
 
This article is protected by copyright. All rights reserved. 

1 

Targeting Virulence not Viability  

in the Search for Future Antibacterials 
1
 

Begoña Heras
1
#, Martin J. Scanlon

2,3
# and Jennifer L. Martin

4
#* 

 

1
La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 

3086 Australia 
2
Faculty of Pharmacy and Pharmaceutical Sciences, Medicinal 

Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 

Royal Parade, Parkville, VIC 3052 Australia 
3
ARC Centre of Excellence for Coherent 

X-ray Science, Monash University, Parkville, VIC 3052 Australia 

4
The University of Queensland, Institute for Molecular Bioscience, Division of 

Chemistry and Structural Biology, Brisbane, QLD 4072 Australia 

 

#Contributed equally 

* To whom correspondence should be addressed: 

Email: j.martin@imb.uq.edu.au Phone +61 7 3346 2016 

 

Running Head: Antivirulence Strategies for Bacterial Infection 

 

Keywords: Antivirulence; antibacterial; bacterial infection, pilicide, quorum sensing 

Word Count (excluding title page, summary, references, tables, figures) 2405  

Number of Tables:  1 

Number of Figures: 3 

                                                        
This article has been accepted for publication and undergone full peer review but has not been through 

the copyediting, typesetting, pagination and proofreading process, which may lead to differences 

between this version and the Version of Record. Please cite this article as doi: 10.1111/bcp.12356 

A
cc

ep
te

d 
A

rti
cl

e
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/19774465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
This article is protected by copyright. All rights reserved. 

2 

 

ABSTRACT 

New antibacterials need new approaches to overcome the problem of rapid 

antibiotic resistance. Here we review the development of potential new 

antibacterial drugs that do not kill bacteria or inhibit their growth, but combat 

disease instead by targeting bacterial virulence.  

 

 

INTRODUCTION 

In the ongoing battle between people and pathogens, the pendulum seems to be 

swinging in favour of the bugs. The rapid increase in resistance to antibiotics 

combined with the slowing to a trickle of new antibiotics progressing through the 

pipeline over the past decades has led to this point. The situation has been described 

by the Infectious Diseases Society of America as a looming “public health crisis” [1]. 

 

There are any number of reasons why pathogenic bacteria acquire antibiotic resistance, 

and why resistance is growing at such an alarming rate. The question is, given where 

we are now, how can we ensure that the pendulum swings back in our favour? One 

school of thought is that we need to change the way we discover new antibiotics. 

Historically, antibiotics have been identified by their ability to kill or inhibit growth 

of bacteria. A prime example is penicillin, originally identified by Fleming’s 

serendipitous discovery that a penicillium mould inhibited bacterial growth on an agar 

plate. Ever since, screening approaches have been engineered to find chemicals that 

do the same thing, and molecular approaches have focused on identifying essential 

genes to target for drug intervention. The problem with therapeutic approaches that A
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target viability is that they induce a high selection pressure. A bacterium exhibiting 

resistance to the antibiotic will have an enormous selective advantage over its 

competitors in a bacterial population, so that resistance will develop rapidly in the 

presence of that antibiotic. 

 

An alternative to killing bacteria or stopping their growth, is to search for drugs that 

disarm bacteria. This idea focuses on developing drugs that inhibit bacterial virulence 

[2-4] rather than bacterial viability (Figure 1). Targeting virulence offers several 

potential advantages including: 

(i) an increased repertoire of pharmacological targets 

(ii) generating antimicrobials with new mechanisms of action 

(iii)reducing resistance development due to decreased selective pressure [3] 

(iv) and potentially preserving gut microbiota.  

 

On the other hand, development of antivirulence therapies presents its own unique 

challenges. We can no longer use established screening systems that identify 

compounds that kill or inhibit growth of bacteria. And minimal inhibitory 

concentration measures are obsolete in this scenario. Specific in vitro and in vivo 

assays will need to be developed to screen for compounds that inhibit specific 

virulence processes. And, given that virulence mechanisms vary from one bacteria to 

another, antivirulence drugs are likely to have a narrow spectrum of activity. Their 

success in the clinic may well depend on development of real time diagnostics that 

identify the causative organism and enable therapy personalised to the infectious 

agent. 
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In this review we highlight several virulence pathways currently being targeted for the 

development of antivirulence drugs, including adhesion, secretion and toxin 

production (Figure 2, summarised in Table 1). We also highlight two master virulence 

targets that coordinate deployment of entire arsenals of virulence factors either by 

communicating information (quorum sensing) (Figure 2, Table 1) or by assembling an 

armoury of bacterial weapons (oxidative folding) (Figure 3). Drugs that block these 

master systems may have a broader spectrum of activity.  

 

TARGETING OCCUPATION 

A crucial first step in colonization by bacteria is adhesion to host cells; blocking this 

process may prevent establishment and maintenance of infection [4]. Adhesion is 

mediated by surface proteins (adhesins, autotransporters etc) and multi-protein 

scaffolds (eg pili) protruding from bacteria that interact specifically with 

carbohydrates on the host cell surface.  

 

In Gram-positive organisms, adhesion depends on sortases, a family of cysteine 

transpeptidases that covalently anchor adhesin proteins to the bacterial cell wall [5, 6]. 

Sortases have been targeted in several antibacterial drug discovery programs and 

screening against S. aureus and Bacillus anthracis have identified hits which could 

potentially be developed into potent sortase inhibitor drugs [7-11].  

 

By contrast, cell adhesion and invasion in Gram-negative organisms generally relies 

on the production of pili [4]. Two strategies have been developed to block pilus-

mediated adhesion. One is the identification of pilicides, molecules that prevent pili 

biogenesis by interfering with the underlying usher-chaperone pathway [12]. Pilicides A
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have been shown to reduce production of several components of this pathway in 

uropathogenic E. coli including type I and P pili fimbrial proteins [13]; Dr family 

adhesins [14]; and curli [15], with some also preventing biofilm formation [12, 15]. 

Significantly, the usher-chaperone pili assembly machinery is present in many species 

including Escherichia, Salmonella, Klebsiella, Yersinia and Pseudomonas [16] 

suggesting that pilicides may have a broad spectrum of activity [17].  

 

A second strategy to inhibit pili-based adhesion relies on physically blocking the 

interaction between the adhesin and the host cell. The carbohydrate binding site is 

localised at the very tip of the pili. Carbohydrate derivatives and molecules 

mimicking mammalian glycans dramatically reduce the adhesive properties of 

bacterial pili [18-20]. Importantly, one such inhibitor prevented acute infection in vivo 

and also treated chronic cystitis caused by a multi-resistant E. coli in an animal model 

[18]. 

 

TARGETING WEAPONS DELIVERY 

Bacteria have evolved complex machineries to deliver proteins and toxins into a host 

cell across membranes and cell walls, and these machineries play a central role in 

pathogenesis. The system attracting most attention is the Type III secretion system 

(TTSS). This syringe-like multiprotein apparatus injects bacterial effector proteins 

and toxins directly into the host cell cytosol, and thereby hijacks a wide range of 

cellular processes [21]. Many components of the TTSS are specific to prokaryotes and 

several studies have explored TTSS inhibitors as potential therapeutics (recently 

reviewed in [22]). Importantly, the TTSS machinery is present in many pathogens 

including Escherichia, Shigella, Salmonella, Pseudomonas, Chlamydia and Yersinia A
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spp., so that targeting common elements could result in broad-spectrum TTSS 

inhibitors [23]. 

 

Indeed, high-throughput screening identified thiazolidinone derivatives that block 

TTSS from Gram-negative pathogens including S. Typhimurium and Yersinia 

enterocolitica, reduced the virulence of Pseudomonas syringae and inhibited other 

secretion systems such as the Type II in Pseudomonas and the Type IV in Francisella 

[24]. Similarly, small molecule screening identified a series of salicylidene 

acylhydrazides capable of inhibiting the TTSS of intracellular (Chlamydia 

trachomatis) and extracellular pathogens (Yersinia ssp.) [25-27]. Some of these 

compounds showed protective activity against the sexually transmitted pathogen C. 

trachomatis in mouse infection models [28]. 

 

TARGETING TOXINS 

Toxins are the primary virulence factors of many bacterial pathogens. Examples 

include botulinum and tetanus neurotoxins, cholera, anthrax, diphtheria and Shiga 

toxins. All are proteins delivered into the host to cause mass cell destruction and 

tissue damage [29]. Their extreme toxicity and critical role in pathogenesis makes 

inhibition of toxin production an obvious approach for development of antivirulence 

antimicrobials. This can be achieved by targeting toxin transcription and expression: 

virstatin inhibits the transcription factor ToxT that regulates expression of cholera 

toxin and cholera co-regulated pilus, and blocks intestinal colonization by this 

pathogen in murine models [30]. Similarly, a small molecule inhibitor of toxin TcdA 

and TcdB expression by Clostridium difficile, has shown efficacy in a hamster model 

of gastrointestinal infection [31]. A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

7 

 

Antibodies have been developed to neutralise toxins and are already used to treat 

bacterial diseases such as tetanus, diphtheria and botulism [32]. For example, 

botulism toxin neutralizing antibodies from horse sera are used to treat adult botulism 

and a human-derived botulism antitoxin has been used to treat infants [33]. These 

outcomes provide clinical evidence validating the use of antitoxin drugs after 

infection. 

 

Other antibody therapies are at different stages of development [34]. For example, 

antibodies against Shiga toxin were shown to protect against Shiga toxin-producing E. 

coli (STEC) in a piglet model of acute gastroenteritis [35]. Similarly, efficacy was 

demonstrated in mouse and hamster infection models by combining human antibodies 

against C. difficile toxins A and B [36]. The potential use of B. anthracis as a 

bioweapon has made this and other high threat pathogens the focus of intense efforts 

to develop antibodies and vaccines [37]. Antibodies that inhibit anthrax toxins 

(ABthrax, Valortim among others) have shown promising protection in a range of 

animal models and are now in clinical development [38-41]. 

 

TARGETING COMMUNICATION SYSTEMS 

Bacterial cell-to-cell communication is essential for microbes to adapt to changing 

environments and this communication is regulated by Quorum Sensing (QS) networks. 

Gram-positive and Gram-negative bacteria both use complex regulatory QS circuits to 

sense their population densities and regulate the expression of virulence factors, 

allowing successful establishment of infection [42]. The canonical QS pathways 

consist of secreted signal molecules known as autoinducers (AI, e.g. acyl-homoserine A
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lactones (AHLs) in many Gram-negative bacteria, autoinducing peptides (AIPs) in 

Gram-positive bacteria). Upon reaching a threshold concentration, AI molecules 

interact with cognate sensor receptors (e.g. LuxR and LuxS receptors) to induce the 

expression of virulence genes. 

 

Given the central role of QS systems in bacterial pathogenesis, many efforts have 

focused on interfering with these pathways (recently reviewed in [43-48]). Quorum 

quenching is a term that has been used to describe “any approach that interferes with 

microbial QS signalling” [49]. QS networks have been quenched or modulated at 

three points (reviewed in [49]) by: (1) inhibiting signal generation (e.g. by blocking 

synthesis of AHL in vitro using AHL analogues [50, 51]), (2) degrading the signal 

molecule (AHLs can be destroyed chemically by increasing the pH [2] or by use of 

“quorum quenching” enzymes [47], or inactivated with antibodies [52]), and (3) 

blocking the interaction of the QS signal molecule with the receptor. The last is the 

most popular approach. Screening of natural and synthetic compounds has produced 

potent antagonists of sensing receptors for many bacteria (e.g. enterobacteria, 

Pseudomonas, Staphylococci) with some antagonists being protective in animal 

models of infection (reviewed in [53]). Furthermore, inhibitors capable of blocking 

QS networks in several Gram-negative pathogens, open the possibility of QS 

inhibitors with broad spectrum activity [54]. 

 

The increasing number of patent applications for QS inhibitors clearly reflects the 

interest in this approach [55]. Notably, targeting QS has yielded potent molecules that 

prevent biofilm formation, a major hurdle in treating many bacterial infections [47]. 

Although a lower risk of resistance development was predicted for QS-regulating A
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molecules, recent data indicate that bacteria can develop resistance to these 

compounds [56]. For example, the QS inhibitor C-30 [57] had no effect on the growth 

of Pseudomonas aeruginosa in rich media, but in minimal media it did affect bacterial 

growth and selected for resistance [58].  

 

TARGETING WEAPONS ASSEMBLY 

Virulence factors produced by bacteria are generally proteins, and these virulence 

proteins need to be assembled correctly to function. An important feature of many 

virulence factor proteins produced by Gram-negative bacteria is the requirement for 

structural bracing in the form of disulfide bonds. Disulfide formation between pairs of 

cysteine residues increases the chemical and physical stability of proteins. Conversely, 

failure to form native disulfide bonds results in degradation and loss of activity.  

 

Oxidative protein folding, the process of introducing disulfide bonds into folding 

proteins, is a rate-limiting step in the assembly of many virulence factors and requires 

the activity of specific enzymes [59]. The classic bacterial disulfide bond (DSB) 

machinery, first characterised in E. coli K-12[60], comprises a soluble periplasmic 

enzyme DsbA and an integral membrane protein DsbB (Figure 3). DsbB and its 

quinone cofactor together generate disulfides de novo, and transfer them to DsbA[61] 

which introduces disulfides directly into folding proteins[62].  

 

 

Whilst some variation exists in the DSB enzymes in different bacteria (reviewed in 

[63]), there is now overwhelming evidence that the DSB oxidative protein folding 

machinery is a master regulator of bacterial virulence. Recent compelling evidence A
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comes from a study using an animal model of melioidosis in which mice infected with 

the causative agent of melioidosis, Burkholderia pseudomallei, all died within 42 days 

whereas mice infected with B. pseudomallei lacking the gene for DsbA all 

survived[64]. Similarly, animal infection models have demonstrated that deletion of 

dsbA or dsbB in uropathogenic E. coli (UPEC) severely attenuated its ability to 

colonize the bladder[65], and that dsbA mutants in Salmonella enterica serovar 

Typhimirium were avirulent[66]. 

 

Indeed, many bacteria lacking a functional DsbA have been shown to have reduced 

virulence, increased sensitivity to antibiotics and diminished capacity to cause 

infection. These include uropathogenic E. coli (UPEC), enteropathogenic E. coli 

(EPEC), Bordetella pertussis (whooping cough), Vibrio cholerae (cholera), P. 

aeruginosa (opportunistic human pathogen), Haemophilus influenzae (opportunistic 

human pathogen), S. flexneri (diarrhoea) and Neisseria meningitidis (bacterial 

meningitis) amongst others [67-74].  

 

The loss of virulence can be attributed to the misfolding of a (normally) disulfide-

containing protein substrate of DsbA. For example, E. coli dsbA mutants are non-

motile. The loss of motility is a consequence of the misfolding of protein FlgI, a 

component of the periplasmic ring of the flagellar motor, and a DsbA substrate[75]. 

DsbA is also required for the correct folding of virulence proteins involved in 

bacterial adhesion, secretion and toxicity. Similarly, mutational inactivation of dsbB 

also affects bacterial virulence[76].  

 

These observations point to a major regulatory role in virulence and identify the DSB A
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enzymes as key targets for the development of anti-virulence agents. The DSB 

machinery offers a number of advantages as antibacterial drug targets including:  

(i) DSB inhibition affects multiple bacterial virulence pathways; 

(ii) DSB enzymes are localised to the outer compartment of bacteria making drug 

delivery more amenable than cytoplasmic targets;  

(iii)DsbAs are more highly conserved than the virulence factors they assemble, so 

that inhibitors are likely to be effective against multiple pathogens; and 

(iv) Structures of DSB enzymes are in the public domain, so that structure-based 

approaches for drug discovery are supported. 

 

However, whereas DSB systems are conserved and required for pathogenicity in 

Gram-negative bacteria, the link between DSB systems and virulence in Gram-

positive organisms is not confirmed. Moreover, to our knowledge, there are no reports 

of small molecule inhibitors of DSB enzymes that are effective in vivo. Indeed, they 

represent challenging targets for drug design. Structures of DsbA and DsbB reveal 

that their interaction surfaces lack deep binding cavities, which is often an 

impediment to inhibitor design. Nevertheless, there are an increasing number of 

examples of small molecules designed to block protein-protein interactions against 

other targets [77]. Furthermore, screening of small molecule “fragments” identified 

compounds that interacted with DsbB and led to a series of compounds capable of 

inhibiting DsbB in vitro [78]. If we can develop inhibitors of DSB-mediated oxidative 

protein folding, these would have enormous value as antivirulence agents by 

potentially blocking the assembly of multiple bacterial virulence factors. 

 

SUMMARY A
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In the search for future antibacterials to overcome antibiotic resistance, antivirulence 

agents promise more than a glimmer of hope. Several strategies have been put 

forward, and target validation and preliminary screening have been performed to 

identify important virulence pathways and master virulence machineries. However, 

aside from antibodies that inactivate specific bacterial toxins, none of these 

compounds with new mechanisms of actions have yet reached the clinic. So it 

remains to be seen whether all or some of these antivirulence approaches will live up 

to expectations. We eagerly await studies showing how new generation antivirulence 

antibacterials perform, whether they will reduce resistance development, whether they 

will need to be combined with traditional antibiotics, or whether they can resurrect 

antibiotics made obsolete by bacterial resistance mechanisms. 
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Table 1. Selected examples of virulence factor inhibitors 

 

 

                         Mode of action 

Selection of studied 

pathogens 

Ref. 

 

Adhesion Inhibitors 

Aaptamines Natural product sortase A 

inhibitors  

S. aureus [8] 

Pyridazinone and 

pyrazolethione 

derivatives 

Synthetic sortase A inhibitors S. aureus, B. anthracis [11] 

Pilicides Regulate pilus biogenesis by 

blocking the chaperone/usher 

assembly pathway 

E. coli [12] 

 

Toxin Inhibitors 

Virstatin Inhibits ToxT transcription 

factor blocking expression of 

cholera toxin  

V. cholerae [30] 

ABthrax, 

Valortim 

Antibodies; inhibit anthrax 

toxins 

B. anthracis [38-

41] 

 

TTSS Inhibitors 

Thiazolidinone 

derivatives 

Prevent translocation of 

effector molecules  

Yersinia, Salmonella, 

Francisella, Pseudomonas 

[24] 

Salicylidene 

acylhydrazides 

Prevent translocation of 

effector molecules 

Escherichia, 
Yersinia, Chlamydia, 

Pseudomonas, Salmonella, 

Shigella 

[28] 

 

QS Inhibitors 

Furanone 

derivatives 

Inhibitors mimic AHLs; bind 

LuxR receptor and inhibit 

QS-regulated gene expression 

E. coli, P.aeruginosa, Proteus 

mirabilis, Staphylococci 

[53] 

Lactonase and 

acylase  

“Quorum quenching” 

enzymes degrade AHL, to 

block the quorum sensing 

response 

Bacillus ssp, Erwinia 

carotovora, P. aeruginosa, 

Pectobacterium carotovorum 

[47, 

53] 
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FIGURE LEGENDS 

Figure 1. Antibiotics and anti-virulence agents. Antibiotics (left) kill bacteria or 

prevent their growth. Antivirulence agents (right) render bacteria harmless by 

blocking the activity of virulence factors. Virulence factors can include toxins 

(denoted by poison sign), secretion systems (syringe), adhesion factors (grappling 

hook), or quorum sensing (walkie-talkie), amongst others. 

 

Figure 2. Examples of bacterial virulence pathways that have been targeted for 

antimicrobial development. Bacterial adhesion to the host cell; 1. Inhibitors of pili 

biosynthetic machineries (e.g. chaperone/usher pathway); 2. Inhibitors of the 

carbohydrate-binding sites in the adhesin molecules. Bacterial secretion systems; 3. 

Inhibitors of the Type Three Secretion system (TTSS) to block injection of effector 

proteins to the host cell. Toxin production; 4. Toxin neutralisation to inhibit damage 

to the host. Acyl-homoserine lactone (AHL) mediated Quorum Sensing (QS): 5. 

Inhibitors of AHL synthase LuxI. 6. AHL degrading enzymes (e.g. lactonase and 

acylase). 7. Inhibitors of AHL binding to transcriptional regulator LuxR.   

 

Figure 3. Schematic representation of the DSB catalytic cycle. Quinones (labeled 

Q) generate disulfides in DsbB (orange), which are transferred to DsbA (green), 

which catalyses oxidative protein folding in substrate virulence factors (blue; and 

indicated above). In concert, the disulfide in DsbA (labeled S-S) is reduced to two 

thiols (labeled SH) to complete the catalytic cycle. 
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