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For over a century, venom samples fromwild snakes have been collected and stored around
the world. However, the quality of storage conditions for “vintage” venoms has rarely been
assessed. The goal of this study was to determine whether such historical venom samples
are still biochemically and pharmacologically viable for research purposes, or if new sample
efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional
variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by
a combined proteomic and pharmacological approach to determine protein structural
stability and bioactivity. When venoms were not exposed to air during storage, the
proteomic results were virtually indistinguishable from that of fresh venom and bioactivity
was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus
venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered
significant degradation as evidenced by the proteomics profile. Interestingly, the
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neurotoxicity of this sample was nearly the same as fresh venom, indicating that
degradation may have occurred in the free N- or C-terminus chains of the proteins, rather
than at the tips of loops where the functional residues are located. These results suggest
that these and other vintage venom collections may be of continuing value in toxin
research. This is particularly important as many snake species worldwide are declining due
to habitat destruction or modification. For some venoms (such as N. scutatus from Babel
Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever
conducted and these vintage samples may represent the only venom ever collected from
these unique island forms of tiger snakes. Such vintage venoms may therefore represent
the last remaining stocks of some local populations and thus are precious resources. These
venoms also have significant historical value as the Oxyuranus venoms analysed include
samples from the first coastal taipan (Oxyuranus scutellatus) collected for antivenom
production (the snake that killed the collector Kevin Budden), as well as samples from the
first Oxyuranus microlepidotus specimen collected after the species' rediscovery in 1976.
These results demonstrate that with proper storage techniques, venom samples can retain
structural and pharmacological stability. This article is part of a Special Issue entitled:
Proteomics of non-model organisms.

Biological significance
• These results show that with proper storage venoms are useful for decades.
• These results have direct implications for the use of rare venoms.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Biodiversity is adversely affected by numerous external pres-
sures including climate change and habitat fragmentation [1].
Habitat fragmentation, caused by agricultural practices and
logging, has many impacts on the demographic characteristics
of populations and communities and can ultimately lead to
complete habitat loss [2,3]. Invasive species are also a major
threat to biodiversity [2]. In general, threatened species are
affected by more than one pressure source [2] and human
activities result in the reduction of the range of native species
and the isolation of populations, which may lead to local and
even global extinction [4–6].

Reptiles are not exempt from these threats and a recent
study estimates that 19% of the world's reptile species are
currently threatened [2]. This figure is likely to increase if the
relevant anthropogenic processes are not controlled. Among
snakes, many species are declining around the world and the
limited coverage of current snake population data hampers
conservation initiatives [7]. Moreover, the processes threat-
ening snakes are poorly known [8]. It has been estimated that
12% of snakes are threatenedwith extinction [2], although this
figure may underestimate the severity of the problem due to
difficulty in attaining population data (e.g., the challenges of
detecting and surveying cryptic species). Of particular note,
the biodiversity of oceanic islands is often underestimated [9].
In addition to the ecological impact of a decrease in snake
species richness, these extinctions have economic conse-
quences: venoms have applications in many fields including
medicine, pharmacology and immunology [10–14].

In consideration of the potential applications of snake
venom research, it is of paramount importance that venom
samples are stored correctly after collection. Proper storage
may limit the need to collect additional samples from wild
intage venoms: Proteom
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snakes. This would save time and money for researchers and
also spare the snakes unnecessary disturbance and stress
(this is especially important when working with venoms from
endangered or particularly dangerous species). Furthermore,
as some snake species are rare and infrequently encountered,
it might be impossible to collect additional samples in the
future. As a result, field collection of venom should be
conducted efficiently and with an emphasis on endangered
species in order to preserve a sub-section of venom biodiver-
sity that is declining from existence.

Studies have investigated the identification of proteins in
stored formalin-fixed, paraffin-embedded in a diversity of
tissue samples (c.f. [15–21]). Due to the harsh chemicals
involved in the preparation of such samples, the proteins
would not be expected to be intact or active, thus such studies
are limited to protein identification. Similarly, a recent study
showed that MS/MS could be used to identify the venom
proteins in 26 year-old dried SDS gels [22] but this study did not
determine the protein stability of protein, rather the study was
restricted to simple protein identification. However, some data
is available from previous studies examining the stability of
venoms following storage, freeze–thawing cycles and sonica-
tion or dilution. Importantly, over the short term, a variable
approach to preparation and storage procedures for venoms
did not appear to result in marked degradation [23,24]. In
regards to immunological stability, venoms also retain this
over variable conditions throughout short periods of time [25]
or longer if lypholised [26]. The effect of long-term storage
conditions has been much less intensively investigated due to
the unique logistics involved. In 1951, Schoettler published an
article on the stability of desiccated snake venoms [27]. In this
study, venoms from four different genera of venomous snake
(Agkistrodon, Bitis, Naja, Vipera,) were tested over a period of
13 years and the influences of storage on the venom toxicity
ic andpharmacological stability of snake venoms stored for up
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Fig. 1 – Representative of the vintage venom collection
analyzed in this study: 1935 tiger snake venom.
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and antigenicity were assessed [27]. The experiment revealed
that the stability of desiccated venoms depended on two
factors: the type of venom (non-hemorrhagic, non-enzymatic
venoms maintained their toxic potencies far better) and the
method of storage. Venom exposed to sunlight in a vacuum
desiccator was considered a less favourable method of storage,
as opposed to being containedwithin cork stoppered glass tubes
in a dark environment. Furthermore, the toxic and antigenic
properties of venoms respond differentially to storage, as
venom may exhibit a reduction in toxicity following storage,
whilst its antigenicity appears unaltered. This study therefore
concluded that such venoms could still be used for antivenom
titration. A later study examined the effect upon toxicity of
rattlesnake venom stored in closed containers at 42 °F to 82 °F
in the dark for 26 to 27 years [28]. This study concluded that
even after such long periods of time, venoms retained most of
their lethality and physiological/pharmacological effects.

The first significant venom collection in Australia was that
of George Britten Halford at the University of Melbourne in the
1860–70's [29]. Halford's controversial germ theory of snake-
bite poisoning stimulated demand for Australian snakes and
their venoms from physician scientists in many parts of the
world — most notably from Fayrer in India and Mitchell in
Philadelphia. This was followed by the collection of Charles
James Martin at the same institution in the late 1890's. Martin
focused on assessing the efficacy of Calmette's purportedly
‘universal’ antivenom against Australian venoms and on
characterizing the key actions of the constituent toxins [29].
Australian venom research was largely in abeyance thereafter
until the late 1920's. This period brought together the Walter
and Eliza Hall Institute of Medical Research and the then
Commonwealth Serum Laboratories (known as CSL) in a
Melbourne collaboration to develop Australia's first commer-
cial antivenoms. By late 1930 Australia had its first commer-
cial antivenom — against the mainland tiger snake, Notechis
scutatus [30]. By 1934, most of this venom extraction was
undertaken by CSL as part of antivenom production. The
urgent need for antivenoms produced against Australia's
most dangerous snakes motivated the so-called ‘snake men’
to catch medically-relevant species such as tiger snakes
(Notechis spp.) and brown snakes (Pseudonaja spp.), and later
taipans (Oxyuranus spp.). Once caught, snakes were either
lodged at CSL and milked there or kept elsewhere, such as the
Australian Reptile Park in NSW, to assist antivenom research
and/or production. Some of the most important herpetolo-
gists of this period were Donald Thomson, Charles Tanner,
Eric Worrell and David Fleay, who caught most of the snakes
used in the early days of the antivenom project [31].

The present study compared dried venom samples stored
for up to 80 years with freshly collected samples, observing
differences in the proteomics profile, bioactivity and immu-
nogenicity of the venom. The results are potentially signifi-
cant for two reasons. If old samples retain biochemical and
pharmacological viability, they can continue to be used for
scientific research thus limiting the need to collect new
material in the field. In cases where snake populations have
undergone localized extinctions due to habitat degradation or
impact of feral animals such as cane toads, these venomsmay
represent the last remaining stocks. Proteomic investigations
were first used to examine if any breakdown had occurred in
Please cite this article as: JesupretC, et al, Vintage venoms: Proteom
to eight decades, J Prot (2014), http://dx.doi.org/10.1016/j.jprot.2014
any of the vintage venoms. Bioactivity testing of the major
venom types (Acanthophis, Notechis, Oxyuranus and Pseudechis)
investigated whether functional activities could be preserved
despite long-term storage conditions. Antigenic integrity was
then assessed to examine if such venoms may be of use in
antivenom studies or production. This study differed from
previous venom stability studies [22–28] in both the age of the
samples, the taxonomical diversity present and the conduc-
tance of bioactivity studies. This study is therefore novel in
examining the relative retention of biological activity, and
therefore their relative usefulness, of venoms stored for very
long periods of time.
2. Materials and methods

2.1. Venom collection

The late Struan Sutherland subsequentlymaintained a collection
of these historic venoms as well as developing a bank of his own
samples that together represented milkings occurring between
1935 and 1986. Fifty two of the venoms from this long-term
national reference collection, housed at the Australian Venom
Research Unit, were investigated in this study. Venom types
included the full molecular diversity of Australian snake venoms
[32]: those rich in 6–10 kDa peptides (Acanthophis species); those
rich in 14 kDa PLA2 enzymes (Pseudechis species); those contain-
ing 50 kDa factor Xa enzyme (N. scutatus variants, Oxyuranus
species and Pseudonaja species); as well as factor Va (Oxyuranus
species and Pseudonaja species). To investigate the hypothesis
ic andpharmacological stability of snake venomsstored for up
.01.004

http://dx.doi.org/10.1016/j.jprot.2014.01.004


4 J O U R N A L O F P R O T E O M I C S X X ( 2 0 1 4 ) X X X – X X X
that lyophilized venoms stored in anhydrous conditions retain
their structural integrity and bioactivity, a combined proteomic
and pharmacological approach was used.

Dried venoms from the Sutherland collection had been
stored in the dark at room temperature in small rubber
stoppered glass tubes inside larger rubber stoppered glass
tubes filled with desiccating beads (Fig. 1). The date and
locality of collection for the specific venoms analysed in this
study are displayed in Table 1. Historical venom samples were
Table 1 – Vintage venoms examined in this study.

# Species Date

1. Acanthophis antarcticus 1961
2. Acanthophis praelongus 1960
3. Acanthophis rugosus 1953
4. Acanthophis rugosus 1955
5. Acanthophis rugosus 1955
6. Notechis scutatus 1935
7. Notechis scutatus 1950
8. Notechis scutatus 1950
9. Notechis scutatus 1954
10. Notechis scutatus 1954
11. Notechis scutatus 1954
12. Notechis scutatus 1954
13. Notechis scutatus 1954
14. Notechis scutatus 1955
15. Notechis scutatus 1955
16. Notechis scutatus 1955
17. Notechis scutatus 1955
18. Notechis scutatus 1955
19. Notechis scutatus 1956
20. Notechis scutatus 1957
21. Notechis scutatus 1960
22. Notechis scutatus 1960
23. Notechis scutatus 1961
24. Oxyuranus microlepidotus 1976
25. Oxyuranus microlepidotus 1976
26. Oxyuranus microlepidotus 1976
27. Oxyuranus microlepidotus 1976
28. Oxyuranus microlepidotus 1976
29. Oxyuranus microlepidotus 1976
30. Oxyuranus microlepidotus 1976
31. Oxyuranus microlepidotus 1976
32. Oxyuranus s. canni 1953
33. Oxyuranus s. scutellatus 1950
34. Oxyuranus s. scutellatus 1952
35. Oxyuranus s. scutellatus 1956
36. Oxyuranus s. scutellatus 1960
37. Oxyuranus s. scutellatus 1960
38. Oxyuranus s. scutellatus 1960
39. Oxyuranus s. scutellatus 1960
40. Oxyuranus s. scutellatus 1961
41. Pseudechis australis 1958
42. Pseudechis guttatus 1953
43. Pseudechis guttatus No date
44. Pseudechis papuanus 1966
45. Pseudechis porphyriacus 1964
46. Pseudonaja affinis 1960
47. Pseudonaja inframacula 1960
48. Pseudonaja inframacula 1960
49. Pseudonaja textilis 1976
50. Pseudonaja textilis 1977
51. Pseudonaja textilis 1978
52. Pseudonaja textilis 1979

Please cite this article as: Jesupret C, et al, Vintage venoms: Proteom
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compared against freshly milked venoms from the same
species (and from the same locality if the location of the
vintage venom was known). Fresh venoms were milked by
authors BGF and ND.

2.2. Proteomics

RP-HPLC, 1D-electrophoresis, LC/MS and MS/MS analyses were as
per described by us previously [33].
Locality Collector

Not recorded Not recorded
Cooktown, Queensland Not recorded
Papua New Guinea Not recorded
Papua New Guinea Not recorded
Papua New Guinea Not recorded
Not recorded Not recorded
King Island Worrell
King Island Worrell
Kangaroo Island Tanner
Kangaroo Island Tanner
New Year Island Not recorded
Tasmania Not recorded
Lake Alexandrina, South Australia Worrell
Flinders Island Worrell
Flinders Island Worrell
Barmah, New South Wales, Not recorded
Franklin, Victoria Not recorded
Werribee, Victoria Not recorded
St. Francis Island Not recorded
Babel Island Not recorded
Chappell Island Worrell
King Island Worrell
Western Australia Tanner
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Papua New Guinea Not recorded
Cairns, Queensland Not recorded
Cairns, Queensland Worrell
Cairns, Queensland Ram Chandra
Cairns, Queensland Not recorded
Cairns, Queensland Cook
Cairns, Queensland Cook
Cairns, Queensland Not recorded
Cairns, Queensland Cook
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Not recorded
Not recorded Tanner
Not recorded Tanner
Not recorded Tanner
Cuddapan, Queensland Tanner
Cuddapan, Queensland Tanner
Cooktown, Queensland Tanner
East coast, New South Wales Tanner

ic andpharmacological stability of snake venoms stored for up
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Fig. 2 – Representative 1D gels: A A) Acanthophis antarcticus FRESH Middleback ranges, South Australia, B) A. praelongus FRESH
Cairns, Queensland, C) A. rugosus FRESH Camooweal, Queensland, D) A. laevis FRESH Merauke, West Papau, E) VV1, G) VV3
I) VV4; B A) Notechis scutatus FRESH Lake Alexandria, South Australia, B) N. scutatus FRESH Chappell Island, C) N. scutatus
FRESH Melbourne, Victoria, D) VV7, E) VV8, F) VV22, G) VV13; C A) N. scutatus FRESH Victoria, Melbourne), B VV16), C) VV17,
D) VV18, E)N. scutatus FRESHWestern Australia, F)N. scutatus 1961Western Australia;DA) N. scutatus FRESH Lake Alexandria,
South Australia, B) N. scutatus FRESH Chappell Island, C) N. scutatus FRESH Melbourne, Victoria, D) VV6, E) VV20, F) VV21,
G) VV15; E A) Oxyuranus microlepidotus FRESH Lake Eyre, South Australia; B) VV24, C) VV25, D) VV26, E) VV27, F) VV28, G) VV29,
H) VV30, I) VV31; F A) Oxyuranus scutellatus scutellatus FRESH Cairns, Queensland, B) VV33, C) VV34, C) VV35, D) VV36, E) VV37,
F) VV38, G) VV39 H) VV40; G A) Pseudechis australis FRESH Alice Springs), B) VV41 C) P. guttatus FRESH no locality for founding
stock, D) VV42, E) VV43, F) P. papuanus FRESH no locality for founding stock, G) VV44, H) P. porphyriacus FRESH no locality for
founding stock, I) VV45; H A) Pseudonaja affinis FRESH Perth, Western Australia, B) VV46, C) P. inframacula FRESH no locality for
founding stock, D) VV47, E) VV48; I A) Pseudonaja textilis FRESH Brisbane, Queensland, B) VV49, C) VV50, D) VV51, E) VV52. VV =
vintage venomand numbers refer to values in Table 1. Mass spectrometry results for the green zone of Panel A, Lane A and green
and red zones of Panel A, Lane E are given in Supplementary Table 1. fX = blood coagulation factor Xa, fV = blood coagulation
factor Va. fX and fV identity were confirmed through the MS/MS analysis of digested representative spots: Lane D (VV18) in Panel
C and Lane C (VV25) in Panel E. Mass spectrometry results for these two spots are given in Supplementary Table 1.
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2.3. Pharmacological investigations

2.3.1. Haemotoxicity
The venoms were diluted with distilled water to a final
concentration of 100 μg/ml, 10 μg/ml and 1 μg/ml. Plasma
preparation blood samples were collected into freshly pre-
pared polypropylene tubes containing 1:7 (w/w) Sodium citrate/
Glucose/Citric Acid anticoagulant (pH 4.5). Following centrifuga-
tion at 180 g for 10 min at +23 °C, the Platelet Rich Plasma (PRP)
was removed and centrifuged for an additional 15 min at 1100 g
and +23 °C (as per Mustard et al., 1972). The Platelet Poor Plasma
(PPP) was removed and stored at −80 °C in 2 ml aliquots. On the
day of performance, the samples were thawed in a water bath
at +37 °C for 10 min and three plasma pools prepared, each
containing six different individual samples. A modification of
Please cite this article as: JesupretC, et al, Vintage venoms: Proteom
to eight decades, J Prot (2014), http://dx.doi.org/10.1016/j.jprot.2014
the Activated Partial Thromboplastin Time (APTT)was set up for
this experiment which added 50 μl saline and 50 μl venom to
50 μl plasmapool and 50 μl CaCl2. ThemodifiedAPTTwas set up
to test the effect of snake venomas an activator or inhibitor. As a
control 50 μl APTT reagent and 50 μl CaCl2 were added to 50 μl
pooled plasma. The measurements were performed on auto-
mated coagulation analyser, STA-R (Diagnostica Stago, France).

2.3.2. Neurotoxicity
Neurotoxicity protocol was as described by us previously [34].

2.4. Snake venom detection kit

Snake venom detection kit protocol was as per [35] with each
venom tested at a concentration of 10 ng/ml.
ic andpharmacological stability of snake venomsstored for up
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Fig. 3 – LC/MS comparison of vintage and fresh Acanthophis venoms: A) Acanthophis antarcticus FRESH Middleback ranges,
South Australia, B) A. praelongus FRESH Cairns, Queensland, C) A. rugosus FRESH Camooweal, Queensland, D) A. laevis FRESH
Merauke, West Papau, E) A. antarcticus 1961 locality not recorded, F) A. praelongus 1960 Cooktown, Queensland, G) A. rugosus
1953 Papua New Guinea, H) A. rugosus 1955 Papua New Guinea, I) A. rugosus 1955 Papua New Guinea. Y-axis is relative
intensity. Reconstructed masses are given above each peak or subpeak. Black bars in A and E are the locations of the m/z
presented in Fig. 4.

6 J O U R N A L O F P R O T E O M I C S X X ( 2 0 1 4 ) X X X – X X X
3. Results and discussion

Testing vintage Pseudechis australis and Notechis scutatus
venoms in the snake venom detection kit revealed they were
detectable at the same 10ng/ml concentration as fresh venom
and in the appropriate well (Table 3). 1D-electrophoresis
revealed little degradation of vintage venom samples, as few
differences were evident between them and their fresh
equivalents (Fig. 2). Only the Acanthophis antarcticus venom in
lane E of panel A in Fig. 2 showed significant degradation, and
this was also the venom for which both the external and
internal rubber stoppers had degraded the most, allowing the
entry of moisture. In the 6–14 kDa range (green zone in Fig. 2)
there was an obvious difference, with an apparent disappear-
ance of higher molecular weight components from the
vintage sample. In-gel digestion followed by LC/MS/MS of a
lowmolecular weight band present in this vintage venom (red
zone in Fig. 2) that was absent in other vintage or fresh
venoms showed the presence of toxins of higher molecular
weight including: 3FTx [6–8 kDa]; kunitz [6–8 kDa]; lectin
Please cite this article as: Jesupret C, et al, Vintage venoms: Proteom
to eight decades, J Prot (2014), http://dx.doi.org/10.1016/j.jprot.2014
[18–20 kDa]; nerve growth factor [18–20 kDa]; and phospholi-
pase A2 [14–17 kDa] (Supplementary Table 1). However in gel
digestion of the green zones of both Lane A and Lane E
revealed the retention of comparatively similar components.
RP-HPLC LC/MS comparison of this A. antarcticus vintage
venom with other vintage venoms and fresh venoms showed
a loss of peak resolution and complexity (Fig. 3). Mass
spectrometry comparison of homologous peaks between
fresh and vintage A. antarcticus venoms, showed an increase
in m/z complexity in the vintage venom (Fig. 4), which is
consistent with the degradation of this venom sample.

Surprisingly, our bioactivity studies showed the retention
of significant neurotoxicity in this sample (Fig. 5). A. antarcticus
venom from 1961 (3 and 10 μg/ml) and Acanthophis praelongus
venom from 1960 (3 and 10 μg/ml) both caused a rapid
blockade of nerve-stimulated twitches in the chick biventer
cervicis nerve-muscle preparation. The time required to
inhibit 90% of twitch contractions (t90) for A. antarcticus
(3 and 10 μg/ml) was 21 ± 1 min (n = 3) and 15 ± 1 min (n = 3)
respectively. The time required to inhibit 90% of twitch
contractions for A. praelongus (3 and 10 μg/ml) was 34 ± 2 min
ic andpharmacological stability of snake venoms stored for up
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Fig. 4 – m/z from peaks with black bars in Fig. 3 from Acanthophis antarcticus FRESH Middleback ranges, South Australia and
A. antarcticus 1961 locality not recorded. A and B are the first peaks selected for each venom and C and D are the second peaks
respectively. Venom protein degradation is indicated by the increased complexity in B and D relative to A and C.

7J O U R N A L O F P R O T E O M I C S X X ( 2 0 1 4 ) X X X – X X X
(n = 3) and 18 ± 4 min (n = 3) respectively. Both venoms
(3, 10 μg/ml) produced significant inhibition of contractile
responses to exogenous agonists (Fig. 5, P < 0.0001, n = 3)
while not significantly affecting the response to KCI, which is
indicative of post-synaptic neurotoxicity. Moreover, t90 values
at 10 μg when compared against previously studiedAcanthophis
venoms confirmed the retention of significant amounts of
neurotoxicity (Table 2). These results indicate that the degra-
dation of the peptide neurotoxins may have been restricted to
the functionally unimportant N- or C- terminus free-chains
rather than having occurred in the loops containing functional
residues, as indicated by the mass spectrometry results (Figs. 3
and 4). The other vintage venoms tested also showed signifi-
cant retention of neurotoxic activities (Fig. 5) consistent with
their relative proteomic stability (Fig. 2).

Hemotoxicity SVS testing of N. scutatus and Oxyuranus
scutellatus venoms showed the vintage venoms to be only
slightly less potent (Notechis) or equipotent (Oxyuranus)
relative to fresh venoms (Fig. 5). Mass spectrometry analysis
of the relevant bands (Supplementary Table 1) showed the
preservation of the enzymes responsible for hemotoxic
activity: factor Xa for Notechis venoms and to factor Xa in
addition to factor Va for Oxyuranus and Pseudonaja venoms
(Fig. 2). The coagulation profile of the N. scutatus and
O. scutellatus venoms using a modified APTT assay showed
the vintage venoms to be only slightly less potent (Notechis) or
equipotent (Oxyuranus) relative to fresh venoms. Fresh venom
at 10 μg/ml induced clot formation in 31 s, a 40% reduction
Please cite this article as: JesupretC, et al, Vintage venoms: Proteom
to eight decades, J Prot (2014), http://dx.doi.org/10.1016/j.jprot.2014
in clotting time compared to the control. Similarly, vin-
tage venom at a concentration of 10 μg/ml reduced APTT to
38 s. Fresh and vintage Oxyuranus venom at the higher
concentration of 10 μg/ml both induced clot formation virtu-
ally immediately (prior to the minimum recorded time of 1 s).

The investigation of dried vintage snake venom samples
with proteomic and pharmacological approaches revealed
that degradation may occur over time if an airtight seal is not
maintained. However, if the integrity of the seal is not
compromised then venoms are remarkably stable, even over
periods of greater than 50 years. Thus the use of vintage
samples in contemporary research is feasible if the samples to
be studied have been effectively stored. In addition, to prevent
protein degradation during long-term storage, all freshly
collected samples should be dried completely and stored in
airtight containers, preferably in a temperature-controlled
environment without exposure to sunlight.

Since some structural changes to proteinsmay occur during
long-term storage, the use of historical desiccated venom
samples for the production of antivenom may not be ideal.
Nevertheless, these venoms remain a rich resource for
evolutionary and biodiscovery studies — particularly in light
of the global biodiversity crisis, with many snake species
undergoing local extinctions. The N. scutatus samples analysed
in this study (from Babel Island, Flinders Island, King Island and
St Francis Island) are not only the only ones currently available
for research, but this study also marks the first time analyses
have been undertaken on the venoms from these isolated and
ic andpharmacological stability of snake venomsstored for up
.01.004
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Fig. 5 – A/B/C/D venom effects upon nerve-mediated twitches of the chick biventer nerve-muscle preparation [n = 3,
x-axis = time (mins), y-axis = % of initial twitch height]; 10 μg/ml action upon clot formation for E) Notechis scutatus FRESH
Melbourne, Victoria and N. scutatus 1955 Werribee, Victoria F) Oxyuranus s. scutellatus FRESH Cairns, Queensland and O. s.
scutellatus 1950 Cairns, Queensland; y-axis is time to clot formation.
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unique populations. Some of these venoms are also of
tremendous historical value, such as our analysis of the
venom of the first O. scutellatus specimen collected for antiven-
om production (which infamously killed the young collector
Table 2 – Comparisons of neurotoxicity (indicated by t90
values in minutes) induced by 10 μg doses of Acanthophis
venoms in the chick biventer cervicis nerve-muscle
preparation in this study and previous studies [37,38].

Species Age t90 a

Acanthophis antarcticus FRESH 13.8 ± 1.3
Acanthophis antarcticus 1961 21 ± 1
Acanthophis praleongus FRESH 19.4 ± 1.9
Acanthophis praelongus 1960 34 ± 2
Acanthophis pyrrhus FRESH 13.6 ± 1.2
Acanthophis rugosus FRESH 10.5 ± 0.5
Acanthophis wellsi FRESH 13 ± 2

a t90 values represented as mean ± SEM.

Please cite this article as: Jesupret C, et al, Vintage venoms: Proteom
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Kevin Budden) [31], as well as samples from the first Oxyuranus
microlepidotus ever collected for research, after the rediscovery of
the species in 1976 [36].

This study demonstrates that vintage venom collections
may still be viable for research purposes. It also demonstrates
that venom samples collected now can be used as valuable
reference bioresources for future scientific studies. It is
therefore of paramount importance that the venoms of rare
and endangered species, not currently represented in stock
collections anywhere in the world, be collected and appropri-
ately stored to preserve a declining bioresource. It goes
without saying that collectors should seek to minimize the
impact of their own collecting practices, by taking only the
minimal number of specimens of each species required for
venom production. It is also important that vintage venom
collections be viewed as bioresources themselves and not
merely as historical artefacts — they may represent the last
opportunity to discover the potential wonder drugs hidden
within the venoms of endangered species of snakes.
ic andpharmacological stability of snake venoms stored for up
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Table 3 – sVDK (snake venom detection kit) testing of vintage venom (with strongest match shown in green) [35].

Blank
Positive 
control

Negative 
control Taipan

Death 
Adder Black Brown Tiger

Notechis scutatus 
(1955) 0.007 2.655 0.026 0.06 0.121 0.173 0.043 0.203

Pseudechis australis 
(1958) 0.009 2.556 0.033 0.087 0.11 0.508 0.07 0.111

Pseudechis australis 
(1972) 0.005 2.419 0.027 0.081 0.112 0.535 0.055 0.109

Pseudechis australis 
(1983) 0.005 2.538 0.03 0.097 0.184 0.611 0.054 0.125
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