) by equal distances, we never exceed the point over π/2.

Fig. 9. Climbing up the graph of the tangent function

When we are dealing with magnitudes to which the criterion of compa-
rability is applicable, the problem can arise whether or not the Archimedean 
postulate is applicable to the comparing process, that is, we may ask if, given 

	 2	 Euclid, Elements. Book V.
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two magnitudes of the same kind, a  certain multiple of either of these mag-
nitudes will exceed the other. In the case of the natural numbers this comes 
down to the question of whether

(*) by successive forming sums of ones,

1, 1 + 1, 1 + 1 + 1, … ,

one of these sums will exceed a  preassigned natural number.

The answer “yes” is tantamount to the acceptance of the postulate now 
called the principle of induction. The principle of induction can be also stated 
by saying that we can exhaust the natural numbers by successive addition of 
the number one, which means that there are no unreachable natural numbers. 
We use the term natural numbers without defining them, but we certainly 
assume that the numbers in sequence (*) are natural numbers. They are the 
familiar numbers 1, 2, 3, … The induction principle asserts that there are no 
other natural numbers.

Thus the comparison of natural numbers complies with the postulate of 
Archimedes.

The principle of induction is so obvious that the Greeks failed to notice it. 
But they did notice some of its consequences. They set down as the prerequi-
site in proofs the so-called which asserts that a  set of numbers with a  given 
property always contains a  least number. Of course, they had in mind that we 
call natural numbers, but they did not use this adjective because they did not 
regard any other object as a  number.

We have already used the minimum principle when, like the Greeks, we 
assumed that among the numbers n such that the segment AB laid off n times 
exceeds in length the segment AZ there is a  least one, and formulated, accord-
ing to this, the postulate of Archimedes.

●

Viewed in general terms, the Archimedean postulate eliminates from geo-
metric reflexions the actually infinite: regardless of how large the magnitude, 
it can be exhausted in a  finite number of steps by any other magnitude no 
matter how small. Thus we manage without infinity and loss nothing. Let us 
recall the Aristotelian idea cited earlier.

Infinity has two directions. Division of the magnitude is the opposite to 
multiplication. There arises the question of whether by division of a  given 
magnitude, repeated step by step, we will obtain at a  certain step magnitudes 
smaller than the ones thought initially.
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Let us now imagine a  wanderer who wades through slushy terrain to the 
edge of a swamp and covers at each successive stage more than half of the dis-
tance between himself and his objective (Figure 10). He will be saved if he man-
ages to reach a certain coastal strip. Will he reach this strip at a certain stage?

Fig. 10. To the safe edge

Let us add the following non-mathematical remark: The wanderer do not 
exclude that the closer he is at the edge of the swamp the more difficult the 
terrain can be. Think of the purchase, over a certain period of time, of materi-
als for building a  house during growing inflation.

Achilles could pursue the tortoise in the manner described above, and if 
the tortoise stood still and if Achilles traversed at each step more than half 
the distance separating him from the tortoise. Is it possible that he would not 
exhaust the whole distance by so doing?

The Archimedean postulate save us from such paradoxes.

The Eudoxian exhaustion lemma.3 We are given a segment AB and a point 
M on it. If the points A1 < A2 < … on AB are such that segment AA1 is larger 
than half the segment AB and the segments AmAm+1 are always larger than half 
the segments AmB, then there exists an n such that the point An lies on MB.

Fig. 11. AA1 > 1/2 AB, … , An–1An > 1/2 An–1B

The minimum principle enables us to choose the number of steps so that 
the point An–1 does not lie on MB.

Proof. Save the notations from the wording of the proposition. According 
to the assumptions we have A1B < 1/2 AB, A2B < 1/2 A1B, …

Applying the Archimedean postulate to the segments AB and MB we see 
that there exists an n such that AB < (n+1)MB. This means that the segment 
AB can contain at most n non overlapping segments congruent to MB. Some 
initial segments AmB may contain segments congruent to MB, disjoint with it, 
	 3	 This lemma — atributed “to predecessors” — was used by Archimedes in the treatise 
Quadrature of Parabola.
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but the number of such segments do not exceed n. Thus there exists a segment 
AmM which does not contain any segment congruent to MB. Starting from this 
position, the point Am+1 must lie on MB.

We did not prove lemma of Eudoxus only to negate the anecdotal diffi-
culties. For example, the lemma of Eudoxus implies that if we divide a  con-
tinuum ad infinitum we can divide it into parts as small as we wish. To do 
this we need only halve each part already obtained. In this way the infinite 
divisibility of the continuum that Anaxagoras had once thought of is con-
cretely described. If we realized this manner of division ad infinitum, then 
we would break the continuum into parts that have no magnitude, that is, to 
points, or, as Aristotle would put it, to nothingness.

The “more than half” in the lemma of Eudoxus may surprise us. It would 
suffice to say “not less than half.” This former is a  consequence of the Greek 
logic — different from ours — which was unaware of the turn of phrase “less 
than or equal” and knew only definite inequalities. For the Greeks a  square 
was not a  rectangle, a  viewpoint that is also a  consequence of the singularity 
of Greek logic just mentioned.

But is it possible for actual geometric space not to fit the postulate of 
Archimedes? Can we imagine non-Archimedean magnitudes?

The answer is yes. The Greeks knew such example. It involved the magni-
tude of angles. They identified the angle between straight lines with a definite 
area. But in addition to angles between straight lines they also considered angles 
between circles and straight lines at the points of intersections. We surmise that 
they compared them by inclusion of one in the other after first moving them 
so that they shared an arm, and did not require coincidence of the complete 
areas but only of parts of these areas in sufficiently small area at the vertex. 
To confirm this we cite a  Euclidean fragment:4

A straight line perpendicular to the diameter of a circle at its end runs 
completely outside the circle, and so no other straight line fits between 
that straight line and the circle.

This means that if we take a  straight line l' other than the straight line l 
perpendicular to the diameter at the point P (Figure 12), then it will cut the 
circle in one more point. This means that the angle between straight line l and 
the circle is smaller than the angle between l and l'.

The Greeks called angles between curved lines hornlike. The angle between 
a  circle and a  tangent to it was a  hornlike angle. We don’t call such a  figure 
an angle.

	 4	 Clemens Thaer, Die Elemente von Euklid, T. 1. Leipzig 1933, p. 57. Translated by Abe 
Shenitzer.
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Fig. 12

Consider the straight lines l1, l2, … passing through P such that ln+1 lies in 
the angle between ln and l. The angles lnln+1 do not exhaust the angle between 
the straight lines l1 and l. This is so because the hornlike angle between the 
circle and the straight line is at each step smaller than the angles between ln 
and l (see Figure 13).

Fig. 13

We see that a continuum made of ordinary and hornlike angles, which we 
compare in the manner described earlier, does not fit Archimedes’s postulate 
because it violates its consequence — the lemma of Eudoxus. Since they ac-
cepted the postulate of Achimedes, the Greeks eliminated hornlike angles from 
geometric arguments.

●

Consider the possibility that there is a number beyond the natural numbers, 
another number after it, and so on. Following Cantor, we will call these new 
numbers transfinite and denote them by ω, ω + 1, … We can list them after 
first listing all natural numbers, that is, after reaching infinity. Together with 
the natural numbers they form a  sequence of magnitudes

1 < 2 < … < ω < ω + 1 < …

that does not conform the Archimedean postulate.
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If someone denied their existence by using the sole argument that they are 
free creations of our thought, then he will run into difficulties. After all many 
of us claim that the natural numbers are creations of thought, and only few of 
us deny their reality. The postulate of Archimedes, in the form of the postulate 
of induction, removes transfinite numbers from arithmetical considerations.

Analyzing the axioms of Euclidean geometry in his Grundlagen der Ge-
ometrie Hilbert showed how to use set-theoretic and arithmetic methods to 
construct models of geometry satisfying all the axioms of Euclid but violating 
the postulate of Archimedes. Thus from this point of view the geometry violat-
ing the postulate of Archimedes, and saving the remaining ones, is possible. 
However, some geometrical truths will be removed. We will have an occasion 
to see this further, for instance in parts devoted to theory of parallels.

●

There are different views concerning Zeno’s aporias. We take them seri-
ously. Some say that the source of Zeno’s aporias was spite. It is possible that 
he used them to try to develop indirect proofs. Be it as it may, he must not be 
treated casually. Diogenes Laertios had this to say about Zeno’s death:5

Imprisoned and questioned by the tyrant who were his accomplices, 
he named all of the accomplices of the tyrant. When the tyrant asked 
him who else was a member of the conspiracy, Zeno said: “You your-
self, you, the curse of the state.” He was then tossed into a kettle and 
clubbed to the death.

He also wrote about Zeno that:

He was outstanding in other areas as well. He preferred his home town 
Elea to Athens, which he visited now and then. He was the first to 
construct the proof known as “Achilles” and many other arguments.

●

An example of another argument was his “Stadium” aporia. Two runners 
run equally fast in opposite directions. When each of the runners has covered 
distances 1, 2, 3, …  , then the successive distances between them are 2, 4, 6, … .

Commentators explain the matter as a difficulty connected with the relative 
nature of motion: a  runner’s speed is such and such and, at the same time, 

	 5	 Diogenes Laertios, Żywoty i poglądy, p. 530.



different. They consider it as an once more argument which shows that motion 
is impossible.

But there is another paradox here. One can set up a one-one correspondence 
between the natural numbers and part of them, namely, the even numbers, and 
can therefore argue than the quantity of natural numbers is the same as that of 
even numbers. Galileo knew this paradox in the form of the equality between 
the natural numbers and their squares. He put it thus:6

The only possibility is that the qualities of equality, of less, and more, 
of magnitudes, lose meaning when we speak on infinity; they can ap-
ply only to finite quantities.

This paradox, of the form just presented, was known to the scholastics. Set 
theorists will find in this paradox a  starting point for defining of an infinite 
set as one that admits a  one-one correspondence with a  proper part of itself.

To go back to Zeno. The stadium in his aporia is significant only if the 
runners circle it infinitely many times. There is nothing paradoxical about the 
fact that the finite sequences 1, 2, …  , n and 2, 4, …  , 2n have equally many 
elements that are in one-one correspondence.

For the ancients, and later for the scholastics and Galileo, the “Stadium” 
aporia was one of the arguments used to exclude the actually infinite from 
mathematics.

Euclid postulated: “The whole is greater than a  part.” He would not have 
stated this postulate without a  reason for caution. It is most likely that the 
reason for the postulate was his observation that by translation an infinite 
half-line becomes equal to a part of it. This observation is of the same ind as 
Zeno’s paradox. Euclid removed from his considerations infinite figures. It is 
incorrect to ascribe to Euclid the axiomatization of straight line and a  point. 
A careful reading of the Elements shows that he had in mind not straight lines 
but segments.
	 6	 Salviati’s words from Galileo’s Discorsi e dimonstrationi matematiche. Quotation from 
Galileo, Rozmowy i dowodzenia matematyczne. Warszawa 1930, p. 32. Translated by Abe 
Shenitzer.
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Er stand auf seines Daches Zinnen,
Er schaute mit vergnügten Sinnen
Auf das beherrschte Samos hin.
»Dies alles ist mir untertänig,«
Begann er zur ägyptnes König,
»Gestehe, daß ich glücklich bin.«

Friedrich Schiller1

The concept of number is simpler than the concept of space. Is is older. 
We can only guess how it came into being. That is why it is so difficult to 
talk about number.

One-instance phenomena can be counted. We count objects and repeat-
ing activities, such as, say, the successive lying off of the same segment on 
a  straight line.

The result are the numbers 1, 2, 3, … and so on.
They are usually designated. By evolution, the designations begin to lose 

their significance, and number as a  general regularity that turns up in nature, 
acquires its own right to existence which requires no appeals to physical and 
spatial notions. According to extreme views, number is a pure mental construct. 
We write about whole numbers.

Aristotle writes in his Metaphysics: “The simpler the investigated objects, 
the more rigorous the discipline that studied them.” In mathematics too there is 
gradation of rigor. The highest level of rigor is achieved in the realm of numbers.

Proclos, a  commentator of Euclid, who lived close to the end of antiq-
uity, wrote: “It is obvious …  , that numbers are more immaterial and purer 
than magnitudes.” When he writes about magnitudes, Proclos has in mind 
geometric magnitudes. In antiquity, geometric magnitudes did not achieve the 
status of numbers, did not lose their designations, and were treated like physi-
cal magnitudes. This view of number survived for centuries without change 

	 1	 Friedrich Schiller, Der Ring des Polykrates. In Schillers Sämtliche Werke in zwölf 
Banden. Stuttgart und Tübingen 1862, p. 244.
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meanings of the proportion of segments
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of the principle of argumentation. Gauss called arithmetics — the science of 
number — the queen of mathematics. We might as well quote the all-to-well 
words of Kronecker “The Lord God created the natural numbers, all else [in 
mathematics] is the work of man.”

The one certain thing is that the notion of number was shaped in the pre-
historical period, and inquiry into its beginning is more appropriately a  con-
cern of antropologists, psychologists and biologists than of mathematicians and 
historians.

Also, it takes time for questions about the true nature of number to arise. 
This is likely due to the fact that, due to their detailed regularities, numbers are 
fascinating and entertaining. What is also astounding is the power of numerical 
methods. All those things move contemplation to a  distant plane.

The investigation of geometric proofs calls for a great deal of attention and 
its simplest problems go far in the direction of philosophy. Arithmetic is differ-
ent. According to Plato,2 “… it will animate anyone who is by nature depressed 
and heavy, and will make him perspications, and with the help of the divine 
art it will make him advance beyond his natural abilities.” It is not difficult to 
guess that the “divine art” is geometry. Geometry is the discipline worthy of 
a  philosopher. Arithmetic serves to discover its theorems.

●

The equality 32 + 42 = 52 is one of the earliest arithmetical discoveries.
This discovery was accompanied by another discovery: A  triangle whose 

sides are 3, 4 an 5 is a right triangle. More generally, every triangle whose sides 
are numbers x, y and z such that x2 + y2 = z2 is a right triangle.

It was Pythagoras, or some Pythagoreans, who made this discovery. But it 
should be noted it was preceded by empirical findings of Egyptians pertain-
ing to triangles with sides 3, 4 and 5 and of Babylonians about a  few other 
triangles of this kind.

The proof was based on first proving the converse theorem. This is the 
famous theorem of Pythagoras which asserts that the area of the largest of the 
three squares constructed on the sides of a  right triangle is equal to  the sum 
of the areas of the two  other squares.

We first had in mind triangles whose sides are given by numbers: a square 
whose side has n units of length has n2 units of area, where the unit of area is 
a  square whose side is a  unit of length. But Pythagoras’s theorem (Figure  14) 
is a  theorem of geometry and the sides of a  triangle need not be expressed by 
numbers.

	 2	 Quotation after Stefan Kulczycki, Dzieje matematyki greckiej [History of Greek Mathe
matics]. Warszawa 1973, p. 157. Translated by Abe Shenitzer.
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Fig. 14

Once we have proved Pythagoras’s theorem, the proof of its converse, that 
is, of the theorem we wanted to prove, is a  pure logical formality. One often 
forgot that this proof is needed.

●

The orderliness found in the realm of numbers — seemingly pure creations 
of mind — exposes the orderliness in the world of geometry, which is closer 
to physical reality than arithmetic. There are many more regularities among 
numbers than the one were just discussed, regularities with which there are 
associated geometric, or downright physical regularities.

One can form interesting geometric configurations connected with some 
specific properties of numbers, for instance some polygonal tilings the plane. 
The sounds of string are consonant if their lengths form an appropriate propor-
tion. There are just five regular polyhedra — so-called Platonic solids — and 
the proof of this fact can be reduced to arithmetic considerations. Euclid knew 
a proof of this fact, which is a glory of his Elements. Thus it is not surprising 
that number was viewed as a force capable of explaining the world of geometry, 
and, ultimately, the world of physical phenomena. This was one of the belief 
of Pythagoreans, of whom Aristotle wrote in Metaphysics:

… ascribing to numbers properties and foundations of harmony, be-
cause everything else seemed to them by all of its nature to be [made 
up of] numbers; and the imitation of number what is primary in all of 
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nature; they expressed the elements of numbers as the elements of all 
things, and all of the universe as harmony and number.3

Later many mathematicians shared this belief. Young Kepler wrote:

[Pythagoras], as I do now, looked at these matters as matters worthy of 
the Creator’s concern, and subordinated matter outside of mathematics 
to mathematical figure.4

Leibniz wrote:

We discover that numbers, figures, forces, and all measurable things of 
which we have an understanding, appear in a manner that is not only 
correct and unmistakable, but also maximally appropriate.5

We frequently echo this view, when, for example, an arithmetical com-
putation discloses an unanticipated regularity, say the unanticipated existence 
of a  second solution of a  quadratic equation and its geometrical or physical 
significance. Have you not been surprised by a  power series which “knows” 
its interval of convergence and knows that it must reach the nearest singularity 
of the function it represents? Or that indirectly set up equation is unsolvable? 
Or that the gravitation formula is so remarkable simple?

That is why there are so many idealists among mathematicians, people who 
see behind the world of nature a world of mathematical ideas which rules that 
world. The source of such a  view is the enthusiasm for mathematical discov-
eries. It arises most frequently in periods when new mathematical discoveries 
turn up, discoveries not yet exploited and capable of providing insights into 
natural phenomena.

Even more than mathematicians shared this view physicists. Here is a  fre-
quently cited statement of Hertz:

One has an impression that mathematical formulas have their own 
existence and their own intelligence, and they are wiser than those 
who discover them, that they return more than was invested in them.6

	 3	 Arystoteles, Metafizyka, p. 17.
	 4	 Johannes Kepler, Mysterium Cosmographium. Tybinga 1596.
	 5	 After Mieczysław Gordon, Leibniz. Warszawa 1964, p. 156. But, in a letter to his friend 
Wolder he expressed the opposite: “… they used only mathematical concepts, to which the 
thought is subordinated, but these performing the vacuum, are alien to the nature of things” 
— translated by the author.
	 6	 Quotation after Leslie A. White’s article “The Locus of Mathematical Reality: An Anthro
pological Footnote.” In James R. Newman, The World of Mathematics. London 1956, p. 2355.
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The physicists view as “winged” the title of the Nobel prize winner Wigner: 
“On the unreasonable effectiveness of mathematics in the physical sciences.” And 
one could also cite here the relevant all-too-well known statements of Einstein.

Mathematicians tend to be more restrained. This is likely because they know 
better how things are. They are even marked by a form of pride whose source 
is the fact that they do not embark on the exploration of areas of unconfirmed 
speculations. We will cite just Barrow “They speak only if things beyond doubt 
and leave aside things undetermined.”

Plato is viewed as the patron saint of mathematical idealism. By means of 
statements of Timaeus, in the dialog titled Timaeus, Plato describes his view of 
the structure of the world roughly as follows: The four elements of which the 
world is composed, earth, air, fire, and water, are furnished by characteristic 
shapes; the cube is associated with the earth, the octahedron with the air, the 
tetrahedron with a fire, the icosahedron with water, while the dodecahedron is 
associated with the totality of the cosmos.

Here is an excerpt from Plato Timaeus:

… we must tell what could be the four most beautiful solids, dissimi-
lar to one another but such that by decomposing one of them others 
could get to be. If we hit on this, then we will have the truth about 
the arisal of the earth and fire and of the appropriate two elements 
between them.7

This thought differs from the views of the Pythagoreans, of Leibniz, and of 
Hertz, and from the view of Kepler, who also looked for an analogy between 
the regularities in the location of celestial bodies and the regularities of Pla-
tonic solids. This is not a  form of idealization that aims to discover, but one 
that aims to contemplate an established, well-formed view. The apodicticity 
involved is striking. There are periods when mathematics is dominated by an 
idealism of this kind, characterized by a  lofty relation to problems beyond the 
ruling method, by a pursuit of perfection which is sometimes achieved. Certain 
methods may well have lost their power of discovery, but an aesthetic attach-
ment may prevent us from going beyond them.

In this connection, Aristotle did not spare the Pythagoreans, of whom he 
wrote in Metaphysics that:

… they did not look for explanations dictated by a regard for facts, but 
having a regard for certain theories and favorite notions, they distorted 
facts and adopted poses of co-creators of the cosmic order.8

	 7	 Platon, Timajos. In: Timajos i Kritas. Warszawa 1960, p. 74. Translated by Abe Shenitzer.
	 8	 Arystoteles, Metafizyka, p. 17—21. Translated by Abe Shenitzer.
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●

Even a  quick look tells us that space, and even a  geometric straight line, 
is “richer” than numbers. When we try to gasp the number of properties of 
space we invariably end up grasping only some of its aspects. There were the 
periods in mathematics when it seemed that geometry has been arithmetized. 
But the sensible thing to do is to doubt that the lean world of numbers, however 
elastic, could grasp all of our knowledge of space.

One attempt to explain geometry by means of numbers failed in early 
Greek antiquity.

●

Imagine a  child arranging blocks. The child will run into difficulties if, 
having identical squares and halves of such squares obtained by cutting along 
their diagonals, he will try to build out of them a  house such that the roof 
(Figure 15) fit precisely the body of the house, that is, such that the roofs 
covers precisely body of the house without eaves. Regardless of the length of 
the house — using complete squares for the body of the house and triangular 
half squares above the blocks of the body of the house — the building project 
is bound to fall.

Fig. 15. �The side of a  square and its diagonal. The ratio of side to diagonal is neither 2 : 3 nor 
5 : 7. Nor is it 12 : 17 (not shown in the drawing of what would be 17 squares and 12 
triangles9

The child may pretend to have succeeded by regarding an appropriate draw-
ing as a  precise one, but most frequently irritation sets in, because the child 
believes in the ideal nature of the figures and ascribes the failure to himself.

How did the Pythagoreans react to this outcome? We know that they dealt 
with this problem, and that they were convinced that given two segments one 
can, by using suitable multiples of each of them, obtain equal segments. The 
common equivalent version of this claim is that for every two segments there 
exists a  common measure, that is a  segment which when suitable multiplied 
yields the given two segments.

	 9	 For the explanation the Reader should have a  look to the theory of continuous fraction, 
e.g. to Continued Fractions by Aleksandr Ya. Khinchin. New York 1997.
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When they proved that the diagonal of a square and its side have no such 
common measure, they must derived a  great deal of satisfaction from the ex-
planation of the difficulty. But some say that the satisfaction was not equal to 
the disappointment, because they expected more of the notion of number.

It is impossible to understand the reaction of the Pythagoreans if we limit 
ourselves to geometry. For Pythagoreans geometry was a  part of a  worldview 
for which it played a service role. They made a great discovery in geometry, but 
this discovery was to destroy their view of the world. It would be an oversim-
plification to claim that they wanted to see the world as made up of identical 
little balls, much as child would see it. And yet they could not conceive of 
means other than number — whole number — for explaining the world.

Actually, whatever is knowable has a  number associated with it. This 
is so because nothing can be recognized and assimilated by the mind 
without the notion of number.

It was Philolaus, a Pytagorean. Incidentally, we know few Pythagoreans by 
name because they formed a  secret brotherhood.

●

At the time when Polycrates, the tyrant of Samos and ruler of the Egean 
sea, was at the height of his power, the forty-year-old Pythagoras, by the already 
famous, left Samos and settled in Crotona, in Southern Italy.

Polycrates’s name appears in the history of mathematics for yet another 
reason. He gave the builder Eupalinus the assignment to build an aqueduct. It 
formed a  skew tunnel. The digging proceeded from two ends. The length of 
the tunnel was 7/8 of a  mile. The two vertical halves of the tunnel were only 
10 feet apart!

Pythagoras and Eupalinus represent two poles of mathematics, the contem-
plative and the applied. They are not so very far apart if we look at the prob-
lems, but far apart if we look at the people involved — the distance between 
the problems is increased by the distance between attitudes. The attitude of 
Pythagoras was philosophical.

Our study of Greek mathematics is essentially the study of philosophical 
course. This onesidedness must be kept in mind.

Samos, a  tiny island, has a  substantial history. In the fifth century the 
Samosian Melissus defended the island against the Athenians. He is as well 
known for this as for his notions about invariant and motionless existence. In 
the third century Aristarchus of Samos created the heliocentric system. One 
of his followers was Archimedes. The Athenian Epicurus grew up on Samos.
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●

What follows is a  proof of the incommensurability of the diagonal of 
a  square and its side. This proof may have been known to the Pythagoreans.

Let p be the number of units of the side of the square and q the number 
of units of its diagonal. It is no reduction of generality to assume that p and q 
are coprime. The theorem of Pythagoras implies that

2  p2 = q2.

The left side is even. Hence the right side, that is q2, is even. Hence q is 
even, q = 2  n for some n. But then q2 = 4  n2. This and the first equality yield

p2 = 2  n2.

Reasoning as before, we calculate than p is even. This contradicts the as-
sumed coprimeness of p and q.

Proof by contradiction do not aim to convince the reader in the same 
sense as “ordinary” proofs do. For example, you cannot illustrate the proof 
with a  drawing because the situation presented in the proof is contradictory. 
Proofs by contradiction say nothing about why the theorem involved is true. 
The moment we assume something that will later turn up to the absurd we 
act in an automatic way, and wait for the moment when the light will go and 
show the word “contradiction.” Nevertheless, mathematicians like proofs by 
contradiction. They reduce the involvement of our consciousness and this pro-
vides certain relief. In fact, we would like the “logical automaton” in us to do 
most of the work.

We encounter proofs by contradiction more often in arithmetic than in ge-
ometry. Geometric proofs require the constant functioning of the imagination: 
we must know and see all the time what we are doing.

Note that we can prove that a  certain viewpoint is impossible if our op-
ponent will state it. As Aristotle might say “if our opponent says nothing, then 
it would be absurd to  try to  present a  proof.” It is the opponent — possibly 
ourselves, may be said, to have the most essential task: to formulate the problem 
in such a  way that we can proof it by contradiction.

●

Here is another formulation of the statement about the incommensurabil-
ity of the side of a  square and its diagonal: the side of a  square of area 2 is 
incommensurable with the unit segment (Figure 16).
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Fig. 16

This should be true for all squares whose areas are expressed by the number 
of units, the number which is not the square of a whole number. Theodorus of 
Cyrene, who lived in the second half of the fifth century, stopped at a  square 
of area 17. What enabled Theatetus to go further is to this day being debated 
by historians of mathematics. The only written account addressed to Theodorus 
and Theatetus is Plato’s dialog Theatetus. This dialog has little mathematical 
contents, but the inner logic of mathematics makes it possible to reconstruct 
chains of reasoning.

The most likely notion is that it was Theatetus who discovered the general 
argument that endowed Theodorus’s method with the necessary generality.

We will not state any of the mentioned reconstructions.10 We will give 
a modern proof, and this proof will give us an idea of the difficulties faced by 
Theodorus, difficulties between what he knew and the relevant final results.

Given a  square whose area is a  whole number that is not the square of 
a whole number.

Assume that the side of the square of area n, a whole number, is given by 
the fraction p/q, p and q whole numbers. Then (p/q)2 = n, that is p2 = n  q2. 
If n is not a  square of a  whole number, then one of its factors in its prime 
decomposition appears an odd number of times. The factor may not appear in 
the prime decompositions of p2 and q2, but if it does, then it appears an even 
number of times. It follows that the factor in question appears an odd number 
of times in the prime decomposition of the right side of the equality p2 = n  q2, 
and an even number of times in the prime decomposition of its left side. This 
contradicts the theorem of the uniqueness of the decomposition into primes.

The theorem on the uniqueness of the decomposition into  primes used in 
our proof is a  fundamental theorem of arithmetic. In the case n = 2 we took 
advantage of the right of reducing by 2, a  right that can be introduced while 
bypassing general theorems.

Theodorus did not know the general form of theorem about the uniqueness 
of decomposition. Had he given arithmetical proofs of incommensurability, he 
would had have to stop at same point. If so, then we must admire the critical 

	 10	 For the reconstruction of Theodoros’s proof see Godfrey H. Hardy and Edward M. 
Wright, An Introduction to the Theory of Numbers. Oxford 1979, p. 42.
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sense that did not allow him to regard the fundamental theorem of arithmetic 
as obvious.

●

The Euclidean algorithm
Let a  and b be a  whole (positive) number, say b < a. There are uniquely 

determined whole numbers q and r (we allow r to be zero) such that

a  = q  b + r and r < b.

This is the assertion of the arithmetic theorem about division with remain-
der. While the theorem is rather obvious, the proof requires induction (in fact, 
it is an Archimedean form of induction). This theorem is at the foundations 
of arithmetical theorems, including the uniqueness in the decomposition into 
primes.

We call q the quotient and r the remainder of the division of a  by b.
Applying this theorem to the remainder r and the number b, we obtain

b = q1  r + r1,    r1 < r,

and similarly,

r = q2  r1 + r2,    r2 < r1,
r1 = q3  r2 + r3,    r3 < r2,

At some step the procedure must end with remainder zero. This is so be-
cause r > r1 > r2 > … Let rn be the last non zero remainder. We have

rn–2 = qn  rn–1 + rn,    rn < rn–1,
rn–1 = qn+1  rn

at the end of the procedure.
The conclusion implied by this procedure is that all numbers on the left 

sides of our equalities, in particular a  and b, are multiples of rn.
We have

a  = k  rn and b = l  rn,

where k and l are positive whole numbers. Thus rn is a  common divisor of 
a and b. One can verify that this is the largest divisor of a and b. We also say 
that a  and b form an irreducible proportion k : l.
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We have used the minimum principle in our reasoning. Also, we have used 
modern mathematical language. The Greek did not know (or may be did not 
admit) zero.

We have presented the Euclidean algorithm.

●

If we apply the Euclidean algorithm to segments of whole-number lengths 
rather than to numbers, then we obtain a geometric interpretation of the algo-
rithm. This is how Euclid described the algorithm in the Elements.

We lay off the smaller segment b successively on a, from its beginning, as 
many times as possible. There is left a  segment r, r < b. Next we lay off the 
remainder r along the segment b, say from its end, as many times as possible. 
There is left a  remainder segment of a  length r1 < r which we lay off along r, 
and so on. As shown, this procedure must end at some step.

We remind the reader that the segments a  and b had a  common measure.
The procedure is purely geometric and can be applied to arbitrary pair of 

segments. But then the existence of quotients q1, q2, … does no longer follow 
from the theorem about the division with remainder. Now we must make use 
of a  geometric means such as the postulate of Archimedes: the smaller seg-
ment b, laid off along the segment a, fits in it q times, but cannot be laid off 
in it more times (Figure 17); in symbols: there is a  whole number q such that

q  b < (or =) a  < (q + 1)  b.

Fig. 17. �Lying off the segment b along the segment a. The existence of the number q is ensured 
by the postulate of Archimedes, fortified by the arithmetic minimum principle

If the procedure does not come to an end, then, on the basis of an earlier 
argument, we conclude that the segments a  and b are incommensurable.

If the procedure does come to an end, then the last rest-segment is the 
common measure of a and b. We prove this as we did in the arithmetic variant 
of the algorithm by showing that this rest-segment is a common measure of all 
rest segments beginning with the last one.

The Euclidean algorithm shads new light on the theory of incommensurable 
segments. It is natural to conclude that incommensurability is the rule rather 
than an exception, and that the chains of quotients obtained in the Euclidean 
algorithm can provide additional information concerning the kind of incom-
mensurability we are dealing with.
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But the usefulness of the Euclidean algorithm as a  criterion of incommen-
surability depends on whether we can conclude, in a case under consideration, 
that the procedure actually fails to come to an end. It is certain not to come to 
an end if we can prove that, beginning from a  certain point on, the quotients 
obtained begin to  repeat periodically.

This is how  the side and the diagonal of a  square are incommensurable.

Let ABC be triangle cut off from the square ABC by the diagonal BC 
(Figure 18). We have:

AB < BC,    AB = AC,    and    BC < AB + AC.

Fig. 18

We conclude that the side AB of the square can be laid off on the diago-
nal BC just once, that is q = 1. To see how many times the remainder A'C 
(see Figure) can laid off on the side AB (or, equivalently, on AC) we draw the 
perpendicular A'B' to BC (Figure 18). The sequence of quotients is 1, 2, 2, …

The triangle AB'B and A'B'C are similar. Hence

AB' = B'A' = A'C.

The remainder A'C can be laid off on the side AC of the square first once, as 
the segment AB', and then once more. This is so because B'A'C is again a right 
isosceles triangle, and lying off its side CA' in its diagonal B'C is a repetition of 
the process of laying off the side of the square on its diagonal. Hence q1 = 2.

In the triangle B'A'C we proceed as we did in the triangle ABC, and the 
result will begin to repeat. Hence we will have q2 = 2, and so on.11

	 11	 This reasoning seems to be rather old, but it is taken from Vor Zahlen und Figuren [On 
Numbers and Figures], a book by Hans Rademacher and Otto Toeplitz. Berlin 1930. The authors 
wrote that they could not find such a proof made by Greeks. Arpad Szabo acknowledged that 
conviction in The Beginning of Greek Mathematics. Dodrecht—Boston 1978.
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The simplest sequence obtainable by the Euclidean algorithm is

1, 1, 1, …

It is natural to ask if this sequence is realized for some pair of segments.
The answer is yes!
The pair in question is the one that realizes the famous golden section, 

known already to the Pythagoreans. Using the language of the theory of 
proportions (see Chapter V) we say that the point C on a  segment AB is the 
golden section point if AB : AC = AC : CB. We can obtain the golden section 
in a  regular pentagon, although it is easier to obtain it in a  regular decagon.

Consider an isosceles triangle whose base is the side AB of a regular deca-
gon, and whose vertex is a  midpoint O  of the octagon. The base and side of 
this triangle are pair of segments that yield the golden section.

To see this, take on the side AO a  point A1 such that the triangle ABA1 
is isosceles (Figure 19). The angle at the vertex O  is equal to 36o, hence the 
angles at the bases are 72o each.

Fig. 19

It follows that angle AA1B is 72o and angle A1BO is 36o. Hence the triangle 
A1BO is isosceles, which implies that A1O is equal A1B, that is, equal to the 
side AB of decagon.

Thus side AB is laid off on the arm OA once: After segment OA1 has been 
laid off on OA, the remainder AA1 is smaller than OA1 (because it is smaller 
than A1B).

But triangle AA1B has the same angles as ABO, and laying off the remainder 
AA1 on side AB yields the same result as before; which ensures the repetition 
of this result ad infinitum.

●
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We have proved the irrationality of the numbers √2̄ and √5̄ (√5̄ is in the 
golden section). A geometric proof of the irrationality of √3̄ is somewhat more 
difficult. But there is not excluded that Theodorus used just this approach all 
the way to √1̄7̄  (see12).

The incommensurabilities of segments, seen through the Euclidean algo-
rithm, with configurations that repeat themselves to infinity, continue to be 
part of Pythagorean mathematics. They need not have been invented by man. 
They could be invented by nature. They are still belong to the realm of order 
and harmony and illustrate the Pythagoras’s idea.

But there are incommensurabilities without order, without any regularity of 
the chain of quotient obtained by the application of the Euclidean algorithm. 
Such is, for example, the incommensurability of the radius of a  circle and the 
length of its circumference.

●

We used the word proportion, and for pairs of segments a  and b, using 
the symbol a  : b. But we have not explained what a  proportion is, or what is 
meant by saying that two pairs of segments are in the same proportion, in spite 
of the fact that we know that it is a dimensionless magnitude. Like number. It 
is to express the ratio of the lengths of segments. We will say about propor-
tions in the Chapter V, where we will see that the pairs of corresponding sides 
in triangles with the same angles have the same proportions. The notion of 
proportion is easy to understand in the case of commensurable segments. In 
that case it is the ratio of two numbers, and thus the arithmetical notion. But 
this understanding fails if the segments are incommensurable. But we surmise 
that whatever a proportion is supposed to be, it is determined by the chain of 
quotients in the Euclidean algorithm.

This may have been Theatetus’s view of proportion. However, he did not 
develop his understanding into theory.

But proportions can be understood without resorting to the Euclidean 
algorithm. This somewhat later understanding of the theory of proportions, 
described by Euclid in his Elements, is due to Eudoxus. We will discuss it 
along the further chapters.

●

We add a  few remarks that pertain to the examples just discussed.
In a golden section of a  segment, the proportion of the smaller part to the 

larger part is the same as the larger part to the whole segment. In the example 
	 12	 Jean Pierre Kahane, La théorie de Theodore des corps quadratiques réels. L’Enseignement 
Mathematique 31 (1985), 85—92.
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with decagon the golden section of the side OA of the triangle OAB is real-
ized by point A1. To see that AA1 : A1O  = A1O  : AO it suffice to note that the 
triangles OAB and ABA1 have the same angles, and thus, according previous 
remarks, for the corresponding sides we have AA1 : AB = AB : AO. We obtain 
the promised equality from the observation that A1 = AB.

The golden section is generally viewed as very pleasant to look at (Fig-
ure  20). Hence its frequent use in the architecture.

Fig. 20. The horizon is usually placed so as to create the golden section

Another meritorious proportion is that of side of a square and its diagonal. 
Sheets of writing paper usually have sides of such lengths: if folded down the 
middle the proportion is preserved (Figure 21).

Fig. 21. �Half the diagonal of the square is the side of a  new square, whose diagonal is equal 
to the side of the given square

●

All we know of Theatetus iare the references in Plato’s dialog so named, 
in spite of the fact that neither he, nor his discoveries, are the essence of 
this dialog.

The young Theatetus is introduced to Socrates who knows of his mathemati-
cal talents from Theodorus. Asked by Socrates, he tells him of his intention 
of constructing a  general theory of incommensurable segments. Plato puts 
the conversation in the past. The present is the time of the Peloponesian war. 
A vessel carrying wounded soldiers, including the mortally wounded Theatetus, 
is about to land.
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Let us look at the golden age of Greek mathematics from this side. Diogenes 
Laertius tells us of the death of Pythagoras during his flight from Crotona, 
of the death of Zeno crushed in the kettle, of Anaxagoras saved from being 
sentenced to death by the extraordinary efforts of Pericles, and the fate of 
Socrates himself.

When we follow the evolution of mathematics from the time of Pythagoras 
(Figure 22) then we see that it moves like a substance from generation to gen-
eration and from place to place. Eudoxus and Plato learned it from Archytas of 
Tarentum. The last Pythagorean, and in this way mathematics came to Athens. 
From Athens it moved to Alexandria. This was where Euclid wrote his Elements 
and where Apolonius and Archimedes studied.

Pythagoras brought his mathematics from Ionia, where Thales discovered 
the first mathematical theorems a  century earlier. Before getting interested in 
mathematics both of them traveled to Egypt and Mesopotamia. It is thought 
that during the Hellenistic period Babylonians mathematics again influenced 
Greeks with increased intensity, and thus the circle may be said to have close 
(Figure 22).

Fig. 22. The wandering mathematics of antiquity

The two nations of antiquity that are virtually no interest in mathematics 
were the Romans and the Israelites.
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[Mathematics] is divided into a  tendency of interest 
in a straight line and in the curved line. The periods 
of interests in straight line are usually shorter than 
those in curved a  line.

Stanisław Mackiewicz1

In antiquity (we mentioned this earlier) lengths, areas, volumes of figures, 
weights, and so on, were not regard as numbers. They were different kinds 
of magnitudes and, depending of the kind of magnitudes involved, there were 
different comparison methods of them. They were used in much the same way 
as we use denominate numbers. We do not mix them in various mathematical 
operations. If someone asked how many times the distance covered is greater 
than the time involved, we would view the question as absurd.

An indispensable characteristic of a  magnitude is the possibility of com-
parison, that is, the existence of criteria of equality and inequality. We require 
these criteria to satisfy a  certain minimum of formal condition.

There is a  condition that goes beyond this simple formalism. This is the 
requirement that the magnitudes satisfy the Archimedean postulate.

Were if not for this requirement, the conviction that one segment is con-
tained in another a definite maximal number of times, would not always make 
sense.

We already mentioned the fact that the name of this postulate was a  mat-
ter of common agreement. Already Euclid know and used this postulate and, 
according to Archimedes its first application was due to Eudoxus.

Two figures are said to have the same area when after decomposing them 
into a  certain numbers of polygons that either do not touch or touch at most 
along edges we can establish a one-to-one correspondence between the elements 

	 1	 Stanisław Cat-Mackiewicz, Muchy chodzą po mózgu. Kraków 1957. Translated by Abe 
Shenitzer. In original author speaks of course about art.

Chapter IV On geometric magnitudes • Comparison of 
polygons from the point of view of area • 
Comparison through complementation • 
Comparison through finite decomposition 
• The role of Archimedean postulate • On 
quadratures



52

of the two decompositions such that the corresponding elements are congruent. 
Figures with equal areas on the basis of this criterion are said to be congruent 
by decomposition.

The theorem of Pythagoras asserts that the area of the square on the di-
agonal of the right triangle is equal to the sum of areas of squares on the two 
sides of the right angle. The proof, given in the previous Chapter (Figure 14) 
relied on the congruence of the two figures by decomposition.

This approach enables us to show that the area of a  triangle is half of 
a  parallelogram with the same base and half the altitude of the triangle 
(Figure 23).

Fig. 23. Triangle and parallelogram with equal areas by decomposition

If two parallelograms share a base, have the same altitude (Figure 24), and 
their other bases intersect one-another, then they are congruent by decomposi-
tion.

Fig. 24. Two parallelograms with equal areas by decomposition

If their other bases do not intersect, then this simple method of compari-
son fails. Nevertheless, the assertion remains true owing to the Archimedean 
postulate.

Indeed, let P and Q be parallelograms with common base and equal al-
titudes. The Archimedean postulate implies the existence of parallelograms 
R1, …  , Rn with common (and common with P and Q) base and equal altitudes 
(the same as those of P and Q) such that R1 = P, Rn = Q, and such that the 
other bases of the parallelograms Rk and Rk+1 intersect (say, having common 
halves) for every k, k < n (Figure 25). Then Rk and Rk+1 are congruent by de-
composition. But congruence by decomposition is transitive. Hence the first 
parallelogram P is congruent by decomposition to the last one Q.

In particular, a parallelogram is congruent by decomposition to a rectangle 
with the same base and altitude as the parallelogram. Further conclusion is 
that triangles with the same bases and altitudes are cogruent by decomposition 
because as they are congruent by decomposition to the same parallelogram (also, 
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Fig. 25

to the same rectangle). But the proof — which make use of the Archimedean 
postulate — does not describe a  concrete decomposition. The proof is nonef-
fective. The number which turns up us a  result of this proof is not determined 
by the procedure used in the proof.

●

Fig. 26. Euclid’s proof of Pythagoras’s theorem; Elements. Book I

Unlike the previous proof (see Chapter III, Figure 14) the proof is non
effective. The hatched triangles have areas equal to appropriate triangles 
with  thickened legs because they share with them bases and equal altitudes. 
Since thickened triangles are congruent, it follows that the area of the square 
on the leg a and the rectangle being the left part dissecting from the square on 
the hypotenuse c have equal areas. To complete the proof we use an analogous 
argument for the leg b.

According to a more liberal convention, figures are said to have equal areas 
if, after adding to them figure congruent by decomposition, we obtain figure 
congruent by decomposition. We speak of comparison by supplementation.
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We considered earlier the parallelograms P and Q with common base and 
equal height. They can be supplemented to congruent figures by hatched tri-
angles shown in Figure 27.

Fig. 27

There arise the question. Do polygons with areas equal by complementa-
tion have equal area by decomposition? In the special case of parallelograms 
with the same bases and equal altitudes we gave an affirmative answer. The 
difficulty in the general case can be seen by considering the example of the 
two hatched figures in Figure 28, each of which is supplemented to the same 
surrounding square by congruent squares.

Fig. 28

The general question is relatively recent. It was answered in nineteenth 
century positively by Wolfgang (Farkas) Bolyai and Paul Gerwien. The tool 
used for roving it was the Archimedean postulate.

A rectangle has the same area as a certain rectangle among the rectangles 
one of whose sides is fixed.

What follows is a  proof known to Euclid employing a  mentioned more 
liberal interpretation of comparison.

Proof. Let a  be a  given segment. Let ABCD be a  given rectangle.
Lay off a  segment BE = a  along the side AB. Extend EC to intersection 

with the extensive of side AD at a  point denoted by F (Figure 29). Consider 
the rectangle AEGF for which EF is a  diagonal (the triangle AEF is half of 
it). Extend the segments BC and CD to intersection with the sides of the 
rectangle AEGF. We obtain points H (on EG) and K (on GF). The rectangle 
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CHGK, whose side CH is equal to the given segment a, has area equal to 
that of rectangle ABCD.

Fig. 29

The proof depends on noting that when appropriate halves of the rectangles 
BEHC and DCKF are added to the rectangles CHGK and ABCD, we obtain 
congruent triangles AEF and EFG.

The theorem just proved for rectangles carries to all polygons: Every poly-
gon has area equal to that of rectangle in the class of rectangles with common 
side. We recall: equality of areas means congruence by complementation, and 
therefore — on the basis of the Bolyai-Gerwien theorem — congruence by 
decomposition.

The existence proof does not close the problem. There remains the ques-
tion of the uniqueness of the rectangle obtained (Figure 30). This statement is 
obvious so that some authors take it as an axiom.

Fig. 30

In this way, comparing the areas of polygons reduces to comparing seg-
ments — the other sides of the rectangles determined by the theorems men-
tioned earlier. These segments are sometimes obscured by the more spectacular 
problem of quadrature, which requires us to find for a given polygon a square 
congruent to it by decomposition. There will be a  reference to quadratures of 
polygons at the end of the chapter.

Now what about figures — such as a  circle — bounded by curved lines 
lines? They cannot be decomposed into finitely many polygons, but as the 
Greeks put it — then can be exhausted by such decompositions.
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We assume — and this was already done by Euclid — that comparison 
of segments obeys the Archimedean postulate. We assume, furthermore, that 
a  segment is attributed to the area of the figure, also to the area of those 
which are curvilinear, that fits the scale of fields accepted by us, and that the 
containment of figures there corresponds to a relation of smallness on the scale 
of segments.

We say that a  figure P has been exhausted by the polygons P1, P2, … (we 
assume that polygons do not overlap) if the polygon Pn covers more than half 
of the figure not covered by the polygons P1, …  , Pn–1. The segments on the 
scale of areas corresponding to the polygons Pk — laid off one after the other 
— exhaust the segment ascribed to the figure P in accordance with the lemma 
of Eudoxus which we learned in Chapter II (Figure 31).

Fig. 31. �The method of exhaustion: the polygon Pn is more than half of what remains after we 
remove P1, …  , Pn–1

Now let us assume that we have another figure Q, exhausted by polygons 
Q1, Q2, … that are congruent by decomposition to the polygons P1, P2, …  , that 
correspond to them in the order in which they have been written down. We 
accept that the figures P and Q have equal areas.

We have described the comparison of areas by method of exhaustion.
Of course, when we apply this method, we wish to find for a given figure 

P a  figure Q of simpler structure, for example, a  polygon.
We will illustrate the exhaustion procedure by using the example of the 

Archimedean quadrature of a  parabola.
We write the equation of parabola as y = x2. The ancients did not know 

this equation but they knew the properties of the parabola implied by it. After 
Apolonius any point on parabola is in equal distance from a fixed point called 
focus and a  fixed straight line called directriss. From this basic property it 
follows the following property of parabolic segments being the key tool for 
Archimedes’s computation:
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(1) The tangents at ends of chords intersect in points such that the 
direction of the straight line joining this point with the center of the 
chord is the same for all chords.2

This direction, called the principal direction of the parabola, is the direction 
perpendicular to the directriss.

Let AB be a given chord (see Figure 32), let N be the point of intersection 
of tangents at it ends A and B, and let P be the point on parabola lying on the 
straight line joining N with the center M of AB; the direction of NC is accord-
ing to (1) the principal direction.

Fig. 32

Let us restrict our consideration to that “half” of the segment of parabola 
dissected by AB onto which the end B lies.

From (1) it follows that

(2) the tangent at P is parallel to AB.

Indeed, it must, in order to satisfy (1) for the chord PB, intersect the tan-
gent at B at such a point N' that the straight line through N' with the principal 
direction halves the chord PB.

	 2	 For the proof see Wojciech Guzicki, Parabola and O paraboli (in Polish), two sketches 
in a  periodical magazine Matematyka. Społeczeństwo. Nauczanie.
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Let Q be the center of the chord PB. Complete Figure 32 by the straight 
lines with the principal direction passing through ends of chords, in particular 
through B.

Observe that such the line extending N'Q halves MB, and M' halves 
PB',  where B' is the point on the line with principal direction passing 
through B.

The triangles NPN' and BB'N' are congruent. Hence point P halves seg-
ment N'M, and — according the same argument — point Q lies on the half 
way from N' to the center M" of the chord PB, the point M" lying at the 
half way from N' to M'.

The triangle APB is more than half of the segment APB of the parabola, 
and the situation will repeat itself for the chord PB, thus the triangle PBQ is 
more than half of the segment PBQ. This procedure can be continued, applying 
it to the chords PQ and QB and so on. Thus, we infer that the triangle ABP, 
the triangle PBQ with the corresponding to it triangle based on AP, and the 
triangles obtained on the successive steps of the procedure, exhaust the segment 
of parabola based on the chord AB.

We will show that out of the mentioned triangles it is possible to compose 
a  figure whose area is 4/3 of the area T of the triangle APB.

To this end we use property (2), noting that the triangle PBQ has area 
equal to ¼ of area of triangle PMB. Then at the second step of the proce-
dure the surplus of area, in the form of triangle PBQ together with the cor-
responding triangle on the “half” of the parabolic segment with the end A, 
is T/4. At the next step it will be T/42, and so on. These and the area T add 
up to 4/3 of T.

Our ending of the argument involves an anachronism, because we used the 
formula 1 + ¼ + ¼2 + … = 4/3 for the sum of a  geometric progression.

This is how Archimedes handled this summation.

Fig. 33. Summation 1 + ¼ + ¼2 + … = ¾ according to Archimedes
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Consider magnitudes A, B, C, … each of which is four times larger than the 
next one, and the magnitudes Z, Y, X, … such that Z = A/3, Y = B/3, X = C/3, … 
(Figure 32). We have Y + X + … = 1/3 (B + C + …).

We have B + Y = A/3, C + X = B/3, … Addition on both sides yields

(B + C + …) + (Y + X + …) = 1/3 (A  + B + …).

Hence 4/3 (B + C + …) = 1/3 (B + C + …) + A/3, and therefore

B + C + … = A/3.
As a  result

A  + B + C + … = 4A/3.

       
Fig. �34. ¼ + (¼)2 + … = 1/3; from Martin 

Gardner

●

A   c i r c l e  c a n  b e  e x h a u s t e d  b y  p o l y g o n s.
To this end let us inscribe in the circle a  polygon K0. The remainder not 

covered by K0 consists of segments of the circle. In each of these segments 
we inscribe an isosceles triangle whose base is a  side of the polygon K0 with 
vertex on the circle (Figure 36). In this way we can cut more than half of seg-
ment. This follows from the fact that the area of this triangle is equal to half 
the rectangle containing this segment (the sides of this rectangle are a  side of 
the polygon and the segment of the tangent to the circle at the vertex of the 
triangle). Let K1 denote the sum of the triangles cut off in this way. We handle 

Fig. 35. �¼ + (¼)2 + … = 1/3; this is a  less 
elaborated method which yields for 
the segment of the parabola the 
figure Q (the darkened squares) 
mentioned in the description of the 
method of exhaustion.
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the rest, which also consists of segments of the circle, in the same manner; 
the figure Kn+1 cuts out of the part of the circle not covered by the figures K1, 
…  , Kn more than half of its area.

Fig. 36

If we could find a  polygon and exhaust it by a  sequence of polygons (fig-
ures) L1, L2, …  , congruent by decomposition to appropriate figures K1, K2, … 
(Ln corresponds to the figure Kn) — in a  manner similar to the one we dealt 
with successfully in the case of the parabola — we would have an open road 
to the quadrature of the circle.

●

Finding a square whose area is equal to the area of a given figure is called 
the quadrature of the given figure.

It is enough to find a  polygon, because its area is equal to the area of 
a  rectangle, and a  rectangle can be changed to a  square with the same area in 
a  certain well known way.

We are given segments c and d. We construct a right triangle with diagonal 
c whose altitude cuts off on c a segment d. The construction is carried out with 
ruler and compass: all we need do is draw a  circle whose center is the center 
of the segment c and whose diameter is c. This triangle is determined by the 
intersection of the perpendicular to c drawn from the end of the segment d; 
see Figure 37.

A  rectangle with sides c and d has the same area as the square guilt on 
the leg of the triangle whose projection is d.

The comparison of areas — recall Euclid’s proof of Pytagoras’s theorem 
— can be carried out by congruence through decomposition, but leading up 
to this method of comparison requires in most cases noneffective means, such 
as the Archimedean postulate.
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Fig. 37

●

The issue of the tools used to construct the square is significant. If the 
construction can be carried out with ruler an compass, then we speak of quad-
rature in the classical — Platonic — sense. The quadrature of a  circle cannot 
be carried out, but this was discovered only in the 19th century.3

The ancients had initially certain hopes.
Hippocrates of Chios, who lived in the 5th century BC, a  Pythagorean, 

pointed out the existence of figures with curved — piecewise circular — 
boundaries whose areas equal to those of polygons. These were the famous 
Hippocratic moons.

Let us consider the simplest of them.
The quadrant OAMB of a  circle has area equal to ANB, half of the circle 

constructed on the chord that closes the quadrant. This follows from the fact 
that the areas of the circles are into one-another as the squares of their radii, 
and the squares constructed on these radii, that is, on OB and O'B (thus, are 
in the ratio 2 : 1). After subtraction the segment ABM of the quadrant from 
the two equiareal figures OAMB and ANB there is left the triangle OAB and 
the moon AMBN. It follows that the triangle and the moon have equal areas 
on the basis of comparison of areas by supplementation.

	 3	 Ferdinand Lindemann proved (1882) that the number π is non-algebraic. This implies the 
impossibility of quadrature of the circle in the classical sense.



Fig. 38

The proof had a genuine gap. That the proportion of the areas of circles is 
equal to the proportion of the squares on their radii is a  theorem in Hippocra-
tes’s time proofs were not known. Nor did people at that time have a  precise 
understanding of proportions of geometric magnitudes.

●

Comparison of areas of figures did not require numbers. We do not ask 
how large the area is. All we ask is if two figures have equal areas.

In the realm of polygons, the phrase “equal areas” means congrunce by 
decomposition (into finitely many parts). In the realm of curvilinear figures we 
must resort to the method of exhaustion. Democritus had in mind even more 
liberal criteria.

We reduced the comparison of areas of figures to comparing the lengths of 
segments without defining length. We do not introduce the notion of number 
which would measure continuous magnitudes in spite of the fact that this no-
tion is close at hand. We admire the restraint of the Greeks when it comes to 
taking this single-seemingly so simple and, as we know, so very dangerous, 
step forward.
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In the whole book of “Elements” there is no such 
which can be compared with the theory of propor-
tions concerning the inventivity, the force of con-
struction, as well as to the precision of performing.

Issac Barrow1

The time when whole, positive numbers separated from denominations must 
have be so ancient — undoubtedly prehistoric — that it left no traces neither 
in Greek mathematics and philosophy nor in older civilizations. It must have 
been a period difficult to pin down. That this was so can be seen by absorbing 
the analogous process in the area of continuous geometric magnitudes.

It is possible to cut the connection in this area as well, instead of investigat-
ing these magnitudes we investigate their proportions. In one of the preceding 
chapters we tried to understand what one should mean by the proportion of 
two magnitudes of the same kind. This was to be a  new kind of existences 
determined by a  sequence of quotients obtained for this pair of magnitudes in 
Euclid’s algorithm. There are two difficulties. One is inherent in the algorithm 
itself, which is a difficult operation. The other difficulty is of a different nature. 
A sequence of quotients — even if finite — is a new kind of entity. It has no 
denomination but is a sequence of numbers rather than a number. Also, it is an 
entity associated not with one but many pairs of magnitudes, and the kind of 
magnitudes can be different in different pairs, because the proportion of two 
weights can be the same as the proportion of two volumes. How should one 
introduce this new existence into mathematics?

It was Eudoxus who created a theory of proportions that avoids — a dodge 
typical for mathematics — philosophical difficulties and, at the same time, 
avoids mathematical details of the Euclidean algorithm. It is presented in 

	 1	 Quotation after N. G. Alimow, Wieliczja i otnoszenija u Ewkida. Moskwa 1955, p. 573—
619. Translated by Abe Shenitzer.

Chapter V The Eudoxian theory of proportions • The role 
in it of the Archimedean postulate • The theorem 
on interchanging terms in a  proportion • On 
Tales’s theorem • Comparison with Dedekind 
theory • Inequality of proportions • On the 
area of a  circle • On Greek geometric algebra 
• The Elements as an attempt to geometrize 
arithmetic
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Book  V of the Elements. It is thought Euclid played an important part in its 
creation.

One does not define a  proportion. One just talk about how to use propor-
tions. It is relevant to remind the reader that we do not say what is a number.

●

Let us consider two pairs

a  : b    and    c : d

of magnitudes of the same kind in each pair, but not necessarily of the same 
kind in both pairs. We will say that the pairs a  : b and c : d form the same 
proportion, which we write as

a : b = c : d,

if

(1) 			   m  a < n  b implies m  c < n  d,
(2) 			   m  a = n  b implies m  c = n  d,    and
(3) 			   m  a > n  b implies m  c > n  d

for every pair on numbers m and n.
Let us remind the reader that n  a denotes the sum a + a + … + a (n times).
We say that a is to b as c to d, or that the proportions a : b and c : d are 

equal. Proportions of numbers are called fractions. If a  : b is (any) proportion 
and m : n is a  fraction, then a  : b = m : n if and only if n  a = m  b.

Proof. Assume that n  a = m  b. Let p and q be numbers such that 
p  a < q  b. We have m  p  a < m  q  b, whence p  m < q  n. This proves 
property (1) of the equality a  : b = m : n. We prove the two remaining proper-
ties in analogous way.

Assume that a  : b = m : n. Suppose that n  a does not equal m  b, 
say  n  a < m  b. Then, in view of property of equality of the proportion, 
n  m < m  n, which is impossible. We rule out m  b < n  a in a  similar 
way.

In particular, the equality m : n = p : q reduces to the condition

m  q = n  p

well known from arithmetic.



65

The fundamental difficulty contained in the question what is a  proportion 
remains a difficulty for fractions as well: in spite of the fact that all equal frac-
tions can be represented by an irreducible fraction, a  fraction is not a number 
but a  pair of numbers. While a  notion of a  pair of numbers is rather simpler 
its analysis also leads to difficult questions of the mode of being.

The equality of proportions is reflexive, symmetric and transitive. This 
follows immediately from the conditions assumed in its definition.

It is easy to prove the assertions:

(4)			   a  : b = c : d implies b : a = d : c,
(5)			   a  : b = p  a : p  b  for every number p.

●

Let us illustrate Eudoxos’s formulation of the theory of proportions us-
ing the example of Tales’s theorem, a  first step to the theory of similarity 
of triangles.

Tales’s theorem. Let B and B' be points on an arm of an angle with vertex 
A. If from these points we lead straight lines at the same angle to that arm, 
then they will intersect the other arm of the angle in point C and C' such that

AB : AB' = AC : AC' .

Proof. We begin from the following auxiliary assertion.

If we place anywhere on the arm of the angle under consideration a  seg-
ment MN congruent to AB (Figure 39) and led from M and N straight lines 
that form the same angles with the direction AB as BC, then these straight 
lines will cut the other arm of the angle, and the points of intersection 
P  and  Q will form the equality PQ = AC.

        
Fig. 39					     Fig. 40
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For proof lead from P a  straight line that form with the direction AC an 
angle equal to the angle A  (that is, a straight line parallel to the direction AB). 
Let R be the point on that straight line lying on NQ. We obtain a parallelogram 
MNPR. Hence AB = PR.

Now we see that the triangles BAC and RPQ are congruent, because 
 PQR  =  MNQ =  ABC. Hence the required equality AC = PQ.

To prove the theorem, we lay off along the arm ABB' the segment AB 
m times and the segment AB' n times. Let X and Y be the ends of the segments 
m  AB and n  AB' respectively. From X and Y we draw a  straight lines that 
form with the arm ABB' the same angles as the segments BC and BC'. They 
will intersect the second arm of the angle at points U  and V.

The auxiliary result implies that AU = m  AC and AV = n  AC'.
Assume that m  AB < n  AB', that is, that X lies on AY (Figure 40). We 

will show that m  AC < n  AC', that is that U  lies on AV.
If this were not so, then either U  = V or U  would lie outside the segment 

AV. The first possibility obviously denies the parallelism of the segments XV 
and YV. The same is true for the second possibility, because of Pasch’s axiom 
(see the Supplement), the segment XV which does not pass through any of the 
vertices of the triangle AYV and has no points on the side AV must intersect 
the side YV.

We have proved the characteristic (1) for the equality of proportion 
AB  :  AB'  = AC : AC. The characteristics (2) and (3) of the equality of that 
proportion are proved in a  similar way.

We used the Euclidean postulate about parallels in the proof a  number of 
times (for instance, the existence of intersections in P and Q). We will discuss 
this postulate in Chapter VI in which we discuss the mathematics of the Arab 
East.

●

Not all formal theorems of the theory of proportions are as simple as the 
ones we have dealt with thus far. In subsequent theorems we will be forced 
to make of the Archimedean postulate. These will be lemmas we will use to 
prove a  theorem on the permuting of terms in the equality of a  proportion.

At the very beginning of the Book V of the Elements Euclid2 assumes the 
magnitudes we will consider have the property that having any two of them 
we can multiply either of them so many times that it exceeds the second. He 
thus assumes what later came to so known as the Archimedean postulate. The 
conditions which determine the equality of proportions have the form of impli-

	 2	 The quotations to Elements are taken from the text by Clemens Thaer, Die Elemente von 
Euklid. Leipzig 1933. All quotations translated by Abe Shenitzer.
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cations, in which the first terms have the form m  a < n  b, and so on. If we 
did not assume the Archimedean postulate, the first term could fail to be satis-
fied. Without canceling the logic of the theory, this would deprive it of content.

On the theorem on permuting of terms
L e m m a  1.  If a  : b = c : b, then a  = c.

Proof. Suppose c < a. By the Archimedean postulate there is a  number n 
such that n  (a – c) > b, that is such that

n  a > b + n  c.

By the Archimedean postulate and of the minimum principle we can enclose 
the magnitude n  c by the inequalities

(m + 1)  b ≥ n  c > m  b.

Using the second of these inequalities we have

n  a > b + m  b = (m + 1)  b,

whence

n  a > (m + 1)  b.

Since a : b = c : b, this yields

n  c > (m + 1)  b

which contradicts the earlier inequality (m + 1)  b ≥ n  c.
With a  < c, the contradiction is obtained owing to the symmetry of as-

sumptions.
In view of (4) we also have

L e m m a  1'.  If a  : b = a  : d, then b = d.
L e m m a  2.  If a  : b = c : d and b < d, then a  < c.

Proof. If a = c then, reasoning as before, we conclude that there are num-
bers m and n such that

m  a > b + n  c    and    (m + 1)  b ≥ n  c > m  b.

Since a  : b = c : d, this leads to

n  c > (m + 1)  d.
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Since d > b, we obtain n  c > (m + 1)  b, which contradicts the inequality 
(m + 1)  b ≥ n  c, obtained earlier.

In view of (4) we also have
L e m m a  2'.  If a  : b = c : d and a  < c, then b < d.

T h e o r e m  o n  p e r m u t i n g  o f  t e r m s.  If a : b = c : d, then a : c = b : d.
Proof. Let m and n be numbers such that

m  a > n  c.

The equality a  : b = c : d and (5) yields

m  a : m  b = n  c : b  d.

Since m  a > n  c, Lemma 2' yields m  b > n  d, what proves the charac-
teristic (1) of the equality of the proportions a  : c = b : d. The characteristics 
(2) and (3) are proved in a  similar way.
The last three proofs are the essence of Book V of the Elements.3 The last asser-
tion (L 16 in Euclid) is already important in the elementary parts of geometry.

●

Making use of the theorem of permuting rearranging terms in the equality 
of a proportion, and using the same assumptions as in the Tales’s theorem, we 
obtain the proportion

AB : AC = AB' : AC'.

We formulate this important conclusion from Tales’s theorem, more gener-
ally, as the following

T h e o r e m.  If the angles of two triangles, when properly ordered, are 
equal, then the pairs of sides opposite to equal angles form the same propor-
tion; this means that if for the triangle ABC and DEF we have angle equalities 
  A  =  D, and  B =  E, and (as a  result)  C =  F, then we have 
the following proportions

	 3	 Bartel van der Waerden presents in Science Awakening his reconstruction of the theory 
of proportions, expressing his admiration to “the dry elegance” of Euclid’s proof of the theorem 
on rearrangement. I. G. Bashmakova, Ist.mat. Issled. 11 (1958), p. 317, wrote that in the theory 
of proportions based on the Euclidean algorithm this theorem would be like “an unshakable 
wall.”

In the special case of proportions between segments (the case which suffices in geometrical 
applications) there is possible a  geometrical proof of rearrangement of terms; see Jan Zydler, 
Geometria [Geometry]. Warszawa 1997.
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		  BC : AC = EF : DF,
		  AC : AB = DF : DE,    and (by transitivity)
		  AB : BC = DE : EF.

Fig. 41

Proof. Let us superimpose angle A on angle D so that E ends up on AB and 
F on AC (Figure 41). Then the triangle ABC and the triangle DEF, transferred 
in the manner described above, form a configuration satisfying the assumptions 
of Tales’s theorem. On the basis of this theorem we obtain

DE : AB = DF : AC.

Hence DF : DE = AC : AB on the basis of the theorem of rearranging terms 
in a  proportion, that is, one of the stated equalities.

Using the other angular equalities we obtain the remaining proportions in 
the assertion of the theorem.

This second Tales’s theorem is the basis of the theory of similar figures. 
In particular, it make possibly trigonometry by rendering the definitions of 
trigonometric functions as proportions independent of choice of size of a  right 
triangle used for their definition. We recall that this version of Tales’s theorem 
follows from the initial version owing the Archimedes postulate (through the 
theorem of rearranging terms in the equality of a  proportion).

●

Comparison with Dedekind’s theory4

In the realm of fractions formed of whole positive numbers, the inequal-
ity m  : n < p : q is interpreted as the satisfying of the numerical inequalty 
m  q < n  p.

The inequality of fractions satisfies formally the demand which we expect 
to hold for inequalities: it is transiative, that always u  < v and v < w  implies 
u < w, and has a  trichotomy property, that is, we always have u = v, u < v or 

	 4	 Invented by Richard Dedekind in 1858 during his lectures in Zurich and published in 
Stetigkeit und irrationale Zahlen. Braunschweig 1872.



70

v < u, and these three situations are mutually exclusive. Verification of these 
properties is a mere formality.

We will transfer these rules to inequalities between fractions and arbitrary 
proportions. Let us assume for the proportion a  : b and the fraction m : n that

(6)	 m : n < a  : b if m  b < n  a,    and    a  : b < m : n if n  a < m  b.

We recall that a  : b = m : n means that m  b = n  a.

A  glance at this definition, and the definition of equality of proportions 
lead to the conclusion that two proportions are equal if and only if they are 
in the same relation, of lessness or equality, with fractions of positive whole 
numbers. We are aware of the fact that Dedekind’s real numbers are likewise 
determined by fractions in this way.

This assertion will acquire substance if we first check that the connections 
in formulas (6) satisfy a  certain minimum of formal condition anticipated for 
inequalities.

It is easy to prove the following three properties:

(7)	 If m : n is a  fraction and a  : b is an (arbitrary) proportion, then

m : n < a  : b, or a  : b < m : n, or a  : b = m : n and these possibilities are 
mutually exclusive.

Proof. This property becomes obvious if we write these expressions in the 
form:

m  b < n  a,
n  a < m  b,    and

n  a = m  b,

and apply the trichotomy properties belonging for magnitutides in question 
(e.g. for segments).

(8)	� If m : n ≤ a  : b and a  : b < p : q, where m : n and p : q are fractions, 
then m : n < p : q.

Proof. Assume to the contrary that m  q ≥ n  p. If we write the assump-
tions as inequalities between magnitudes, then we obtain

(a) m  b < n  a    and    a  q < b  p.

The inequalty m  q ≥ n  p yields m  q  a ≥ n  p  a, whence
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m  q  a ≥ n  p  a ≥ m  p  b,

in view of (a), and consequently a  q ≥ b  p, which contradicts (b).

In this way we have shown that a  proportion a  : b determines a  division 
of the set of fractions into two sets: the set of fractions smaller than a  : b and 
the set, that is, greater than a  : b (we exclude the case when a  : b is a  frac-
tion). Also, every fraction in the first set is smaller than every fraction in the 
second set. Equal proportions determine the same division.

We will supplement this assertion with an additional thesis: different pro-
portions determine different divisions.

Indeed, let a  : b and c : d be different proportions. Then one of the condi-
tions for the equality of proportions is not fulfilled. Assume, for example, that 
there are two numbers m and n such that

n  b > m  a    and    n  d ≤ m  c.

This means that there is a  fraction m : n such that

n : m > a  : b    and    n : m ≤ c : d.

Hence the divisions determined by a  : b and c : d are different.
We reason in a  similar manner in the remaining cases of violation of con-

ditions for equality.
In spite of its detailed nature, the proved assertion does not as yet have 

complete value. We supplement it with two more assertions.

(9)	 Neither of the sets determined by a  proportion is empty.

Proof. To the set of fractions smaller than the given proportion a : b belong 
fractions m : n such that m  b < n  a, which exist in view of the Archimedean 
postulate; fractions greater than a  : b exist on the same basis.

(10)	� In the set of fractions smaller than a  : b there is no largest, and in the 
set of fractions larger than a  : b there is no least.

Proof. We consider the fractions greater than a  : b. If p : q is such a  frac-
tion, then q  a < p  b. For the magnitude p  b – q  a we choose a  number 
r such that

r (p  b – q  a) > b.
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Then

r  q  a < (r  p – 1)  b.

The expression on the right side is a  magnitude because p and q cannot 
both be ones. This is so because r = 1 implies p  b – q  a > b, whence p > 1. 
It is easy to verify that

a  : b < (r  p – 1) : r  q < p : q.

It follows that we can insert one more fraction between a  : b and p : q.
We can give a  similar proof for the analogous property of the set of frac-

tions smaller than a  : b.
By a  Dedekind cut in a  set of fractions we mean a  division of the set of 

fractions into two sets A  and B such that (I) every fraction in A  is less than 
every fraction in B, (II) both sets are non-empty, and (III) there is no larger 
element in A.

Using the term of a cut we formulate the assertions proved thus far as the
T h e o r e m.  A  Euclidean proportion determines in the set of fractions 

a Dedekind cut; different proportions determine different cuts. Arithmetic prop-
erties are distinguished by the fact that the cuts determined by them have in the 
set of larger fractions of the cut a  least element (which is the given fraction).

The cuts determined by a  proportion have properties (II) and (III) only 
using to the Archimedean postulate.

●

Potentially, the theory of proportions does not differ from the theory of 
real numbers: every proportion that appears in geometric or physical arguments 
can be expressed by a Dedekind cut. When Lipschitz familiarized himself with 
Dedekind’s theory, he presumably asked him: “what new thing have you done 
compared with Eudoxus?”

That is why we must clearly explain the difference.
Euclid did not claim that every cut in the set of fractions is determined by 

a proportion of a geometric or physical magnitudes. To acknowledge all cuts as 
proportions would imply agreement to the introduction for the use of geometry 
and the natural sciences of thought complexes not motivated geometrically, 
a  step that demanded reflexion.
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It was only in the second half of the 19th century that mathematicians 
began to form mathematical concept from a  “world of our thoughts”5 wider 
than numbers and figures.

The system of cuts determined by Eudoxian proportions is an open sys-
tem: new elements turn up as needed; the problem of their existence is left to 
geometry and physics.

If we accept the Dedekind theory, in which every cut is a  number, then 
we loss this openness.

We have already noted that it is the Archimedean postulate that gives 
the theory content, and makes possible applications and comparison with the 
Dedekind theory.

●

The notion of inequality carries over to arbitrary proportions. If a  : b and 
c : d are arbitrary proportions, then

(11)	 a  : b < c : d if there is a  fraction m : n such that

a  : b < m : n < c : d,

that is, there are natural numbers m and n such that

n  a < m  b    and    n  c > m  d.

Of course, condition (11) remains valid if the proportions in it are replaced 
by equal ones. Thus, the property of trichotomy remains in force for arbitrary 
proportions.

A  less formal assertion is that (11) actually coincides with the inequality 
considered thus far in the special case when one of the proportions is arithmeti-
cal. This is guaranteed by (10).

●

For later applications we note the following property of inequality of pro-
portions.

T h e o r e m.  If a' < a, then a' : b < a  : b.
Proof. The equality a' : b = a  : b is ruled out because it would imply 

a' = a by a  lemma preparatory to the theorem on permuting terms. In view of 

	 5	 “Meine Gedankenwelt, d.h. die Gesammheit S aller…” From Richard Dedekind, Was 
sind und was sollen die Zahlen. Braunschweig 1881, p. 14.
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the proved trichotomy, it suffices to rule out the inequality a' : b > m : n > a : b 
for any arithmetical fraction m : n. The second inequality would imply 
m  b > n  a, which leads, in view on the second inequality, to n  a' > n  a, 
and, as a  result, to a' > a. Contradiction.

●

Further examples of applications of the theory of proportions
Let us look at the proof known from Book XII of Euclid’s Elements and 

attributed to Eudioxus. The proposition asserts that:

The areas of circles are in the same proportion as the squares on their radii.

Fig. 42

Proof. Let K1 be a  circle with radius r1 and K2 a  circle with the radius r2. 
We are to prove that

K1 : K2 = r 12 : r2
2

with references to the areas of the circles (in symbols we do not distinguish 
between a  figure and its field). In view of trichotomy, the proof relies on rul-
ing inequalities.

Assume that

K1 : K2 < r 12 : r2
2.

Consider the circle K'1 concentric with K1 and containing K1 (Figure 42) 
such that

K'1 : K2 = r 12 : r2
2.
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There is a  polygon P1 circumscribed about K1 and contained K'1. We have 
P1 < K'1. Hence, in view of our last theorem,

P1 : K2 < r 12 : r2
2.

Circumscribe about the circle K2 a polygon P2 similar to P1. We will have

P1 : P2 < r 12 : r2
2

on the basis of the same theorem. But we know that the areas of similar poly-
gons are to each other as the squares of corresponding linear elements, which 
means that we should have P1 : P2 = r 12 : r2

2. Contradiction.
Similarly, we exclude the inequality K1 : K2 > r 12 : r2

2 by making use of 
a  circle K"1 concentric with K1 and contained in

K1 such that K"1 : K2 = r 12 : r2
2.

The proof has two gaps.
Firstly, we admitted a  circle K'1 such that after replacing K1 by K'1 we 

obtained an equality of formerly unequal proportions. The existence of the 
circle K'1 must be separately postulated. In the system of analysis of today, 
the existence of such a  circle follows from the continuous dependence of the 
field of a  circle on its radius, more precisely, on the Bolzano-Cauchy theorem 
which asserts that a  continuous function takes on all values between any two 
it has taken on.

Euclid supplemented the theory of proportions with the following postulate: 
given a proportion a  : b and a magnitude d, there exists a magnitude c (of the 
same kind as d) such that a  : b = c : d. This postulate is known as postulate 
of the fourth proportional. In the argument just presented this “fourth propor-
tional” appeared in the form of circle K'1.

Secondly, the theorem which asserts that areas of polygons are in the same 
proportions as the squares of the sides that correspond to one another on the 
basis of similarity is very far from trivial. Euclid devotes to this issue Book XII 
of the Elements.

●

Proportions of magnitudes satisfying the Archimedean postulate themselves 
satisfy this postulate. This can be discussed by first introducing the operation 
of addition of proportions.

But let us not do this so as not be guilty of an anachronism. The ancients 
did not do this. They did not give to proportions the characteristic of a  uni-
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versal magnitudes that can play the role of numbers. True, they did define the 
multiplication of proportions but they did not add them. They stopped halfway.

This is halfway to our understanding of a  continuous number. We are 
not sure that the notion of a  continuous number was a  Greek objective. The 
method of comparing the fields of figures, and, in particular, the method of 
exhaustion, worked without it. It was not yet a necessity because motion — its 
fundamental domain — was removed from mathematics. Continuous numbers 
would have formed a  point continuum, and, following Aristotle, this was pre-
sumable a  contradiction.

We might explain matters more simply by assuming the Greek mathematical 
genius reached exhaustion with the achievements of Archimedes, at least in the 
area of mathematics that gives birth to, and develops, concepts.

●

The Greeks did not continue Eudoxus’s theory of proportions. Proclus lived 
in the fifth century. When describing the merity of Eudoxus he does not men-
tion the theory of proportions There are reasons to believe that Omar Khayyam, 
the philosopher and mathematician who lived in the ninth century in the Arab 
East, viewed proportions as numbers. But a  true breakthrough came in the 
14th century. The fluent — our variable x — appeared in semi-mathematical 
arguments of the scholastics. This mode of thought — with a flowing variable 
— was taken over by Newton who adapted for his physics Eudoxus theory of 
proportions. After Newton there was a  period of conceptual chaos that last at 
century and was overcome by the mathematicians of the 19th century. They 
discovered the Eudoxian theory anew.

●

The fact that the Greeks — and Euclid himself — did not exploit the pos-
sibilities of the theory of proportions follows also from the fact that it was 
possible to construct an arithmetical system — existing in principle to this 
very day — on the basis of the theorems in Book I of the Elements, the system 
referred to as geometric algebra. It is exposed in the Book II and penetrates 
the whole of the Elements.

If we know that a  rectangles with a  common side are congruent if their 
other sides are congruent, and one has already developed a  theory of addition 
and division of segments, then, denoting the sum of segments x and y by x + y, 
and the area of a  rectangle with sides u  and v by uv, then we obtain in the 
situation shown in Figure 43 the equality

(12)			           a(b + c) = ab + ac.
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Fig. 43

          
Fig. 44 					     Fig. 45

A square with side a + b leads to a configuration shown in Figure 44. Us-
ing the previous convention, we can represent it by the formula

(13)			         (a  + b)2 = a2 + b2 + 2ab.

But that very square can also be represented as in Figure 45. This leads to 
the formula (a  + b)2 = c2 + 2ab, where c is the diagonal of the triangle with 
sides a  and b. Comparison of the two formulas yields

a2 + b2 = c2,

that is, Pythagoras’s theorem. Historians are of the opinion that this proof of 
Pythagoras’s theorem predates Euclid and was known to the Pythagoreans. In 
fact, geometric algebra itself goes back to these ancient times.

●

The Greeks did not write formulas but used rhetorical rules. Rules (12) and 
(13) are the same as those known from the arithmetic of whole numbers. Thus 
one can see in geometric algebra a  reaction to the failure to master geometry 



78

by arithmetic due to the discovery of incommensurable segments, that is an op-
posite program, the program of basing arithmetic on the principles of geometry.

Into Greek geometric algebra there entered in a natural way incommensu-
rable magnitudes whose source was geometry, and thus quadratic incommen-
surabilities and their iterations. They turned up, among others, as diagonals 
of squares whose sides were of integral size, or, equivalently, sides of squares 
whose areas were of integral size. Euclid devoted Books VII, IX and X of the 
Elements to the development of this algebra of incommensurable quadratic 
magnitudes. The sophisticated computations involving incommensurable mag-
nitudes of the form

    __________
√  (√ā + √b̄)

and others, dealt with in Book X, do not depend of the theory of proportions. 
Of course, the potential of the theory of proportions exceeds possibilities such 
as quadratic incommensurables whose source is plane geometry, but it is dif-
ficult to imagine that these possibilities could have been perceived at the time 
when the Elements were created.

The arithmetical books of the Elements always puzzled historians of math-
ematics. One asked why Euclid presents in Book VII the theory of proportions 
of whole numbers if this theory is implicitly contained in Book X? Whence the 
interest in curious incommensurables in Book X (the incommensurable quantity 
just quoted is one of the simplest), and all of them are rhetorically described? 
We know now that the tendency to geometrize arithmetic is unrealistic. Recall 
geometric Theodoros’s approach to irrationality of sides of squares whose fields 
are non-quadratic whole numbers.

We can also interpret the Elements differently. They form as a  whole not 
a  logically uniformly constructed work. We can look at them as the sum of 
total of threads of interest at the time of their creation. The theory of propor-
tions is one such thread.

Supplement

Pasch’s axiom for the plane
If a line not passing through the vertices of a  triangle cuts one of its sides, 

then it cuts just one other of its sides.



                
Fig. 46					     Fig. 47

This means that a straight line that cuts a plane cuts it into two convex sets; 
more precisely: if A and B lie on different sides of a straight line l (which means 
that AB intersects l) and the point C is not on l, then just one of of the seg-
ments joining A and B with C does not intersect the straight line l (Figure 47).
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The declines of civilizations have rather inner caus-
es. The civilizations weakened because their commu-
nities are not able longer to carry their own past.1

Javarharlal Nehru

The ancient world was dying as if wasted away by a  dreadful sickness. It 
was a  slow death. Its agony lasted for centuries. Its symbolic beginning was 
the death of Archimedes, killed by Roman soldier after the Roman conquest of 
Syracuse. Not much later Carthage was destroyed in the Second Punic War. In 
the next century Greece was devasted after being conquered by the Romans. 
Athens was saved from destruction by the magnanimity of Sulla, which was 
just a whim of a conquerer. The first fire of the Alexandrian Library occurred 
during Caesar’s conquest. A century later Jerusalem was destroyed. At yet the 
rulers of this military empire had many merits. We still admire the Roman 
law system and the unrivalled terseness of Latin. But a  buffling fate seemed 
to push Rome to self-destruction.

And this was happening during long centuries of pax romana. There were 
wars only on the boundaries of the civilized world. The Ancient World separated 
itself from the barbarians by the wall. It had neither energy for expansion nor 
for sustaining the burden of its own heritage.

The awakening Christianity was to become a  reaction to this stagnation. 
But as yet it had no strength, and, possibly, it may not have been inclined to 
use what strength it had to fight this stagnation. Before it organized itself, it 
was intolerant vis-a-vis the pagan past. At the end of the fourth century the 
Olympiads ended. Another fire all but destroyed whatever was left of the Alex-
andrian Library. Academy continued to exist for a time, but in the sixth century 
emperor Justinian liquidated it. He issued a decree demaleficis, mathematic is 

	 1	 Javarharlal Nehru, The discovery of India. London 1951.
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etcaeteris similibus, whose verbiage could amuse, were it not for the collapse 
it signalled. In the seventh century the work of destruction was completed by 
the Arabs. Of the Ancient World there remained just its borders.

Fig. 48. In the cloisters of Europe

But the world of Islam and Christian Europe, which were beginning their 
own lives on these borders, could not but turn to the heritage of the Ancients 
in science and philosophy, areas in which their domination was overhelming. It 
is also important that Islam and Christianity, these great monotheistic religions, 
saw in the philosophy of the Ancients a  force capable of building a  coherent 
view of the world that would agree with the views they propagated. Here, the 
differences between Islam and Christianity were not fundamental.

But we must not forget that studying and commenting on the works of one’s 
predecessors was always a  duty of scholars. The surviving writings of ancient 
philosophers were copied in the monasteries of Western Europe and in the palaces 
of scholars in the Arab East. But the world of Islam, which reached the level of 
material opulence earlier than did Western Europe, displayed originality earlier 
than the latter. The development of philosophy, including mathematics, slowed 
down, and for a time it even came to a halt, but philosophy retained its continuity.

The flourishing of Arab learning lasted some six centuries, and its place 
covered the lands from the Indus to Spain. When we speak on Arab science, 
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we have to realize that while the written language was Arabic, and religion was 
taken over from the Arabs, the political history differed greatly from country 
to country, and their interests were at odds. Contacts were not always strong: 
the connection between Arab culture of Spain and Baghdad was practically 
nonexistent. A  similar state of affairs prevailed in medieval Europe.

European learning took over this Arab bequest, practically in its entirety, 
sometime in the 13th century, including the ancient scientific achievements then 
practically unknown in Europe. That is why we look at the science of the East 
during the Middle Ages ignoring dates, ignoring chronology, and losing sight 
of individual creative scientific figures.

It was only at the beginning of the 19th century that historian began to 
uncover the details of this Arab renaissance. Today we can read unabbreviated 
works of Arab scholars and place them in political history. Nevertheless, we 
can fail to understand the spirit of these works, so different from the spirit 
of Greek science, and certainly from the spirit of contemporary science. That 
is why we limit ourselves, in most cases, to threads known in antiquity or of 
present interest to us, and tread Arab culture as a bridge between two cultures. 
This is a  simplification one must be aware of.

Here is a  simplified relevant image: on the one hand, an Arab scholar rid-
ing on a  mule, having no home of his own, and asking people he encounters 
anecdotal questions, and on the other hand there is the fabulously rich ruler 
who showers ducats on the scholar. This image is not necessarily false. We may 
need to modify the scale. The scholars we will talk about actually traveled from 
the one capital city to another. They lived in palaces of rulers to whom they 
acted as political advisors. They stayed in homes of scholars and could make 
use of astronomical observatories and libraries. In spite of being surrounded 
by riches, they were poor. They were dependent. At times they were uncertain 
of their future.

Mathematics played special role in the culture of the Arab East. Apart from 
the classical Greek period, we know no culture so saturated with mathematics. 
Each of the famous scholars had some mathematical links, in spite of the fact 
that it was treated differently than by the philosofizing Greeks and differently 
than by contemporary Europeans, who put mathematics to the job producing 
goods.

●

Arithmetic is usually seen as the specific feature of Arab mathematics. It 
was the Arabs who invented algebra, the formalization serving arithmetic. We 
use Arab digits and the word algorithm. But I  think that this view is a  con-
sequence of the fact that for most people arithmetic, the subject as well as its 
exotism, are easily noticeable. The Arabs also developed trigonometry, and 
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with it astronomy. Here they were not entirely original, for they followed the 
Alexandrian school.

Fig. 49. �Two Arabs wandered across a  dessert. One of them has 5 bisquits and the other 3. 
They met a hungry traveler and consumed, together with him the bisquits they had. The 
traveler turned out to be a  rich man, and before parting gave his two hosts 8 identical 
gold coins. How should the recipients divide the traveler’s gift?2

We are interested in geometry and the philosophical trends connected with 
it. And it seems that these were also the primary Arab interests. The Elements 
were translated as early as the eight century, and from that time on they were 
constantly commented on and transformed. What attracted scholars most was 
the theory of parallels.

●

Let l be a  straight line on the plane and M a point off l. One may assume 
that M lies on the straight line k that intersects.

Fig. 50

	 2	 Answer: one of wanderers will obtain 7 golden coins, the other only 1. This story is 
taken from Szczepan Jeleński’s book Lilavati. Rozrywki matematyczne [Lilavati. Mathematical 
recreations]. Poznań 1972, p. 38.
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If we lead through M a  straight line l' such that the pair of the interior 
angles formed with k by the straight lines l and l' (the angles are marked in 
Figure 50) add up to two right angles, then as can be proved by using the part 
of Euclidean axioms regarded as the more elementary — the straight lines l 
and l' will not intersect one-another. To use the accepted terminology, these 
two lines will be parallel.

Fig. 51

A natural supplement to this assertion would be the theorem which claims 
that: If the straight line l' is drawn so that the sum of the interior angles formed 
with k by l and l' is less than two right angles, then l' will intersect l on the 
side containing those angles (see Figure 51).

The sentence asserts that there are no parallels to l through M other than 
the parallel mentioned in the earlier theorem.

We guess that Euclid tried to prove this but failed. This being so, he ac-
cepted this assertion as a  postulate — the last of the five postulates at the 
beginning of Book I  of the Elements, hence the name: Euclid’s Vth postulate.

This postulate underlies the proofs of the theorems of Book I  of the Ele-
ments, including the theorems on the congruence of figures and the theorem 
of Pythagoras. Thus this postulate underlies the whole of the Elements with 
exception the first 28 theorems in Book I, which is thought, are not grouped 
in this way by accident.

As we said earlier, we are not sure if Euclid tried to prove the Vth postulate. 
But we know that Heron of Alexandria and Proclus tried to prove it.

But it was only the attempts by Arab mathematicians to prove this pos-
tulate that yielded a  richness of ideas comparable with the richness of ideas 
which came to be shared by European mathematicians in modern times. We, 
who know how matters stand, know that these attempts were bound to contain 
errors. Without realizing it, many took advantage of postulates equivalent to 
Euclid’s postulate. But successive authors would discover this, and assembled 
in time a  rich collection of postulates implying Euclid’s postulate.

We know little about how Arab works on parallels may have influenced 
modern mathematics. What is certain is that medieval Europe was not an in-



86

termediary. It take over creatively from the Arabs the science of motion and 
arithmetic, initially limited to business. It seemed not to have been ready to take 
over the knowledge about parallels. At yet, in the end, Arab influence came 
into being in this area as well, but much later. Wallis and Saccheri referred to 
the treatise of Nasir ad Din at Tusi, reprinted in Rome in 16th century.

Nasir ad Din at Tusi — “the sultan of investigators and the king of wise 
men” — lived in the 12th century, the time of the zenith of Arab culture. 
He was born in Northern Iran; he was the advisor of the Mongol Chan who 
conquered Baghdad. Before him wrote about parallels Al-Jawhari, Ibn Korra, 
Al-Hazini, Omar Khayyam, and many others. He wrote:3

There were among them some who replaced the Euclidean postulate 
by another, more obvious, postulate. There were those who gave false 
proofs … But looking through works, I  have not found a  single one 
whose author reached the end. That is why … I  think it necessary 
to present all I  have found in books, and point out the mistakes and 
obscurities I  found in them.

What were the mistakes of predecessors of At Tusi, and the mistakes of At 
Tusi himself? For he himself shared the fate of his predecessors.

●

In his proof of Euclid’s postulate Al Jawhari — who lived in the 9th 
century in Baghdad — made use of the obvious fact that if one has an angle 
and a  point in the interior of that angle, then one can lead through that point 
a  straight line intersecting both arms of that angle (Figure 52).

Fig. 52

	 3	 Quotations to listed here philosophers — unless other comment will be made — are 
taken from the book by Boris A. Rosenfeld, Adolph P. Youshkevich, Tieorija parallelnych linij 
na sredniewiekowom wostokie IX—XIV ww. [Theory of parallel lines on the medieval East, 
IX—XIV centuries]. Moskwa 1983. Translated by Abe Shenitzer.
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Al Jawhari’s fault is depicted on the left side of Figure 52: though a  point 
of the interior of an angle one can lead a straight line that intersects both of its 
arms. He was leaving out the possibility depicted on the right side of Figure 52.

A  proof of the Vth postulate, using implicitly Pasch’s axiom, was finally 
obtained. It was anything but easy (the reasoning of Al Jawhari is presented 
in Supplement to this Chapter). We know now that we can prove the obvious 
fact Al Jawhari relied on but one must use the Euclidean postulate.

The mistakes of later investigators were less obvious. Rectangles are such 
fundamental geometric figures that we pay little attention to the basis for their 
appearance in geometry. But it is the Vth postulate which implies that two 
pairs of parallels form a  quadrangle, and that the quadrangle turns out to be 
a  rectangle if the directions of the parallels are perpendicular to each other.

It is not easy to prove that Euclid’s postulate is a consequence of the exist-
ence of rectangles. The proof was obtained by Ibn Korra, who lived in Bagh-
dad at the end of ninth century. Of course, he did not prove the existence of 
rectangle without the use of the Vth postulate.

●

Later Arab investigators viewed the lack of a proof of the existence of rec-
tangles as a  gap and centered their efforts on filling this gap. They did know 
what we know, namely, that these efforts were pointless.

To prove the existence of rectangles Omar Khayyam drew two equal seg-
ments AC and BD perpendicular to the given straight line AB. By connecting 
the end points C and D of the segments he obtained a quadrangle (see the left 
side of Figure 53).

Fig. 53

Next he halved the segment AB (see the right side of Figure 53) by the point 
E and erected at E a  perpendicular to AB which he extended to intersection 
with the segment CD at G. Symmetry implied the congruence of the rectangles 
AEGC and BEGD, and hence that the angles at G were right angles.

To prove that quadrangle AEGC (and therefore also BEGD) is a  rectangle 
it suffices to prove that the angle C is a  right angle.
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For proof Omar Khayyam considered two hypotheses which he wanted to 
negate:

(1) The angle C is an acute angle.
(2) The angle C is an obtuse angle.

These are the famous hypotheses of an acute and an obtuse angle in a quad-
rangle with three right angles (Figure 54).

Fig. 54. The acute angle hypothesis and the obtuse angle hypothesis

With references to Omar Khayyam, Saccheri considered these hypotheses 
in the 18th century. Omar Khayyam’s mistake was that he proved the impos-
sibility of both hypotheses. We now know that the hypothesis of acute angle 
can be disproved using Euclid’s hypotheses without the Vth postulate. We can-
not disprove the hypothesis of obtuse angle; it holds in hyperbolic geometry.

The acute angle hypothesis implies that the sum of the angles in a  tri-
angle is less than two right angles. The obtuse angle hypothesis implies 
that it is greater than two right angles. Calling attention to the connection 
between the Vth postulate and the sum of the angles in a  triangle was 
a  great merit of Arab mathematicians.

There were gaps in Omar Khayyam’s proof of the true hypothesis. It con-
tained subtle arguments involving the Archimedean postulate. As for Nassir 
at Din at Tusi we note that he used a  theorem he discovered and that we call 
Pasch’s axiom (see Supplement to Chapter V).

The Arab mathematician did not hit on the idea of the existence of a  ge-
ometry alternative to Euclidean. But even Gauss shied away from this idea at 
the time when it first took shape in his mind. It is possible that Kant provoked 
geometers by stating an opposite thesis. The extremism of his pronouncement 
may have encouraged geometers to enter new road.

●

After Aristotle there was a difficult-to-explain break in the development of 
the philosophy of nature. His science of motion did not seem to have had any 
effect whatsoever on Archimedes. The Alexandrian school based itself with 
the solution of concrete problems, Lucretius wrote a  poem explaining atomic 
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theory. Difficult considerations on the nature of continuity seemed to have been 
suspended for centuries. They were resumed by Arab philosophers.

To justify his computations of lengths of arcs of curves, Archimedes pos-
tulated that these hypothetic lengths were subject to certain rules; for example, 
the rule that of two convex arcs supported on the same chord the one that takes 
in a  larger area is the longer one. In this way he could compare the lengths of 
arcs without with superpassing one on the other what was not always possible.

This seems to have resulted in doubts on the part of some investigators, 
as can be be inferred from the fact that At Tusi found it necessary to defend 
Archimedes’s approach by the following assertion:

Two magnitudes can be regarded as equal or unequal without the need 
to impose one on the other and without the need of imaging such an 
imposition.

But doubts must have remained, for a while later he added:

… we observe that a  straight line can be imposed on a  circle without 
a  loss its length … This is achieved by the motion of the circle along 
the straight line tangent to it, and by rolling it along that straight line 
up until the return to the initial state.

The words of At Tusi are quoted after his disciple Ash Shirazi.4 They knew 
that this method of comparison will make sense only is we understand what 
is rolling. The rolling the circle on the straight can be thought as a  result of 
composition of two appropriate motions, turning and progressing. If we go 
beyond this case, difficulties arise, but Ash Shirazi did not avoid this more 
general problem.

And when his arguments lacked the power of mathematical argumentation, 
we may view them as one of the successive steps on the road of finding an 
appropriate formulation for reasoning dealing with continuity and coming close 
to understanding it:

If a curve rolls along a straight line, then this motion is infinitely divis-
ible, just as straight lines and time are infinitely divisible. At different 
moments the curve is in contact with the straight line at different points 
throughout the entire motion.

	 4	 Quotation after Ash Shirazi — the disciple of At Tusi — from his treatise Kommentarii 
k  “Traktatie o dwiżenii kaczenija i otnoszenii mieżdu płoskim i kriwym” which can be found 
in Naucznoje Nasledstwo, vol. 6, AN SSSR 1983.
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This pronouncement is far from rigorous and far from seizing the contents 
we are aware of. We know that the general description of rolling of a  curve 
on a curve calls for precise statements of the concept of instantaneous motion, 
of arc length, and of curvature. A satisfactory formulation of the problem was 
attained only in the 19th century.

●

We see that the troublesome reflections on motion and continuity did not 
bypass Arab mathematics. But one should add that the problem of motion and 
continuity, and in this connexion the problem of reshaping the continuum, 
turned up to the very boundary of contemporary mathematics.

At the time, this was primarily a problem of nature, of philosophy, and even 
theology. The time had not yet came for the disentangling the loop connecting 
these disciplines with mathematics.

In time, the theology of Islam, and the coexisting Christian theology, em-
barked on subtle reflections on the nature of the world.

Not all views of Aristotle satisfied the theologians. It was with difficulty 
that the eternal nature of the world, as seen by Aristotle, could be made to 
agree with the truth about the creation of the world by God. On the other hand, 
the finiteness of the world of the Ancients presented an even more troublesome 
picture: the God of Islam and the God of Christianity were both impersonal and 
could easily be located in infinite space rather than in a definite place beyond 
the shiff sphere of heaven.

He is a being which needs no cause for existence, for he is not matter. 
His existence is in no way connected with matter an is impersonal. 
He has no form, because form exists only in matter. His existence is 
not subject to any aim or pursuit. He is one of a kind. He has neither 
extent nor body.

It was Farabi, another Aristotle, which is what he was called in the Arab 
East. He lived in the 10th century in Baghdad and came from Middle Asia.

In these times, problems of this nature were also problems of natural sci-
ences. For many centuries to come, throughout the Middle Ages, religious — 
before adopting a defensive attitude — would exert pressure on the evolution of 
concepts on the structure of the world in a direction that our atheistic centuries 
regard as their own.

We owe the philosopher of the East the first essential changes in the views 
on motion. Moving projectile no longer needs to be held up in its motion by the 
environment. The impetus bestowed on the projectile at the moment of firing 
suffices. Motion lasts as long as the impetus in not entirely used by the resist-
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ance of the environment. This view — at the time rejected by Aristotle — was 
uttered in the 8th century by the Christian philosopher Filipon in Alexandria, 
whose writings were universally known in the Arab East. This viewpoint was 
later developed by Avicenna, who maintained that the motion of the projectile 
could last forever. While the path of the projectile remained the same — we 
mentioned this in Chapter I — see the Figures 3 and 4. Nevertheless, the notion 
of the impetus provided an explanation of the motion of heaven that was more 
natural and in agreement with the discipline of creation. It no longer required 
to be constantly moved; its having been endowed with motion on the day of 
creation sufficed. In the European Middle Ages this thought was adopted by 
Ockham and Buridan, and its subsequent modifications were to lead to Galileo.

The discussions of motion were purely qualitative. No numbers appeared 
in them. These were essentially reflections on the structure of the continuum.

When it comes to the structure of the continuum. The majority of philoso-
phers — including Omar Khayyam — shared the view of Aristotle.

A  figure has parts, not actually, but potentially. Parts appear if the 
figure is divided. Thus, if someone says that a  figure is divisible, he 
can only have in mind the view that it has a  property of divisibility.

This statement was due to Al-Ghazali, who lived in the 12th century.
But there were also supporters of Democritus, of whom the best known 

was Al-Biruni.

Why does Aristotle regard the science of indivisibles as mistaken if 
postulation of infinite divisibility leads to even greater difficulties?

— wrote Al-Biruni in a  letter to Avicenna, who on this issue, sided with 
Aristotle, as did Al-Farabi and Averroes. It was their writings that carried the 
views of the philosophers — a  common way of referring to Aristotle — to 
Europe, where the perennial argument about the nature of the continuum was 
to flaw up again.

●

But we cannot ignore the atomism of Arab philosophers which has espe-
cially its extreme embodiments.

The very existence of atoms was subjected of atomization: an atom exists 
for an atom-moment, and then it turns up in another place-atom of the vacuum. 
Of course, this could only refer to the physical view on space and time. This 
view — presumably not unknown to Democritus — was generally adopted 
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in the 11th century by Arab theologians known as the mutakallimams. This 
theological speculations presumably manifested God’s power, god who could 
create the world at any moment in arbitrary form.5 But we could also regard 
this view as scientific. Contemporary physicists do not avoid speculations of 
different kinds, including such as the one just described.

The richness of ideas of Arab science is perhaps its most obvious char-
acteristic. Often these ideas failed to be confirmed. Developing an idea of 
Aristotle, Al-Hazini, an astronomer and mathematician who lived in Merva in 
the 12th century, expressed the view that weight increases with the increase 
of its distance from the center of attraction and thus has the characteristic of 
elastic force. This speculation is so natural that we are disappointed that by 
our knowledge that things are different.

It may be of interest to ask what motivated peple to devote themselves to the 
sciences. Al-Hazini wrote a  huge work titled The Book of Weights of Wisdom 
which contained all contemporary knowledge of hydrostatics and mechanics, 
including problems of the structure of the world (we mentioned one such prob-
lem). It seems that the purpose for immersing himself in the study of the law 
of Archimedes was the building of scales immersible in fluids for the purpose 
of ascertaining the content of ore in precious objects. The book is difficult but 
is interlarded with anecdotes and gabbing:

This book may end up in the hands of people unused to mathematical 
reflection. Such people will not understand what we are saying here 
about the abstract conception of the world and the behavior of weights 
in empty space where there is nothing. They are unable to imagine 
things that do not exist. This being so, let us analyze concrete exam-
ple …

For whom did this scholar write? For merchants and jewellers? For his own 
and his ruler’s satisfaction? How vast a difference between him and a modern 
European scholar for whose discoveries are waiting the manufacturer and artil-
lery expert.

The centers of Arab science were the courts of the rulers in Baghdad, 
Damascus, Isfahan, Cordoba, Merva, and others. Rulers gave money for trans-
lations of works of antiquity, built astronomical observatoriums and homes for 
scholars whose later versions were the European academies. Learning was more 
a matter of luxury and prestige than of need.

The culture of the East was not so expansive as later European culture. It 
was more contemplative, directed to the inner man. The aim of science was 

	 5	 Władysław Natanson, Prądy umysłowe w dawnym islamie [Thought streams in ancient 
Islam]. Lwów—Warszawa 1937, p. 82 et seq.
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not success to the same extent as the aim of European science, and the term 
of “practical applications” as — as mentioned earlier — a  different meaning 
from its European variant.

The Christian mission, to make the earth man’s servant, and the notion of 
man as the apex of creation, were absent in the culture of Islam. Learning was 
above all, an inner need of scholars.

This is all that came to my not-so-great mind and all that was granted 
by tired thought. I  wrote this and ask him who understands to fill in 
what is missing, to correct mistakes, and be polite enough to answer 
the questions I  posed, to note the mistakes he will find and truths he 
will reach if such will be Allah’s will, his view should be given prior-
ity and recognition.

These were words of with which At-Tusi ended his treatise.6 We may be 
amazed by this act of truly Christian humility, but in Arab culture it was 
a  common thing.

But another characteristic of Eastern learning was the dependence, men-
tioned earlier, on the patronage of rulers, and thus of their caprices and exist-
ing state of affairs. In the case of the Greeks, and later also in the Europe of 
the Middle Ages, and, if we ignore certain deformations, in the contemporary 
world, learning is the property of the whole society. In the East one drew 
a distinction between philosophy for scholars truths for the broad masses. This 
likely explains the vanishing of Eastern learning beginning in the 13th century 
as a  result of political changes.

Learning is not a  substance, and yet it was transferred to Europe in an 
almost physical sense much like a substance transferred from one container to 
another. Arab text, including Arab texts of the Ancients, were translated into 
Greek, from Greek into Latin, and then into some modern languages. This 
happened as a  result of the intermediacy of the collapsing Byzantium and of 
Spain, retaken from the Arabs.

Supplement

Al Jawhari’s argumentation towards Euclid’s fifth postulate (after Rosen-
feld and Youshkevitch)

Let m be a  given straight line, and points A  and B lying on m. Let k and 
l be two right lines erected from points A  and B, the sum of interior angles 
a  and b which these lines form with m, on the half-plane we consider, is less 

	 6	 Quoted after Ash Shirazi, Kommentarii, p. 203.



than two right angles. The fifth postulate will be proved if we prove that k 
an l intersect.

Argumentation
Locate the angle a  at A, in the half-plane we chose, so that the point B 

becomes the vertex and l becomes the arm. This is possible as a  +  b is less 
than two right angles.

Let C on l be such that BC = AB. Locate the angle b at B, on the same 
side of l on which the angle a  was located, so that the point C becomes its 
vertex and l becomes its arm. Let n be the other arm of the angle just defined.

Draw through C a  straight line intersecting both arms of the angle mBn. 
Let L and R be the points of intersection, M on m and N on n.

The angle b at C, new position of the angle b transferred from B, lies 
entirely in the interior of the angle mBn just postulated line MN. This follows 
from the fact that the angle at C whose arms are k and the postulated line 
MN is an exterior angle of the triangle MBC, thus it us greater than the angle 
b (situated at B).

Whence, the arm of the angle b at C, different from the arm k lies in the 
interior of the angle mBn. This arm must intersect BN — according to Pasch’s 
axiom (intuitively accepted by Al Jawhari) at a  point P between B and N.

The interior angles which form CP and BP with BC are the angles b and 
a, and arms of these angles at C and B, based on BC, intersect. But BC = AB 
and configuration consisting of the segment BC and directions BP and CP of 
arm of angles, a at B and b at C, is congruent to the configuration consisting of 
the segment AB and the straight lines k and l. Thus, k and l intersect, because 
corresponding lines BP and CP intersect.
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Many philosophers of the past were called wise 
men. The most proficient among them was Aristotle, 
whose eyes of lynx penetrated the mysteria of nature 
presented them as gift for future generations.1

Ockham

The dawn of European learning was different from the beginning of Greek 
learning. Greek learning was marked by unimpeded speculations. European 
learning began with insecure first steps lacked independence and was marked 
by holding on to the Philosopher. But gradually the forward movement became 
band selfassured and finally was freed from the spell of the master. It continued 
to be subject to doctrine, but this was not always viewed as an impediment 
because theology was most often the subject of investigations. Dependence 
on doctrine was balanced by independence from a patron. The first European 
universities came into being as free associations of schools at churches and 
cloisters (this was the case at Paris and Oxford) were truly independent. The 
university was a feudal entity, and this meant that it was independent from the 
local ruler and local church authorities.

Thus, in spite of limitation by doctrine, European learning in the Middle 
Ages was marked by great freedom of discussion, and even by controversy, 
but today we hardly understand what the controversies were about. We can 
see in this Aristotle’s influence, whose writings are a  polemic with his own 
arguments, a  constant for and against, a  pursuit of truth independently of the 
initially adopted thesis. But Christian theology needed rational foundations:

It seems to me a  form of sloppiness not to make an effort, after em-
bracing faith, to understand what we believe.

	 1	 Quotation after Ryszard Palacz, Ockham. Warszawa 1982, p. 251. Translated by Abe 
Shenitzer.
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So St. Anselm, who lived in 12th century. At that time, theology was not 
troubled about reliability of its truths which were far from the reach of reason.

Earlier, Plato had a  great deal of influence on Christian theology as well 
as on the theology of Islam. We will have occasion to speak of the role of this 
influence as well as of its later rebirth. At this point we stop at the 13th and 14th 
centuries, a  period most characteristic for the problems that interest our here.

The philosophy of that period was called scholastic philosophy.
Schola is simply school, and scholia was initially a note, sometimes polemi-

cal, on the margin of the read text.
It would be pointless to hide the fact that many stinging remarks have 

been uttered about scholasticism and scholastics, and that the adjective — 
scholastic — has a  negative coloration. Given they triviality, quoting these 
stinging remarks would be just as pointless. But let us make an exception 
for the opinion,2 which says that a  scholastic is like a  student who, when 
solving problems looks up the answers and regards them as the main cri-
terion of truth. There is a  note of sympathy in this stinging remark: one 
usually has positive memories of the period when one was a  student and 
looked up to answers. In time one outgrows this period; and so it was with 
scholastics. In outgrew this period and encountered problems for which the 
Philosopher provided no answers.

Scholastics reacted its zenith in the 14th century. Earlier, around the be-
ginning of the 13th century, one could note a  clear increase of interests in 
the sciences. This occurred through the intermediacy of Arab learning which 
Europe encountered when it retook Spain from the Arabs. It was then Europe 
discovered all of the works of Aristotle, and not just fragments of his writings. 
While initially averse to Aristotle, whose writings were publicized by the al-
most atheistic works of Averroes, in the middle of the 13th century the Church, 
under the influence of Albert the Great and Thomas Aquinas, pronounced the 
compatibility of the work of Philosopher with the truths it propagated.

The science of the Middle Ages was not yet weighted down by the 
problem of explaining the world. It was theology that handled that burden. 
Hence the freedom of its evolution unknown in later times. True, science 
was at the time a  servant of theology, but at that time this implies no 
limitation whatever.

●

The philosophers of the European Middle Ages interested in the continuum 
problem divided, as earlier, into advocates of atomism and advocates of the view 

	 2	 An anecdotical phrase from Boris G. Kuznetzov, Istorija fiłosofii dla fizikow i  matie-
matikow [History of philosophy for physicists and mathematicians]. Moskwa 1974, p. 187.
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of Aristotle. This is what Thomas Bradwardine of Oxford, later the archbishop 
of Canterbury, wrote in his treatise De continuo.3

… When it comes to the structure of the continuum there are five views 
of the Ancients and contemporary philosophers. Some, like Aristotle, 
Averroes, and the majority of contemporaries are of the opinion that 
the continuum is not made up of atoms but of parts that are endlessly 
divisible. Other claim that it is made up of indivisibles, and interpret 
this in two ways, namely, Democritus claims that the continuum is 
made up of indivisible solids and others claim that it is made up of 
points. The latter are divided into those who, like Pythagoras, the main 
representative of this viewpoint, Plato, and our contemporary Walter 
claim that the number of indivisibles is finite point, and others that 
their number is infinite.

Bradwardine follows Aristotle. The aim of his treatise is to show illogical-
ity that follow from the viewpoint that the continuum would be constructed 
out of points or other indivisibles. Of course, his thesis was not new. The 
special feature of his treatise was the range of his argumentations. There 
is the mathematical argumentation that takes advantage of the existence of 
incommensurable segments, and thought experiments that deal with physical 
continua, such as the flow of stream of water and the flow of time. But the 
properties of materials, wood and stone-workers work with, are also taken into 
consideration. Thus naturalistic argumentation is also employed for the purpose 
of apprehending the characteristics of mathematical continuum, the common 
model of all physical continua. As for that continuum, Bradwardine concludes:

The continuum consists does not consist of atoms.

He adds:

… the continuum consists of infinitely many continua of the same 
kind as it.

and then writes:

	 3	 Thomas Bradwardine, one of the founders of famous school of natural philosophy at 
Merton College of Oxford — later archbishop of Canterbury. Author knows the treatise De 
continuo from the Russian translation in Ist. at. Issl. 13 (1960) commented there by V. P. Zubov. 
One of two existing manuscripts of De continuo was discovered by Edward Stamm in 1930-ies 
and is in the Town Library in Toruń. Quotation translated by Abe Shenitzer.
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… that is how the true foundation is built, the pillar of mathematics 
is secured and whole edifice of physics is strenghtened.

The author knew the weight of his work.
In Bradwandine’s writings the expression “consists” has a specially accented 

meaning. The Latin version of the last cited sentence is: “Nullum continuum 
ex athomis integrari.” “Integrari” is more than the usual “consists,” because in 
a certain sense a continuum consists of points but this does not at all mean that 
a continuum is build of points, that it can be “brought together” — this is how 
we would translate “integrari” — out of points. Another conclusion deserves 
a separate remark: if we want to built — bring together — a continuum of its 
smaller parts, then they cannot but be similar to the whole.

Bradwardine’s conclusion let one see a continuum as built of smaller contin-
ua. These were not atoms, one did not require of them indivisibility. But neither 
did Democritus, who had in mind mathematical continuum. Three centuries 
later, Kepler and Cavalieri, whose thinking was close to that of Democritus, 
looked at a continuum like Bradwardine. Were they in debt to Bradwardine? It 
would be rash to say that they owed a debt to him alone, but ther is no doubt 
about Bradwardine’s indirect influence. Many famous philosophers whose 
works we will discuss shared Bradwardine’s views. University lectures were 
based on their works. They shaped and ordered with great effort the views on 
continuity, an effort that looked at times hopeless. Later, the term “integrari” 
ended up in Leibniz’s dictionary, and from his in ours as “integral.” Was it an 
accident? Was it due to the ubiquity of the Latin word? Or may be it was an 
influence that is no longer provable.

When we discussed the views of Democritus we saw no discrepancy 
between his views and those of Anaxagoras and Aristotle on the potentially 
infinite division of a continuum. True, this happen because Democritus’s views 
are nowhere stated with absolute precision, they are stated in abbreviated form, 
but certainly not with improper tendency. There are no writings by Democritus, 
but we know at last that he avoided details for which he had no justifications, 
According to Diogenes Laertius, he said: “In reality we know nothing because 
the truth is deeply hidden.” But the lack of discrepancy between certain views 
does not shake us see paradoxes. We are talking of the views of great think-
ers which do not perish but are transformed by continuators, and, fried from 
transitory polemics, supplement one another. This is how views on continuity 
and properly understood atomism supplement one another. This was a  conclu-
sion Bradwardine reached in his treatise.

But we must add that what is at issue is not a  discovery but a  viewpoint. 
The essence of Bradwardine’s considerations was not the pursuit of new things 
but a  serious treatment of problems and of the reasonableness of conclusions.
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The Arab scholars followed the sense approach, which derived — as it did 
in Europe — from the Philosopher. In the treatise of Al Ghazali (quoted earlier) 
it is easy to find sentences that sound much like Bradwardine’s.

We agreed on the viewpoint. But what we have when it came to argumen-
tation?

Bradwardine’s treatise was written “more geometrico,” that is in the style 
of the Elements. It begins with definitions of a  point, of indivisibles, of time, 
and so on. Then come theorems.

Bradwardine derived the impossibility of representation of a  mathematical 
continuum out of atoms — indivisibles, no matter whether finite or infinite in 
number, from the conviction, formulated as the assumption of his argument, 
from the fact that known physical continua such as time, bundles of light, 
or space understood physically or even materially, are infinitely divisible in 
a  potential sense.

If we want to be in agreement with our thought experiences concerning 
time and spatiality and with daily experience, then the mathematical continuum 
should be of the same nature as these physical continua. This was a conclusion 
of a  naturalist, or rather a  philosopher of nature, which is what Bradwardine 
thought he was.

Bradwardine cites a  variety of arguments whose aim is to reduce the as-
sumption that a  mathematical continuum could be made up of indivisibles, in 
particular, of finitely many of indivisibles, to an absurdity. One of his theses 
states: “Si sic, periferiam circuli esse duplam diametri.” Here is his justification:

To a  finite number of points of a  diameter, say ten, there would cor-
respond ten perpendiculars to that diameter, and, as a result, ten points 
that would fill half of a  circle. If so, the circle would be two times 
larger than the diameter. (Figure 55).

There follows a commentary in which Bradwardine pronounces a contradic-
tion by relying on a proof of Archimedes and the experience of carpentiers and 
stoneworkers to the efect that a circle is not twice long as a diameter. Thus the 
strange things in this treatise is “the confusion of matter.” But we must not 
forget that this was, more or less, the year 1300.

Fig. 55
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Bradwardine’s treatise contains some 150 such theorems and their proofs. 
But to have a  better appreciation what Bradwardine writes about and how he 
writes, we cite one more fragment of the treatise, when, having arrived at the 
conclusion that “the atoms cannot touch each other,” he writes:

And just as a triply plaited cord is difficult to tear, so too this conclu-
sion, proved in three ways, will not be easy to overthrow.

Even mathematicians, who are used to precision agree that theorems for 
which there are a  few independent proofs are more durably situated.

What is striking in arguments of philosophers in the Middle Ages is the 
tendency to resort to the concrete, to appeal to practical manipulations and to 
things that can be verified by one’s senses — all this in spite of the highly 
abstract nature of the problems involved. It does not seem that theological prob-
lems blinded them to other aspects of investigations that were bound to come 
to the fore. We have in mind the study of general principles of the structure 
of the physical, and other than physical world, that is the world of nature of 
which they conceived in this way. And, of course, we remember the words of 
Bradwardine himself.

●

Nicholas Oresme, who lived and lectured somewhat later in Paris, dealt in 
his treatise On the intensity of qualities with the problem of change, of funda-
mental importance for the theory of continuum.4 He did not limit himself to 
motion but dealt with change in general. The Oxford mathematicians, students 
of Bradwardine, known as The Calculators, dealt with this problem in a  dif-
ferent way.

A  quality — characteristic — of an object can have different intensities 
in different places of the object, or at different moments. Such differences can 
apply to color, warmth, illumination, width of a river, or the intensity of water 
flow in that river. Such differences also apply to qualities of character and to 
things quite detached as the intensity of faith. There are many interpretations, 
and when Oresme studied the intensity of characteristics he did not refer to 
any one of them in fundamental reasoning. In this way he avoided indicating 
the purpose of his investigations.

Following Oresme, imagine an elongated object whose shape is that as of 
a segment of a straight line, and the characteristic of that object laid out along 

	 4	 Nicholas (Nicole) Oresme — the leading figure of Paris school of the natural philosophy, 
later the bishop of Lisieux.
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that segment of the straight line with varying intensity. Let us represent the 
magnitude of that intensity as a  segment perpendicular to the object at the 
point of the object under consideration, and let its length be the measure of this 
intensity. The laid off segments yielded something called a  form (Figure 56).

Fig. 56. Disposition of the intensity of characteristics as a  form of location — a  form

Oresme called the point at which we observe a  characteristic length, and 
the intensity of the quality perpendicular to the object — latitude. Now in 
mathematics we say: abscissa and ordinate. Sailors and geographers speak of 
longitude and latitude. These terms may be a direct legacy of antiquity. Be that 
as it may, Oresme is regarded as the discoverer of the method of coordinates.

It is important to add that Oresme never expressed longitude and latitude by 
numbers. He viewed a form as a geometric figure. The record of the boundary 
of a  form we are familiar with, that is, y = f(x), turned up — not explicitly — 
only in the 17th century.

The form of a  flat object had a  spatial shape. In the case of an object in 
space Oresme had the same difficulties we have when we try to imagine the 
fourth dimension. He wrote that the resulting figure was imaginative — imag-
ined, the result of superimposition of infinitely many space forms corresponding 
to the planes that compose the object under consideration.

It seems that no one before Oresme thought of the fourth dimension.
But the essence of reflections of intensity of forms is apparent already 

when the object is linear. But in this case to the only case that could be re-
garded as simple was the case when the intensity was constant and the form 
was a  rectangle.

Difficulties arose already in the case when the intensity changed proportion-
ally to the length and the form became a  trapezoid.

●

What were the philosophers in the Middle Ages looking for when study-
ing continuity? Undoubtedly, one source of inspiration was Aristotle. But that 
was not all. Christian theology, competing with Islam, entered a  phase, when 
it became a  philosophical system itself, looking for rational foundations for 
itself. The Aristotelian for and against was adopted by St. Thomas Aquinas. 
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The most rational arguments are not in a position to threaten the truths of faith. 
Far from threatening faith they built it. The nature of continuity is a  problem 
of importance for theology. The nature of infinity may have been an even more 
important problem. Theology did not build barriers for reflection.

The aspect of reflections that began to mark the difference between the 
new philosophy and ancient philosophy was change. The system of physics 
built by Aristotle began to crumble. Why did this happen at that time? Is it 
because getting use to variability for it was variability that was the cause — 
took place on the ground of the theology of reflection over the degree of guilt 
and the change of the intensity of the benignity that God bestowed on man? 
Was it the result of the civilization that made man see himself surrounded by 
an ever growing number of moving machines?

●

To find one’s way among difficulties of the philosophers we note that one of 
the interpretations of intensity was the speed of a point registered at a  certain 
time which plays the role of an abscissa, and the characteristic — the magni-
tude that changes — is the distance covered by this point. One could talk in 
a  speculative manner about general intensities and treat them as primary, but 
the notion of speed already existed, and the problem could not be treated as 
tabula rasa. One could also put it as follows: what was at issue was the ap-
plicability of the science of intensities to kinematics.

Already Aristotle regarded speed as one of the fundamental concepts of 
physics. But it was not itself regarded as a  magnitude, and certainly not as 
a  magnitude connected with a  given moment of motion. It was known what 
was meant by saying that two bodies moved equally fast, or that one of them 
moved faster than the other, for example twice as fast, which means that the 
distance covered in the same time by one of them was twice as large as the 
distance covered by the other, or that one of them needed half as much time as 
the other to cover the same distance. But we do not come across a  definition 
of speed as a magnitude.

Put definition of speed as the ratio of distance to time was inaccessible. 
The Greeks considered ratios — proportions — but they were always propor-
tions of magnitudes of the same kind. Thus one could think of proportions of 
covered distances (in a  specified time) — a proportion of this type appears in 
the definition quoted earlier — or periods of time needed to cover the same 
distance. We stressed this point already in connection with Eudoxus’s theory 
of proportions, namely, that for the Greeks continuous magnitudes were de-
nominated, and they theory of proportions required adaptation to physics, and 
this was started by Newton.
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Aristotle either did not know the concept of speed at a  given moment or 
ruled it out. We read in Physics:

… nothing can be in motion at the present moment, … nor can it at 
rest at the present moment.

This is a  race of the polemics with Zeno and the result of rejection of the 
realization of the infinite divisibility of a  continuum. According to Aristotle, 
every speed lasts for a  certain time: omnis velocitas tempore durant was re-
peated by Oresme after Aristotle.

By treating speed as the intensity of motion — intensio motus localis — 
Oresme changed the convention. He allowed the consideration of instantaneous 
motion. This magnitude was not defined but its consideration was admitted 
on the basis on the analogy with the intensities as obvious physically as the 
intensity of color or the intensity of a  stream of water.

Considering speed as intensity of motion, and adhering at the same time to 
the physics of the Aristotle, the scholastics entered the area of reasonings that 
were contradictory from the very beginning.

After these digressions we understand why motion with variable — even 
uniformly variable — speed, in other words, uniformly variable speed — uni-
formite difformis — was already a  considerably difficult thought problem. It 
was to this kind of motion that Oresme devoted most space in his treatise. Did 
Oresme and his contemporaries have in mind free fall due to weight? This 
question is difficult to answer. In Oresme’s original treatise this issue is not 
broached, but this does not support a  definite conclusion about it.

Considering a form in the shape of a  trapezoid, Oresme concluded that the 
distance covered by a  point in uniformly varying motion represented by such 
a  trapezoid is equal to the distance which this point would cover if it moved 
with uniform motion with speed equal to the arithmetic mean of the initial 
and the terminal speeds.

Fig. 57
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He called this speed “velocitas totalis.” We write it down as v = ½  (vA + vB) 
(Figure 57). But no one who teaches us this formula mentions the name of 
Nicholas Oresme. In a  treatise published in the 14th century, Oresme — and 
probably his continuator Giovanni di Cassali — deduced the following conclu-
sion. He noted that (if the movement begins from a state of rest) the distances 
covered in the first and the second half of time are in the ratio of 1 : 3. If the 
time is increased by the same half unit, then the distance will be five times 
greater than during the first part of the motion. From this he deduced the 
general law: in uniformly accelerated motion beginning from a  state of rest, 
the distances covered in successive equal time intervals are to one another as 
the numbers 1 : 3 : 5 : 7 : …

All of us know this law as the law of Galileo.

Fig. 58

We must repeat that neither Oresme nor Cassali state clearly that their 
theorem is connected with free fall. On the other hand, it is difficult to assume 
that Oresme did not take this interpretation into consideration, all the more so 
because his contemporary and master Jean Buridan, another Parisian, could 
provide in his theory of impetus a persuasive argumentation that in a  free fall 
speed increases uniformly. Domingo de Soto from Salamanca, a  16th century 
continuator of the Paris school, wrote around 1550: “one can observe this kind 
of motion in naturally moving ejected bodies.”

Galileo followed Domingo de Soto by close to a century, so we must change 
our views on the history of modern physics.5

If the speed is constant, that is, if the form is a  rectangle, its area can be 
thought of as the distance covered during the motion. This is already a  con-
sequence of Aristotle’s understanding of motion. If the area under a  form of 
trapezoidal shape could also be interpreted as covered distance, then Oresme’s 
conclusion would be obviously, because the area of the trapezoid above (Fig-
	 5	 A quotation of Clifford Truesdell, Essays in the history of mechanics. Berlin—Heidelberg—
New York 1968. Author wrote: “From recently published sources it follows that the kynematical 
properties of the uniformly accelerated motion, ascribed usually to Galileo, were discovered at 
Merton College, and from there were transferred to France, Italy and the rest of Europe.”
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ure 57) is obviously equal to the area of the rectangle above AB bounded by 
velocitas totalis.

It was not possible to prove that the distance under the graph of the speed 
in Oresme’s system, in which instant speed was not defined and no postulates 
whatever were adopted for it.

Nevertheless — by limiting himself to a  form in the shape of trapezoid, 
Oresme carried out such a  proof. Incidentally, he was not the only one to do 
this, because the Oxford Calculators including the earlier mentioned leading 
figure Suisseth, produced other proofs. In these proofs the authors took advan-
tage of various arithmetical ideas, but the essence of what they did was not 
embodied in these ideas.

These proofs contained a  correct and convincing chain of arguments, pro-
vided one accepted Aristotle’s principle according to which every speeds lasts 
a  certain time, that is, provided we accept that a  form has a  stairlike shape 
and is a sum of rectangles. In the case of trapezoidal form one used a mode of 
argument which took advantage of symmetry with respect to the center. This 
had persuasive power but did not prove.

The theorem of Calculators in its full form, that the quantitative result of 
change, which in the case of motion is the covered distance, is determined by 
the intensity of change, which in the case of motion is represented by the speed, 
was proved only in the 19th century. But earlier Newton took a  step of equal 
importance by accepting the theorem of Calculators as a  postulate on which 
he based his science of motion, accepting also the mode of calculation of the 
distance by the use of Oresme’s forms.

●

The Oxford Calculators did not introduced coordinates — as it was made by 
Oresme — but viewed intensity as intensity of the flow of a stream — a fluent 
(Figure 59) — and called the intensity fluction. The terms with the meaning just 
given, were later found in Newton’s analysis most frequently called Calculus.

Fig. 59. A fluent

We mention the Calculators against the background of the work of Oresme 
and the Paris scholastics in spite of the fact that chronology dictated an opposite 
order. The first place in which people began to study intensity of characteristics 
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was Merton College in Oxford,6 and that the main theorem tends to be called 
the Merton College theorem (quoted just before as the theorem of Calculators). 
But in those time priority was an issue of lesser importance. Authors repeated 
and transformed the works of their predecessors and seldom mentioned sources. 
Galileo did not cite a single name when he transformed the Oresme’s and Cas-
sali’s theorem for the umpteenth time.

Oresme considered other forms of intensity as well, for example, intensity 
bounded by a semicircle, and at times even more general intensities. At a certain 
point in his reasoning he arrived at the conclusion that the speed of the change 
of intensity (the speed of the speed) vanishes if one comes close to the poin 
at which the intensity reaches a maximum. So we have another theorem, later 
well known in differential calculus. True, a theorem without proof and without 
making the relevant concepts precise but properly formulated and understood. 
It could well be called Oresme’s theorem.

We should add that Oresme and Calculators considered stairlike forms 
whose areas corresponded to the sums of infinite series. Here is a computational 
result obtained in this way by Suiseth — Figure 60.

Fig. 60. �(½ + ¼ + 1/8 + …) + (¼ + 1/8 + … ) + (1/8 + 1/16 + …) + … = 2 — the Suiseth’s series 
as form of intensity

Let me quote an item which is not part of the topic I am dealing with, but 
it is hard not to quote Oresme’s proof of the divergence of the harmonic series 
1 + ½ + 1/3 + ¼ + … . The proof follows:

We have infinitely many parts each of which is greater than half of 
a  foot, hence the whole must be infinite. This is obvious, because 
a  quarter and a  third, taken together, exceeds half [a  foot], similarly 
the parts from the fifth to the eight, and then to the sixteenth, and so 
on to infinity.7

	 6	 Merton College — the oldest college of Oxford. After Bradwardine let Richard Suisseth 
(Swineshead) be mentioned, the author of Liber Calculationum. Leibniz regarded Swineshead 
as one of the leading figures of European thought.
	 7	 After Adolph P. Youshkevich, Chrestomatija po istorii matiematiki. Matiematiczeskij 
analiz. Moskwa 1977, p. 33.
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●

We have devoted to great deal of space to the Middle Ages. Two centuries 
later there will come an explosion of discoveries. Psychologists of mathemati-
cal activity agree that the kind of dazzling that leads directly to discovery can 
take place only after a period of strenuous search, in which the mind acquires 
readiness to observations. The same law probably applies to discoveries on 
a  historical scale. It is striking how very slow is the evolution of mathemati-
cal ideas whose rate of occurrence is ruled by a  definite law that cannot be 
bypassed at will. The Middle Ages have been in mathematics (and perhaps in 
general) a  period of “Sturm und Drang.” One speaks of the Middle Ages as 
a  dark epoch: true, from the quoted fragment of Bradwardine one could con-
clude that he did not ave a very clear notion of the length of the circumference 
of a  circle. But this period of darkness was darkness that precedes daybreak.

Fig. 61. Merton College
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●

Once variable speed was included in the area of reflection, the conviction 
grew that force is responsible for the change of speed and not for it maintenance 
as asserted by Aristotle.

“The sublunar world,” which Aristotle explained in his Physics, can be 
compared to a pond in which dense medium — water — living creatures move 
and lifeless are displaced. The surface of the pond is a  barrier beyond which 
there spreads the sphere of heavens, ruled by different laws. Dead objects are 
either subject to gravitation and fall by natural motion to the bottom of the 
pond, or to levitation that brigs them to the surface of the pond. They can be 
shifted by a forced motion. Then their speed depends on the applied force and 
the resistance of the medium. Aristotle described dependence in Book VII of 
his Physics. There appear counterexamples. Bradwardine introduced a  certain 
correction to the system, but it is too detailed to discuss it here.

    
Fig. 62. The world of Aristotle		  Fig. 63. �The world of the educated men of the 

Middle Ages

But the world faced by a  medieval scholar was already a  huge and open 
world. Changes of the system were bound to influence its very essence. Theo-
logians did not agree to separating the laws ruling the earthly world from the 
laws ruling heaven. The person who criticized the existing system was William 
of Ockham:

In contradiction to the views generally shared, there is no difference 
between the matter of celestial bodies and bodies moving in the sub-
lunar sphere. Such is also tho so: in teaching of the Fathers of Church 
who say that God first created matter, in which next stars and material 
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bodies formed themselves … we have no basis whatsoever to reject 
this conception, although to support it we can only formulate plausible 
proofs.8

Somewhat later Jean Buridan from Paris was also to share this view when, 
following Avicenna, he was to develop the theory of impetus.

Impetus once bestowed on a  body and “manifesting itself in motion, like 
that bestowed by the Creator on the celestial bodies at the moment of their 
creation is preserved.”9 It vanishes only under the influence of the resistance 
of the environment, but increases if it is added by a  force that functions from 
the outside. Thus force causes change of motion and it is maintenance, and thus 
cases a change of speed. This sounds like Newton’s principle. But Buridan did 
not create a  new system, he merely adapted the existing one to the system of 
Aristotle. For Buridan and his contemporaries impetus was viewed as a  sum-
marized force, that is a  force crammed into the body and acting on in during 
motion and supporting the motion, which was Aristotle’s understanding of 
the issue. During free fall this force is constantly crammed in — its amount 
increases and this is the source of acceleration.

Our guesses that impetus could, for example, be speed, or momentum of 
speed (the latter in rotational motion) are undoubtedly correct but have no un-
ambiguous confirmation in the serving texts. Let us quote Buridan:10

When the originator imparts motion to a  body, he puts into it a  cer-
tain impetus, that is, a certain force which makes possible the motion 
of the body in the initially given direction. The impetus contained in 
the body, causes the motion of the body, in spite of the fact that the 
originator has ceased to move it.

Thus angels are not needed to maintain the motion of the heaven and God 
can rest in peace after the efforts of creation.

The environment is not needed to maintain motion although it may influ-
ence at it. This simplifies the view of the motion of a  projectile, where the 
influence of the environment is exclusively inhibitory, which we find easier 
to understand. We see this when we look at the rotation of a  grinder’s wheel, 
which can be entirely isolated from the influence of environment, and yet the 
motion will continue as a result of the initial swing. It seems that this example 
influenced in a  decisive way the establishment of the theory of the impetus. 
	 8	 Quotation after Ryszard Palacz, Ockham.
	 9	 Jean Buridan (1300—1358) presented his theory of impetus in the treatise Questiones 
super octo physicorum libros Aristotelis.
	 10	 Quotation after Michael McCloskey, Intuitive physics. Scientific American, April 1983.
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A  grinder’s wheel was one of those machines with which the Middle Ages 
enriched us.

Could a vacuum exist? No one can confirmed its physical existence, but it 
has the right to exist within the sensible theory crowned by Galileo’s principle 
of inertia, which Descartes had the courage to formulate, and before Newton 
— Robert Hooke.

●

Several dozen years later (around 1430) in Kraków one thought Aris-
totle using as a  support Buridan’s commentaries. These commentaries also 
contained a  sentence on the uniformity of matter and on the laws ruling it 
throughout the universe, which we cited following Ockham. It was in that 
part of Europe that one now discussed and developed the theory of impetus 
keeping in mind the motion of projectile as well as motion on the astronomical 
scale. One discussed motion in a  vacuum which was also regarded as physi-
cally possible. Another author of commentaries known in the Kraków circle 
was Oresme. We have no proof that Copernicus knew Oresme’s discourse in 
which the latter admitted the daily motion of the Earth as one of the pos-
sibilities that explained the motion of the sky. But Ptolemy’s system was at 
the time doubted by many, among others by Averroes in his commentaries 
and later by Albert of Saxony, who also admitted the yearly motion of the 
Earth. If we follow the continuity of pressure of scholastic discussions, then 
it seems that Copernican revolution was a  logical necessity. But we must not 
forgot that one had not only to conceive of the system but one also had to 
construct it.

●

The scholastic philosophers lacked arithmetic methods which would have 
made it possible for them the concretization of their reflections. Arithmetic 
existed, but its development followed a different current and was developed by 
other people. It took at least two centuries for the two streams to come closer 
to one-another.

When speaking of arithmetic we stressed its liveliness. At time when the 
scholastics struggled with “labyrinth of the continuum” ending up at vicious 
circle of one reasoning after another, Leonardo Pisano — known as Fibonacci 
— amused himself with the famous sequence

1, 1, 2, 3, 5, 8, 13, …
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in which each term, beginning from the third. Is the sum of its two predeces-
sors. The sequence counts the number of new sprouts of a growing tree as well 
as the number of rabbits from a  single pair.

Fig. 64. �Mathematics of the Middle Ages. We include under this heading not only Copernicus, 
Cavalieri and Kepler, but also Galileo

Two mathematical groups, the one in which lived Bradwardine and the one 
in which lived Fibonacci, existed next to one-another but made no contact. Is 
it because members of the first group were scholars — canons, bishops, and 
Bradwardine an archbishop — and  Fibonacci a  merchant? Let us not negate 
this possibility but leave it to the sociologists to investigate. There is more 
to this issue.

There is no doubt that the psychological makeup of members of these 
groups was of some significance. Geometry, and especially the branch of 
geometry oriented towards the continuum and speculations pertaining to the 
nature of motion keep the mind tense and the awareness constantly function-
ing. The Fibonacci sequence involves manipulations and significant discovery: 
a non-mathematician would find it hard to believe that the Fibonacci sequence 
is connected with the golden section of a  segment. There are mathematicians 
who think in terms of images and mathematicians who prefer algorithms. There 
were whole scientific formations whose members prefer one of these types of 
reasoning to the other. Uphanging may play a  role here. So, the difference be-
tween geometry is not just what is investigated but rather the mode of thinking.

●
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The learning of the Middle Ages grew out of the thought of Aristotle. The 
two things he transmitted to members of subsequent generations were honesty 
of thought and a  system of views on nature. Clearly, the system shaped by 
the observations and reflections of the epoch of the Philosopher could not 
last forever. In time there turned up internal inconsistencies and observational 
disagreements. Aristotle’s system was broken up not by his opponents but by 
people who grew up on his learning and viewed him as a master. They defeated 
him with his own weapon: logical thinking. When negating one of the many 
assertions of Aristotle, Galileo, the last of great scholastics, wrote that he too 
would be agree with these critics if he knew the new arguments.

As a  result, none of the conventions of the physics of Aristotle remained 
as a  convention of the new physics; more than that; each was replaced by its 
opposite. This is the one case in the history of science when its evolution re-
quired the total destruction of preceding, fully developed, system of concept. 
And yet change was evolutionary, and waiting it historically it is difficult to 
find the turning point.

Allistar Cameron Crombie called Aristotle the tragic hero of the science 
of the Middle Ages.

When he overcome his scruples and parted with scholastics Galileo haved 
a sigh of nostalgy and said in his Dialogo,11 using Simplicio as his spokesman: 
“And if we reject Aristotle, who will be the guide in the natural sciences. Show 
me such an author!”

Plato’s influence was different. His philosophy seems to have been made 
for theologians. We can explain the word by using an idea accepted beforehand. 
That is why, when they took their first steps, Islamic and Christian theologians 
followed Plato. One such theologian was St. Augustine.

In Plato’s system mathematics played a special role. It supplied explanations 
for phenomena. Extreme Platonism ascribed to mathematics a  virtually magic 
role: the regularities of mathematics guided nature.

In Aristotle’s of concepts mathematics also played a  role, namely, that of 
a  tool that aided the solution of problems. More specifically, using Simplicio’s 
words, Galileo described Aristotle’s views on the role of mathematics:12

… when it comes to matter of nature, one should not always look for 
the need to apply a mathematical proof.

In spite of the fact that the centers of scholastic philosophy — the universi-
ties of Western Europe — regressed, and learning went outside the universities 
	 11	 Galileo Galilei, Dialogo sopra i due massimi sistemi del mondo. Fiorenza 1632. Quoted 
after Galileo Galilei, Dialog o dwu najważniejszych układach świata Ptolemeuszowym i  Ko-
pernikowym. Translation Edward Ligocki. Warszawa 1953, p. 120. Translated by Abe Shenitzer.
	 12	 Galileo Galilei, Dialog, p. 12. Translated by Abe Shenitzer.
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mainly as a  result of social changes, it was undoubtedly possible to follow the 
fate of scholastic mathematics abandoned physics for at least the two subsequent 
centuries. The end of the 14th century is regarded as the decline of scholastics. 
There occurred a change of the philosophical attitudes. Nicholas of Cuse, who 
lived at the beginning of the 15th century, also regarded himself as a scholastic 
but his doctrine did not contain themes developed by Bradwardine, the Calcula-
tors, Oresme, and other scholars of their times we mentioned. There appeared 
mysticism, foreign to 14th-century scholastics.

But even in the 16th century the treatises of 14th-century scholastics were 
printed and taught at the universities. Was it at that time a dead science needed 
only for the training of adepts? It undoubtedly did serve this purpose, but that 
was not its only purpose. There are data that indicate that scholastics continued 
to serve as a  basis for investigations dealing with science of motion.

There were attempts to understand the instantaneous speed but they ran into 
difficulties. It is difficult to find formulations close to modern ones. There is 
a variety of discoveries made suddenly by one person. On the other hand, formu-
lations of concepts is a slow process that extends, for the most part, over whole 
generations and is very often collective enterprise. When we read in works of 
scholastics that in uniform motion during all equal time intervals the distances 
traversed are equal, we see nothing new compared with what could have been 
said by Aristotle. And yet a single word — “all” — endows the speed defined 
for uniform motion the characteristic of momentary speed. Attempts to define 
speed in not necessarily uniform motion end with a dodge, in fact in a circulus 
vitiosus. We are to define the speed of a point that moves from a given moment 
by uniform motion with speed that it reached at a given moment.

●

The motion of a  projectile ejected upward consists of two phases: the 
“forced” upward motion and the “natural” down-ward motion. But there is 
also a  transition phase — quies media — when the projectile rests. “In puncto 
regressus mediat quies” — says Aristotle, in agreement with his wider doctrine. 
Even at the end of the 16th century an anonymous commentator of Aristotle 
objected to the thought that one and the same moment was common to both 
phases of motion: speed cannot vanish for just one moment.

The same anonymous 16th-century author carried out the following rea-
soning. The forced upward motion has no moment when it ends: if it lasts it 
will last a  while longer. Similarly, the phase of natural motion — the falling 
down — has no moment when it begins, when the projectile “begins in and 
of itself” — incipit per primum sui esse — and every moment at which it is 
in this phase of motion is preceded by a  certain period of time during which 
the projectile was in this phase.
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That is why the motion of the projectile splits into two time intervals, has 
two time partitions that do not end with moments; we would say that it splits 
into two open time partitions. In the pass between them there is a space for quies 
media (Figure 65). There is no logical reason to reject quies media as absurd.

Fig. 65

Anyway the problem was known only from the science of motion.
How do we measure the strength of Socrates? — asked the Mertonian 

Heytesbury. By the biggest stone which he can lift or by the smallest which 
he cannot pick up? The first magnitude is the so-called internal maximum and 
the second the so-called external maximum. These magnitudes are different in 
an obvious way if the magnitude under consideration is discrete.

Thought examples were constructed in which the moment of likely revers-
ibility was unreachable in time.

Fig. 66

Imagine an one-arm lever rotating in a plane around a point O (Figure 66) 
and a  point A  on that arm. The lever is moved by a  mechanism that presses 
its arm at its joint moving along the straight line l not passing by O. Then the 
point A draws an arc of a  circle coming closer to the point A' on the straight 
line l' passing through O  without ever reaching the point A'.

This argument resembles the early chapter of modern books on general 
topology rather than a  book on mechanics.

When young Galileo came across the problem quies media he noted that 
if this phase of the motion lasted for some time, then one couldn’t rule out 
the possibility of its lasting forever. Since he viewed the latter as absurd, he 
concluded that quies media did not exist. But he evidently had little confidence 
in his argument, because he returned to this problem in later works.

But before Galileo considered the problem and dropped it, speculations 
involving quies media increased for some time.

The following correction to Avicenna is credited to Albert of Saxony who 
lived somewhat later than Buridan (Buridan lived in the 14th century).
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According to Albert the path of a projectile fired horizontally from a tower 
consisted of three segments: a rectilinear horizontal that lasted until the impetus 
was exhausted, a circular path curved downward — corresponding to the quies 
media phase — and the natural downward motion (Figure 67b). According to 
Avicenna, the path would be a broken line (Figure 67a) of two segments with 
quies media at the breaking point. The change of the phase of rest to the phase 
of motion introduced under the pressure of practical observation had no support 
in any principle. There was no answer to the question what the length of the 
rectilinear segment or the curvature of the circular path depends on.

Fig. 67. A horizontal throw according to Avivenna (a) and according to Albert of Saxony (b)

The pressure of observation and the lack of principles intensified speculation, 
especially in the case of an oblique shot. The concept of the Figure 68 is taken 
from the 1582 book of Walter Hermann Ryff. Here the rectilinear segments of the 
path are connected by a circular segment that played the role of quies media.13

Fig. 68

	 13	 Gerhard Harrig, Physik and Renaissance. Leipzig 1981.
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Somewhat earlier, in 1561, Daniell Saintbeck included in his book a similar 
figure in which the path of the projectile was a  broken line of the form “”.14

Nicholas Tartaglia, so well known from his achievements in algebra, re-
flected on motion without the use of mathematics. He too introduced a circular 
phase. But there is a correction: from the very beginning the path of projectile 
is curved downward under the influence of the weight of the projectile. This 
is a  forecast of something new. The motion of the projectile is a  combination 
of two motions, namely, the motion due to the initial impetus and the free fall 
which begins from the very beginning of motion (Figure 69).

Fig. 69. The path of the projectile according to Tartaglia

●

Galileo (Galileo Galilei, 1564—1642) was not a  child of the epoch if we 
recognize as its characteristic the intellectual confusion due to, successively, 
the Renaissance, the Reformation, and the Contrreformation. True, his tragic 
fate in his old age did reflect this epoch. Born in Florence he received tradi-
tional Aristotelian education at the university of Piza. He was the last of the 
great scholastics of the line we talked about. But tradition always tells us to 
see him with a  lunette and experimenting with balls dropped from a  leaning 
tower. Maybe he experimented — he says so many times in Discorsi — his 
last great work. If he did experiment, then he was merely following the pres-
sure of what was fashionable at the time.

There are two types of experiments with a common name that have other-
wise little in common. The second type is a  so-called thought experiment, in 
which the hypothesis is subjected to verification confronted in detailed thought 
situation with more credible truths. Galileo was a  master of thought experi-
ments. He formulated laws on the basis of thought experiments starting with 
very simple observations.

The law of distances covered in free fall which in successive equal time 
distances are to one-another like

	 14	 Figure after Jain Nicholson, Gravity, black holes and the Universe. London 1981.
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1 : 3 : 5 : 7 : … ,

was known long before Galileo. If we sum these distances in succession, the 
we obtain the proportions

1 : 4 : 9 : 16 : … ,

whence Galileo’s law: the distance covered in a free fall is proportional to the 
square of the time.

This is so if we know that the fall is uniformly accelerated. To derive the 
law we apply the laws of Calculators and of Oresme. Galileo did this in two 
not very different ways. The second way, stated in the Discorsi 15 by Sagredo 
— the alter ego of Galileo — remind us clearly of Oresme’s figure (Figure 70).

Fig. 70. Figure from Discorsi

We add that neither Salviati, who presented the views of Galileo, nor 
Sagredo, refer to the question of the idea of reasoning known for over two 
hundred years. Referring to predecessors was not in style at that time. The 
third member of the conversations is Simplicio, who represents the old views, 
speaks seldom and critically. The same three persons appear in the Dialogo, 
a work that appeared twenty years earlier.

Salviati explains how he checked the law in experiments in which a  ball 
rolled down equally inclined planes with different lengths.

The weak point of Salviati’s argumentation — foreign to classical scholastics 
— is to adduce the dictum that nature always choses the simplest solutions, 
when trying to justify the fact that the free fall is uniformly accelerated. This 
is Plato’s influence. Buridan explained it by uniform accumulation of impetus, 
which was neater. His argument was later repeated by Newton, and earlier 
probably by Domingo de Soto. Another person who used the theory of impetus 
to justify the law of falling was Isaac Beckman (1630), who also stated his 
explanations before Galileo. The natural question is: where should we look for 
the weight of Galileo’s work if we don’t find in the originality and correctness 
of his arguments?
	 15	 Galileo Galilei, Discorsi e dimonstrazioni matematiche intorno a  due nuove. Scienze 
attenenti alla mecanica e imorimenti locali. Leida 1638.
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An explanation is supplied by the entirety of Galileo’s work. His work 
forms a  certain parallel to Aristotle’s. The Dialogo and the Discorsi do dot 
ignore any question hitherto dealt with the physics. Galileo’s work is a  com-
plete settlement of accounts with Aristotle. Simplifiers of the history will see 
in this settlement of account only negations of the views of Aristotle.

Let us return to free fall. Simplicio asked the troublesome question of how 
free fall begins emerged from atrophy, and how one obtains the observed speed, 
going before through infinitely many degrees of speed? And all this happens 
in a  finite amount of time. Simplicio is perhaps the most interesting figure of 
the Dialogo and the Discorsi.

This brings us back to the so frequently dealt with quies media. After his 
first, not very convincing even for himself, attempt to reject quies media, Gali-
leo turned his attention to known mechanisms that transform uniform motion 
on a circle into rectilinear motion with recurrences. He cites such a description 
given by Copernicus.

A wheel rotates uniformly inside a circle with twice larger diameter. Let us 
choose a point on the circumference of the rotating wheel. This point moves on 
the diameter of the larger wheel (for proof see Figure 71). When it comes to 
a  recurrence, the point does not stop for a  moment. There is no quies media.

Fig. 71

This encouraged Galileo. He was getting ever more certain that Aristotle’s 
principle which asserts that every degree of speed lasts a  certain time is not 
a  thinking necessity. But to reject this Aristotelian principle Galileo analysed 
the “labyrinths of continuum” all his life. In 1582, as a  young man, he wrote 
his first paper in which he tried to reject quies media in a manner we described 
earlier. The paper was written in an entirely scholastic spirit. Even in the Dia
logo, when Simplicio asks what he thinks of Aristotle’s view, according to 
which “in puncto regressus mediat quies,” Sagredo answers:

I well remember this fragment, but I also remember than when I stud-
ied philosophy I  did not agree with Aristotle’s proof. I  know many 
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examples that negate it. I  could quote them here, but don’t want to 
immerse myself again in these depths.16

It was mostly Salviati-Galileo who answers, and in special cases Sagredo 
speaks up.

To reject Aristotle’s principle one must really immerse in depths. When in 
the Dialogo Sagredo asked:

So you think that when a  stone leaves the state of immobility … it 
goes through all degrees of slowness below some degree of speed?17

— Salviati replies:

This is was I  think.

And he lives it at that, because the question is difficult one, due to the 
fact that the number of “degrees of slowness” is infinite. But when in Discorsi 
Simplicio repeats this doubt, Salviati replies with full assurance:

It would really be so if each degree of speed lasted some time, whereas 
the stone just passes through these degrees without stopping at any of 
them.18

After years of reflecting on the continuum Galileo finally had the courage 
to think of its realizable infinite divisibility. This will also apply to the time 
continuum. Thus there are enough moments to pass through infinitely many 
degrees of speed.

Salviati’s answer does not contain convincing argumentation. All he tells 
Simplicio, who continues to have doubts, is that an infinity of infinitely small 
things can add up to a  magnitude, which sounds as like a  direct negation of 
the known to us assertion of Aristotle.

It is simplest to accept that Salviati-Galileo feels the needlessness of argu-
mentation. After all, he knows the quantitative description of the path in time 
during free fall.

It is given by the formula s = at   2. It the stone is thrown upward with initial 
velocity v0, then the motion is the resultant of two motions: the free fall that 
begins at the initial moment and the uniform upward motion with speed v0. This 
uniform motion takes place on the basis of preservation of the impetus — the 

	 16	 Galileo Galilei, Dialog, p. 299.
	 17	 Galileo Galilei, Dialog, p. 20.
	 18	 Galileo Galilei, Discorsi, p. 122.
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law of inertia, another bold conjecture of Galileo. To obtain the resultant mo-
tion we must subtract one of the two motions from the other. We thus obtain

s = v0t – at   2.

This formula replaces the former meditations.
It is possible that Galileo did not derive this formula. Formulas were not 

his forte. Galileo’s students, including Toricelli, worried about the mathematical 
side of Galileo’s arguments. It was enough that he knew the truth expressed 
by this formula that was a  fruit of his inspiration.

The earlier analysis of the structure of the continuum, which lasted all 
through all his creative life, was for Galileo a  fundamental settlement of ac-
counts conducted in the Aristotelian spirit. It was a  settlement before capitu-
lation which — he knew — had to come to pave the way to solutions that 
followed the new convention.

Why — we might ask — did no one make the simple move reflecting the 
simplicity of the task? All one had to say is “it passes without stopping.”

We have already given the answer but will repeat it: it happened because 
one found a  quantitative description of the phenomenon. These same words, 
uttered before Galileo, would have sounded like casting a  spell. They were 
now supported by a  mathematical formula in which t denoted the time from 
the beginning of the motion and s denoted the distance covered during that 
time. It doesn’t matter that we don’t know what are the continua traversed by 
t and  s. The formula yields their connection, and thus the possibility of us-
ing them. The intermediate phase, so much discussed by philosophers, does 
not appear in the formula: the motion dies down for a  moment, the moment 
t  = v0/a, which we compute solving the equation. This is also how the Zeno’s 
aporia about the arrow ceases to be a  problem.19 There is no difficulty when 
the moments are mathematical moments.

Of course, the problem remained. It merely moved to another place, be-
yond mathematics. When the mathematicians will find in the 19th century 
mathematically correct conventions for continua traversed by s and t they will 
believe that the problem was really vanished. Galileo’s contemporaries were 
not so critical in their evaluation, but already Leibniz will have occasion to 
write somewhere that Galileo cut the Gordian knot instead of untravelling it.

Encouraged by success, mathematicians will ever more frequently be satis-
fied with a  quantitative description of phenomenon, and leave the explanation 
for later, or leave it to philosophers. Beginning with the modern times — and 
Galileo’s discovery is perhaps the proper date — there appeared the notion of 
	 19	 Alfréd Rényi in Dialog o języku księgi przyrody, in Triłłogia, p. 74, wrote: “… true rejec-
tion of Zeno’s aporia would be possible only if someone obtained a  proof that a mathematical 
description of motion is possible” credited these words to Galileo.



science — pure science — separated from worldview restraints. Antique sci-
ence did not know such a  separation of science from the philosophy with the 
possible exception of Plato’s time. But after Plato came Aristotle. The Middle 
Ages most certainly didn’t know this division which was to last in certain 
areas of life for another few generations and gradually transformed itself into 
an epoch ever more like ours.

After Galileo, the Middle Ages left the stage in science as well. Much like 
in other areas, they left the stage defeated. But wise victors do not rejoice. 
After centuries we are returning to this epoch. The 19th century searched in 
it for inspiration in the realm of the spirit. We note its learning, marked by 
honesty and moderation.
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Imagination, which so deludes us and leads to faulty 
roads, is treacherous for one more reason: it some-
times leads us to truth.

Pascal1

The method of indivisibles for the computation of areas, volumes, and other 
geometric magnitudes is due to Democritus. It came to us in a form, and with 
argumentation, such as bestowed it the 17th century, when this method ruled 
for a short period of a few scores of years. It was then dropped in favor of the 
integral, and the evolution of mathematics did not insist on efforts to improve 
it, or on providing for it a  logical justification. Nevertheless, it has survived as 
a living method in unofficial mathematics; the great majority of educated people 
are satisfied with the justification (given by this method) of the formula for the 
area of a  circle, and for engineers and physicists it continued to be what joins 
their ideas with mathematical abstraction demanded by the modern treatment 
of mathematical analysis.

If we went to understand the notion of area of a curvilinear figure — such 
as one shown in Figure 72 — we divide it into parallel strips narrow enough 
to be thought of as rectangles. The postulate of the mathematical atomists is 
that for a given figure strips narrow enough are actually rectangles. The strips 
we are talking about are called indivisibles.

The method of indivisibles doesn’t count the indivisible strips because the 
postulate does not say at what level of trituration we obtain indivisibility. One 
tries to arrange these indivisible strips differently, so that they form another 
figure whose area is known, or is regarded as known.

The indivisible need not always be strips.

	 1	 Blaise Pascal, Pensées — author’s free translation.

Chapter VIII The method of indivisibles • Three ways of 
computing the area of a  circle • Kepler: the 
principle of fields and a barrel • The Cavalieri’s 
principle • The Roberval cycloid • Need we 
explain it by undivisibles? • Towards magic 
thinking • Descartes
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Fig. 72

We will now give three “proofs,” independent to different extents, which 
show that the area of a circle of a radius r is equal to the area of a right triangle 
with sides r and l, where l is the circumference of the circle.

1. We divide a semicircle into arcs so fine that we can regard them as rec-
tilinear. We join the points of division with the center of the circle. We obtain 
circular sectors which we regard as isosceles triangles of height r. We cut the 
semicircle along rays that form the edges of the resulting sectors, cutting from 
the center but stopping before the edge of the circle, so as not to destroy the 
cohesion of the figure, which we then unbend so that the vertices of the trian-
gles lie on a  single straight line. We do the same with the second semicircle.

Fig. 73

We put together the resulting figures (Figure 73) so as to obtain a  figure 
which we recognize as a  rectangle with sides r and l/2. The area of the cirrcle 
is equal to the area of this rectangle.

This “proof” is so persuasive that the 16th-century Hindu mathematician 
Gamesha was presumably satisfied with dividing the semicircles into six parts.

2. We divide the circle — as before — into sectors so narrow as to justify 
regarding them as triangles of height r, equal to the radius of the circle. Let 
us consider a  right triangle with sides r and l, where l is the circumference of 
the circle. Next we transfer the division of the circle to the side l and join the 
points of division with the vertex of the triangle opposite to l. Triangles are 
formed whose areas are equal to the areas of the sectors into which the circle 
was divided, because the bases and heights of the triangles and of the sectors 
that correspond to them (which we also regard as triangle) are equal. One such 
triangle and the sector that correspond to it — with bases A'B' and AB — are 
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marked in the Figure 74. Conclusion: the area of the constructed triangle, which 
is equal to ½ r  l, is the area of the circle we are trying to determinate.

Fig. 74. The reasoning of Kepler. Archimedes knew it but viewed it as ultramathematical

3. Let us think of a  circle as concentric circular lines with radii varying 
from 0 to r (the radius of the circle under consideration). Let us cut the circle 
along one of its radii, and let us straighten out the resulting bundle of arcs so 
that we end up with segments that continue to be parallel (Figure 75); this can 
be done mechanically if we make up the circle using concentric threads lying 
loosely next to one-other. The resulting right triangle with sides r and l (l is 
circumference of the circle under consideration) has area ½ r  l, which is the 
area of the circle we are trying to determine.

Fig. 75. The method of Toricelli — not foreign to Kepler

We cannot say that the quoted “proofs” are not instances of reasonings. But 
they are not instances of reasoning that belong to a  determined mathematical 
system. Attempts to determinate a common principle of these arguments must 
ignore the imprecise different tools described in quoted examples. The first of 
them is most persuasive, but the second and third are those, which will sug-
gest the principle about which we will say later, no matter that in the second 
and third examples the reasonings were subjected to considerable deformation, 
and the third instance of reasoning seems dangerously close to an error. This 
it, more or less, what Cavalieri thought about Kepler’s computations of this 
type. Notwithstanding his criticism, Cavalieri took great delight in Kepler’s 
computations of this variety.
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The Ancients knew such methods. Archimedes supplemented them with 
rigorous proofs that belonged to the field of concepts of arithmetic and geometry 
of Euclid. But he did not negate their heuristic value.

But in modern times mathematicians began encounter an ever greater 
number of problems involving the infinite. In these problems Archimedes’s 
rigorous methods became too burdensome and encouraged attempts to bypass 
them. Frequently — we will see it on further example due to Kepler — it wasn’t 
even clear whether Archimedes’s rigorous method was applicable, although the 
method of indivisibles yielded the result.

If we are to mention two names connected with the method of indivisibles, 
then they will be the names of Johannes Kepler — known not only for such 
achievements — and Bonaventura Cavalieri, who lived somewhat later, a man 
whose activity was marked by originality in choosing several tools preceding 
modern mathematical analysis. If four names, we must add Toricelli, better 
known to wide circle of people for his achievements in physics, and the arbiter 
elegantiarum of the methods of indivisibles — Roberval.

●

Johannes Kepler looked in mathematics for a  way of understanding the 
world in such a  way the Pythagorean looked for it long ago. The titles of 
two his works, Mysterium Cosmographicum and Harmonices Mundi give 
a  better view  of Kepler’s world view than a  formula of a  few sentences. He 
found the harmony of the world in his laws of the motion of the planets. 
The path of discovery led through the boldest speculations, touching theo
logy, speculations in which astronomy bounded on astrology, and of detailed 
mathematical speculations and calculations of great general value. Maybe his 
work reflected the epoch then lived in this part of Europe: Reformation woke 
the minds, the conflict of views reached social strata hitherto outside the flow 
of key events. Disputes ceased to be subtle and learned and became general 
and bellicose instead.

Here is a  sentence from Mysterium Cosmographicum of young Kepler:

There were, essentially, three problems whose causes I  was look-
ing for. Why, I asked, was it so and not otherwise? What I was looking 
for were three things, namely, the number, magnitude, and the motion 
of the spheres. What bolstered my courage was the ideal agreement of 
the motionless Sun, the fixed stars and the in-between space with God 
the Father, the Son, and the Holy Spirit.2

	 2	 Johannes Kepler, Tajemnica Kosmosu. Wrocław 1972, p. 20. Translated by Abe Shenitzer.
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It is useful to recall the restraint used by Bradwardine and Oresme when 
they commented on their reasoning, in spite of the fact that problems of theol-
ogy were perhaps closer to them than they were to Kepler.

Kepler was not a  university professor. Nor was he a  clergyman. He was 
a  teacher of mathematics in the protestant seminary in Graz and the became 
a mathematician for the emperor. He lived in Prague, and collaborated in Prague 
with Tycho de Brahe, lived in Linz, and then in Sagan at Wallenstein’s camp. 
He was born in the small town Weil in Wirtenberg.

Computations with method of indivisibles form a  small part of Kepler’s 
discoveries. But they appear already in his work Astronomia nova, 1609, in 
which he formulated his first two laws of motions of the planets.

According to Copernicus’s theory, a  planet moves around the Sun along 
a  circle, but the Sun is not at the center of the circle, but in somewhat excen-
tric position with respect to the center (Figure 76). From observations known 
to Kepler it followed that the angular speed of the planet is greatest at the 
perihelium and least at the aphelium. In order to formulate this dependence 
quantitatively, Kepler stated the hypothesis that the leading ray of a planet (that 
is the segment connecting the planet with the Sun) sweep out equal areas in 
equal times. This is the later famous second law of Kepler (the was to appear 
later). Kepler tried to confront his law with observation.

Fig. 76. �Hypothetical circular orbit of the planet P. The point O  is the center of the circle. The 
Sun S occupies a  fixed excentric position on the diameter connecting the aphelium 
A with the perihelium B. To check his hypothesis, Kepler had to know how to compute 
the area of an excentric circular segment ASP

With symbols as in Figure 76, let ψ denote the angle between OP and OA. 
If c denotes the length of SO, then the area of the segment ASP (which is the 
sum of the area of the triangle SDP and the circular segment AOP) is equal 
of half of the expression

a (a  ψ + c  sin ψ),

where a  is the radius OA if the orbit. But observation failed to confirm that 
this expression had equal increments in equal times.
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Certain speculations led Kepler to the idea, that the planet is possibly closer, 
at the point P', on the same of the leading ray, and the points P' form an ellipse 
whose focus is in the Sun S (see Figure 77). This was not a  mere correction 
but a  solution that better fitted the harmony of the world than the excentric 
location of the Sun of in the interior of the circular orbit. The location of the 
focus S on the axis of the large perihelium-aphelium determined this ellipse.

        
Fig. 77					     Fig. 78

To confirm his hypothesis for an orbit corrected in this manner, Kepler 
had to know how to compute areas of segments ASP' of an ellipse, but not the 
same as before. To do that he projected the point P', the hypothetical location 
of the planet on the ellipse, perpendicular to the axis of the large ellipse on the 
circle considered earlier. This gave the point P" (Figure 78). The ratio SP' : SP" 
is constant, the same for all locations P' of the planet; it is equal to the ratio 
of an axis of small ellipse to the axis of the large ellipse.

Kepler argued: the areas ASP' and ASP" of the elliptic and the excentric 
circular segments remain the same ratio.

Here is Kepler’s reasoning.
An ellipse is a  projection of the circle; if we look spatially at Figure 78, 

we see this projection from the circles and ellipses considered by us. There is 
a one-one correspondence between indivisibles in the form of segments SU"V" 
on the circle to the indivisibles in the form of segments SU'V' on the ellipse, 
and the areas of these indivisibles are in a  known to us ratio of the length of 
the axes of the ellipse. Hence the complete segments ASP" and ASP' have areas 
that are in this same ratio.

Now it suffices to confirm by the observation that the areas ASP" change 
uniformly in time. But, as mentioned earlier, the area ASP" is proportional to 
the magnitude a  ψ" + c  sinψ", where ψ" is the angle AOP". The uniform 
change of this magnitude was confirmed by observation.

Astronomers stress the important role of the observational material at 
Kepler’s disposal, material which he owed Tycho de Brahe with whom he 
collaborated in Prague. On the other hand, mathematicians pay attention to 
Kepler’s way of comparing areas. But perhaps what was even more important 
was Kepler’s conviction that there existed an ideal solution.
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Fig. 79. Kepler’s first two laws, stated as hypotheses and confirmed by observation

●

On a  certain occasion Kepler was interested in computing the volumes of 
barrels. This is not what an astronomer usually does. But this was a  harvest 
year for wine.

Let us illustrate Kepler’s method using the simplest example, that of a ball.
A  halfball can be viewed as a  solid made up of the sides of cylinders 

(Figure 80, on the left side). Consider another the figure obtained from half of 
a cylinder with the same base radius as the ball by cutting it by a plane passing 
through the diameter of the circle being the base of the cylinder (Figure 80, on 
the right) and the point at the height l equal to the circumference of the great 
circle, and passing through a  point on the generator of the cylinder opposite 
to this diameter, viewed it as solid made up of rectangles arranged in parallel, 
with areas equal to the areas of appropriate mentioned above surfaces of side 
cylinders; these rectangles arise from these surfaces by straightening them, if 
that solid of surfaces has been earlier cut by the halfplane determined by the 
axis OO' of the cylinder. Let A (see Figure 80, on the left side) be the point at 
which this halfplane cuts the circumference of the base of the halfball.

Fig. 80
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The same thing can be seen differently. After first cutting the halfball by 
a cut just described, that constitutes the quadrant AOO' in a plane perpendicular 
to the base, we straighten out the rolled cylinder surfaces so that the quadrant 
AOO' remains unmoved, and so that the circumference (starting from A and 
ending at A', the twin of A in the performed cutting) of the great circle in the 
base of the halfball takes the form of a  segment (of length l, in the figure 
drawing on the right).

This operation is analogous to the one which Toricelli carried out for the 
case of dimension one lower, identifying circle and triangle as to area.

In fact, this operation contains the previous: the triangle AO'A' in the solid 
on right side of the figure is the result of transformation of the circle being 
the base of the halfball.

Kepler’s reasoning (just like other reasonings based on the method of in-
divisibles) does not yield a numerical result. It shows that the volume of a ball 
is equal to the volume of a  figure regarded as being simpler.

●

Under certain definite conditions, computations carried out by Kepler can be 
based on well-defined principle formulated by Cavalieri. We may regard them 
as the conclusion of the “reasoning” quoted at the beginning of this chapter. But 
Cavalieri was a mathematician and would not grant himself such a conclusion. 
He formulated the result of these ultramathematical reasoning as a  postulate.

Imagine a puck of cards. In the usual position it forms a rectangular paral-
lelepiped (Figure 81, on the left side). Let us move the cards so that they a solid 
with little regularity (Figure 81, on the right side). According to Cavalieri, the 
two solids have the same volume.

The principle of Cavalieri. We are given two solids both of which lie be-
tween parallel planes. If the sections of the two solids by every plane parallel to 
the mentioned planes have the same areas, then the solids have the same volume.

Fig. 81. The Cavalieri’s principle

The Cavalieri’s principle does not give volumes by numbers, but merely 
compares the volumes of two solids. As an axiom, this principle satisfies all 
criteria of rigor. But the application of the principle is limited: from a  solid 
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whose volume we regard as known we go over to another solid, then to yet 
another solid, and so on. When it comes to obtaining results, a  great deal of 
inventions is required.

A  warning against the improper use of the method of indivisibles is the 
following example given by Cavalieri himself.

A  triangle is divided into two unequal parts by one of its altitudes (Fig-
ure 82). Every part is made of the same number of equal segments. Conclusion. 
The two pats have equal areas.

This paradox was also known to Bradwardine.

Fig. 82

●

We saw that Cavalieri was more cautious than Kepler. He did not immerse 
himself in speculations which he led to philosophers to deal with. He was 
a  friar from age fifteen and spent a  greater part of his life as a  professor at 
the university of Bologna. He was recommended by Galileo. He was called 
the Archimedes of his time. He worried himself to death because he could not 
find a  proof for his principle.

Using Cavalieri’s principle we prove that the volume of a  cone is equal to 
the volume of the pyramid of the same height and the same base area. All we 
need to know is that the areas of the sections at the same level are the same, 
a  conclusion which follows from the fact that they are proportional to the 
squares of distances from the vertex.

Using this principle one can prove that the volume of a  cylinder is equal 
to the volume of a  prism of height equal to that of the cylinder and the base 
of the same area.

We can also obtain a  quantitative result: the volume of a  cone is equal to 
1/3 of the volume of the cylinder of the same height and the same base as the 
the cone.

In view of the earlier remarks, it suffices to know how to divide a  prism 
with triangular base into three pyramids of which at least one has the same 
base and height as the prism. A division is shown in Figure 83.

The pyramids of this decomposition have the same volumes, but pyramids 
I and II are not congruent, and we verify the equality of their volumes by using 
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Cavalieri’s principle. Max Dehn (1900) proved that there are prisms for which 
the use of this principle cannot be avoided.

Fig. 83. Decomposition of a  prism into three pyramids of equal volume

●

Next we propose to use Cavalieri’s principle to compute the volume of 
a  ball.

Describe on the halfball a  cylinder whose base is the great circle (Fig-
ure  84). Consider the figure (shaded in the drawing) which supplements the 
halfball to a  cylinder, and the cone whose vertex is at the center of the ball 
and whose base is the opposite base of the cylinder. Let r be the radius of the 
ball under consideration.

Fig. 84. �Already Archimedes computed the volume of a  ball in a  similar way; but he supple-
mented the reasoning with a  rigorous proof using the method of exhaustion

The plane parallel to the base of the cylinder at a distance x from the vertex 
of the cone cuts the cone along a  circle of radius x and the supplement of the 
halfball along the annulus contained between the side cylinder and the circle 
on the surface of the ball, and the square of whose radius is equal to r   2 – x   2. 
It is easy to see that both sections — with the cone and the supplement of the 
halfball — have equal areas.
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On the basis of Cavalieri’s principle, the volumes of the cone and the sup-
plement of the halfball are equal. Since the volume of the cone is 1/3 of the 
volume of the cylinder (we know this from earlier computations), it follows that 
the volume of a  halfball is equal 2/3 of the volume of the cylinder.

●

What follows, is Roberval’s — Jules Pierpoint (1602—1675) — computation 
of the area enclosed by a  cycloid.

A circle rolls along straight line. Let us note a point on the circumference 
of this circle. Its path is a  cycloid.

Assume that at the initial moment the point we marked — call it M — lies 
on the straight line along which the circle rolls. Take the straight line as the 
axis of abscissas and the initial position O of the point M as its beginning. The 
position of point M is determined by the angle (Figure 85) through which the 
wheel has been enrolled. When the wheel rolls by half of its circumference, 
the point M occupies its highest position; its ordinate is 2r, and its abscissa the 
mentioned half-circumference of the circle, that is π  r; by r we denote the 
radius of the rolling circle. At this highest point the velocity of the point M is 
maximal and its direction is horizontal. The arc of the cycloid drawn thus far 
is contained in the rectangle OO' (Figure 85) whose sides are π  r and 2r, and 
whose area therefore equal to two halves of the rolling circle.

Fig. 85. The cycloid of Roberval

Let us add, though this is in no connection with areas in which we are inter-
ested here, that the cycloid has in its initial point a certain special feature: it is 
perpendicular (at O) to the axis of abscissas, and the speed of M at O vanishes.

In addition to point M let us consider the point M' which is the projec-
tion of the point M on the diameter of the rolling circle perpendicular to the 
axis of abscissas. The abscissa x of the point M' is the same as the abscissa 
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of the point of tangency of the circle with the x-axis at the position under 
consideration; the equality x = r  φ expresses the condition of rolling. The 
coordinates of the point M' can be read off from the drawing, and their values 
are x = r  φ, y = r  (1 – cos φ).

Hence the equation of the curve consisting of points M' is y = r  
(1  – cos (x/r)).

This is the arc of a  sinusoid (!) from its minimum at O  (with φ = 0), to 
its maximum at O'. It divides the rectangle OO' into halves cutting out from 
the area under the cycloid a  space in the form of wing (shaded in Figure 85).

But the area of this wing is half of the rolling circle (!). This is so because 
the wing consists of segments MM' which would fill up the shaded semicircle 
if we move them parallel to axis of abscissas (the segment MM' on the seg-
ment N'N). When reasoning in this way we are using the Cavalieri’s principle.

The rest of computations is simple: the area under half of the cycloid is 
equal to the half of the rectangle OO', that is to the area of rolling circle plus 
half of the area that circle (in the form of the wing). Hence it is equal to 3/2 of 
that area. The area under the whole area of the cycloid is equal to three areas 
of the rolling circle.

Fig. 86

The computation by Roberval is perhaps the most effective example of the 
use of the method of indivisibles. This can be emphasized by noting that the 
area under a complete arc of the cycloid is broken up into three equal parts if 
we put the rolling circle in its center (Figure 86).

●

We can generalize the principle of Cavalieri by requiring that areas of 
the sections of the two solid (on the same level) not be equal but rather 
that they should be in the same proportion. Then the volumes of the solids 
will be in that proportion. Such a  principle (applied to a  situation in which 
dimensions are one less) could be the basis for Kepler’s computations of 
elliptic segments.

We repeat: Cavalieri’s principle is a method of comparison and not a method 
of computation. We compare the area or volume of a  less well known figure 
to the area or volume of a  better known figure. By using a  number of such 
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comparisons, inventive people can gain a  great deal. Witness the example of 
proving that the area under the arc of cycloid is equal to the area of three 
ciscular discs. This is not a  universal method but sufficient to develop into 
mathematical discipline.

Cavalieri’s principle can be extended even more, so that it could be the basis 
for computation of the area of a  circle and the volume of barrels. To this end 
we would have to assent that the transformations that turn up (they come down 
to the rectification of scrolls) change neither areas nor volumes. In other words, 
we could treat the Cavalieri’s principle and its modifications as an extension 
of the collection of principles of comparison of areas and volumes accepted in 
elementary geometry.

Cavalieri’s principle and transformations of Kepler and Toricelli are now 
fragments of the calculus. The transformations correspond to the formulas for 
the change of variables in the integral, and Cavalieri’s principle corresponds to 
Fubini’s change of doubled integral to an iterated integral.

Cavalieri and his contemporaries studied and knew the work of Archimedes. 
They tried to achieve the precision of his reasoning. In the supplement to this 
chapter we will see that the result was not always negative. But they seem to 
make no connection whatever with the past much closer to them. Maybe they 
knew this past but they didn’t yet involved with it. After all, three centuries 
earlier the Calculators and Oresme had formulated a  law according to which 
magnitudes having the same rate of growth are equal at each stadium of that 
growth, provided the growth began at zero. All computations of Kepler and 
Toricelli, with the inclusion of the Cavalieri’s principle, may be viewed as ap-
plications of this principle of the scholastics: the ratio of growth of the volume 
of two packs of cards, set up straight and shifted (Figure 81) is the same: it 
can be viewed as the area of a  card at level under consideration. Cavalieri 
knows this justification but he does not dare recognize it as a  justification 
of his method. We think that this kinematical justification was not foreign to 
Kepler when he occupied with barrels. Even Newton said not a  word about 
this dependence of scholastics in spite of the fact that in some places in his 
Calculus this dependence is literal.

Let once more example be considered, in which the Cavalieri’s principle 
will be applied in the form based on the principle of Calculators.

We know from the previous chapter the Oresme reasoning showing that 
the sum of the series 1/n is infinite. This means that the area of the figure 
between the graph of the magnitude 1/x, initiated at x = 1, and the x-axis 
is infinite. Let this figure be rotated around x-axis. We obtain a  solid the 
volume of which is finite. This paradoxical result was obtained by Toricelli. 
We leave to the reader rethinking the paradox. We take attention rather to the 
fact which follows from Toricelli’s result: the sum of the series 1/n2 is finite! 
This easily follows from the just mentioned (paradoxical) result.
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The method of indivisibles developed in 17th century signified great 
progress. But they were not revolutionary. They followed line drawn in antiquity 
and thought through once more by the philosophers of the Middle Ages. They 
went past the point where the Ancients stopped when Archimedes was gone. 
But the direction of the development remained the same.

Rigorous methods of computations of areas developed in parallel, although 
progress was slow. Making use of the formula of the sum of n-th powers of 
successive natural numbers Cavalieri gave a  method for computing the area 
under the graph of the function xn above the segment from 0 to a.

The causative power of the coming revolution was elsewhere. This power 
was the constant perfecting of the methods of arithmetic, algebra and trigo-
nometry. Etienne Gilson wrote that Oresme explained the daily motion of the 
Earth more clearly than Copernicus. But he forgots that Copernicus was able to 
take the step his many precursors could not take because he was aided by the 
knowledge of trigonometry and by years of measurements and computations. 
The effort Kepler invested in his computations and observations is imposing.

Computations began to determine the rate of discoveries. The use of loga-
rithms aided computations. The algebraic symbolism was perfected.

One must also take into consideration the general changes that took place at 
the time in Europe, the changes known as Renaissance. The intellectual direc-
tion of that period was known as humanism. The time of these changes was 
the 16th century. Renaissance developed earlier in Italy an later in the North 
of Europe, where it formed a  single flow with Reformation. The change was 
a  logical consequence of the development of European civilization. Beginning 
in the 14th century, this civilization reached, and quickly began to exceed, the 
level Antiquity was proud of at a certain time. The scholastic philosophers had 
long utilized the cultural achievements of the Ancients. Now the number of this 
group of people increased. Learning was no longer restricted to universities and 
its form was also no longer restricted. Leonardo da Vinci was not a  scholar 
in the sense in which the philosophers of the Middle Ages were scholars. He 
had not studied at a university. Copernicus and Kepler did study at universities 
but made their discoveries in isolated studios. Galileo, Torricelli, Cavalieri, and 
Roberval were university scholars. But now the role of the university was taken 
over by an enlightened ruler and his academy. Leonardo da Vinci aquired his 
knowledge at the Medicean Academy in Florence. Galileo, and later Descartes 
and Leibniz, were aided by rich patrons. Others, such as Pascal and Fermat, had 
their own means which enabled them to lead a  creative lives. Being a  scholar 
ceased to be a profession. Learning became a source of interest of people with 
free time, such as diplomats, lawyers, clergymen, and others. Learning was also 
liberated from the influence of religious doctrines.

There is no need to list the great discoveries made during the Renais-
sance. But, strange to say, this period was empty as far as a  world view was 
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concerned. There appeared a gap in the development of philosophical thought, 
a  gap noted by historians.

Carl Boyer writes:3

Together with the decline of the extremely rational and rigorous scho-
lastic method, whose exaggerated rigor was rejected by the develop-
ing humanism, there appeared a  tendency to embrace Platonic and 
Pythagorean mysticism.

In his book on Pascal4 Boris Tarasov writes:

The limited nature of medieval worldview, which tied to God every 
creature and the world as a whole, began to slowly crumble. The result 
was that Providence was ever more often identified with the ordinary 
run of things, with nature, with the human lost. However, this natural-
ism cannot do without religion. Stars became idols whose motion was 
to explain man’s fortune, the philosophical stone, and precious metals.

Derek J. de Solla Price5 writes:

… the Renaissance, so beloved by historians, of art, seems to lose 
some of its greatness if it is looked upon by an historian of science.

There is no need to mention Crombie, Gilson and Tatarkiewicz. They will 
say the same. Speaking of mistycism, it is not enough to think to have in mind 
simple faith in a supersticion which accompanies man’s life regardless of place 
and epoch. What we have in mind is the ruling point of view, in which one 
ignores logic of thought and accepts jumps of thought. We sympathize with 
Kepler’s jumps of thought because he later subjected them to an austere check. 
But the example of Kepler make not made contrasts visible.

Nicholas of Cusa is very often regarded as the last of the great philosophers 
and scholastic theologians. He lived in Germany in the 15th century and was 
later a  cardinal. But we would be looking in vain in his philosophy for views 
of philosophers of the Middle Ages we are familiar with. He turned to Plato, 
and treated mathematics as “something that overtakes the evidence of senses.” 

	 3	 Carl B. Boyer, The History of the Calculus and its Conceptual Developments. New York 
1949.
	 4	 Boris Tarasov, Pascal. Moskwa 1982. Translated by Abe Shenitzer.
	 5	 Derek J. de Solla Price, Węzłowe problemy historii nauki. Warszawa 1965, p. 19. Trans-
lated by Abe Shenitzer.
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Much later Georg Cantor was to refer to him — rather superficially. In one of 
his speculations Nicholas of Cusa identified the identified with nothingness:

Minimum is potentially maximum. The whole magnitude is contained 
in the minimum, and that is why it is at the same time the maximum 
for every thing.

This is a  complete giving up on the logical. It is perhaps a  capitulation in 
the face of some great problem which Nicholas of Cusa has a presentiment for. 
Later Giordano Bruno based himself on this speculation when he saw universes 
in atoms. Here is a  quotation from Bruno on a  somewhat similar topic:

The most perfect mathematician would be the one able to reduce all the 
theorems stream over the Elements to a  single one. The greatest logi-
cian would be the one who could reduce all thoughts to a  single one.

These expressions on the boundary of mysticism were the result of a search 
for principles which must have been lost earlier somewhere, and of fears before 
the magnitude of the problems now faced by man.

“Every natural activity takes place on the shortest path” said Leonardo 
da Vinci. Later the philosophers of the period of Enlightement expressed this 
thought and argued about its originality.

An arrow let out let out from the center of the world to the highest 
part of the elements will rise and fall along the same straight line, 
in spite of the fact that the elements are in circular motion about the 
center of these elements.

This was also said by Leonardo da Vinci.6
Problems are of a  fundamental nature, and official science cannot answer 

them, as its rate of development is slow. One sees in these problems a  great 
pressure. This thinking is thinking of times of breakthrough. In distant Poland 
Jan Brożek7 wrote:

All that is finite is some part of infinity.

Maybe the greatness of this period is demonstrated in the dimensions of 
this pressure.

	 6	 Leonardo da Vinci, Pisma wybrane. Warszawa 1958, p. 81. Translated by Abe Shenitzer.
	 7	 Jan Brożek, O nieskończoności [On infinity]. In Wybór pism, t. 1. Warszawa 1956, 
p.  147—149. Translated by Abe Shenitzer.
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The pressure of problems is certainly the source of Kepler’s greatness. 
Reformationn — protestantism — woke up minds and has its vital part in the 
achievements of that period.

But protestantism was a non-homogeneous movement. Religious arguments 
which it gave, rise to took on the character of immediate political arguments, 
and the philosophy of these times was mere publicism, and sometime second 
rate satire. Each sentence of Erasmus of Rotterdam would have been a grating 
sound if it were cited next to a  sentence taken out of Ockham’s writings. In 
his theses, Martin Luther condemned scholastic philosophy, but not in the name 
of freedom from restricting doctrines, but in the name of purity of dogmas, in 
the name of protecting theology from Greek influences, and above all — from 
Aristotle. For some time Catholic theology also preferred the state to debate.

One forgot about Aristotle’s subtle “for and against.” Its place was taken by 
sheers, epithets, and casing spells in the form of magic formulas.

Let us not form rigid time frames.
An example of magic thinking — in another dimension — was Descartes’s 

philosophy with its spell “I  think, therefore I am.” This was not his only spell. 
Lost in contradictions of thought, Blaise Pascal, initially a follower of Descartes, 
wrote in his Pensées the following about his philosophy:

I  agree that one must say that this is due “to shape and motion,” be-
cause this is true. But to say through which (shape and motion) and 
put together of this a  tought machine — is laughable … It is useless, 
uncertain, and unpleasent. But even if this were true, I don’t think that 
all [this] philosophy was worth an hour’s efforts.8

When I  talked about idealism of mathematics, I  made the remark that it 
dominates in periods of discovery. But I added that it has two forms: Pythagore-
ism and Platonism. Kepler was a Pythagorean while Descartes a  Platonist.

Up to Descartes’s time, we can look at the modern period as a  period of 
search for a way of expressing one’s views. But if this way was found, we saw 
that it contained no familiar themes. Descartes’s philosophy was sterilely pure, 
it did not touch any of our deeper convictions, and bypassed every subtlety that 
was inconvenient for itself. A  worldview was to emerge a  handful of obvious 
principles. Mathematics was to be a model for philosophy. Also, the philosophy 
was not revolutionary; this would give her color. It did not fight the past, it 
simply ignored it.

Subtle minds were not enthusiastic about Descartes. I  quoted Pascal. Fer-
mat did not see in what sense Descartes’s method was superior in geometry 
to the one he knew from the writings of Apollonius. Descartes was not ob-

	 8	 Blaise Pascal, Myśli. Warszawa 1953, p. 45. Translated by Abe Shenitzer.



ject to the formulation of the principle of inertia, in spite of the fact that he 
did not have the observational data that Galileo had before him. Speculative 
treatment of the principle of conservation led him to built a  cosmological 
theory in which apt conjectures are mixed with speculations on enigmatical 
whirls. The threads connecting the present with the past were broken. The 
world looked as if it had been created anew.
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What is proved today, was imagined yesterday.1
William Blake

In English the theory created by Newton is briefly called Calculus. On the 
continent, the translated version calculation would be insufficient. The tradition 
of the word was unknown. Anyway, calculation — taken literally — denied the 
essence of Newton’s discovery, a  discovery that made possible the avoidance 
of calculation in situations in which it seemed till now a necessity. One added: 
differential and integral, terms due to Leibniz, who discovered this a calculation 
in a way different from Newton’s.

●

Already Archimedes knew how to compute the area under the graph of 
function x2 over the segment of variable x from 0 to a, and obtained in his 
treatise On spirals the result a3/3. In the first half of the 17th century mathema-
ticians knew how to obtain the result an+1/(n +1) for the area under the graph 
of xn for natural exponents using Archimedes’s rigorous method.

This was done by Fermat by supplementing and extending Cavalieri’s ear-
lier proofs. Fermat went further by showing that the same formula holds for 
positive rational exponents. Toricelli pointed out the validity of the formula for 
negative exponents. We talked about these matters in the previous chapter. The 
methods were rigorous. One approximated the area from both sides, which was 
an advance compared to the method of exhaustion. Transition to limits were 
done in a  way modeled on Archimedes.

	 1	 Quotation after Czesław Miłosz, Ogród nauk. Lublin 1986, p. 46. Translated by Abe Shenitzer.

Chapter IX Calculus • Derivative of xn • Barrow’s observation 
as motivation for this computation • The role 
of the Calculators • The impetum theory as 
motivation • Philosophiae Naturalis Principia 
Mathematica and the theory of fluxions • 
Leibniz • Voltaire on Newton • Hypotheses 
non fingo?



142

●

But these calculations were individual works of art, in no connection with 
those discovered later by Newton. His were not calculations but a  theory that 
linked two, seemingly quite different notions — later known as integral and 
derivative by a  bold ultramathematical speculation.

One ascribes to many mathematicians of the middle of 17th century that 
while they stumbled, they were close to the neuralgic point, when one comes 
across it, it released an avalanche. Indeed, as we now see, all the elements of 
new theory were in principle ready. There were a  few of them. Newton was 
person who, at a  certain moment, had them all but one in his hands. Do we 
know which was this last missing element?

From the perspective of centuries we know that it was a  trifle: computing 
the derivative of the function xn.

The names used are outdated. Newton called a  magnitude that changed 
according to a definite rule a  fluent, and its rate of growth a  fluxion. He used 
the traditional terminology of the Calculators of Merton College. For the Cal-
culators a fluxion was an undefined magnitude. Newton defined it, but he was 
probably not the first who thought of this.

To obtain the rate of growth of the fluent f one had to compare its incre-
ments f(x + h) – f(x) with the increments h of the independent variable. We 
consider the quotient ( f(x + h) – f(x))/h of these increments and only then 
comes the problem. For Newton the quotients themselves presented a problem. 
It makes sense to speak on proportions of geometric and physical magnitudes 
only if they are of the same kind. There is a way of handling this difficulty.

This way is to determine in every range of the magnitude a unit. One can 
use the proportions with respect to this unit like numbers. Mathematical tra-
dition describes this way of looking at a  proportion to Newton. We speak of 
a  number in Newton’s sense. But one should exercise caution when assigning 
credit for this contribution to Newton, although the matter is described in just 
this way in his Arithmetica  Universalis. For it is difficult to rule out that this 
very notion of number was the unwritten motivation of Eudoxus, it does not 
seem that such an idea was foreign to Archimedes, and, in fact, Omar Khayyam 
is given credit for its formulation. And we do not know who first proved that 
the numbers in Newton’s sense — we will keep this name — are subject to 
the postulate of Archimedes and are therefore magnitudes in the Greek sense 
as well. Of course, we are talking of the period before Dedekind.

Thus Newton divided increments taking into consideration this mental 
construction.

If h is the increment of the variable x, then the increment of the magnitude 
xn is the magnitude
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(x + h)n – xn.

Raising the expression in brackets to the n-th power we obtain

(x + h)n – xn = xn + nxn–1 h + … + hn = nxn–1 h + …  ,

where the further terms contain higher powers of increment h. After division 
of the obtained increment by h we obtain

nxn–1 + …  ,

where the further terms contain as factors the powers h, h2, …  , hn–1 of h. In 
the limit they vanish. Hence the limit of the quotient ((x + h)n – xn)/h is the 
magnitude

nxn–1.

It represents the rate of increase of the magnitude xn depending on x.
The computation presented no difficulty whatsoever for a  mathematical 

giant like Newton. In fact, computing the power of a binomial and going over 
to a  limit presented no problems for educated mathematicians of that time. 
Nevertheless, no-one — it seems — had carried out this computation before 
Newton, and Newton himself did not think of it as trivial. The first part of 
ciphered code in which Newton put the essence of his discovery dealt with the 
issue of finding the fluxions given it is fluent. A certain difficulty was due to 
the fact that transition to the limit involved magnitudes that were the quotients 
of vanishing magnitudes and this could give the impression that limit is a quo-
tient of zero by zero. People without some mathematical education reproached 
Newton, and Newton defended himself against this reproach.

Newton’s conviction of the importance of this simple computation has two 
sources.

One source was pertained to computation of areas. One could look on the 
are under the graph of a  function f on the segment from a  to x as a  steam 
growing with the growth of the variable x. This way of looking at area was 
not new to either Cavalieri or his contemporaries, but here Barrow took an 
important step. He gave a proof of the intuitively accepted fact (mentioned here 
earlier), that the rate of growth of the area with respect to the variable x is the 
ordinate f(x), the longitude of the moving segment [0, f(x)].

Barrow’s reasoning.2 Let P(x) be the area under the graph of function f 
computed from a  to x. At the beginning a  the value of P is zero and then 

	 2	 Proof adapted from A. Youshkevich, Chrestomatija.
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grows. Consider the graph of P(x). Then, the rate of growth of P at x can be 
viewed as the tangent of angle which forms the osculate to the graph of P 
at the point A  = (x, f(x)) with the x-axis. This view was generally accepted 
by geometers.

To prove the announced theorem it suffices to show that the straight line l 
drawn from A = (x, f(x)) and forming with the x-axis the angle whose tangent 
if equal to f(x), turns out to osculate the graph of the function P at the point A 
(see Figure 87).

Fig. 87

In order to prove that the straight line l is really osculating to the graph of 
P at A, it is enough to know that the graph of P lies, except the point A above 
the straight line l. To do that, Barrow shows that the straight lines parallel to 
the x-axis and having the same direction as the x-axis, and not passing through 
A — cross firstly the graph of P and then the straight line l.

Let us consider one of such straight line; for definiteness, let it be the 
straight line passing below the point A. Let x', x' < x, be the abscissa of the 
point B' at which this straight line intersects the graph of function P; and let 
B be the point on this straight line whose abscissa is x, and B" the point at 
which it intersects the straight line l (see Figure 87). We have

AB/B"B = tan α,

whence B"B = 3/tan α = (P(x) – P(x'))/f(x) < f(x)(x – x')/f(x) = x – x'. The inequal-
ity B”B < x – x' shows that B" lies to the right of B', which was to be proved.

The source of the inequality was the fact that the area P(x) – P(x') under 
the graph under function f from x to x is smaller from the area of the rectangle 
with sides x – x' and f(x), and this is in turn followed from the inequality 
f(x') < f(x) (it was assumed that the function f is increasing).

If we acknowledge that the tangent of the angle of indication of the os-
culating line to the graph of a  function express the rate of its growth, then it 
follows from the Barrow’s reasoning that the rate of the increase the stream of 
the area under the graph of the function is equal to f(x) at point x.
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Later Newton liberated Barrow’s proof from evoking to tangents, taking it 
only from just mentioned inequality.

In Newton’s subsequent treatment the topic, the rate of increase of the area 
for a  fixed x was given by the expression

(P(x + h) – P(x))/h

for h tending to 0. The estimate hf(x) < P(x + h) – P(x) < hf(x + h) (monoto-
nicity of f is assumed) for positive h (for negative h inequalities are reversed), 
explained in the Figure 88 implies the estimate

f(x) < (P(x + h) – P(x))/h < f(x + h)

for the quotient. Since f(x + h) and f(x) came closer to one-another (continuity) 
for h tending to 0, we conclude that the limit of the quotient is f(x).

We know this reasoning from Newton’s manuscript (1664).

Fig. 88. The stream of the field and the rate of its growth

Newton knew Barrow’s reasoning from his lectures which he had listened 
to a  few years earlier. What inspired him was the possibility of translation of 
the problem of areas to the problem of tangents. The emergence of the differ-
ential quotient is far more natural in the context of tangents. As we can read 
in Boyer,3 later Leibniz confirmed this view.

During these lectures — wrote Barrow in his Geometrical Lectures, his 
friend (Newton) suggested to him the idea of determination of the tangent by 
computation. This idea involved the differential quotient and transition to the 
limit. Thus, if we are looking for a  moment of breakthrough, it may be this 
very one. This may be the source of the inspiration for the direct proof of the 
theorem for the rate of increase of the area quoted earlier and for the computa-
tion of the fluxion of xn.

Nor did Newton go much beyond what was realized at the time in his area 
of reasoning. It is certain that the result of his reasoning would have been no 

	 3	 Carl Boyer, Historia rachunku różniczkowego i  całkowego. Warszawa 1964, p.  233.
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surprise for either Cavalieri or Toricelli. It was only the combining of this with 
the computation of the fluxion of xn that created a  new situation.

Newton used Barrow’s theorem of the rate of the increase of area up to 
the area under xn. It increases at the rate xn. This rate of growth — he saw 
this — has the function xn–1/(n+1). He concluded: the area under xn also changes 
according to this formula. Counted from 0 to a  it is equal to an+1/(n+1), which 
agreed with the result obtained by using the method of Archimedes.

The reasoning was not justified mathematically. In the manuscript of 1671, 
not published at one later time, Newton formulated the postulate: fluents (be-
ginning with the same value) having the same fluxions are equal. This agreed 
with the second part of the ciphered sentence (mentioned earlier).

●

A  fluxion determines a  fluent — from a  fluxion one can reconstruct the 
fluent. The latter turn of phrase may seem to have been taken from Lebesgue, 
but it is none other than the postulate of Calculators known in Newton time for 
three hundred years, complemented by a  comment that for this reconstruction 
can serve — according to Barrow’s theorem — the area under the graph of 
function representing the fluxion, a  tool known to Oresme.

Functions which had the same derivatives everywhere and might differ 
by a  constant are not found in Newton. His constant was zero, since Newton 
considered functions with the same initial values. A function whose derivative 
was zero everywhere was an important special case that was the essence of 
the postulate. That such a  function is constant was proved by H. A. Schwarz 
in the second half of the 19th century. But this insight required that Dede-
kind and his contemporaries should validate what was called a  number in 
Newton sense.

If we focused on mathematics alone, Newton’s postulate would be difficult 
to justify. It contained as a  special case Cavalieri’s principle, who regarded 
the volumes of bodies to be the same if the rate of growth of these volumes, 
measured by the areas of sections due to a  plane sliding parallel were equal 
(see Figure 89).

Fig. 89. Cavalieri’s principle as a  special case of Newton’s postulate
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The only thing Cavalieri was aware of was mathematics. He couldn’t imag-
ing himself outside of mathematics. He looked in vain for an arithmetical proof 
of his principle. In antiquity, it was Democritus who acted in the sense of this 
principle, but his proofs were not accepted before they gained the support of 
rigorous proofs supplied by Archimedes. Why was it that Newton took this 
step, a  step that did not agree with the conscience of a  mathematician, while 
aware of this disagreement?

We will provide our own answer, because Newton provided none.
The mathematical analysis created by Newton — and this was the second 

source of Newton’s conviction on the importance of his computations — was 
not a  continuation of the mathematics of Ancients, a  mathematics that broke 
off with the work of Archimedes and then was reborn in the arithmetical flow 
represented in Europe first by Fibonacci and later by — among others  — 
Cardano, Viète, and Fermat, mathematicians we haven’t said a great their deal 
above. Newton’s analysis was a continuation of the ancient physics, the physics 
begun by Aristotle, which was was transformed in time of centuries into its 
opposite.

The Calculators and Oresme did not define speed but identified it with, im-
agined very generally, intensity of motion. They thought that the distance cov-
ered was the area under the graph of this intensity. Now Newton did the same. 
But whereas the Calculators and Oresme exploited their postulate only in the 
case of uniformly accelerated motion obtaining their famous law 1 : 3 : 5 : …  , 
Newton — owing to his computations with fluxions — could use this postu-
late with virtually no restrictions. With a  fluxion given by a  series of powers 
a + bx + cx2 + …  , finite or infinite, he recreated from it a fluent term by term.

●

This was kinematic. But the essence of Newton’s physics were his laws of 
dynamics.

Far over three hundred years before Newton, dynamics was ruled by the 
theory of impetus. In its embrional state, at the time of Filopon of Alexan-
dria, the theory of impetus limited itself to take assertion that the impetus of 
a  moving body is measured by the amount of force placed into the body by 
the author of the motion at its initial moment.

The impetus of a body is preserved if there is no force that counteracts it.
A sharpening wheel once set going and encountering virtually no resistance 

to its motion was an illustration of that law.
Two factors are included in the magnitude of impetus of rotational motion: 

the speed of rotation and inertia of the solid. We now measure this inertia by 
the so-called moment of inertia with respect to the axis of rotation. For general 
considerations not all details are important. This second factor is connected not 
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only with the mass of the body but also with the shape of the body and the 
position in the body the axis of rotation.

Another illustration of the law of preservation of the impetus was the mo-
tion of the sky, which preserved the impetus bestowed on by the Creator on 
the day of creation.

In Buridan’s time — the 14th century — there already existed sufficiently 
precise notions of the nature of the impetus and of how one was to think of 
the packing of force into body (not only at initial moment, but continuously 
during the motion).

The motion of a  projectile created an opportunity for thinking through 
the growth of impetus in the phase of free fall. The force creating the fall is 
weight. It is the same at every moment of the motion. Hence the amount of 
force packed into the projectile increases uniformly with time. During that 
time, force, that is, impetus, and thus speed, increases additively in the same 
way, uniformly, and it is this that is observed. What stays is agreement with 
Aristotle principle that speed is proportional to force, with the precise that the 
force involved is the summarized force, that is, the force packed into the body 
up to the particular moment.

The force packed into the body need not be constant. If it weakens, then 
the rate of growth of impetus decreases; if the force increases, so too does the 
rate. Thus the rate of growth of impetus is quantitatively none other than the 
magnitude of the force packed at a  given moment. Impetus, and thus speed, 
grows in time like the area under the graph of the force (see Figures 90 and 
91). In view of Barrow’s theorem, we can say that the force acting at a  given 
on the body is the derivative of the impetus.

                
Fig. 90. Increase of impetus if the force is	  Fig. 91. Increase of impetus if the force is not
              constant				                  constant

So, in the theory of impetus we see the speed is an integral. We are used 
to seeing the speed as a  derivative. But this is a  digression.

Two factors influence the impetus in the motion of a  projectile — and 
more general — in a  linear motion. One is mass, a  thing difficult to define 
but supposed to measure the amount of matter, an abstract, manifested in the 
Earth conditions as the weight, also called inertia. The other is the speed. For 
a  given body, mass does not change during motion. Hence the derivative of 
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the impetus is proportional to the derivative of speed, called acceleration, the 
growth of speed.

Comparing the two computations of the derivative of the impetus we infer 
that acceleration p of the body is proportional to the acting force, which is 
Newton’s second law of dynamics written usually as

m  p = F,

where m is the mass of the body. The symbolism is anachronous, the notion 
of acceleration does not appear in Principia.

The beginning of these arguments goes back to Buridan and his contempo-
raries. The ending is Newton’s. But the nature of the reasoning is the same all 
the time. There is no jump transition between the dynamics of the Scholastics 
and dynamics of Newton. What does grow is the means of drawing conclu-
sions, and the certainty that the conclusions reached are the one expected from 
the viewpoint of physics.

Newton was the first who could know the whole of this reasoning. It was 
based on theorems and postulates of the Calculus and provided a basis for the 
development of his science of motion. This was more than enough motivation 
to built the Calculus into the structure of mathematics. The most essential 
place in Newton’s theory was the possibility of reproduction of the fluent from 
its fluxion. It was was also the weak place mathematically. So, he expressed 
a postulate assured the uniqueness of the result. Newton knew that this postulate 
is a  key to his mechanics. He knew that these problems consisted of recrea-
tion the covered road from the known instant speeds, and the speeds from 
the accelerations, which were known magnitudes in these problems, equal to 
known forces. The force of gravitation — with the square of the distance in 
the denominator — combined with the calculus of fluxion and fluent, recreated 
flawlessly the motion of the planets!

Newton treated his system of mechanics and Calculus as a  continuation 
of Euclid enlarged by the science of motion. He declared in the introduction 
of his Philosophiae Naturalis Principia Mathematica that the geometry of 
the Ancients is part of mechanics. We did not base this view not on this 
declaration alone. It is confirmed by the whole development of geometry and 
mechanics, arbitrarily divided by Plato in antiquity. Later Aristotle accepted 
this division because he saw no other way of dealing with Zeno’s difficulties, 
and thus reduced role of mathematics in geometry to the study of motionless 
figures. Euclid axiomatized this limited range of geometry without forget-
ting that he was axiomatizing properties of physical world. While it is true 
that parallel postulate and the postulate later called Archimedes’s postulate 
yielded formal — and also some arithmetical — advantages, their physical 
motivations were clear.
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The science of motion remained outside this mathematization as well as 
those geometrical constructions in which motion appeared as an auxiliary 
mental construction. I  have in mind, say curves interpreted kinematically.

Now Newton combined these hitherto divided streams, by adding the axi-
oms of the science of motion to the axioms of geometry.

We know that two hundred years later mathematics, concerned about the 
purity of methods, was to annex a  large part of Newton’s analysis and carry 
out its arithmetization. Strictly speaking, it would annex everything, leaving 
to physics only the problem of applicability of this by then already purely ar-
ithmetical theory, and that Einstein would be the last person who defended the 
former oneness (see Figure 92).

Fig. 92. Newton’s place in mathematics and physics

Others, who failed to see this unity would make magic use of mathematics 
in the study of nature. We need only recall Tartaglia, who rounded the path 
of a  projectile. That this happened god knows how many centuries ago is of 
no significance.

●

Newton studied in Cambridge and attended lectures by Barrow from whom 
he may have taken over the kinematic viewpoint on analysis, a term that came 
into use at that time for the description of the whole of algebra. Kinematic 
approach belonged to the British tradition and many were found in written 
works. Newton read Aristotle critically, knews his treatises on motion, and as 
a  young man knew the theory of impetus. He invented the principles of the 
theory of fluxions and of mechanics in the years 1665—1666, when the fear of 
the plague made him led Cambridge and return to his village home. For some 
time only Barrow knew on the discoveries of his student. He was disturbed 
when Collins4 sent him from London a copy of Mercator’s Logarithmotechnia, 
which included a  power series expansion of the logarithm. Barrow knew that 

	 4	 A Londoner — known as a  correspondent with many scientists.
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Newton obtained this expansion as well as a  number of others (such as the 
binomial series) by his method of fluxions a  few years earlier. He appealed 
to Newton not to delay the publication of his results. This was the origin of 
Newton’s manuscript De analysi of 1669. It was this manuscript that Leibniz 
may have seen when he stayed in London in 1673.

The manuscript was brief and contained little beyond computations involv-
ing series. It contained just fragments of the theory of fluxions such as the 
computation of the fluxion of xn. One cannot claim that with certainty that this 
manuscript conveyed more information to Leibniz than did his earlier reading 
of Pascal and Barrow, and possibly the works of other authors.

A  few years later Leibniz formulated the principles of his computing sys-
tem. When Newton was informed of this, he admitted that Leibniz independ-
ently discovered what he, Newton, had discovered somewhat earlier. But when 
Leibniz insisted on explanations of what these earlier discoveries were about, 
Newton replied by a short ciphered note transmitted by Oldenburg — secretary 
of the Royal Society — and explained later that by then the theory of fluxions 
was of little interest to him.

●

Newton’s main work, Principia,5 was also the result of pressure applied 
to him, this time by Halley who was interested in deducing from the law of 
gravitation (with inverse squares) Kepler’s law of the motion of planets.

Principia is not an uniform work, but this lack of uniformity is the result of 
conscious contrasting of its different parts. Principia consists of three volumes 
and a  separate introduction containing the Laws of motion — Axiomata sive 
leges motus — with the principles of dynamics best known to all, preceded by 
a chapter that explain the concept of time, space, mass, force, and the amount 
of motion. The exposition is in spirit of Euclid — postulational. This part of 
work contained no formula with the exception of a  few found in commentar-
ies. It seems that this was the work of a  Cambridge scholar who lived two or 
three centuries earlier.

Book I contains the theory of the motion of the planets, and it is this book 
that is pregnant with the meaning. Book II deals with special motions and 
takes into consideration the resistance of the medium. Book III is, on the one 
hand, an epilogue of Principia, with famous hypotheses non fingo, and in the 
principal part it is a confrontation between Newton the physicist with Newton 
the mathematician. Theorems of mathematical nature from Book I  are here 
subjected to verification in non-ideal conditions.
	 5	 Philosophiae Naturalis Principia Mathematica. Autore Js. Newton. Trin. Co. Cantab. 
Soc. Matheseos Professore Lucasiano, Societatis Regalis Solidi, Imprimatur J. Pepys, Reg. Soc. 
Praeses, Julii 5, 1686. Londini…
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There was one other author who could conduct a  large-scale discourse 
against his own theses. Newton’s language, in the non-mathematical parts of 
Principia, is the language of Aristotle. Like Aristotle, Newton did not put 
mathematics above physics.

It is not the aim of this sketch to present the mathematical content of 
Principia. But let us give an exception for some comments concerning Book I.

The Book is entered by the geometrical proof in the spirit of infinitesimals 
that the trajectory of the planet is planar. More precisely the plane in which 
the planet moves is determined by its state of movement at a  given moment 
of time — call this moment the initial moment — by two rays going from the 
position of the planet: one of which coincides with the instant velocity of the 
planet at this fixed moment, the other is directed from this position to the Sun, 
the center of attraction. This attraction, if is not colinear with the mentioned 
above initial velocity, made the trajectory curvilinear the planarity of which 
is not obvious.

The proof consists in the showing that this initial plane is preserved in time. 
The proof — illustrated by a  picture — if we abstract from the invention for 
reducing reasoning to the simple geometrical considerations — is available to 
a broad range of educated people. Add that the reasoning concerning planarity 
gives at the same time the proof of Kepler’s second law concerning the areas.

The planarity of trajectory of the planet is the key point for further reason-
ing which shows the elliptic character of the trajectory locating the Sun in the 
focus of the ellipse. Only the planar mathematical tools are needed in form of 
polar coordinates with the centre at the Sun.

Let us leef through some fragments of Principia those which concern the 
Calculus and the theory of impetus.

Dependence of the theory of impetus is confirmed by the formulation of the 
second law: the change of the amount of motion is proportional to the applied 
force. Newton does not explain the meaning of words. They must have been well 
known. We knew that they had been known for a  few centuries. Commentary 
adds when a  body falls, the force of mass, functioning in the same way, give 
that body equal amounts of motion, and therefore equal speeds. As a  result, 
during the duration of the motion the magnitude of the acquired amount of 
motion, and thus of speed, will be proportional to time. This sequence given 
the impression of having been taking out of the theory of impetus but Newton 
quotes only Galileo.

A  telling trifle that attests to the connection with the past are paragraphs 
in the proof of lemma X in the chapter On the motion of bodies. They pertain 
to kinematics, although Newton managed to convolute the text so that forces 
appeared in it.

“Lemma X. Distances traversed by a body under the influence of any force, 
regardless of whether it is constant, increase or decrease in a continuous man-
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ner, will, at the beginning of the motion, be proportional to the squares of the 
times.

Fig. 93

Proof. Assume that the times are represented by the lengths AD, AE (Fig-
ure 92), the speeds resulting from the forces by ordinates BD, EC; then the 
distances covered will be proportional to the areas ABD and ACE described by 
these ordinates. At the very beginning of the motion, on the basis of lemma IX, 
they are proportional to the squares AD and AE.”

The utilized premise is not other than a  conclusion from the postulate of 
Calculators. The fact that at the very beginning of the motion the instances are 
proportional to the squares of times is a mental abbreviation of two premises: 
(1) at the beginning of the motion we may assume that the speed increases 
uniformly, and that (2) the square of time from the formula of Oresme and 
Galileo turns up.

The reasoning must be obvious for Newton, because in the ling commentary 
not a  word is said about this topic. The commentary pertains to the limit of 
a  quotient when the numerator and denominator tend to zero. The matter was 
new, and so called for a  commentary.

In the second half of Principia the use of analysis becomes more pro-
nounced. Newton computes the derivative of a  product. From the published 
commentary we find out that his Calculus is dated by the debate in the year 
1671. This commentary is different in the edition III than in the two earlier 
ones. In edition III Newton writes about the influence de Sluzy and Hudden 
had on him and made no mention of Leibniz. In the first edition he writes 
about Leibniz as the person who also discovered a calculus different from his 
own by symbols and terminology.

Only in 1704 in the treatise The quadratura curvarum did Newton publish 
somewhat larger fragment of his theory of fluxions, written a long time before, 
in which he described ways of “determination of magnitudes on the basis of 
knowledge of the speed with which they are created while increasing.” He be-
gins with an explanation of what is to be meant by a fluxion, getting entangled 
in its connections with the property of tangent; he gives as an example the 
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known computation of the fluxion for the fluent xn. He writes of the inverse 
problem: “The reconstruction of fluents from their fluxions is a  more diffi-
cult problem, equivalent to the quadrature of curves,” and then… carries out 
a number of computations of the fluent of fluxions given by rational expression 
(directly, obeying the connection with quadratures).

The essence of the discovery is still in manuscript form. It was made avail-
able to mathematicians but it was first published in 1711 in Latin and in 1736 in 
English as The method of fluxions and infinite series. In this manuscript Newton 
gave the axiomatic foundations of analysis. The most important axiom stated 
that magnitudes jointly initiated and created by the same fluxions are equal.

While there are many traces that point to the dependence of Newton’s 
thought what was generally accepted for a  few centuries, there are no precise 
proofs to this effect. Nor can there, in all likelihood, be such proofs, because 
the discoverer is usually unaware of this kind of dependence. About his de-
pendence on Barrow Newton wrote in 1713:

… doctor Barrow lectures could influence me to consider a creation of 
figures by motion, but by now I  do not remember any of this.

Elsewhere he wrote:

I  stood on the shoulders of giants.

But he did not say whom he had in mind.
Newton devoted much space to warnings against improper understanding 

of fluxions. He wrote (in Principia):

… I regard it as proper to reduce proofs to sums and quotients of van-
ishing magnitudes … Using this method one obtains the same results 
as those obtained by the use of indivisibles. Notwithstanding this, if in 
the sequel I  treat sufficiently small pieces of curves as segments, then 
one must realize that these are not indivisibles but vanishing divisible 
magnitudes, and that what appears there are not … quotients of these 
indivisibles, but … limits of quotients of vanishing magnitudes.

There must have appeared objections, because further one we read:

They object and say that for vanishing magnitudes there exist no 
“limiting quotients” because the quotient of these magnitudes, before 
they vanished, is not a  limiting quotient, and after their vanishing is 
not a  quotient.
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There follow long explanations in which Newton himself gets entangled. 
Small wonder. He was explaining things obvious to himself, forced to use 
a  language his opponents could understand.

It is interesting that he had not regard his method of limits as the only cor-
rect one but as a  method that was more subtle and more likely to protect one 
from making mistakes. Newton know that no matter how correctly he computed 
his fluxions, he had no means of proving that — and above all how — they 
recreated fluents. He did not condemn Leibniz for giving up on explanations 
and merely noting the rules of his algorithm.

The dispute with Leibniz had a  human basis, but the only thing that can 
interest us is its mathematical background.

●

Newton was undoubtedly the first. But a  year before his stay in London, 
where he could set his acquainted with Newton’s manuscript, Leibniz was in 
Paris, and was thus exposed to two sources of inspiration. The form of his ver-
sion of the differential and integral calculus was attested to French influences. 
In the language of mathematics this meant arithmetic and formal-geometric 
influences, with the problem of tangents in the key position. Leibniz wrote 
that he was influenced by a  paper of Pascal.

When he first tackled the work which eventually led to his own discovery 
of analysis, Leibniz was not yet an educated mathematician. His profession was 
diplomacy, and the sum of his achievements belonged to philosophy rather than 
mathematics. The discovery of the calculus was just one episode in his life.

Unlike Newton, who moved towards his discovery by following the wide 
road trodden first built by Aristotle and trodden by Scholastics and Galileo, 
Leibniz seemed to work first in a narrow range of problems of a strictly math-
ematical nature.

In Pascal’s paper just mentioned Leibniz found a  drawing which he later 
found again in Barrow’s work.

Consider the tangent to the graph of a function f at a point A with abscissa 
x (see Figure 94). Let B be the point of intersection of the x-axis and C the 
projection of the point A  on this axis. The quotient f(x)/BC is the tangent of 
the angle formed by the tangent with the x-axis.

Leibniz claimed that nothing prevented one from stating that this quotient 
was equal to the quotient df(x)/dx, where dx was a sufficiently small increment 
of the variable from x to x + dx and df(x) was the increment of the function cor-
responding to the segment from x to x + dx, that is the difference f(x + dx) – f(x). 
This assertion has the nature of a postulate, and is motivated by the similarity 
between the triangles in the mentioned drawing of Pascal (Figure 94), provided 
that one can ignore the difference between a  triangle with sides dx and df(x) 
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and a  triangle with sides dx and dy, where dy is the increment of the ordinate 
along the tangent.

Fig. 94

The angle formed by the tangent with the x-axis was a uniquely determined 
magnitude depending solely on the abscissa of the point of tangency (which 
does not contradict the fact that we may not knew how compute this angle). 
Hence, if Leibniz postulated that the tangent of this angle was equal to df(x)/dx 
for sufficiently small dx, he was thereby assuming that the quotient df(x)/dx did 
not depend on dx (!) if the magnitudes dx are sufficiently small. This already 
implied that the Leibniz quotient df(x)/dx could not be take literally, but that 
this was a  magnitude determined by the quotients of all the quotients of the 
increments independent of the concrete sufficiently small increment dx.

All this point Newton made use of transition to a  limit. Leibniz acted dif-
ferently.

In his New method of maxima and minima — his first publication in analy-
sis — printed late, namely in 1684, Leibniz provided no motivations whatsoever 
but stated an algorithm for the computation of df(x)/dx. He called this algorithm 
a  differential algorithm. He assumed that if f = const, then df(x)/dx = 0 eve-
rywhere. Then came the well-known rules for d( fg)/dx and d( f/g)/dx, which, 
given the obvious df(x)/dx = 1 if (we always have) f(x) = x, were the starting 
point for the calculus. The equality dxa/dx = axa–1, for a being fraction of whole 
numbers, was for Leibniz a  separate formula.

Leibniz’s axiomatic approach was logically correct. What required comment 
was the motivation for the axioms.

The most suitable motivation would have been the one given hundred years 
later by Lagrange in his Analyse algébrique. Lagrange assumed that the incre-
ment df(x) of a  function f from x to x + dx could be expressed in the form

df(x) = f(x + dx) – f(x) = a  dx + b  (dx)2 + …

and that the magnitude looked f or by Leibniz was the coefficient a at the first 
power of dx. This magnitude, called by Lagrange the derivative and denoted 
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by f'(x), is determined by its role in the power series which expresses the in-
crement df(x).

The coefficients a, b, … depend only on x if dx is sufficiently small. The 
postulated single-valuedness made commutations possible. For example,

dx2 = (x + dx)2 – x2 = 2x  dx + (dx)2,

hence f'(x) = 2x if f(x) = x2.
The verification of Leibniz’s postulates pertaining to d( fg) and d( f/g) con-

sists, in the first case, in multiplication, and in the second case on a  division, 
of appropriate series. The results are series for the required magnitudes. The 
ability to expand in a  series an expression of the form (x + dx)a, where a  is 
quotient of whole numbers, is needed to verify the last ot the mentioned pos-
tulates of Leibniz.

The Lagrange motivation requires of the function that, for sufficiently small 
increments of the variable x it have an expansion in a  series of their powers. 
This was a conscious limitation of the range of the function made by Lagrange 
so as to motivate the differential calculus algebraically, “avoiding all considera-
tions of infinitely small and vanishing magnitudes, limits and fluxions.”

In the meantime — in his later discussions — Leibniz and the mathemati-
cians whose education followed his approach began to motivate the differential 
calculus by claiming the actual existence of dx-s so small that the quotient 
df(x)/dx is independent of dx. We are now fully tolerant towards such explana-
tions knowing after centuries that they not led to errors.

The recognition of Leibniz’s dx’s — called infinitely small — as really 
mathematically existing, led to admitting their use in computations. Our moti-
vational reasoning with dx2 led then to (dx2)/dx = 2x + dx. Treating this equality 
literally, one usually infer dx2/dx = 2x, treating dx as really sufficiently small. If 
we recognize our motivational reasoning as mathematical proof, then we end up 
in realm of misunderstandings that followed mathematicians for two centuries 
from Leibniz to the last scores of years of the 19th century.

●

George Berkeley had an easy task tracking in his The Analyst (1734) il-
logicalities of the new system of calculations. His criticism was not profound. 
Without trying to reach the essence of the differential calculus, he tried in one 
of his polemics to convince the readers that the only reason errors lead in analy-
sis to correct results is that imposed on one-another they eliminate an-another. 
His sharp pen, which went from mathematics to polemics that interested the 
larger readership, brought Berkeley a great deal of notoriety. He criticized the 
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advocates of Newton’s method — as closer to himself — but this was actually 
a  criticism of Leibniz’s method.

As a  pretext of his critique Berkeley made use of a  fragment of Newton’s 
Principia dealing with the computation of the fluxion of the product AB of 
two given fluents.

And it happened that — without realizing it — Berkeley found a  mistake 
made by Newton. Newton wrote in Principia:

Let AB be a  rectangle (Figure 95), that grows with time. At the moment 
that its sides were smaller by moments a/2 and b/2, its area was

(A  – a/2) (A  – b/2) = AB – aB/2 – bA/2 + ab/4.

Fig. 95

After increasing its sides by moments a/2 and b/2 its area increased to 
(A + b/2) (B + b/2) = AB + aB/2 + bA/2 + ab/4. After subtraction we obtain aB + bA. 
After division by the increment of time and transition to the limit with the 
obtained result, Newton would obtain

A*B + B*A,

where the dot indicated a  fluxion.

However, higher order infinitesimals — ab/4 — rejected each other out 
and the problem of rejecting them has not appeared (!). We know that New-
ton computed not the derivative but the limit of an expression of the form 
( f(x  +  h)  –  f(x – h))/2h (called now symmetric derivative) which may exist 
without the existence of the derivative. This error was at that time without 
significance, because in the range of functions under consideration no example 
confirming the error could be found.

Leibniz’s first computation — mentioned earlier — we saw that he too did 
not treat infinitesimals there literally but as an algorithmical fiction (recall our 
comments about atomism of Ancients) that motivated the formal computational 
rule.
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But we cannot justify Leibniz at all times. Infinitesimals began to turn 
up in his computations that were not just motivational. It is possible that this 
happened in spite of Leibniz; initial intentions.

We recall that Newton accepted it as a  postulate that a  fluxion determi-
nated a fluent if the initial value of the fluent (most frequently zero) was given. 
Leibniz provided a proof. He viewed the increase of a function (the Newtonian 
fluent) as a sum of increments of f'(x)dx. Instead of writing “sum” he used the 
symbol “S” which he later replaced by “∫.” He obtained ∫ f(x)dx as the increment 
of a  function on a given interval. If the interval had bounds a  and b, then the 
increment was also expressed by the difference f(b) – f(a). Hence the formula

(*)    f(b) – f(a) = ∫
b

a
  f'(x)dx,

which expresses what we call the fundamental theorem of the differential and 
integral calculus. Leibniz himself began to call the summing operation inte-
gration.

We see that there is no proof have but the expression of a  conviction.
Let us look at the consequences of the formula (*). If g is a  function 

such that invariably g'(x) = f'(x) then g(b) – g(a) = f(b) – f(a). If a  is fixed, 
it follows that the difference g(b) – f(b) is the same for all b, as b was taken 
arbitrarily, that is the functions f and g differ by a  constant.

In this way we obtain Newton’s postulate. In view of our previous comment, 
the formula (*) from which it was deduced must also be viewed as nothing but 
a  postulate. This postulate implies not only the postulate of the Calculators, 
assuring the uniqueness of the fluent, but also confirming it reconstruction by 
the operation of integration of the fluxion asserted already by Oresme and the 
Calculators, and confirmed by the proof by Barrow. Thus the load of postula-
tional tools is in Leibniz’s approach bigger than that in Newton’s.

The following fragment shows “non-sharply” this was stated by Leibniz 
himself:6

It will be better to write ∫ ydy instead of Cavalieri’s ‘totality’ and his 
‘sum of all y’. There appears new kind of computation which stands 
in a  relation of analogy to addition and multiplication. On the other 
hand, if, for example, ∫ ydy = ½ y2 is given, then on the basis of the 
second one of the calculations, we get back d(½ y2). While ∫ increases 
dimension, d decreases it. The symbol ∫ stands for a  sum and d for 
a  difference.

	 6	 Quoted after Carl Boyer, Historia, p. 292.
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This was written early, in 1675, but it gives us an idea of Leibniz’s later 
style as well, and his philosophy of the use of mathematics, impressed in the 
search of universal principles and algorithms, in attempts to search in formal 
logic — which he credited — forces of discovery.

But Leibniz’s key merit was that thanks to him, to his publications an per-
sonal influence European mathematicians got to knew the new calculus. John 
Bernoulli — Jacob’s younger brother and Daniel’s father — thought of himself 
as Leibniz’s student, and so too did marquis de l’Hospital, author of the first 
book of calculus on the differential and integral calculus, published in 1696. 
John Bernoulli’s soon-to-be student Leonhard Euler. They were to create a line 
of development of mathematics that was “fathered” by Leibniz.

The priority argument ended with a verdict in London which was negative 
to Leibniz. But the absurdity of argumentation and the arbitrary nature of the 
verdict turned out to be embarrassing for the Londoners.

●

Leibniz’s versatility was astonishing: he was a diplomat in the service of the 
prince of Hanover but, above all, a  philosopher. He was a  polyglot. He wrote 
many letters, in fact philosophical sketches.

Mathematics is not an isolated system. Considerations of the nature of 
mathematics — if they are to form a cohesive whole — must take off from its 
rim. It is not enough to pay attention only to sources of discoveries and they 
applications. The state of the minds in a  given epoch, the social situation of 
the creators, and the psychological aspects of companying discoveries are all 
important. All these must be paid attention to if we want to explain the differ-
ences between the mathematics of Newton and Leibniz. One more seemingly 
unimportant detail to be considered is the difference between the British Isles 
and the continent.

As regards learning, the 18th century on the continent was still the age 
of brilliant dilettantes. After the Renaissance and Reformation learning went 
beyond the universities. Leibniz — let’s also recall Descartes — was not 
a  university professor. He traveled, corresponded, talked, published using his 
own means or taking advantage of mecenats. He was a doctor of laws. But in 
addition to law, he took an interest in history, physics, chemistry, and theology, 
provided we speak of these disciplines with a  measure of tolerance. The stay 
in Paris brought him in contact with mathematics.

There are reasons to assure that his motivation for his study of analysis via 
the infinity small had some connection with the “small animalcules,” discovered 
by the use of microscope by Loevenhook, because he warned Bernoulli against 
such comparisons. He himself did not stay away from them.
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He wrote:7

To make our reasoning more understandable … it is enough to imagine 
magnitudes incomparably larger or incomparably smaller than ours. 
A  particle of magnetic matter that passed through glass cannot be 
compared with a grain of sand, and the grain of sand with the Earth, 
and the Earth with the horizon.

This gradation of worlds according to magnitudes of such great span that 
these worlds have no contact with one-another is analogous to the orders of 
magnitude if infinitely small h, h2, … Leibniz’s speculations resembles in some 
sense the speculations of Descartes, whose philosophy was briefly described 
by Voltaire,8 who did not care for it:

The universe is completely filled by matter consisting of three kinds 
of corpuscles. The smallest form the so-called “element of fire”; the 
second — of air-thicker particles; the round — heavier — form ele-
ments of earth.

Leibniz’s speculations on the subject matter and space are found in his 
theory of monads. The monads fill out a substance by adhering closely to one-
another. They are active and have individualities. They play the role of atoms, 
each is a  world of its own that reflect the macrocosm. The kind and manner 
in which the monads combine and form substances decide of the specific their 
properties. Voltaire, who was not much of an admirer of Leibniz’s theory of 
monad made biting remarks about it. One of them he ascribed to mathemati-
cians around Newton, who had their own reason for fighting Leibniz. For this 
one needs little inventiveness. But, let us quote a Leibniz’s fragment taken out 
of context of his Monadology:

Just like as the same city, looked at from different directions seems 
different to us every time, so too as a  result of the infinity of simple 
substances there exist an infinity of different worlds, which are nev-
ertheless views of one and the same, depending on the viewpoint of 
the monad itself.

The concept of a monad as a primitive particle that reflects the universe is 
found in the writings of Giordano Bruno and goes to Plato.
	 7	 A  letter to Varignon, 1702. Translated by Abe Shenitzer.
	 8	 Voltaire, Elementy filozofii Newtona [Elements of Newton’s philosophy]. Warszawa 1956, 
p. 46 — sketches edited in several forms and devoted to actual scientific events. All quotations 
here translated by Abe Shenitzer.
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The fanciful variant of this theory in the work of Leibniz was the crea-
tion of this epoch. Matter under the microscope turned out to be full of life. 
Imagination suggested that this insight into microworld might be endless.

Fig. 96

Could Leibniz imagine his monads in this way? The sketch (Figure 96) 
agrees with the claim that every monad is the whole surrounding world. Leib-
niz wrote:

… is it not better to imagine space … filled with matter capable of di-
viding and actually dividing ad infinitum by divisions and subdivisions.

Nevertheless, we find here Leibniz’s links to the heritage of the past. How-
ever vague the notion of a monad, it protected Leibniz from thinking of space 
as built of points. Leibniz wrote that when he was still not perfect in geometry, 
he would convince himself that the continuum was made up of points, but that 
after learning geometry he gave up this idea.

For Leibniz space is made up of parts in different ways, in granulations 
belonging to different hierarchies. Owing to this variety, monads can always 
find a  place for themselves in a  part of appropriate dimension and shape. 
This sounds similar to the views of Bradwardine and similar to the views 
of modern topologists of geometric orientation who look at continua through 
their decompositions into finer continua, and where only the full hierarchy 
of these decompositions designates the construction of the whole.

The monads may have been Leibniz’s objection to the dead and empty space 
proposed by Newton. Owing the monads, Leibniz’s space has a  definite local 
structure. The monads are not in it a shapeless aggregate that came into being 
by accident — per accidens — but form an “internal union” — unum per se — 
as Leibniz says in the manner of the Scholastics and Aristotle, he was excited 
by Swineshead (Suisseth). But we do not see in this repetition a connection that 
is a continuation. Modern mathematicians too, looking at space as at a system 
of ever finer cell structures, say simplicial, have not, it seems, borrowed this 
from Leibniz. The same ideas can arise independently.
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●

The dependence of views on mathematics on natural doctrines relevant at 
a given time, and even fashions connected with these doctrines was not a char-
acteristic of just the 17th century. Poincaré writes in Science and hypothesis 
that “The mind adjusted itself by natural selection to conditions of the external 
world … and accepted the geometry most profitable for the species.”

The beginning of the 20th century was the period of fighting Darwinism 
and “natural selection” and “species” were words belonging to the “newspeak” 
of that time.

From times immemorial we find fantastic speculations in the inquiries of 
philosophers. They are characteristic for epochs called young by some and 
barbaric by others. Epochs when it seems that the world is being created anew. 
When we turn the pages of the works of Bruno and Descartes we get the im-
pression that the world of earlier epochs did not exist for them. This is what 
happens after great revolutions. If we ignore snobbish returns to the traditions 
to antiquity, then we feel to this very day this destruction of the connections 
with the past which we observe in the 17th century. It seems — and this hap-
pened sometime in the 16th century — that there took place in Europe a social 
and intellectual revolutions on a  scale greater than the revolutions history has 
called great.

We omitted Leibniz in the above digression, though there are some causes 
to join him to the list. Yet, we cannot forget Leibniz’s philosophy metaphors 
which were later adapted by us to express our difficult and subtle impressions. 
Are we monads ourselves, the monads, who being “without doors and windows” 
are deprived of full contacts one-to-other and are embedded closely in their 
inner? Are we really ruled by the Greatest Monad? Or this is only our illu-
sion. In our everyday life we are in contact with monad-sisters only by means 
of an amount of symbols, the collection of them is called a  language, and by 
some of us, in some of its parts, called mathematics. The metaphor of a  town 
populated by monads who looked on it, each of them differently, resembles us 
that our views of the world depend on the state of our place in the macrocosm.

In what we have said here about Leibniz’s monads there is more sarcasm 
than positivity. As mathematicians, we have tolerance for ideas in statu na-
scendi, which by nature are not very precise. But our view of the world, of 
including the rational one of which we are so proud, had just such beginnings. 
There are deeper layers in Leibniz’s philosophy about which we mentioned 
only some words. According to Leibniz, every monad reflects the world in its 
own way. Hence there are as many worlds as there are monads. This thought 
was later revived in many philosophical systems, and most maturely in the 
philosophy of Kant.
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●

The center of the scientific life on the continent was Paris. Scholars turned 
up in Paris for contact with one-another. This notwithstanding, the most popular 
means of communication was a  letter. Marin Mersenne (1588—1648), a  lover 
of learning corresponded with all eminent mathematicians of his time. One 
could address one’s letter to Mersenne and he sent the letter to the proper 
addressee. This kind of contact became later a  journal. It came into being as 
Journal of Scavans. At the same time the Royal Scientific Society was founded 
in London. In Newton’s time John Collins played the same role that Mersenne 
played in earlier times in Paris. If Leibniz wanted to contact Newton he would 
send a  letter to Collins, and later tom Oldenburg, founder of the Philosophical 
Transactions, and he would send the letter to Newton. In the times of Newton 
and Leibniz the era of brilliant dilettantes was about to end and there began 
the period of scientific Societies.

In the British Isles the universities continued to play a dominant role. New-
ton’s life was lived in the small space between London and Cambridge, where 
Newton took over Barrow’s position (1669) in Trinity College. We might add 
the nearly home town Gratham. Only Kant exceeded Newton in this respect. 
If we don’t count the years of his collaboration with Barrow, then we can say 
that Newton worked alone. Later the Royal Society in London provided him 
contacts with other scholars, such as Edmund Halley, Christopher Wren, and 
Robert Hooke. After the publication of the Principia he distanced himself from 
mathematics. He developed a passion to chemistry. Towards the end of his life 
he devoted himself to biblical chronology.

Fame came to him late but come it did. He became a  member of parlia-
ment. From 1703 on he was president of the Royal Society. He was difficult 
along with. He died in 1727 and was solemnly buried in Westminster Abbey 
in London.

The life of Leibniz was anything but a mirror image of the life of Newton. 
He constantly traveled all over Europe, being famous when young, but he died 
forgotten.

Newton did not philosophize. “Hypotheses non fingo” wrote in Principia. 
The followers of Descartes criticized him because he did not explain what were 
the forces of gravitation, and way he did not explain their functioning by other 
mechanisms, for example, the action of suitable particles, leading these forces 
in the category of so-called hidden forces. But Newton defended himself against 
the need to provide explanations by fictional existences. We quote Voltaire:

If someone asked which views Newton accepted it would be appropri-
ate to answer that he accepted none. Then what kind of knowledge 



165

had that person who subjected infinity to computation and discovered 
laws of gravitation? He had a  knowledge of doubting.

Fig. 97. Newton, Leibniz, Kant

Hypotheses non fingo — in these words one senses a note of superiority. But 
also a note of disappointment. It is difficult to acquire complete knowledge of 
the world that is being discovered. Thus virtue is a necessity. Voltaire — quoted 
earlier several times — presented Newton’s inner monologue in these words:

My situation is different from that of Ancients; when they saw water 
rising in pipes they used to say that it does this out of fear of the 
vacuum; whereas I  am in the position of a  person who first noticed 
that water rises in pipes but left the explanation of the cause to others.

Anatomist who first said that the arm moves as a result of the contrac-
tion of muscles disclosed to people an undeniable truth; do we owe him 
less recognition because he did not know why the muscles contract. 
We don’t know the cause of resilience of air, but he who discovered it 
did no small favor for physics.

This law which I  discovered was more hidden and more universal … 
I  discovered a  new property of matter and one of the secrets of the 
Creator: I  computed exactly and showed its effects …

It is vortices that one can call the mysterious property because no one 
has proved their existence. But gravitation, to the contrary.



Gravitation is something real, because it effects have been proved and 
its relations computed. And the cause of this cause exists in God.

For his own use Newton had hypotheses which he separated from princi-
ples. He could give play to his imagination. In the notes he wrote as a  young 
man we find descriptions of distant worlds, of planets peopled in a  manner 
resembling the biblical paradise.9

When it comes to the structure of matter, he was an atomist. But his atoms 
have no effect in the structure of space, which exists independently of them. 
They don’t lie tightly one next to the other like the monads of Leibniz but 
wander lonely in empty space. This was not a  speculation for its own sake, 
since it enabled him to explain the motion of light.

Beyond this, he believed in order existing in the world, which we can dis-
cover, but we should not impose our own models. Newton thought that time 
and space were infinite, motionless and eternal, independent of matter. This 
sounds like Parmenides or the late Scholastics. Later, this a  priori nature of 
time and space vent over to Kant’s philosophy.

	 9	 About Newton’s notebook from his youth, called “Garden,” one can read in Vavilov’s 
book (1943) on Newton.
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Whether, like Leibniz, we regard infinitesimals as 
real quantities, or, like Euler as zeroes, it comes 
down to the same thing [but … in] both cases the 
true metaphysics of the method can be explains this 
with equal precision.

Ignacy Domeyko1

Leonhard Euler’s three-volume Calculus written in Latin and published in 
1768 begins with words that seem to have been taken out of work of Newton.2

The Calculus is a  method such that given the differentials of magni-
tudes one can find the connections between the magnitudes themselves, 
and the method for doing this is called integration.

Euler must have felt that it required no arguments to show that connections 
between magnitudes were determined by their differentials, because he made 
no remark pertaining to this matter.

Of course, there were new terms: the former fluxion was replaced by 
differential, and there was the term differentiation. But similarities must not 
confuse. Analysis at Euler’s time handled problems on a  scale not comparable 
with these of one generation earlier.

Euler was the key figure of the mathematicians of his times. He was Swiss 
by birth, a student of Bernoullis, he spent his creative life in Petersburg, Berlin, 
and then again in Petersburg. He lived at a  time in which the fatherland of 

	 1	 Ignacy Domeyko, Jak dotąd tłomaczono zasady Rachunku różniczkowego i  jak w  dzi
siejszym stanie Matematyki należy je tłomaczyć [How till now one explained the principles of 
differential Calculus, and how they should be explained in the contemporary state of Math-
ematics] — a  thesis (in Polish) for obtaining the degree of master of philosophy at the Wilno 
University, 1822. Translated by Abe Shenitzer.
	 2	 Institutionum calculi integralis — volumen primum — auctore Leonhardo Eulero. Petro
poli 1768.
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a  scholar was determined by the ruler who was a  patron of an academy. He 
wrote in Latin. A  few dozen volumes of his collected works was not his total 
written output.

●

The term integration demands an explanation, as we used that word be-
fore in a  not uniquely determined sense. It means now: for a  given function 
expressed analytically find an analytically expressed function the derivative of 
which is the given function. Not only algebraically expressed functions, but 
also the trigonometrical function, as well as exponential and logarithmical, are 
allowed to belong to this vaguely defined realm of functions, for which the 
term elementary functions was used.

This meaning of integration was the first idea of Newton’s Calculus when 
for the given xn he found xn+1/(n + 1), a  function the derivative of which is xn. 
But it is not difficult to check that the integral of sin x is cos x, and that the 
integral of 1/√(1 – x2) is arcsin x. But the integral of √(1 + x2) was computed 
yet by Euler.

The integral in this sense is called an indefinite integral. Yet in applications 
it becomes definite after applying the Leibniz formula for f(b) – f(a), where f 
stands for already counted, up to a  constant, the indefinite integral; this dif-
ference is independent of the choice of that constant.

In the first volume of his Integration, Euler computed the integrals of all 
possible expressions known to all who studied integration, practically to the 
exhaustion of the range of integrals expressible by elementary functions.

Integration calls for inventiveness, because the list of functions derivatives 
of which are known — say x a, sin x, cos x, e x, arcsin x, log x — is rather lim-
ited. If we want to integrate y = f(x), we most often use a  change of variable 
x  = φ(t) and we look for the integral of the function

g(t) = f(φ(t))φ'(t).

If we manage to obtain the integral G(t) of this function, that is, a function 
such that G'(t) = g(t) everywhere, then, if the substitution x = φ(t) is invertible (!) 
and t = ψ(x) is its inverse, then, as is shown by computation, the integral of 
f(x) is the function

F(x) = G(ψ(x)).

The choice of suitable substitution is an art, but an art of a  largery arith-
metical and algebraical nature. Even the most inventive computations need not 
engaged the geometric imagination. A beginner who is good at transformations 
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can obtain reliable results provided he does not make some basic computational 
error.

When he used an integral to compute an area, Euler did not relay on Bar-
row’s theorem. He repeated Leibniz’s argumentation:

Integration denoted by ∫ … is the summation of all values of differential 
expressions X dx, … where the differential dx can be regarded as infi-
nitely small … Thus the method of integration is similar to the method 
in which, in geometry, lines are integrated as composed of points …

The superficiality of the argumentation is obvious.
Regress in understanding analysis lasted for a  certain time and became 

more pronounced. But 18th century mathematicians didn’t blame themselves 
very much for this reason. Here is a  sentence taken from Euler himself:

… as we go forward, we accept as known what we left behind us, 
even if we investigated it superficially.

This partly explains the progress in computational methods which was 
realized during the period we agree to refer to as the 18th century. It made no 
sense to look back and ask what allowed them go forward and what obstacles 
they were to expect. It was a  century of undisturbed progress not only in 
mathematics. Moreover, there existed an awareness of progress. The century 
was not yet over and it was already called the age of Enlightment.

Time to take a  look at what gave that century its brilliance.

●

In Newton times a problem was solved that belonged to the discipline later 
known as the calculus of variations. Let A and B (not lying on the same verti-
cal straight line) be connected by a  line on which a  material point can move 
under gravity without friction. One is to choose this line so that the time of 
transition from A  to B was minimal.

The required curve — the brachystochrone — turned out to be a  cycloid.
The problem was solved brilliantly by Johann Bernoulli. But the theory 

around this problem was to belong to was to be created by Euler and Lagrange. 
In the differential calculus one also solves minimum problems. But in the cal-
culus of variations the role of the variable is played by a  function; Lagrange 
called its small changes variations (see Figure 98).

The new theory soon moved to the head of analysis. It turned out that one 
obtains the laws of Newtonian mechanics as a solution of a certain variational 
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problem; a  material point moves under the action of forces so that a  definite 
expression that depends on the passage, called action, was a  minimum.

Fig. 98

Marquis de Maupertuis is considered the discoverer of the law. It was he 
— not Euler — who was a true member of that age of philosophers. There was 
a  principle discovered by Fermat a  long time earlier that when light refracts, 
it moves so as to go from medium to medium in the shortest possible time. 
Maupertuis saw this as an instance of metaphysical law that nature is subject 
to. Soon (1746) he formulated this general principle, and in so doing referred to 
Euler. Euler deduced the laws of motion of a material point on a smooth curve 
by minimizing a  certain integral expression. Maupertuis wrote:3

Whenever change occurs … the amount of action needed to effect 
a  change is the last possible.

Then he went to explain what is action. But on this occasion, with this 
principle in mind, he also wrote:

We must look for proofs of the existence of God in the laws of nature.

For mathematicians it was Euler who discovered the principle, but only 
those of its cases that follow from the principles of mechanics. Euler knew 
the significance of the principle but he did not put it above the knowledge of 
nature. As a mathematician he knew more clearly the bounds of its applicability. 
But he did not enter into polemics with Maupertuis. In fact, when an argument 
arose about the minimum principle, Euler emphasized Maupertuis’s priority.

In this philosophizing age an argument about the essence of the principle 
was unavoidable. Statements were made by d’Alembert, Euler and King Fred-
eric II. The debate took place in the Berlin Academy of Sciences. Voltaire joined 
the debate and held Maupertuis to ridicule, and then with a  curious attack on 
Leibniz’s apparent priority. Maupertuis was accused on plagiarism. Specifically, 
he was accused of plagiarism of a  vaguely formulated sentence in one of the 
	 3	 Quotations of Maupertuis after Rüdiger Thiele, Leonhard Euler, in the Teubner “Biog-
raphien,” 56. Leipzig 1982. Translated by Abe Shenitzer.
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thousands Leibniz’s letters he had written. This final phase of the debate had 
nothing in common with scientific investigations. Euler behaved respectably 
by maintaining neutrality.

Maupertuis — president of the Academy — was the great loser in this 
debate, just as Leibniz was once the loser in the debate with the Londoners.

●

The role of mathematics in building a view of the world grew ever stronger. 
Using the principles of analysis one can explain the world with growing preci-
sion. It even seems that world is subject to these principles.

One might compare Euler’s restraint with the restraint once shown by 
Newton. He could have relied on baseless principles of analysis and begin to 
arrive at conclusions with a single leap, but he preferred to develop mechanics 
step by step. He systematically built its concepts into the conceptual apparatus 
of analysis which he regarded as the most appropriate to mechanics. Analysis 
remained without a  mathematical foundation. It is validated by results. This 
sufficed for Euler.

Euler transferred Newton’s principles of mechanics to point systems. He 
regarded a  rigid body as a  finite system of material points and deduced the 
famous equations for a  motion of rigid bodies that were named for him. The 
theory grew for at least two decades, and was described in the work Theoria 
motus corporum solidorum (1765).

Mathematicians of 18th century tackled the issues of rigid bodies, elastic 
bodies, and ideal fluids. To deal with the difficulties presented by so many 
problems, analysis extended its methods to functions of many variables. There 
appeared partial derivatives and equations with partial derivatives.

The equation of a weightless string, attached at its endpoints and oscillating 
in the (x, u) plane has the form

u"t = c2u"x  ,

where x and u  are the abscissa and ordinate of the point on the string, the 
ordinate u  depending on x and the time t.

Fig. 99
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The left side of the equation is the acceleration of the point on the string 
which has the direction of the u-axis, that is, the direction (say vertical, see 
Figure 99) of the motion of the points of the string. The equation of the string 
has the same form as the equation of the wave. The correctness of the last 
sentence can be checked by any one, sitting on a platform at the edge of a lake, 
whose feet are just above the surface of the water and who waits for the blow 
of the arriving wave. Most such people are surprised by the fact that the wave 
hits their feet from below!

The right side of the equation expresses the force acting on particle of the 
string at the point the abscissa of which is x. Why such an equation? This is 
more difficult to explain, but let us note that the force that pulls the particle of 
the string down along the u-axis is the greater, the greater the change of the 
derivative u'x, that is, the greater the bending of the string, at the back-point of 
the string (wave) this force vanishes. This can also be verified with one’s feet.

Euler was not the first who investigated the variations of the string. But 
the general solution is Euler’s. The general solution depends on the shape of 
the string at the initial moment, that is on the function u(x, 0), which can be 
arbitrarily prescribed.

Solutions of equations with unknown functions of a single variable — that 
is, ordinary differential equations — depended on an arbitrary constant or on 
arbitrary constants.

A question which arose to Euler was what we mean when we say “arbitrary 
function?” Can it be done by an arbitrary move of the hand — libero manus 
ductu? For Euler, up to now, function meant always a formula — a pattern. He 
was more tolerant than other mathematicians, and allowed functions described 
by formulas in a  piecewise manner. But, as a  young man he asked Bernoulli 
what is the meaning the function (–1)x, because he believed that each formula 
should have a  meaning. This was a  common conviction of these times.

Now, the general solution of the equation of the vibrating string can be 
not necessarily connected with the formula. The question became more ac-
tual, when Daniel Bernoulli obtained a  solution, which was regarded by him 
as general, and which was dependent on a  function which is the sum of the 
trigonometrical series

a0 + a1 cos x + b1 sin x + a2 cos 2x + … .

Should one regard the Bernoulli’s solution as not fully general, or recognize 
that functions given by an arbitrary move of the hand can also admit expan-
sions into trigonometrical series?

The shape of the graph of a function which is the sum of a power series looks 
as a bended rod (see Figure 100a); the run of such a function is determined by its 
run on an arbitrarily small segment, arbitrarily given. The graph of an arbitrary 
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function, even if we have in mind only functions varying continuously, can be 
looked like as a  soft rope, and its run on a  given segment can be independent 
from the run of remaining part of the function (Figure 100b). Nevertheless — as 
was proved decades later by Dirichlet — such a behavior is not an obstacle for 
a function to be a sum of a trigonometrical series. This was yet unknown to Euler.

            
Fig. 100a					    Fig. 100b

Disputes around the Maupertuis’s principle, works on the mathematical meth-
ods of mechanics, on the equations for vibrating string, and finally the works 
on hydrodynamics, gave to Euler a  broad insight into physics. Philosophically 
oriented environment of the Berlin Academy gave him an opportunity to express 
his views in letters to a  princessin from Hohenzollern’s home, a  book having 
a  form of a  frequent occurrence at these times (recall Voltaire on Newton), 
a book to everyone. That work allow to apply also to Euler the Newton phrase 
“hypotheses non fingo” in spite of the fact that he speculated on the nature of the 
ether, and, unlike Newton, treated light as a wave. By means of the ether he tried 
to explain action at a distance. But he was far from the speculation of Descartes 
and ignored Leibniz’s theory of monads. Such restrained philosophy — the only 
possible one in a  mathematician’s meaning of mathematics — was not highly 
valued in the group of philosophers around King Frederic, among whom the 
most famous were the likes of Voltaire, who did not restrain their fancies and 
delighted in verbal dueling. It may be that this is why the unappreciated Euler 
left Berlin after a stay of twenty five years and returned to Petersburg.

There are things that characterized the 18th century. There was a  certain 
sterility, a  simplified monumentality devoid, however, the Roman dignity, the 
evolution of simple utopias like those of Swift and Rousseau, down to unpleas-
ant grimaces of late rococo sculptures.4 We don’t love the 18th century.

●

It is not true that mathematics is free of the influences of the epoch, al-
though in some of its parts these influences are so minor that they can be 
ignored. Arithmetic should be one such part.

The analysis of Euler’s time was not supported by principles. It was, in 
effect, arithmetic.
	 4	 A  sculpture in the holy Dorothea church in Wrocław, just on the right from the enter.
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Computations with sequences, playing with infinity while risking a mistake 
but often crowned with success, had an attractive power. One said about Euler 
that he “lived and computed.” But the methods that led him to results are not 
methods to be recommended to our students.

Here is Euler’s reasoning which leads to the series of potential function and 
the number e, the basis of the natural logarithms.5

If a0 = 1, then, as the exponent increases and a > 1 the power increases … 
and it increases by an infinitesimal kω if the exponent increases by the infini-
tesimal ω. Now let i  be infinitely large. Let z  be such that ω = z/i, where z is 
a finite number; of course, every finite number z satisfies a connection of this 
kind. We have aω = 1 + kω.

Substituting in the formula just obtained z/i  for ω we obtain

az = aiω = (aω)i  = (1 + kω)i = 1 + kω i1  + k2ω2  i2  + …

Since i is infinitely large, (i – 1)/i = 1, (i – 2)/i = 1, and so on. Hence (hav-
ing in view ω = z/i) we obtain

az = 1 + kz + (kz)2/2! + …

and, in particular,

a  = 1 + k + k2/2! + k3/3! + …

The most appropriate choice seems to be k = 1. Then

a  = 2,718281828459045523536028…  ,

a  number one obtains from the formula

a  = 1 + 1 + 1/2! + 1/3! + …

Euler denoted that number by e. Only a  century after Euler it was shown 
that e cannot be a root of any polynomial with integral coefficients. The proof 
of irrational nature of e is easier, but Euler did not deal with this topic in 
his Introductio Johann Bernoulli knew e earlier as the limit of the sequence 
(1 + 1/n)n.

Using similar computations, Euler obtained expansions for log(1 + x), treat-
ing (for the first time in this way) the logarithm as the function inverse to the 
exponential function. The formula looks simplest if a  = e. Then we have

	 5	 Introductio in Analysin Infinitorum I, 1748.
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log (1 + x) = x – ½ x2 + 1/3 x3 – …

Hence the importance of the number e for logarithms.6
In spite of the fact that e is non algebraic (see an earlier remark), it decimal 

expansion involving twenty digits after the comma skews unexpected regulari-
ties: the block 1828 is repeated twice in a  row (!), the block 28 repeats itself 
three times, and the block 45 twice. Also, these blocks are separated by a block 
of the form 90.

In the previous chapter we mentioned about the sum 1 + 2k + … + nk of 
k-th powers of n initial natural numbers, important in Cavalieri’s counting the 
area under xk. Now, John Bernoulli obtained an exact formula for this sum in 
the form of a  polynomial of (k + 1)-th order, the famous Bernoulli numbers 
are involved in coefficients of which.

Already Plato noted that unlike geometry, which be thought was intended 
to philosophers, arithmetic is a  skill that provides relief for the mind. Euler’s 
computations were magical (for instance, the computation leading to exponential 
function was based on the assumption that each z can be viewed as product of 
an infinitely small by an infinitely large!)

Similarly magic impression gives us Euler’s formula

(*)    1/6 π2 = 1 + ¼ + 1/9 + 1/16 + …

among tens of similar ones. He did not worry about convergence. This was so 
in spite of the fact that he knew the meaning of the term convergent series. But 
in Euler’s time it was believed that every series with correct structure should 
have a  sum associated with it.

Somewhere “along the way” Euler noted that the number 2√–2 was transcen-
dental (in his Introductio) without mentioning the issue of a  proof.

Magic mathematics — maybe because that it is something extreme — is 
not condemned by mathematicians. Even Euler’s magical computations elicited 
sympathy. This was not quite unique. We looked with similar sympathy at 
Kepler’s reasoning conducted at the very boundary of error.

Justifications that pretend to be truthful are not tolerated.
Analysis is based on Newton’s postulate according to which the derivative 

enable us to reconstruct the function. This was acceptable, just as Euclid’s ge-
ometry, based on postulates was acceptable. But attempts to base analysis on 
infinitesimals by constructing a  seemingly consistent system of concepts have 
met with resistance.

	 6	 Indirect argumentation about idea of logarithms allows to show that the number e in the 
form of the limit of the sequence (1 + 1/n)n was known to John Neper.
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●

The end of the century, which was also the end of a certain epoch in analysis 
was coming high. Lagrange wrote his Théorie les fonctions analytiques before 
the end of century, but his book was anticipation of things coming in the next 
century. One realized the need to provide for analysis solid logical foundations. 
Lagrange did it by reducing its scope. He limited himself to functions that could 
be expanded in power series, and thus obtained precision characteristic of alge-
bra. He did not knew initially how radical a restriction this was. One opponent 
of these restrictions was Hoene-Wroński,7 who proposed his on restrictions in 
the form of the “Law of the Highest.” But arbitrary functions — as Euler still 
called them — insisted on the right to exist in mathematics. Areas under their 
graphs seemed reasonable, but computing them by finding for them the initial 
functions was impossible.

Already Euler decided to distinguish the integrals of square roots of cubic 
and quartic polynomials as a  realm of functions in a sense admissible in view 
of their formal properties. Lagrange limited the number of these functions, 
inexressible by elementary ones, to three cases.

Fig. 101. �The Saxon times in Poland: project of an Academy of Sciences (1753). The next king 
was satisfied — so wrote Niemcewicz — with so-called “Thursday meals.” Konarski, 
The library of the Załuskis, Encyclopedia of Chmielowski: all this goes back to the 
Saxony period.

But this did not remove all the difficulties blocking the computational flow 
of analysis. One could perceive the outlines of the double crisis: an obstacle on 
the road of development and the lack of justifications at the foundations. As 
a gift of fate, mathematics time to reflect in the form of the war storm and the 
revolution, after which it began to regenerate in a  new form.

	 7	 Józef Hoene-Wroński was against for the search of foundations of analysis in non-
mathematical metaphysics.
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Another way of avoiding the difficulty in question is 
to consider not all possible sets, those which have 
been define will be defined at any future time, but 
only a  certain family “F” of sets.

Wacław Sierpiński1

The year 1870 was a  year rich in events, including mathematical events. 
But even we are about mention is less well known. In that year, the young 
H. A. Schwarz set down in a letter to Cantor the first — he writes — rigorous 
proof of the theorem which asserts that a  function whose derivative vanishes 
everywhere is constant.2 This was an arithmetical proof of Newton’s postulate. 
The debt incurred was redeemed. Analysis found its foundations.

Later they will say that the cost of redeeming the debt was too high. They 
will wonder if redeeming this debt was required at all.

The need to turning to its arithmetic foundations, of defining the inte-
gral by interpreting it as the increment of a  primitive function, that is, the 
recognizing the Leibniz formula for the integral, of including in analysis 
the notion of “arbitrary function,” of understanding what is continuity and 
was is the continuous run of a  variable, all these were clear at the begin-
ning of the 19th century.

Rigor in the older understanding of Newton could be saved only at the cost 
of excessive limitations. There is no doubt that this is how Augustin Cauchy 
saw things when he undertook to rebuild analysis without reducing its range. 
In the introduction to his Cours d’analyse (1821), in which he presented its new 
foundation, he wrote that he wanted to endow analysis with rigor characteristic 
of geometry without resorting to algebraic proofs. This meant, more or less, 

	 1	 Wacław Sierpiński, Cardinal and ordinal numbers. Warszawa 1958.
	 2	 Hermann Amandus Schwarz (1843—1921). The letter is quoted by H. Meschkowski in 
Denkweise grosser Mathematiker. Braunschweig 1967, p. 78.
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being accidentally • Nothing is ever completely 
settled
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that he wanted to avoid the limitations imposed by Lagrange. He did not hide 
the fact that he was opposed to Lagrange.

If we look at Cauchy’s work as the first arithmetic treatment of analysis, 
we will differently at his inaccuracies. Cauchy’s definition of continuity is 
somewhat different from ours. Cauchy did not define continuity at a point but 
defined it immediately on an interval, which is most likely the reason why 
he later confused it with the unknown to him concept of uniform continuity. 
According to Cauchy, a  function f(x) is continuous if for every value of x the 
difference f(x + h) – f(x) decreases indefinitely together with the numerical 
value of h. Cauchy defined a  definite integral of a  continuous function as the 
limit of a  known to us sequence of approximations. He proved the existence 
of an integral, but with this definition of continuity, accepting our criteria of 
rigor, there could be no proof. The best known of Cauchy’s mistakes is the 
one where he asserts that the limit of a  sequence of continuous functions is 
a  continuous function. This is all the more surprising that counter examples 
— known already to Fourier — were at hand. He made a  mistake of writing 
that if the quotients an/bn tend to 1, then the sequences an and bn are both con-
vergent or both divergent, and failed to see examples among sequences with 
different signs. Let us quote Abel (from a  letter to a  friend) about the Cauchy 
style of writing: “His works are magnificent, but with unclair. At the beginning 
I  could not understand what is the matter.” So, let our comment to Cauchy’s 
mistakes be like Abel’s.

Cauchy’s errors are studied by historians of mathematics. There is a tenden-
cy and even a fashion, to save Cauchy’s reasoning by ascribing to his concepts 
a sense they most likely did not have. This defense is completely unnecessary, 
because, apart from these few mistakes, Cauchy remains the first mathemati-
cian who produced the outline of analysis valid today.

For example, he knew that to ground analysis one must define the range 
of magnitudes taken by the independent variable. But he defined irrational 
numbers which had to complete his notion of the number continuum as limits 
of sequences of rational numbers. But this was circulus vitiosus.

Nevertheless, he made correct use of this continuum, for example, of the 
property that a sequence of nested intervals always has common point. Before 
him, analysis was an analysis of examples and of formulas that bordered on 
magic, Euler would write –1 = 1 + 2 + 4 + 8 + … by substituting x = 1 in 
(1 – 2x)–1 = 1 + 2x + 4x2 + 8x3 + …  , and saw some sense in this. He wrote: 
“I  believe that every series should have a  definite value.”3

That is probably why in the introduction to Cauchy’s Cours d’analyse there 
was a sentence: “many will see my approach as too rigorous: I ascribe no sum 
to divergent series.”

	 3	 Quotation after Godfryd H. Hardy, Divergent Series. Oxford 1948, p. 15.
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Abandoning Newton’s road meant that x ceased to be an undefined arith-
metic fluent. Similarly, f(x) also ceased to be a fluent and became a magnitude 
defined point by point. The word “set” had not yet been used but it was already 
appropriate for Cauchy’s analysis. In spite of the fact that the definition of the 
variable x was logically flawed, it was understood the way we understood the 
real number.

Also, Cauchy did not follow Leibniz’s road: the increments h and 
f(x + h) –  f(x) can be arbitrarily small, but there was no need to speak of them 
as “infinitely small.”

Cauchy’s methods removed infinitesimals from analysis differently than 
Lagrange. Nevertheless, Cauchy would sometimes write about infinitesimals. 
There is no need to interpret this differently than we interpreted Newton.

●

Gauss was Cauchy’s contemporary. He used in an absolute rigorous man-
ner the notion of limit and upper bound and even introduced the concept of 
limes superior for sequences. He postulated the existence of an upper bound 
for a  bounded increasing sequence, and so handled rigorously the concept of 
a  continuum which was to enter mathematics shortly thereafter. The texts of 
his papers and some of his correspondence show how well he understood the 
mathematical rigor. It seems that he did not make rigor an aim in itself.

●

The things were different in the case of Bolzano. During his lifetime Ber-
nard Bolzano was an almost unknown mathematician. Abel was an exception 
justifying this description. After reading one of Bolzano’s paper he expressed 
for him great admiration. Bolzano worked as a  mathematician in isolation. 
He published two mathematical works. The better known4 is the paper Rein 
analytischer Beweis daß zwischen je zwei Werthen, die ein entgegengesetztes 
Resultat gewähren, wenigstens eine reele Wurzel der Gleichung liege (1817). 
Its aim was to prove that a  continuous function takes on all values intermedi-
ate between any two. The second is a monumental treatise on binomial series, 
written, however, in unawareness of Gauss’s search on more general hyper-
geometric series.

Until Bolzano’s time the property of taking intermediate values was ac-
cepted without proof. Bolzano knew that his theorem was not a  discovery, 
and explained in the introduction that the purpose of his paper was to find the 

	 4	 On Bolzano and this his theorem see Hugo Steinhaus, Pogadanka trochę historyczna 
[A chat, slightly historical]. Wiadomości Matematyczne 7 (1963), 21—26.
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cause of the property he proved. He looked for the cause of this property in 
the properties of the number continuum on which the function was defined. 
It was the property which appeared in the work of Gauss, and which we call 
a  property of continuity: among the numbers bending a  given collection of 
numbers there exists a  least number.

According to Bolzano, a  function f(x) changed continuously if for every 
value x the difference f(x + h) – f(x) could be made smaller than any given 
magnitude, if provided we could take for h a magnitude as small as we wished. 
The final phrase may not sound quite “clean” but that is because we are used 
to certain hackneyed phrases. Bolzano’s definition conveys more content than 
Cauchy’s. It reduces continuity of function to its continuity at points.

Bolzano is best known by his work Paradoxes of the infinite published 
in 1851 when he was no longer alive. It is a  kind of manifest of the future 
theory of sets, but not in the spirit of Cantor. What was Bolzano looking for 
so far beyond the bounds of actual mathematics? He was of the opinion that 
the key to understanding analysis is the continuum, the thing over which the 
variable moved for 18th century, and for Newton moved even in time. Bolzano 
did not recognize motion in mathematics, which does not mean that he was 
returning to Aristotle, because he speaks slightingly of Zeno’s aporia. His aim 
is to describe the continuum as a set. He is free of Aristotle’s fears. He wrote: 
“… what could the continuum consist of if not points.” This thought must have 
been shared by many mathematicians, but by expressing it Bolzano did away 
with an obligatory taboo.

Bolzano’s Paradoxes of the infinite contains a  sketch of the theory of his 
number continuum. But it was only in our own time it became known that 
Bolzano had not only a  sketch but a  complete theory. His manuscript — pub-
lished in printed form in 1962 — presents his theory of measurable numbers.5

He defines them by singling them out from a  certain larger range of 
magnitudes that include some that correspond to infinitesimal ones. Bolzano 
fights infinitesimals but he does not ignore them. A number is for Bolzano an 
arithmetical expression, mostly infinite, for example, it can be given by a  se-
quence of approximations with variable principle of expansion. An example of 
an infinitesimal is the expansion 1/(1 + 1 + … ad infinitum). Thus, roughly, 
numbers are certain records, on the whole infinite. A weak spot in the theory 
is the condition by which Bolzano separates his “messbare Zahlen” from their 
combinations with infinitesimals, as well as the concept of an infinitesimal 
itself. But once he has waded through these sand banks and when only the 
measurable numbers are left to consider, then, from the properties of this set 
he deduced rigorously all the properties we know as the properties of real 

	 5	 Karel Rychlik, Theorie der reelen Zahlen in Bolzanos handschriftlichen Nachlasse. 
Prague 1962.
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numbers: the existence of bounds of bounded collections, properties of cuts 
(later Dedekind cuts), the theorem of the nonemptiness of the common part of 
segments which form a  decreasing system, and the necessary an sufficient on 
condition of the convergence of the sequence (the Cauchy condition).

Bolzano saw more clearly than his contemporaries the foundations of the 
new analysis. For example, he knew before others that a  continuous function 
may have no derivative everywhere.

●

The first thing that was done was the correcting of Cauchy’s mistakes. 
Abel, in his time, corrected only the proof of the continuity of the sum of 
a  power series where this could be done. Somewhat later Guderman, whose 
student was Weierstrass, noticed that the cause of the discontinuity of the limit 
could be non uniform rate of convergence of the series in different intervals. 
In 1847 Seidel formulated a sufficient condition for this continuity in the form 
of uniform convergence.

The modern form of the condition is due to Weierstrass. Beginning in 
1856, when Weierstrass obtained a  position at Berlin University, there began 
the period of the style described as Weierstrass precision. The definition of 
continuity, with the well known phrase with “epsilons” and “deltas” made 
possible the reduction of problems in analysis to arithmetic inequalities which, 
from a practical viewpoint, led to arithmetization of analysis.

Weierstrass’s lectures played an important role on the university environ-
ment. He lectured on his theory of real numbers in 1861 and published it in 
1862. According to Weierstrass, a real number was an aggregate, that is, a for-
mal sum of rational expressions, for the most part infinite. Two aggregates are 
regarded as equivalent if the expressions that make them up can be broken up 
so that every finite fragment of one aggregate was dominated as a magnitude 
by a  certain fragment of the other. Thus a  real (positive) number is uniquely 
determined by its rational approximations and is a  collection of aggregates 
equivalent to one-another. But only Dedekind or Cantor could put things this 
way. Weierstrass’s way of putting things stayed within the bounds of accepted 
conventions.

●

When Dedekind constructed his theory of real numbers he was aware of 
crossing a certain threshold. In his work Stetigkeit und irrationale Zahlen pub-
lished in 1872 he wrote, from the perspective of years that what he wanted to 
achieve was that “every however far reaching theorem of algebra and higher 
analysis be representable as a  theorem on natural numbers.” He worked out 
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his theory while lecturing in Zurich — he gives the exact date 24 November 
1858 — but published it many years later.

The new numbers had to be treated as breakups of the set of fractions of 
whole numbers into two parts that together former so called cut. These were ul-
tramathematical constructs of a high level. Nevertheless, they were determined 
by their location among fractions of whole numbers. Dedekind was asked what 
new element his theory brings in compared with that of Eudoxus. The answer 
is that the proportions of Eudoxus are proportions of geometric magnitudes and 
exist if those magnitudes exist. Every Eudoxus proportion could be interpreted 
as a  cut. There is no trace that in Ancient mathematics of the desire to treat 
every cut as a  proportion. One first had to see for it a  geometric interpreta-
tion. Dedekind ignored this demand consciously introducing into mathematics 
our “Gedankenwelt.”

●

Theories of real numbers were also published by Méray, Cantor (1872) and 
Heine (1872). We know that Weierstrass’s theory was published in 1870. It was 
then that H. A. Schwarz sent Cantor a proof of the theorem: f' = 0 everywhere 
implies f = const, a proof of what Newton had postulated. We can compare this 
with Archimedes giving rigorous proofs that made unnecessary Democritus’s 
postulates leading to the determination of the volume of a  cone. Analysis has 
been arithmetized.

It is natural to ask about the reaction to this arithmetization of analysis, 
and, in effect, this arithmetization of mathematics, because, at that time, ana-
lytic methods became dominant in geometry. First of all, one must say that 
people were aware of the arithmetization and knew that something important 
happened. The expressiveness of the reaction was due to one more factor which 
we talked about indirectly.

I have in mind set theory, created by Cantor in the 1870’s, a  theory whose 
elements were indispensable for the creation of a  theory of real numbers.

Resistance against set theory — of which we will have more to say — 
is unfairly identified with criticism of arithmetization. It is well known that 
Kronecker belonged to the opposition. But his dictum that “God created the 
natural numbers and all the rest is the work of mathematicians,” was not 
a  protest against arithmetization but against the way the process was carried 
out.

The critique of arithmetization as such is less well known and appears to 
be deeper. Up to that time the postulates of mathematics were embedded in the 
natural sciences. Now the only link with the physical world was to be arithme-
tic. When Plato removed motion from mathematics the situation was similar. 
Of course, reforms has its virtues. But to be able to claim that mathematics of 
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this kind had the power of clarifying phenomena one would have had to return 
to the philosophy of Plato.

Du Bois Reymond (1884) wrote: “a  purely formal construction of analysis 
which deprived numbers of their former meaning as magnitudes diminishes 
this science.” Incidentally, few knew that Du Bois Reymond also discovered 
transfinity in a way different from Cantor’s.

Hermite looked with similar unease at the arithmetization of analysis, a fact 
Poincaré wrote about, adding: “These definitions, which do not give the rise 
to doubts from the viewpoint of mathematics, cannot satisfy a  philosopher. 
They replace the defined object with a  construction that make use of simpler 
elements … I  do not say that this arithmetization of mathematics is bad. But 
I  say that it does not everything.”

One sees in this a  nostalgy after something mathematics last when it 
left Newton’s path and and entered Cauchy’s. Of these who did not go along 
Cauchy’s path let be mentioned Lagrange. Hoene-Wroński was a  crusader in 
the polemics with “pro Cauchy” side. Some of our mathematical contemporar-
ies express these views.

●

The sets serve as a  tool in performing arithmetization. Then, they became 
necessary tool in developing such arithmetized mathematics.

Historian of mathematics are of the opinion that set theory incidentally 
began with Cantor’s claim that one may ignore in his theorem about the unique-
ness of a  trigonometric expansion the behavior of the series on some small 
sets of special structure. At the same time another store of sets appeared in 
the theory of the integral, where the behavior of the function on certain small 
sets, for example Cantor’s three set, did not influence on the integrability in 
the Riemann’s sense. Let Du Bois Reymond and other mathematicians working 
in the area of the theory of functions be mentioned. The new sets appeared 
according to need, and this was a  natural extension of the line along which 
mathematics developed from the times of Cauchy and Weierstrass. This line of 
development was accepted by Poincaré.6

It was Georg Cantor who took a  trial to grasp these particular results and 
tools into a  theory. However, he did that in an unexpected for mathematicians 
manner, searching the properties connected with the infinite, avoiding the 
search structural properties sets. The notion of transfinity appeared in a natural 

	 6	 In his commentaries in Cardinal and ordinal numbers Sierpiński expresses many con-
troversial opinions concerning notions of set theory, invoking to Luzin in many of them. In 
Sierpiński’s books one cannot find any trace of axiomatic theory of sets. The axiom of choice, 
although it is called “axiom,” is treated as a  tool in proofs, not the axiom in the Hilbert sense.
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way in strictly mathematical considerations by Du Bois Reymond. In Cantor’s 
theory it was reduced to the search the transfinite sequence

1, 2, …  , ω + 1, ω + 2, …  ,

extending the sequence of natural numbers. Although the Cantor’s pure sets 
were without structure at all, they are in Cantor’s theory compared quantita-
tively, leading to the so called cardinal numbers. Cantor’s theory was developed 
in the world of notions far from actual mathematical interests. No wonder that 
mathematicians admitted Cantor’s theory with a  resistance.

But the interest to sets came not only from mathematics. Medieval philoso-
phers discussed intensively the abstract beings called universals, such as for 
example the notion of man, which realizes in individual men. The way of the 
existence of the universal man is not of the same way as the existence of indi-
vidual men. How the multiplicity became a unity? The cause of observed event 
has a  cause in an event which forces it. Is there a  primary cause for a  given 
event. Is the primary event for all the events. The reasonings in Duns Scot’s 
treatise on the earliest cause run as those about the transfinite. The interest 
to these overlasting questions was renowned in philosophically avakened 19th 
century. Cantor, who came to his concepts from mathematics, was astonished 
by unexpected interests of theologians to his abstract thought constructions.

Thus far, we had not so much about the role of Dedekind, who was mostly 
presented by historians of mathematics as John Baptiste of the theory of sets. 
But we think that Dedekind was not only earlier but also much more deeper 
than other contemporaries. His views are in many cases quite different from 
those of Cantor, mainly in the expressing the essence of the number. Dedekind 
looked for the source of the number not in manipulations with the equinumer-
ability as was proposed by Frege and mostly accepted by Cantor, but in the 
inner of our thoughts.

Dedekinds work Was sind und was sollen die Zahlen7 was published only 
in 1888, but the reader recognizes its roots in his 1864 treatise on abstract 
algebra in the spirit of Gauss. To express the idea that the number arises in 
our inner, Dedekind takes into consideration “unsere Gedankenwelt,” the world 
the elements of which are thoughts. This world is infinite in Galileo’s sense: 
there exists an operation allowing us to think about a  thought just expressed, 
and this operation embeds the world of all our thoughts in one-one manner 
into a  proper sub-world — from which the initial thought, “Ich,” is excluded. 
Iterating this operation we give a  flow of thoughts, the minimal subsystem of 
which serves as a model of the inductive system of natural numbers.

	 7	 Richard Dedekind, Was sind und was sollen die Zahlen. Braunschweig 1888. The German 
“was sollen” should be translated into “to what serve.”
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Fig. 102. �If Cantor had not discovered transfinite, then it would have been discovered by Du 
Bois Reymond: given a  sequence f1, f2, … of functions that grow ever faster, one can 
construct a  function fω that grows faster than all the functions f1, f2, … (from each 
of them, beginning at a  certain place)

●

In the early years of the 20th century Zermelo axiomatized the system 
of sets, that is the sets which can be created from the elements of Cantor’s 
transfinite line according the rules accepted by axioms. The emergence of 
this system cannot be explained by the needs of mathematics itself. It seems 
to be motivated by theological tendencies from which mathematics is not free. 
However, we cannot exclude that it was David Hilbert who forced Zermelo 
for this creative axiomatization, having in view his former success in axioma-
tization of geometry. The sets of Zermelo’s system are created, they can be 
nonexistent before. From the point of view of pure logic there are no obstacles 
to demand that the sum of two sets is again a  set without searching for an 
idea making this sum an entity, and in result, a  set. With a  set belonging to 
the system, the set of all its subsets is adjoined to the system, although the 
notion of subset is out of control of intuition. Only the Russell’s warning on 
the trouble with the set of all sets forced mathematicians to restrictions of so 
freely developed notions. The system of Zermelo is free from this antinomy 
(and several other ones).

The coffer with sets is closed. It contains all of arithmetically oriented 
mathematics. Some believe that it contains all the mathematics, or even all the 
world of all our thoughts. Perhaps all world phenomena? The intentions of the 
first creators of set theory were more modest and they did not have the ambi-
tion of explaining the world. The purpose of the naïve set theory, that is that 
part of set theory which abandon the creative tools of axiomatization, was the 
widening actual mathematics in order to understanding it better.

The tendency of building systems is common to the broad philosophical 
streams of thought. At the beginning of our era Plato’s ideas and constructs 
entered into the Christian and Arab theologies, and then to mathematics. The 
strength of theological tendencies are not the same at each stage. But the 19th 
century was the golden age of philosophers. A minor impulse sufficed that the 
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sleeping up to now theory of sets could be reviewed on such a gigantic scale. 
Undoubtedly it was Cantor to whom we credit that impulse.

Can we go with this idea to Scholasticism? In the History of philosophy8 of 
Tatarkiewicz we can read that as a  result of deliberations over the problem 
of  universals the French 13th century scholastic philosopher Joscelin de Sois-
sons decided to choose the lesser evil. Instead of introducing into his delib-
erations properties of individua, in the role of new existences he proposed to 
consider sets composed of individua with these properties. This was a  theory 
of a  set. His work seems to have been forgotten.9

The Cantor situation was the opposite. He stand before ready collections 
of mathematical objects and was looking for the ideas which can give those 
collections the right of the the existence as an thought entity.

True, it is doubtful that scholastic philosophy had a direct influence on the 
development of Cantor’s theory. Nevertheless, some authors accuse Cantor of 
connections with scholasticism. This charge is amusing as well as — it seems 
— false. We found no confirmation of this opinion in Cantor’s 1883 paper in 
which there are nonmathematical fragments. One of these fragments is some-
thing like a declaration of “mathematics liberated.” Cantor adopted a defensive 
attitude. He looked for support and found in in St. Augustine and Nicolas of 
Cusa. He quoted some accidental sentence from both philosophers. Their great 
authority in theology cannot be impaired, but neither is representative of what 
the mathematical Middle Ages gave us when it comes to mental development.

The person who, in contradiction to Cantor, knew philosophy and therefore 
did not submit to it, was Dedekind. We will not ask him about the philosophy 
of Middle Ages, but there is some similarity between him and Joscelin de Sois-
sons in his studies in abstract algebra when he considered instead of 5 the set 
of numbers divided by 5. This being so, we could try to ascribe to Dedekind 
the inspiring role for renowing the philosophical concept of the set.

Thomas Bradwardine, the inspiror of the Calculators wrote in De continuo: 
“If the last moment of existence does not exist, then there exists the first mo-
ment of nonexistence.” Oresme wrote similarly:10 “If we straighten out the 
curved line, then there does not exist a  last moment in which it is curved, but 
there exists a  first moment when it becomes straight.” Reasoning, frequently 
of jocular contents, about something reminiscent of Dedekind cuts, was very 
popular in the Middle Ages. But we must keep in mind that behind this jocular 
context were hidden the most fundamental discussions in the area of mechanics 

	 8	 Władysław Tatarkiewicz, Historia filozofii, vol. I, p. 237.
	 9	 In 15th century the theory of “a  set” was an object of disputes at Cracow University 
— Zofia Włodek, Filozofia bytu, a  third volume of Dzieje filozofii średniowiecznej w  Polsce 
[History of medieval philosophy in Poland]. Wrocław 1977.
	 10	 Quotation after W. P. Zubow, Traktat Orema o konfiguracji kaczestw [Treatise by Oresme 
on configuration of qualities] (in Russian). Istoriko-mat. Issl. 11 (1958), 601—633.



187

in which one encountered the problem of an open set, and how difficulties con-
nected with it were cut by Galileo. Dedekind was the person who introduced 
into the system the notion of an open set, a  system which later took the form 
of general topology. While parallelism to what was done in the past is of lis-
tening Fredro’s nice poem about the little Buridan’s donkey possible without 
direct influence, it would perhaps be interesting what was taught in German 
Gymnasiums in the middle of the 19th century.

●

It would have also been interesting to know why the set theoretic way of 
thinking found such a quick and strong response in Eastern Europe. Does this 
have anything to do with the fact that in the 15th century worked and taught 
in Kraków followers of the “theory of collections?”

Some of this went over into later centuries. It is for a  reason that we 
complain that Aristotle was still taught in Poland in the 18th century. That is 
perhaps why our children have the privilege, an aporia thought of by Buridan 
in the 14th century, and all one book of Pan Tadeusz is a  restructuring of the 
ancient story of Dido into the argument of Domeyko and Doweyko, Dido who 
began a problem that belong to eternity, the problem of the length of a  curve. 
Ignacy Domeyko, at the University of Wilno, studied deeply the metaphysics of 
the differential calculus. In travels through Courland baron Münchausen pulls 
himself out of deep water by his own hair, and his contemporary Radziwiłł 
My Dear One severy bit as goofy; both drawn of native folklore. Further East 
the indigeneous tradition of a  philosophy on nature, difficult to separate from 
the Latin influence, has struck deep roots.

Fig. 103. In Eastern Europe: a  university city

We renounce these traditions, forgetting that in the study of nature progress 
was the result of thought experiments which led to the formulation of laws 
governing the connecting of substances into chemical compounds, to the crea-
tion of the corpuscular theory of gases, and as a  result, to the creation of the 
modern atomistic theories. In mathematics too the qualitative approach led to 
a  breakthrough.

Later one stopped appreciating these scholastic beginnings ascribing 
progress to the perfection of technology and computing, because these are the 



only things that we can touch with our fingers. In this difficult to grasp de-
pendence of to areas of human activity one certain thing is that what is ever 
done, is first thought of, and even earlier imagined.

●

There is no need to look for confirmations that set theory meant a tourning 
point in mathematics. It was not a matter of solving problems because that part 
of the task is the responsibility of the arithmetic parts of mathematics. It was 
rather a way of looking at the solutions.

There was often euphorias inseparable from great discoveries. People 
thought that “set theoretizing” mathematics effectively ignored the most trou-
blesome of Zeno’s aporias — the aporia of the flying arrow. Bertrand Russell 
wrote about it as follows:

Zeno was interested in three problems …  ; Weierstrass, Dedekind and 
Cantor solved them completely. Their solutions are so clear that they 
have no trace of difficulty. This achievement is probable the greatest 
of these our epoch takes pride in.11

We do not think as simply as Russell did at that time. Surprisingly, we feel 
a certain satisfaction that the object of our reflections — continuity — continues 
to contain a  riddle. The work of 19th century mathematicians was a work that 
exceed the scale of the century. Nevertheless, the aporia of the flying arrow was 
remained a  possibly even greater mystery. We have simplified the continuum 
making it an arithmetic object, but we still do not know what is the way of 
the run of the variable, and what is the way that such nothingnesses as points 
can built the magnitude.
	 11	 Quotation after Robert E. Moritz, On mathematics and the mathematicians. New York 
1958.
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Epilogue

We do not take an interest in a  thing solely to know what were or are 
the opinions about this thing. We also want to know how this thing is. Do 
we know? Usually, no. But such an answer is an escape, because we do have 
some convictions. They lack precision and fundamental justifications. But let 
us recall how basic the topic is.

The world has a  discrete nature and is finite. This is a  truth that physics 
discloses to an ever greater event. It seems that we have reached the highest 
level of divisibility of matter, and in the cosmos we constantly discover the 
monotonous world of ever more distant galaxies, and we will have to confine 
ourselves to one of them. This finite world is terrifyingly empty if we assume 
that space itself is nothing. And even if it turns out to be an ether with the shape 
of a  crystal, even then information about the world will be closed by a  finite 
number of units. The huge brain located outside this world knows everything 
about it, down to the last detail.

Let the words of Abraham Fraenkel, one of the creators of the axiomatic 
set theory, lend us some support. He writes that “… we will never investigate 
the infinitely large or the infinitely small, the assumption about the finiteness 
of physical space fully harmonizes with experience … And so it seems that 
the outside world supplies us nothing beyond finite sets.” These words sound 
as they would be taken from our text.

Let us lend a  support in the following words (1985) of the physicist 
V. L. Ginsburg:
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Whether it is so or otherwise, the assumption that quarks are the tini-
est bricklets of matter seems justified and admissible. If this is really 
so, then the deep qualitative change in the view of the contents and 
future of physics, which has reached (in this respect) some boundary, 
is obvious.1

But if we believe in the discrete and finite world, then what was the point 
writing so much about continuity and infinity? Why do we make at the end 
a complete turnabout in the direction of the thesis opposite to the one that we 
initially saw signs of? True, philosophy is a  labile subject and such turnabouts 
are not unknown. Recall Shigalev in Dostoyevski’s novel presenting his views of 
an equally fluid topic of the freedom. But let us refer his words to continuity:

— I got all balled up in my arguments and my conclusion is in com-
plete disagreement with my original idea, which is for me a  point if 
exit. I begin with absolute [continuity] but end with absolute [discrete-
ness]. But I  must emphasize that there is no other resolution of these 
problems, nor can there be.2

Let us also recall the words of Bouvard and Pecuchet in Flaubert’s novel 
who, as a  result of their studies, reached the point where everything negated 
their acquired knowledge.

Now the author must admit that while he did not hide the part of knowledge 
he found uncomfortable, he did not stress it. He will try to even it out at the end.

Let us begin with the fact that it would be difficult to find among the think-
ers we know thinkers who negated physical atomism, which, beginning from 
with antiquity, had two fundamental variants. In the first, due to Democritus, 
atoms are small and are surrounded by a  huge area of vacuum. In the other, 
represented also by Aristotle, and derived from Empedocles, and appearing in 
extreme form in Leibniz, atoms fill the space tightly.

Only the atomic view could explain the mosaic variety of substances, the re-
versibility of their changes, and their indestructibility. Thinkers differed mainly 
only by the degree to which they supported this view. Some referred the atomic 
view only to matter and others to space and time, thought of in physical terms. 
A comparison is useful: Democritus was a more extreme atomist than Aristotle.

There were few occasions to speak of Medieval European Middle Ages. 
The continuous direction was dominant. The rigorous scholastic method easily 
exposed shortcomings, or even illogicalities which are an inseparable part of 
atomistic speculations in our times as well. This can explain the mentioned 
	 1	 W. L. Ginzburg, O fizikie i astrofizikie. Moskwa 1985, p. 225. Translated by Abe Shen-
itzer.
	 2	 Teodor Dostojewski, Biesy. Moskwa 1989, p. 377—378. Translated by Abe Shenitzer.
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domination. But one must not forget the power of extramathematical argumen-
tation of atomists of that time.

“The feeling of continuity is subjective; … it seems impossible that real 
existences should have any kind of continuity” — wrote a 14th-century atom-
ist Nicolai Bonet who had in mind not only matter but also space and time.

Continuity is only facade which exists as a  result of how we observe and 
think. What hides behind it? Things in themselves — as Kant was to call them 
later — can be matters of guesswork.

When the strict scholastic method declined, the speculative nature of ato-
mistic views grew. We mentioned Giordano Bruno. He drew his views from 
Nicholas of Cusa, who lived in the beginning of the 15th century, almost two 
hundred years earlier. Let us repeat the fundamental thought of the two philoso-
phers; the whole world, the maximum, is reflected in a minimum, that is, in an 
atom. Later Leibniz said something similar about his monads. But contemporary 
physicists know how little variety there is in the elementary particles know. 
Electrons are so similar to one another that physicists speculate that there is 
indeed only one electron and the ones we see are perhaps its copies.

We do not hold it against naturalists that their hypotheses and theories fail 
to verify. That is a piece of good luck. But the speculations of Nicholas of Cusa, 
of Bruno, of Leibniz, let’s add Descartes, were not speculations of naturalists.

Finally, Newton used all his authority ad declared forcefully: “hypotheses 
non fingo.” And he had plenty of guesses.

The illogicality of the atomic view point always deprived it of supporters.
But if we look closely, the illogicality was the fault of the situation rather 

than the fault of human beings. The means that could be used to develop the 
atomic viewpoint were poor in the extreme. Mathematics supplied the concept 
of a whole number and something later called combinatorics, that is, the trans-
formation of truths pertaining to objects with a  finite number of elements by 
means of the elementary laws of logic. These meager means discouraged going 
step by step. There was a  temptation to make mental jumps.

Aristotle knew this weakness of atomism and used all of his authority not 
to allow its extension to mathematics. Mathematics was to investigate ideal 
existences. It cannot investigate other existences because thinking is ruled 
by its own autonomic laws. The power of mathematics lies in its our world 
of concepts, constructed according our inner form of being. It is natural to 
think of a  continuum as infinitely divisible. It is a  thinking must, because, 
above all, mathematics investigates all the musts of our thinking. Ascribing to 
them a  force of sense is a  different matter. Aristotle never did this. Similarly, 
the mature Leibniz and other thinkers were not in a  hurry to arrive at final 
conclusions.

Aristotle, most likely, looked at the continuity not as a  property of things 
but as a  property of our thinking. This follows indirectly from his writings 
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and from the writings of his continuators — hence the conditional form. This 
views came in clear form later.

According to this view, independently of what the world is like, it is impor-
tant how we see it. Regardless of what the logic of the world is, it reaches us 
through our consciousness, which adds to this logic its own, and can certainly 
dominate the former with its own.

Even if we could at some time separate these factors, we are not certain 
if each of them separately is of any value to our cognition. That is why we 
accept Kant’s view: the external world is recognizable only through the filter 
vof our cognition.

It is this cognition that gives our view of the outside world its specific 
colouring, which, it seems, can be seen, among other things, in continuity.

The mind is not set to be aware of individual external signals, but the run 
of evolution it acquired the ability to integrate whole series of these signals 
into pictures. The matter of this integration seems not to be subject to inves-
tigation, if not for antinomial reasons, then because of the amount of discrete 
information, which yields a  qualitatively completely different phenomenon in 
the form of a  single observation. The change of a  discrete phenomenon into 
a  continuous one takes place in our minds without our control.

And it is not so that the mind rounds the discrete to a  continuous: psy-
chologists claim that the mind forms a  continuous image, using as direction 
a method only it knows, and, moreover, the mind has such a continuous image 
prepared ahead of time for a given occasion. Our cognition consists to a  large 
extent in correcting these images with new experience, which is significant if 
some image already exists.

By now psychologists know a  considerable amount when it comes to the 
creation of space pictures in the mind. They have already left behind theo-
ries not supported by detailed argumentation, so called psychologies of shape 
(Gestaltpsychologie). They now have the support of many experiments which 
show that we think by in whole images. Be, it as it may, what we see is not 
a  result of an increasing chain of elementary observations. It is not true that 
the image grows in our mind point by point or moment by moment, as Zeno 
tried to persuade us out of sheer cussedness.

It is therefore quite natural that the fundamental construction of our math-
ematics came into being in harmony with the continuous nature of our obser-
vations. Euclid had built a  system of geometry out of ready images of straight 
lines and planes, relying in prepared dependencies given by the mind. Discrete 
notions, in particular arithmetic and logic were used to put together a  finite 
number of such ready images into longer entities.

This simple image of geometry was later supplemented with new elements, 
for instance in the form of separate recurrent constructions that explained the 
sense of incommensurability. We have in mind power series and even the mys-
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tery of Calculus. For a  long time after Newton mathematics treated its objects 
— no matter how complicated — as whole entities. This may have culminated 
in the theory of analytic functions — for instance — in the behavior of func-
tions around singular points.

If there were border accessing, they pertained to processes subject to 
complete description, most frequently recurrent ones. The outcome of a  bor-
der accessing — let be mentioned the simplest ones, namely “points at the 
infinity” served as a  symbol of the entire process rather than a  new object 
of investigation; this is how we look at power series. By including covenant 
in our considerations concrete infinite processes, mathematics could enter the 
rich world of limacons and vortices on a combinatorial road, into the bargain. 
Arithmetic and logic supplied methods. They did not make claims to a superior 
role. Talking about points, moments and infinity was no more for this kind 
of mathematics no more as linguistic convenience. Even at the beginning of 
the 19th century mathematics seemed to follow just such a  path of enriching 
geometry and analysis by discrete tools taken from arithmetic and some com-
binatorial tools connected with sets.

From the very beginning another current grew in mathematics that gave 
primacy to the discrete before the continuous. Already the Pythagoreans 
made the first attempt to subordinate geometry to number. Their failure 
did not stop the search. When Zeno pointed out the tormenting inability to 
understand the creation of the image of motion moment after moment, in 
agreement with the logical and arithmetical order, many thinkers took up 
the challenge. Even Aristotle, who warned others to ignore “Zeno’s soph-
istry” embarked on the problem of the possibility of logical explanation of 
the nature of the continuum by its point structure. In the end he rejected 
this solution.

His view has lasted for centuries as the dominant view. But 19th century 
mathematicians who looked for foundations for analysis showed that it is pos-
sible to think logically of a  point structure of the continuum. Geometry was 
arithmetized, and the means of attaining this objective became the concept of 
a  set which did not earlier belong to mathematics.

We can handle formally with arithmetic and set-theoretic objects — con-
tinua. But in contact with mental representations, difficulties very similar to 
the difficulties with a  flying arrow arise and constantly bare the empty area 
in our mind, and do it with increasing emphasis. Some enjoy this, as Zeno did 
in his time. Others are persecuted by the thought that they are dealing with 
problems taken from the wrong collection of problems.

We cannot deny arithmetic and set-theoretic image quality characteristic of 
geometry, a  certain suitability for what we observe in nature. But this is dif-
ferent world, it can rather reflect the mechanism of our thinking, but not the 
nature of the world outside of us.



Arithmetization and the introduction of set theory make a  challenge to 
our imagination. It is conceivable that the difficulties of following this road 
forced mathematicians to make discoveries that they would not have otherwise 
encountered. But we run into something unforeseen.

Discrete mathematics, until now in the distant background, seems to be 
gaining a dominant position in recent years. It ceased to be the old elementary 
combinatorics and reaches out for an explanation of phenomena that have, until 
now, remained outside mathematics, for example, phenomena called chaotic. 
And this happens primarily because set theory was able to give it the hitherto 
missing means.

And just as in earlier time mathematicians of the 17th century did not think 
it proper to admit how much they owed to scholastics, now probabilists and 
specialists of ergodic theory forget that they owe their existence to Cantor. It is 
to soon to say that mathematics will master the essence of the discrete world, 
and the latter will take over the rest. There are many examples that support such 
scenario. Organized being can be mathematically obtained from the discrete 
chaos. The Cantor set is the simplest of what are known as fractals. It is formed 
by a  discrete formula of splitting a  point into two. Using finitary manipula-
tions one can obtain a  great variety of continuous objects. Color illustrations 
of swirling clouds, landscapes — not only showing the moon — obtained by 
elaborate recurrence from a  simple model, aborn the pages of albums and of 
illustrated scientific periodicals.

But we would disagree with ourself if we stopped at this ascertainment. 
When all is said and done, the continuous and discrete ways of seeing the 
world are foreign each other. Thousands of years of philosophical, including 
mathematical, have failed to combine these two method into one. Most likely 
our epoch, in which there is more eclecticism than originality, will also fail to 
solve this problem.

For we must not forgive about our nature, in which both ways of seeing are 
separately built in. One of them enables us to carry out activities. The other lets 
understand them. Sometimes, when they have been carried out. And sometimes 
the order is reversed. A  victory that would lift us to a  peak so high that no 
view could reach our consciousness would be a  Pyrrhic victory.
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Author’s reminiscences

The aporia of the flying arrow seldom interferes with our mathematical 
pursuits. We accept it as a  joke. And if we do have to think of it, we quickly 
abandon troublesome considerations and return to what is relevant for us at 
the moment. The same applies to a  larger issue, namely, the surrounding of 
mathematics referred to as its philosophy. It has no influence whatever on the 
resolution of concrete problems in the “interior” of mathematics. The dominant 
opinions among mathematicians is that it is best not to shoulder any philosophy. 
Be it as it may, we do not decide the evolution of the whole of mathematics. 
Another simple truth is that reflection brakes activity. We will not deny these 
sound views in their entirety.

Eminent mathematicians who write their recollections seldom touch on 
problems of mathematics. They write about people, tastes, trips, politics and 
so on. References to the philosophy of mathematics are limited to occasional 
brief pronouncements intended to elicit an intermediate effect. Frequently these 
pronouncements deny one another. One has to leaf through many pages to fish 
out a  reasonably view of one and the same author.

Mathematicians are not very good in philosophy: their minds resist it. Stu-
dents would imparted this something as a  secret to the author, students forced 
to study this subject, and the role of the author was to defend them against this 
subject. This is not a  characteristic students of our generations. This is what 
a  student in famous Goettingen at the beginning of the 20th century wrote:

One of them, Heidecker (Max Born’s distortion of Heidegger’s name 
in his My life) tried to convert me to his faith. I  liked neither his 
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philosophy nor him. Later he took over Husserl’s position in Freiburg 
and wrote a  book which seemed to me to be a  mountain of collected 
senseless words.

That same student, Max Born, wrote that he had tried earlier to attend 
Husserl’s lectures, but they were dull, and so he gave up.

This nice characteristic of mathematicians (the philosophers won’t be in-
sulted because they know all this) shows itself another face when they reach 
maturity. If we ignore the well known exceptions, mathematicians have little 
to say about mathematics.

Let us ignore those who limit themselves to passing verdicts which are 
particularly harsh among mathematicians.

There are few mathematicians — authors of books — who begin their books 
with an introduction in which they state the objective of their work, not to men-
tion their sources of inspiration or their doubts. The author of these reflections 
has a basis for this assertion because he searched the books of specialists when 
he got lost in his own views and looked for the support of others. Most of the 
time he failed to find it.

From the introduction of books we would usually find out that a particular 
book is “intended for advanced students and for scientific workers,” and then 
he would learn that the book contains eight chapters. The first chapters usually 
began with the words: “such and such we will denote so and so.” The book 
usually ended with the proof of, in most cases, the most important theorem. It 
was all very different in the good old days when authors began with the words: 
“Already the ancient Greeks…   .”

Let these few sentences suffice as a signal of a phenomenon which is hardly 
a  source of joy. Where viewpoints are not worked out, accidental judgments 
spread, power-based judgments, and finally prejudices. We might add that the 
phenomenon is one of larger scope and is not limited to mathematics.

The fault is that of a  crisis. Mathematics has no overwhelming discover-
ies. If there are any, they are isolated. This age is, at best, not the golden 
but the silver age of mathematics. It brings income in results but gets lost 
in ideas. The influence of mathematics on the shaping of views keeps on 
diminishing.

A reverse current goes through science. It is being said: to greater natural-
ness. One looks for the lost road. But in most cases this is nostalgy for the 
past without a positive program. There appear supporters of sanation. One look 
for the guilty ones.

●
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The author has presented the views of others, but did not avoid his own 
ones, because he wanted to known how things are and not only who has or 
had a  certain view.

Most of the adduced facts are well known. Not to everybody and not to 
the same extent. For example, the author did not right away know that the 
scholastic thinkers were so close to what we find today in the general areas 
of mathematics.

If they lived today they would, of course, find it difficult to study advanced 
set theory, but their enthusiasm would overcome them all, because the material 
would be just what they have been looking for. But their sympathy would not 
be reciprocated. It is interesting that mathematicians — not physicists — react 
allergically when one tries to remind them of their descent from Aristotle and 
the Middle Ages.

Another surprise for the author (of course, not for people with a  good 
knowledge of the history of physics) was the remark how big an obstacle in 
the study of the motion of a  projectile was for Galileo and his predecessors 
their modest experience in using the notion of an open set (an open partition) 
and how great is the similarity of thought experiments of that time involv-
ing motion of a  projectile with what we find, for example, in collections of 
problems in general topology. A  riddle were the attempts of Lagrange and 
Hoene-Wroński to tear themselves away from analyzing continuity and be-
stowing on its laws the characteristic of primary truths. Why did this fail? 
Will we ever return to it?

The author wrote little about set theory because the views in this area have 
far more emotional content than Poincaré could ever imagine. What is all the 
more surprising if we remember that this eternal energy of “true” mathemati-
cians is, strictly speaking, gone. This may be the reason why philosophy involv-
ing set theory is, possibly due to this fact, not more than journalism.

From time to time more sensible fragments were bound to come up. Indeed, 
can one retain the logic of thought and describe Leibniz’s infinitesimals? Of 
course, one can use modern nonstandard analysis but this overpassed the aim 
of the book and would be an even greater mistake and of different kind. One 
could skip this altogether, but Leibniz’s views are still alive in the minds of 
mathematicians in illogical forms, and the bypassing these infinitesimals would 
be a  justified avoidance.

The author tried to be objective, but there was also bias. The copied Poin-
caré sentences were just what suited the author. One had to keep mum about 
a  few sentences of Aristotle, putting dots in their places in the quote because, 
it seems, the translator himself failed to understand them. The quoted Descartes 
sentences negates most the healthier part of his philosophy. Plato said: “Time 
is the motion of the whole world.” But Oresme — and Newton repeated this 
after him — said something quite different: “Time would exist even if all mo-



tion ceased and things ceased to exist.” Both sentences were quoted at a  safe 
distance from one-another and in each case with approval.

For in the end the author himself got lost in all this like Bouvard and Pecu-
chet. This is so because he was one of these who avoided philosophy while 
studying and for a  long time after that. Truth to tell, this was an ambivalent 
relation, because there was plenty to read in the Wrocław Ossolineum. But 
the Short Dictionary, which I  think was not there, proclaimed: “A  measure 
is an internally contradictory unity of the qualitative and quantitative sides of 
an object.” The delight over the boiling teapot, when quantity went over into 
quality, was the contemporary form of Zeno’s paradox. In Nankier’s place 
(a market place of this name) one would buy from an old German a university 
textbook of physics, written by a  Nobel prize winner at the beginning of the 
20th century, who, as an old professor, at the end of the 1930’s, explained that 
if the elephants could create physics, it would be a  different physics: “Physik 
der Elephanten.” The author has never gotten rid of this trivialization of Kant. 
Nobody had to say a  good word about the Middle Ages. But looking at the 
Wrocław (Breslau) church of holy Elżbieta (Elisabeth) one knew that all this 
was untrue.

Reflections presented in this book were written by the author for himself. 
But later he made an effort to make it possible for others to read them.
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